
We are cttrrentIy using a disk for secondary storage, 
which is grossly i~ladequate for heavy swapping, but con- 
sider that our swapping problems can be virtually elimi- 
nated by the use of Extended Core Storage, which has a 
transfer rate of 600,000,000 bits per second. 

The re:realizing problem is thus that  of software, namely 
the possibility of completing it before the machine is 
obsolete. Our experience in this area may be of some 
interest. The peripheral ptvgram constituting the SmtaEi~ 
monitor comprises about 4000 12-bit instructions (perhaps 
equivalent to 1000 instructions of a conventional l a n e  
machine). The central program is written in FORTI~AN and 
amounts to about 2000 statements. Thirty-five utility 
routines, laNely written in FORTgXN, have also been pro- 
vided. About six man years of work have gone into the 
system thus fat', expended by a group averaging four 
persons over an 18-month period. 

We were fairly careful to maintain high standards of 
documentation during our programming effort. An initial 
desigi~ document specifying all principal system inter- 
faces, table formats, and algorithms was written before 
any programming was started. This "reference manual" 
was kept in the form of a deck of cards. M:odifieations to 
the system were incorporated into thfis document as soon 
as convenient after decisions were made. The effort of 
documentation has more than paid for itself in reducing 
confusion in the coordination and debugging of the system 
programming. 
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ABSOLUTE VALUE A N D  SQUARE ROOT OF A 
C O M P L E X  N U M B E R ,  [A2] 
PAUL FRIEDLAND (Recd. 13 Feb. 1967 and 16 June 1967) 
Burroughs Corporation, Pasadena, California 

real p r o c e d u r e  cabs (x,y); 
v a l u e  x, y; real  x, y; 

comment This procedure returns the absolute value of the com- 
plex number x + iy. 'The procedure provides for the possible 
overflow on x ~ + y~ in ] x + iy ] = %/2~i + y~ ; 

begin 
x := abs (x); y := abs (y); 
cabs := i fx  = 0 then y else i fy -~ 0 t h e n x  e l s e  

i f x  > y then x X sqrt ( l+(y /x)  T 2) 
e l se  y X sqrt (1+(x/y) 1" 2) 

end cabs; 
p r o c e d u r e  csqrt (x,y,a,b ) ; 

v a l u e x ,  y; r e a l x ,  y, a, b; 

comment This procedure computes a and b where a + ib = 
-k iy. For x = y = 0 we have that a = b = 0 so we will assume 

that x and y are Rot both zero. 
Solving simultaneously for a and then b -- • 

(1) a = ± ~ x = k  ix  + iYl b y/(2a) 
2 

and for b and then a .... 

(2) b = ± ~ Z  x ~ ] x + 01  U/(2b) '2- " ~  a = 

To keep the radical real, ' we will always use the positive sign 
with ] x + iy [ and use equation (1) with the sign of "a" taken 
positive for x _> 0 and (2) when x < 0, with the sign of "b" 
taken positive fory > 0 and negative for y < 0; 

begin 
i f  x = 0 A y  = 0 t h e n a  := b := 0 e l s e  
begin 

a := sqrt ((abs (x) + cabs (x, y)) X 0.5); 
i f x  > 0 t h e n b  := y / ( a + a )  e l se  
begin 

b := i fy  < 0 then --a else a; 
a :=y / (b  + b )  

end 
end 

e n d  csqrt 
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M U L T I - D I M E N S i O N A L  P A R T I T I O N  

G E N E R A T O R  [A1] 

P .  BRATLEY AND J .  K .  S .  M c K A Y  (Recd .  23 Aug .  1966, 

15 F e b .  1967 a n d  14 A p r .  1.967) 

D e p t .  of  C o m p u t e r  Sc ience ,  U n i v e r s i t y  of E d i n b u r g h  

p r o c e d u r e  partition (N, dim, use); 
v a l u e  N, dim; i n t e g e r  N, dim; p r o c e d u r e  use; 

c o m m e n t  A part i t ion of N is an ordered sequence of positive 
k 

integers, nl ~_ n2 > n~ > . . -  ~ nk ,  such that  ~ ni = N. 
.i=1 L4: 

Such a part i t ion may be represented by a Ferrers-Sylvester  
graph of nodes with n~ nodes in the i th  row, e.g., 

• , • • • L3: 

• • L5: 
represents 5, 4, 2, 2. This two-dimensionM diagram may be gen- 
eralized in a naturM way to three, or more, dimensions. More 
formally, we regard a d-dimensional par t i t ion of n as a set S of 
n nodes, each defined by its non-negative integer coordinates 
such that  
(x l ,x2 ,  . . .  ,Xd) C S if and only if (xl',x~', . . .  ,Xd') E S 
whenever 

0 < x g  _<xl for all i = 1,2, . . .  ,d .  
This generalization reduces to the usual definition when d = 2. 

There is l i t t le l i terature on these generalized part i t ions.  I t  is 
with a view to facil i tat ing numerical studies that  this  algorithm 
is published. 

After  generation, each par t i t ion is presented to the procedure 
use, which should be supplied by the user for the purpose he 
requires, use has three formal parameters, the first being the 
name of a two-dimensional integer array, and the second and 
third being integers giving the size of this array. When the pro- 
cedure is calLed by 

use (current, dim, N) 

then the coordinates of the nodes entering into the newly 
generated muLti-dimensionaL part i t ion will be found in current 
[l:dim,l:N]. The parameters of use should be called by value, 
or a l ternat ively care should be taken that  nei ther  dim, N, nor 
the contents of the array current are disturbed. 
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b e g i n  
i n t e g e r  i;  i n t e g e r  a r r a y  current [l:dim, i :N] ,  

x[1 :dim,O: ( N -  1) Mdim]; lntegrand 
p r o c e d u r e  part (n,q,r); va lue  n, q, r;  i n t e g e r  n, q, r; 
b e g i n  i n t e g e r  s, i, j ,  k, p, m, z; 

fo r  p : =  q s t e p  1 u n t i l  r --  1 d o  e -~2 
b e g i n  

for  i : = 1 s tep  1 u n t i l  dim do  current [i,n] : = x[i,p]; 
i f  n = N t h e n  beg in  use (current,dim,N); go to  L2 e n d ;  
8 :=  r; sin(x)+l 
for  i := 1 s tep  1 u n t i l  dim do  
b e g i n  

for  j := 1 s tep  1 u n t i l  dim do  x[j,s] := x[j,p]; 

z[i,s] :=  z[i,s] ÷ 1; 
i~r j := i s t ep  1 u n t i l  di~n do 
bcgin  

i f  :c[j, s] = 0 then  go to L3; 
for A: := 1 s tep  1 u n t i l  n do 
begi t l  

for  m := 1 s tep  1 u n t i l  dim do 
beg in  

z := i f j  = m t h e n  1 e lse  0; 
f ciurrcnt Ira, lc] ¢ x[m,s] -- z t h e n  go to L4 

e~/d ; 
go to L3; 

end  k; 
go t o  LS; 

end  j ;  
s : = s + l ;  

e n d  i ;  
part (ng-l ,pq-l ,s)  ; 

L2: e n d  p 
e n d  part; 
for  i := 1 s t e p  1 u n t i l  dim d o  x[i,O] := 0; 

e n d  partition 
part (1,0,1) 

R E M A R K  O N  C O R R E C T I O N  T O  C E R T I F I C A T I O N  

O F  A L G O R I T H M  279 [D1] 

C H E B Y S H E V  Q U A D R A T U R E  [ F . R . A .  H o p g o o d  a n d  

C.  L i t h e r l a n d ,  C o m m .  A C M  9 (Apr .  1966),  270 a n d  10 
(May 1967), 294] 

KENNETH HILLSTRO~I (Recd .  26 J u n e  1967) 

A p p l i e d  M a t h e m a t i c s  D i v i s i o n ,  A r g o n n e  N a t i o n a l  L a b o r a -  

t o r y ,  A r g o n n e ,  I l l ino is  

There are two corrections that  should be appended to the certi- 
fication of Algori thm 279. 

I~ue to programming error, the integrand function routines for 
e - ~  and s i n ( x ) + l ,  used by the Chebyshev routine, incorrectly 
evaluated the functions at x = 0, thus delaying convergence. 

The revised Chebyshev routine still converges more rapidly 
than the original scheme in the first two examples, but  the ad- 
vantage is muct- less pronounced than previously indicated. 

The amended Table I should read as follows, wi th  the numerical 
corrections italicized. 

TABLE I 

A B 

0 I. 

0 17r 

EPS VI 

6. 283185308 

Routine 

Havie 
Romberg 
Chebyshev 
Chebyshev (Rev.) 

Havie 
R0mberg 
Ghebyshev 
Chebyshev (Rev.) 

VA 

0,886226924 
0.886226925 
0.8862269261 
0.8862269258 

6.283185307 
6.283185307 
6.2881853088 
6.2831853089 

Number 
o f f  auc- 

tion 
evaZu ~ 
ation~ 

17 
65 
38 
17 

9 
5 
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