We are currently using a disk for secondary storage,
which is grossly inadequate for heavy swapping, but con-
sider that our swapping problems can be virtually elimi-
pated by the use of Extended Core Storage, which has a
transfer rate of 600,000,000 bits per second.

The remaining problem is thus that of software, namely
the possibility of completing it before the machine is
obsolete. Our experience in this area may be of some
interest. The peripheral program constituting the SHARER
monitor comprises about 4000 12-bit instructions (perhaps
equivalent to 1000 instructions of a conventional large
machine). The central program is written in ForTrAN and
amounts to about 2000 statements. Thirty-five utility
routines, largely written in ForrrAN, have also been pro-
vided. About six man years of work have gone into the
system thus far, expended by a group averaging four
persons over an 18-month period.

We were fairly careful to maintain high standards of
documentation during our programming effort. An initial
design document specifying all principal system inter-
faces, table formats, and algorithms was written before
any programming was started. This “reference manual”’
was kept in the form of a deck of cards. Modifications to
the system were incorporated into this document as soon
as convenient after decisions were made. The effort of
documentation has more than paid for itself in reducing
confusion in the coordination and debugging of the system
programming,

Acknowledgments. The Ocropus operating system [7]
for the 6600 provided a number of the ideas inherent in
SHARER, as did the work of project MAC [8]. The work
reported in this paper was performed under the auspices
of the US Atomic Energy Commission, Contract AT (30-1)-
1480.

Recovepr FEBrUARY, 1967; REVISED JUNE, 1967

REFERENCES

fd

. Dennis, J. B., axp Vax Horn, E. C. Programming semanties
for multi-programmed computations. Comm. ACM 9, 3
(Mar. 1966), 143.

2. Corsaro, F. J., aND Vyssorsky, V. A. Introduction and over-
view of the multics system. Proc. AFIPS 1965 Fall Joint
Comput. Conf., Vol. 27, Vol. 1, p. 185,

3. Graser, E. L., CouLrur, J. F., anp Orrver, G. A. System
design of a computer for time-sharing applications. Proc.
AFIPS 1965 Fall Joint Comput. Conf., Vol. 27, Vol. 1, p. 197.

<. Vyssorsky, V. A., Corsaro, F. J., anp GraHaM, R. M. Struec-
ture of the multics supervisor. Proc. AFIPS 1965 Fall Joint
Comput, Conf., Vol. 27, Vol. 1, p. 203.

5. Davey, R. C., anp Neumany, P. G. A general-purpose file
system for secondary storage. Proc. AFIPS 1965 Fall Joint
Comput. Conf., Vol. 27, Vol. 1, p. 213.

6. Ossana, J. F., Mixus, L. E., anp DunteN, 8. D. Communica-
tions and input/output switching in a multiplex computing
system. Proe. AFIPS 1965 Fall Joint Comput, Conf., Vol. 27,
Vol. 1, p. 231.

7. OCTOPUS/6600 Users Manual. Lawrence Radiation Lab.,
Livermore, Calif.

8. CorBaTo, F. J. Br AL, The Compatible Time-Sharing System:

A Programmer’s Guide. MIT Press, Cambridge, Mass., 1963.

Volume 10 / Number 10 / October, 1967

J. G. HERRIOT, Editor

ALGORITHM 312

ABSOLUTE VALUE AND SQUARE ROOT OF A
COMPLEX NUMBER, [A2]

Pavn Friepranp (Reed. 13 Feb. 1967 and 16 June 1967)
Burroughs Corporation, Pasadena, California

real procedure cabs (z,y);
value z, y; realz, y;
comment This procedure returns the absolute value of the com-

plex number # + 4y. The procedure provides for the possible
overflow onz? + y2in |z + iy | =+/2F + 2;
begin
x 1= abs (z); y := abs (y);
cabs := ifz = 0 then y else if ¥ = 0 then z else
ifz >y then z X sgrt (14+(y/z) T 2)
else y X sgrt U+(x/y) T 2)
end cabs;
procedure csgrt (z,y,a,b);
value z, y; realwz,y, a, b;
comment This procedure computes ¢ and & where ¢ + b =
Vi +iy.Forz =y = Owe have thata = b = 0 50 we will assume
that z and y are not both zero.
Solving simultaneously for ¢ and then b -- -

) a =+ Viélﬁi@_f b= y/(2a)
2
and for & and then a. ..
@ b=:t1/:ii‘il_ﬁﬂl_}, a = y/(2b)
2

To keep the radical real, we will always use the positive sign
with | & ~+ 4y | and use equation (1) with the sign of ‘o’ taken
positive for z > 0 and (2) when z < 0, with the sign of b
taken positive fory > 0 and negative for y <0;

begin
ifr=0/Ay=0thena =) := 0 else
begin

a 1= sqrt ((abs (x) + cabs (z, 1)) X 0.5);

ifx > 0thenbd := y/(a + q) else

begin
b= ify <0 then —q else a;
a =g/l +b)
end
end
end csqrt

Communications of the ACM 665

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363717.363780&domain=pdf&date_stamp=1967-10-01

ALGORITHM 313

MULTI-DIMENSIONATL PARTITION

GENERATOR [A1]

P. Brariey anp J. K. S. McKay (Reed. 23 Aug. 1966,
15 Feb. 1967 and 14 Apr. 1967)

Dept. of Computer Science, University of Edinburgh

procedure partition (N, dem, use);
value N, dim; integer N, dim; procedure use;
comment A partition of N is an ordered sequence of positive
k

> ny , such that Z n; = N.
i=1

Such a partition may be represented by a Ferrers-Sylvester

graph of nodes with n, nodes in the 7th row, e.g.,

* * ® * *

integers, ny = ne > ng > ---

% % ok %

£ %

* *
represents 3, 4, 2, 2. This two-dimensional diagram may be gen-
eralized in a natural way to three, or more, dimensions. More
formally, we regard a d-dimensional partition of n as a set S of
n nodes, each defined by its non-negative integer coordinates
such that
(s s Xe, t
whenever

yza) € 8 if and only if (@', 2, -+ ,2d) €8
0<2y <z; forall ¢=1,2,...,d.

This generalization reduces to the usual definition whend = 2.
There is little literature on these generalized partitions. It is
with a view to facilitating numerical studies that this algorithm
is published.

After generation, each partition is presented to the procedure
use, which should be supplied by the user for the purpose he
requires. use has three formal parameters, the first being the
name of a two-dimensional integer array, and the second and
third being integers giving the size of this array. When the pro-
cedure is called by

use (current, dim, N)

then the coordinates of the nodes entering into the newly

generated multi-dimensional partition will be found in current

(1:dim,1:N]. The parameters of use should be called by value,

or alternatively care should be taken that neither dim, N, nor

the contents of the array current are disturbed.
REFERENCES:

1. Guera, H., Gwyrner, C. E., anp Mirier, J. C. P. Tables
of Partitions. Royal Society Mathematical Tables, Vol.
4, Cambridge Univ. Press, 1958.

2. MacManon, P. A, Combinatory Analysis, Vol. 2, Cam-
bridge Univ. Press, 1916.

3. Craunpy, T. W. Partition generating functions. Quart.
J. Math. 2 (1931), 234-240.

4. Ak, A. O. L., Brariey, P., MacDonarp, 1. G., anp Me-
Kay,J. K. 8. Some computations for m-dimensional par-
titions. Proc. Cambridge Phil. Soc. (to appear);

begin
integer 7; integer array current [Lidim, 1:N],
e[l:dim,0: (N—1)Xdim];
procedure part (n,q,r); value n, g, r; integer n, ¢, r;
begin integer s, 1, j, k, p, m, z;
for p:= ¢ step 1 until 7 — 1 do
begin
for i := 1 step 1 until dim do current [i,n] := z[i,p];
if n = N then begin use (current,dim,N) ; go to L2 end;
§ =7,
for ¢ := 1 step 1 until dim do
begin
for j := 1 step 1 until dim do 2[j,5] := z[j,p]

’

666 Communications of the ACM

ele,8] 1= xli,s] + 1;
for j := 1 step 1 until dim do
begin
if 27, 8] = 0 then go to L3;
for k := 1 step 1 until » do
begin
for m := 1 step 1 until dim do
begin
z = if 7 = m then 1 else (;
f ciurrent [m, k] £ x[m,s] — z then go to L4
end;
go to [3;
L4
end k;
o to Lj5;
L3:
end j;
s:=s+1;
L5:
end 7;
part (n+1,p+1,5);
L2: end p
end part;

for ¢ ;= 1 step 1 until dim do z[Z,0] := 0;
end pariition

part (1,0.1)

REMARK ON CORRECTION TO CERTIFICATION
OF ALGORITHM 279 [D1)]

CHEBYSHEV QUADRATURE [IFR.A. Hopgood and
C. Litherland, Comm. ACM 9 (Apr. 1966), 270 and 10
(May 1967), 294]

Kexnere HinisrroMm (Reed. 26 June 1967)

Applied Mathematics Division, Argonne National Labora-
tory, Argonne, Illinois

There are two corrections that should be appended to the certi-
fication of Algorithm 279.

Diue to programming error, the integrand funetion routines for
e and sin(z)+1, used by the Chebyshev routine, incorrectly
evaluated the functions at z = 0, thus delaying convergence.

The revised Chebyshev routine still converges more rapidly
than the original scheme in the first two examples, but the ad-
vantage is mucl less pronounced than previously indicated.

The amended Table I should read as follows, with the numerical
corrections italicized.

TABLE 1
Number
of func-
Integrand A | B | EPS VI Routine V4 tion
evaluy-
ations

0.886226924| Flavie

Romberg
Chebyshev
Chebyshev (Rev.)

P 0 | 4.3 107 0. 886226024 17
0.886226925 65
0.8862269261 33
0.8862269258 17
sin(z)+1 0 | 27| 10-¢ | 6.283185308] Havie 6,883185307 2
Romberg 6.283186307 3
Chebyshev 6.2831853086 9
Chebyshev (Rev.) | 6.2831853089 5

Volume 10 / Number 10 / October, 1967

