
ar
X

iv
:2

20
8.

09
25

5v
1 

 [
cs

.D
C

] 
 1

9 
A

ug
 2

02
2

1

Scaling Blockchains with Error Correction Codes:

A Survey on Coded Blockchains
Changlin Yang, Member, IEEE, Kwan-Wu Chin, Jiguang Wang, Xiaodong Wang, Fellow, IEEE, Ying Liu, Zibin

Zheng, Senior Member, IEEE

Abstract—This paper reviews and highlights how coding
schemes have been used to solve various problems in blockchain
systems. Specifically, these problems relate to scaling blockchains
in terms of their data storage, computation and communication
cost, as well as security. To this end, this paper considers the
use of coded blocks or shards that allows participants to store
only a fraction of the total blockchain, protect against malicious
nodes or erasures due to nodes leaving a blockchain system,
ensure data availability in order to promote transparency, and
scale the security of sharded blockchains. Further, it helps reduce
communication cost when disseminating blocks, which is critical
to bootstrapping new nodes and helps speed up consensus of
blocks. For each category of solutions, we highlight problems and
issues that motivated their designs and use of coding. Moreover,
we provide a qualitative analysis of their storage, communication
and computation cost.

Index Terms—Blockchain scalability, peer-to-peer networks,
error correction codes, distributed systems

I. INTRODUCTION

Blockchain is a decentralized system for building trusts

among independent peers. Its distributed nature helps avoid

a single point of failure. Further, blockchain offers the fol-

lowing advantages: it ensures data is tamper proof, offers

trust and transparency, immutability, maintains an open and

global infrastructure that allows any peers to participate [1].

Consequently, it is of interest to the crypto currency industry,

where notable examples include Bitcoin [2] and Ethereum

[3]. Other applications include medical treatment [4], supply

chain management [5], copyright protection [6], and file

storage [7]. Further, it can be used to secure the interactions

between objects in industrial Internet of Things (IoT) net-

works, e.g., smart factories [8]. Other examples of blockchain

applications in different domains can be found in [9]. In

these applications, blockchain is mainly used to (i) track and

verify medical treatments, (ii) secure health data, (iii) trace

items/ingredients/products, and (iv) protect digital contents,

e.g., proof of ownership.

A key feature of blockchain is that data is organized into

blocks, see Fig. 1 for an example. These blocks form a hash

C. Yang, Y. Liu and Z. Zheng are with the School of Software Engineer-
ing, Sun Yat-sen University, Zhuhai, China (e-mails: yangchlin6, liuy2368,
zhzibin@mail.sysu.edu.cn).

K.-W. Chin is with the School of Electrical, Computer and Telecommu-
nications Engineering, University of Wollongong, NSW, Australia (e-mail:
kwanwu@uow.edu.au).

J. Wang is with the School of Computer Science, Zhongyuan University of
Technology, Henan, China (e-mail: 2020107237@zut.edu.cn.

X. Wang is with the Electrical Engineering Department, Columbia Univer-
sity, New York, NY, USA (e-mail: wangx@ee.columbia.edu)

b1 b2 b3 b1 b2 b3 b1 b2 b3

A B C

Previous Hash

Root Hash

Version Time

Target Nonce

Previous Hash

Root Hash

Version Time

Target Nonce

Transactions

Transactions

Transactions

Transactions

Previous Hash

Root Hash

Version Time

Target Nonce

Transactions

Transactions

Block b1 Block b2 Block b3

...

Replicated StorageReplicated StorageReplicated Storage

...

Fig. 1. An example of a conventional blockchain, e.g., Bitcoin [2]. Each
block consists of a block header, colored in blue, and a block body, colored in
yellow. The version and time fields in the block header indicate the blockchain
version and its generation time. The root hash, e.g., a Merkle tree root, is
computed using transactions in a block’s body. Each block contains the hash
of a previous block, which leads to a chain of blocks. Further, each block
includes a nonce value derived from solving a puzzle such that the hash of
the entire block header is less than a target value. This is also known as
the Proof-of-Work consensus protocol, where the noun ‘work’ refers to the
computation time and/or energy used to solve puzzles.

chain, whereby each block is protected by a hash value that

also includes the hash value of the previous data block. Hence,

any change to a block affects the hash value of subsequent

blocks. Another feature is its use of a consensus protocol,

such as proof-of-work (PoW) [2] and practical byzantine

fault tolerance (PBFT) [10] to ensure it is computationally

impractical for an attacker to modify transactions in a block

as this would entail re-calculating a hash chain.

A key concern when applying blockchain is its data storage

requirement. Specifically, all blocks are replicated and stored

in fully functional nodes, aka full nodes. As a result, full

nodes require a large storage space. For example, in Bitcoin

[11], the storage requirement of a full node is approximately

380 GB at the beginning of 2022, which is an increase of

20% as compared to its size in 2021 [12]. Another example

blockchain is Ripple [13], where its storage size grows by 12

GB per day, and its entire blockchain size exceeds 14 TB as of

2022 [14]. Consequently, the significant storage cost required

by blockchain limits its scalability, and leads to fewer full

nodes or centralization [15].

Henceforth, much research effort has been dedicated to

reducing the storage requirement of blockchain. To date,

http://arxiv.org/abs/2208.09255v1


2

popular approaches include:

• Light node [2] – The main idea is to have two types

of nodes. In particular, so called light nodes stores only

block headers. On the other hand, full nodes store all

blocks in a blockchain. To verify a transaction is in

a given block, a light node uses Simplified Payment

Verification (SPV) [11], where it relies on a full node

to verify blocks.

• Pruned blockchain [2] [16] [17] – Its main idea is to

remove blockchain information that is not required for

block miners. In Bitcoin, miner checks whether Un-

spent Transaction Outputs (UTXOs) are spent in previous

blocks. Hence, spent UTXOs can be deleted without

affecting a new block. Alternatively, miners only store

the balance of each account [16] to ensure a consumer

has sufficient coins, or require users to store proofs that

they own assets or coins [18].

• Sharding blockchain [19] – Its main idea is to divide a

blockchain into multiple sub-chains. Each sub-chain is

an independent blockchain that is operated by a group

of nodes or community; this is also called a sharding. A

node only belongs to a single community, meaning it only

needs to store a given fraction of a blockchain. Hence,

node storage requirement is proportionally reduced with

increasing number of shards. In fact, it scales logarithmi-

cally according to the number of communities.

The aforementioned approaches, however, raise new secu-

rity issues. In particular, a light node can be deceived by

malicious nodes that pose as full nodes [20]. Further, as the

ratio between full and light nodes increases, the resulting

blockchain has a semi-centralized structure, which erodes the

decentralized property of blockchain [21]. Pruned blockchains

discard information permanently, and thereby it cannot be

used for applications that require ready access to historical

information, e.g., medical records [4]. A sharding blockchain

requires cross-chain verification and merger of sub-chains,

which increase the functional complexity of nodes. Moreover,

the number of nodes in each shard decreases with increasing

number of shards. This reduces the security of a sub-chain,

and thereby degrades the reliability of blockchain [22].

To this end, coded blockchain is a promising approach to

reduce its storage requirement and also retain its security

features. It applies research from distributed storage [23],

where it uses an error correction code to encode blocks and

stores these blocks in a distributed manner. Hence, each node

only stores some coded fragments, which helps reduce its data

storage requirement as well as communication cost [24]. Ad-

vantageously, a coded blockchain achieves storage reduction

without permanent information loss. That is, when a node or

user needs uncoded data, e.g., for verifying a transaction or

some records, it collects coded fragments and runs a decoding

algorithm to restore original blocks. Moreover, each node

independently performs encoding/decoding, which retains the

distributed nature of blockchain. In addition to storage re-

duction, the error correction feature of codes can detect and

correct data altered by malicious nodes. As a result, coded

blockchain is poised to address both scalability and security

b1 b2 b3 b1 b2 b3 b1 b2 b3

b1 b2 b3

A B C

Conventional blockchain

Partitioning

b1 b2 b3
b1 b2 b3

Coded blockchain

c1,1

(3, 2) encoding

c1,2 c1,3 c2,1 c2,2 c2,3 c3,1 c3,2 c3,3

c1,1 c2,1 c3,1
c1,2 c2,2 c3,3

c1,3 c2,3 c3,3

A B C

Fig. 2. An example of coded blockchain procedures. Each of the original
blocks b1, b2, b3 (in black) can be partitioned into two fragments, when
then encoded into three coded fragments bx,1, bx,2, bx,2 where x = 1, 2, 3,
represented in red, blue and yellow, respectively. In a coded blockchain
system, instead of storing entire blocks, nodes store a coded fragment, which
halves the storage requirement of nodes.

issues of blockchain. Lastly, as we will see in Section VII,

coding helps thwart data availability attacks.

Fig. 2 shows an example of coded block storage. There are

three blocks in the blockchain. In a conventional blockchain

system, each node stores a copy of the entire blockchain. By

using a coded blockchain, a node partitions a block into two

fragments and encodes them using for example a (3, 2) Reed-

Solomon code [25]. This results in three coded fragments for

each block. Then each node only stores a coded fragment of

each block, which halves its storage requirement. Further, this

reduces communication cost as it reduces the amount of data

that is sent to other nodes requiring a coded fragment. This

example also illustrates the trade-off between data availability

storage space, i.e., a node has all the necessary blocks to verify

transactions versus the case where it needs to download coded

blocks first before verifying transactions.

TABLE I
A COMPARISON OF BLOCKCHAIN STORAGE REDUCTION METHODS.

Distributed Integrity Security Storage

Light node [2] X X X 0.05% [26]

Pruned [2] X X X 2% [27]

Sharding [19] X X X 6.1% [19]

Coded [28] X X X 0.47% [29]

Table I compares a coded blockchain with light nodes,

pruned and a sharding blockchain. Specifically, it compares

them according to the following features: (i) distributed, i.e.,

they do not rely on a central entity, (ii) integrity, meaning

their data is temper proof and unabridged, (iii) security, where

nodes participate in consensus to maintain overall safety, and

(iv) storage, whereby their storage requirement is compared

with traditional blockchains such as Bitcoin and Ethereum.

From the table, we see that a light node does not participate

in consensus nor store block data. Hence, it not distributed, and

does not maintain the integrity and security of blockchain. A



3

TABLE II
DEVELOPMENT OF CODED BLOCKCHAIN

Pre. 2017 2018 2019 2020 2021 2022

Distributed Storage - [28] [21] [30] [29] [31] [32]

Secure Distributed
Storage

[33] [34] [35] [36] [37] [38] [15] [39]

Distributed Storage and
Communication

[40] [41] [42]
[43] [44]

[45]
[46] [47] [48] [49] [50]

Distributed Storage and
Bootstrapping

- - [51] [52] [53] [54] [55] -

Distributed Storage and
Computing

- [56] - [57]
[58] [59]
[60] [61]

[62]

Data Availability Attack - [63] -
[64] [65]

[66]
[67] [68]

[69]
[70] [71]

[72]

pruned node is able to independently verify new transactions,

but permanently deletes information, meaning it is unable

to maintain integrity. A sharding blockchain dedicates a few

nodes to each shard, which raises its security risk. In contrast,

a coded blockchain does not have these limitations as it retains

the strengths of conventional blockchain but requires nodes to

have a significantly smaller storage space.

To date, there are two major lines of research into coded

blockchain. As shown in Table II, most works focus on

distributed storage of blockchain. Their aim is to use error

correction codes to reduce the storage requirement of nodes. In

this respect, researchers have studied secure storage, commu-

nication cost, boostrapping cost and distributed computing of

coded blockchains. Another research direction aims to defend

against Data Availability Attack (DAA), see details in Section

VII. In this respect, a key issue is that light nodes may readily

a block with fraudulent transactions from a malicious node.

To this end, coded blockchain helps because even though a

malicious node may delete or tamper with coded fragments,

honest nodes will be able to reconstruct the original data.

Further, it provides a method to ensure transparency whereby

all data is always available for verification by any nodes.

A. Contributions

To the best of our knowledge, this is the first survey on

coded blockchain research. To date, a number of surveys

have focused on non-coding based approaches for scaling

blockchains, see in Fig. 3. For example, the works such

as [73]–[76] review scaling solutions relating to off-chain op-

eration, side chain, sharding, consensus protocols and directed

acyclic graph (DAG). On the other hand, the work in [77]

focuses on sharding. In [78], the authors discussed solutions

that scale healthcare blockchains. In [79], the authors review

works on sidechains. The work reported in [80] [81] systemat-

ically analyzes research for aforementioned blockchain scala-

bility solutions, with additional discussion on parallel mining.

However, these works do not discuss coded blockchain. In

particular, coded blockchain can be implemented to improve

the performance of existing blockchain propagation, storage,

sharding and side chain solutions. Hence, this survey fills this

critical gap.

Referring to Table II, this paper introduces the use of error

correction codes to reduce the blockchain storage, commu-

nication cost and bootstrapping cost. It also discusses the

Yu [77]

Kim [74]

Zhou [73]

Hafid [76]

Mazlan [78]

Singh [79]

Sanka [80]

Nasir [81]

Junfeng [75]

Sharding

Big block

Small 

transaction

Off-chain 

operation

Consensus 

protocols

Block 

propagation

Side chain

DAG

Parallel mining

This work
Coded 

blockchain

2018 

2019

2020

2021

2022

Layer 0

Layer 1

Layer 2

Fig. 3. Comparison with existing surveys (left) and their reviewed solutions
(right). We use blockchain layers defined in [73].

ability of such codes on distributed computing and against

data availability attacks in blockchain. Note that in this survey,

we do not consider coded network storage, e.g., [82], which

assumes a synchronous environment, because in blockchain

systems, nodes operate asynchronously and maybe malicious.

Common error correction codes include Reed-Solomon (RS)

[25], Low Density Parity Check (LDPC) [83], Luby Transform

(LT) [84], Raptor [85], Lagrange Polynomial [57] codes to

name a few. Fig. 4 shows the number of works using such

codes to address scalability issues in blockchain. We see that

most works implement Reed-Solomon code, and LDPC codes

are popular as well due to their efficient decoding process.

The structure of this survey is shown in Fig 5. Next,

we review works that employ various coding schemes in an

effort to reduce storage cost. Then in Section III, we consider

works that ensure data integrity, confidentiality and prevent

denial of service attacks. Section IV reviews works that aim

to efficiently propagate and retrieve coded blocks. Section

V presents solutions that aim to bootstrap nodes quickly.

Then in Section VI, we review works that aim to scale



4

0

2

4

6

8

10

12

Dist.

Storage

Secure dist.

Storage

Dist.

storage &

comms

Dist.

storage &

boots.

Dist.

storage and

compu�ng

Data

availlability

a�ack

RS

Fountain

LDPC

LCC

Fig. 4. The number of works that implement RS, fountain, LDPC and LCC
codes to address scalability issues in blockchains.

Coded Blockchains

Distributed Storage

Distributed storage 

and communication

Distribute storage and 

bootstrapping

Distribute storage and 

computing

Secure distribute 

storage

Data availability attack

Communication cost 

and delay

Bootstrapping nodes

Coded shards and 

computing

Section II

Section III

Section IV

Section V

Section VI

Section VII

Conclusion and 

suggestions for future

works

Section VII

Fig. 5. The structure of this survey.

sharded blockchains. Section VII highlights works that aim

to ensure data availability by using various coding schemes to

discourage malicious nodes from hiding transactions. Lastly,

Section VIII provides a qualitative comparison of all prior

works and presents some future works.

II. DISTRIBUTED STORAGE

The approaches that aim to employ coding to reduce

network storage borrow ideas from distributed network stor-

age [23] and build on the seminal work by Rabin [86],

which is then extended by Cachin et al. [24] to consider

byzantine faults. Briefly, coding helps reduce the total size

of a blockchain as follows. Assume a blockchain has storage

size Ω, and we are given parameter k and n, meaning we

have a code rate of k
n

. For example, we can encode k
fragments using Reed-Solomon codes [25] to create n coded

fragments. These coded fragments are then distributed to the

Γ participants of a blockchain. Ideally, each participant only

stores a coded fragment of size Ω

k
; i.e., the storage requirement

is now 1

k
of the total amount Ω. For example in Fig. 2,

we have k = 2 and n = 3 such that each participant only

stores 1

2
of entire blockchain. To reconstruct the blockchain,

a participant requires k blocks, which can be retrieved from

other participants. As noted in Dai et al. [28], the k fragments

can also be coded using a rateless code such as LT [84].

Another approach to reduce storage is via downsampling

and coding of transactions. In [32], the authors consider storing

only those blocks with the highest entropy. Specifically, the

entropy of blocks relates to the amount of information, e.g.,

balances of participants, they carry with regards to the current

blockchain state. To further reduce storage requirement and

to ensure recovery of original blocks, they consider encoding

transactions. In particular, each node stores a coded fragment

that is calculated using a number of transactions or UTXOs

following the robust Soliton distribution of LT codes [84].

Full nodes usually store all blocks or an entire blockchain.

However, Wu et al. [29] propose to have full nodes store one of

a given number of blocks. The authors also propose to encode

a group of blocks at a time using erasure codes. In addition

to reducing storage requirement, this also helps a new node to

quickly acquire blocks from a small number of participants,

and thus reduces communication cost. Further, they propose

to use LDPC, which helps reduce computational complexity.

In contrast, the work in [21] uses random linear codes, which

requires matrix inversion. Moreover, the use of LDPC helps

optimize Galois field size and number of codewords used to

encode a group of blocks.

To date, prior works aim to address a number of issues. First,

as highlighted in [28], the value of n must be chosen with

respect to the number of participants. This becomes an issue

if a blockchain has time varying number of participants. This

issue is addressed by adopting a rateless code. The downside,

however, is that it may require a large field size, which

hinders its use by nodes with limited energy and computational

resources. Similarly, in [29], the number of symbols used

to encode a block and the number of valid codewords have

an impact on the number of erased symbols that impede

the recovery of a block. Further, these parameters have an

impact on network load, i.e., the number of participants to

be contacted in order to recover a block. Apart from that, as

noted in Perard et al. [21], the value of k and the number

of coded fragments maintained by a node has an impact on

communication overheads and amount of storage required by

a node. It is worth noting that the method in [29] incurs a

smaller storage size than the approach proposed by Perard et

al. Further, it impacts the availability of a block, i.e., whether

there are k coded fragments that can be recovered to re-

construct a block. In this respect, Li et al. [31] consider a

(ni, ki) Reed-Solomon codes, where block i is divided into ki
segments, which are then used to produce ni coded fragments.

These coded fragments are then stored at ni participants. They

propose to jointly optimize the value of ni, placement of ni

coded fragments, and also the load or number of requests sent

to participants.

The second issue is the distribution of coded fragments

among participants. For example, Dai et al. [28] assume



5

all participants store coded fragments. On the other hand,

Perard et al. [21] introduce low-storage nodes that store some

coded fragments and hash of a block; each low-storage node

creates these coded fragments independently. Their motivation

is to encourage nodes with limited resources to participate

in blockchain. This in turns allows a blockchain system to

have more participants and also to alleviate the bandwidth

requirement of full nodes, which store all blocks. Advanta-

geously, the number of coded fragments stored by low-storage

nodes is determined by their storage capacity and the age of

a block. Specifically, a low-storage node may remove some

coded fragments of a block.

In general, the said prior works mainly consider (i) the

availability of coded fragments for reconstruction/decoding,

(ii) computational complexity. Both of which are affected by

the parameters of a code, e.g., size of a finite field or/and

number of symbols used to encode one or more blocks.

Referring to Table III, the storage and recovery probability

reduce with increasing value of k. Moreover, the recovery

probability of a block increases with the finite field size q
for finite field Fq. In addition, the processing complexity

increases with k, n and the size q of finite field Fq. The

communication overhead increases with k because a node

needs to obtain more coded fragments to decode. Further,

the type of coding schemes, e.g., random linear codes versus

LDPC, will have an impact on computational complexity.

Hence, the choice of coding schemes will have an impact

on resource constrained devices. Apart from [29], [31], not

many works emphasize communication cost or network load.

This becomes a critical issue if devices have a bandwidth and

energy constraints, meaning they may not have the resources

to retrieve all coded fragments to decode a block. Further,

the chosen coding scheme and its associated parameters may

result in network congestion; i.e., the network load may scale

with the number of low-storage nodes. We will discuss this

issue further in Section V. Lastly, in addition to the above

issues, these prior works ensure their proposed method does

not reduce the integrity and decentralized nature of blockchain.

Further, they ensure their method is robust against attacks.

TABLE III
EFFECT OF CODING PARAMETERS.

Param. Storage
Recover

probabil-

ity

Processing
complex-

ity

Comms.

overheads

k O( 1
k
) O( 1

k
) O(k) O(k)

Fq - O(q) O(q) -

n - - O(n) -

III. SECURE DISTRIBUTED STORAGE

In a blockchain system, key security issues of concern

include data integrity, confidentiality and denial of service

(DoS) attacks. Blockchain ensures data integrity via the use

of hash chains. Specifically, each block is protected by a hash

value and also that of the previous block. Hence, any changes

to one block will require an attacker to re-compute the hash

of subsequent blocks in the chain [2]. Confidentiality relates

to encryption of blocks, where privacy is of concern to block

chain applications such as healthcare [87]. In this respect, key

management is an issue and whether a compromised node

results in an attacker obtaining all data or the secret key used to

encrypt blocks. Further, active adversary is a concern, whereby

a malicious node seeks to modify the content of one or more

blocks. Lastly, an DoS attack aims to stop a participant from

recovering blocks or transactions, or to delay the propagation

of blocks or transactions to nodes. Next, we discuss works that

consider coded storage solutions that address the above issues.

Readers interested in non-coding based solutions are referred

to [88]–[90]. Note that, some works such as [91] have used

blockchain to ensure the security of an existing distributed

storage system. They are out of the scope of this survey.

A number of works have considered secure distributed

storage of blockchains. An interesting set of works are by

Raman et al. [15], [33]–[35], where they consider an archival

ledger. Further, they consider cold and active transactions in

an archival ledger. They define cold transactions as completed

transactions no longer in use or accessed infrequently. For

example, these transactions may correspond to buying and

selling of properties, where a transaction contains proof of

ownership. They offer a number of solutions to the aforemen-

tioned security issues. Their blockchain system uses zones,

where the participants of each zone have permission to access

a block via a private key. Further, they store coded fragments

of a block encrypted using the said private key. A key

innovation is that the private key is coded using Shamir’s

key sharing scheme [92]; briefly, this scheme constructs a

code for the private key, where coded fragments are stored

at different participants. To recover the private key, a node

must retrieve k of the said coded fragments. In this respect,

Raman et al. showed that if a certain number of participants in

a zone are corrupted, then a transaction may be compromised.

To this end, they propose to construct a new zone membership

over time such that each participant is a peer of every other

participants eventually; i.e., the zones form a chain over time.

This constructs ensures that there are sufficient number of

honest participants in each zone. It also requires an adversary

to corrupt all nodes, not just those in a zone, before it can

compromise a transaction. As a result, data integrity improves

with more participants.

A key drawback of the scheme proposed by Raman et

al. [15] is that transactions or blocks are replicated across

zones. To this end, the authors of [39] apply fountain codes

to first encode a number of blocks before applying a secret

sharing scheme, e.g., [93], to each coded block. After that,

the encrypted and coded blocks are distributed to m zones.

To decode and decrypt a block, a user request d coded

encrypted blocks from each zone. In this respect, a key

concern is secret sharing schemes that are efficient in terms of

communication bandwidth usage during repair and decoding,

e.g., [94]. Advantageously, the use of fountain codes ensures

a constant finite field size is used by a secret sharing scheme,

which helps with decoding.

Another drawback of the work in [15] is its high communi-

cation cost when a node fails. This is because a node failure

leads to a repair process that requires communication with



6

multiple peers in another zone. To this end, Kim et al. [36]

propose a hierarchical secret sharing scheme comprising of

a global and local secrets. Shares of the global secret are

distributed across zones, whilst each zone has a local secret

shared by some number of nodes in that zone. Advantageously,

their scheme allows a single node failure to be recovered

locally, i.e., from other nodes that belong to the same zone

as the failed node.

Mesnager et al. [37] propose a secure threshold verifiable

multi-secret sharing scheme based on Feldman’s verifiable

secret sharing [95]. Their scheme is inspired by [15]. In

particular, they first encrypt each block using the AES-256

symmetric key encryption algorithm. They then encode the

encrypted block using a Reed-Solomon code and store them

in a distributed manner. They also state that their scheme is

post quantum secure since there is no traditional and quantum

attacks against it. They show that the proposed scheme has a

lower recovery communication cost than [15] and [36].

Lastly, the work in [38] considers the requirement of

PBFT when distributing fragments coded using Reed-Solomon

codes. Specifically, they aim to ensure a sufficient number of

coded fragments are stored on a given number of honest nodes.

Qi et al. [38] encode the blockchain with coding parameters

such that it can be recovered when 1/3 nodes are malicious.

However, the number of malicious nodes may increase when

new nodes join the network. To ensure their system robust

against Byzantine attack, they propose a replication scheme,

where each coded chunk is replicated onto some number of

nodes. Further, they propose a re-encoding mechanism. In par-

ticular, when a node joins the network, a leader node is elected

to recover blockchain and re-calculate coding parameters. The

leader node then sends the recovered blockchain and revised

parameters to all nodes, where each of them re-encodes blocks.

IV. COMMUNICATION COST AND DELAYS

Blockchain is a peer-to-peer network that relies on a gos-

sip protocol [96] to propagate transactions and blocks to

peers/neighbors [2]. Briefly, a node first advertises its blocks

and transactions, along with their hash, to its neighbors.

These neighbors then request and download missing blocks

or transactions from the node. They then verify downloaded

blocks and transactions before advertising their availability.

There are two key concerns, see Fig. 6. The first con-

cern is communication overhead. The propagation of transac-

tions/blocks in a blockchain may result in duplicates and con-

gestion. These result in inefficient bandwidth usage, where the

underlying physical network routes/transmits the same block

or transactions many times. Further, the use of a consensus

algorithm such as PBFT [97] incurs a high signaling overhead.

For example, the message complexity of PFBT is O(N2),
where N is the number of participants. Hence, a key research

aim is to reduce the amount of communication bandwidth

when propagating blocks to participants.

The second concern is propagation delay, which is a func-

tion of two factors: transmission time of a block, and its

verification time. Note that transmission time involves time to

advertise, request and to download a block. Propagation delay

Communications 

overhead

Propagation 

delay

Reduce re-transmission cost 

[40][46]

Balance nodes bandwidth 

[42][43]

Reduce Transmission cost

[39][41][44][48]

Direct forward

[49]

Group encoding/decoding

[45][47]

Fig. 6. Summary of works for communication cost and propagation delays
in Section IV. These works fall into five categories and aim to reduce
communication overhead or propagation delays in blockchains.

A B

F���

Re-transmit

(a) Conventional blockchain rely on replication. When
a block transmission fails, the transmitter needs to re-
transmit an entire block to the receiver.

A B

����

E	
��


Re-transmit

Decode

c1 c2 c3

(b) Coded block propagation. When a coded fragment trans-
mission fails, the transmitter only needs to re-transmit a coded
fragment rather than an entire block.

A B

������

c1 c2 c3

c1+c2+c3

c1+2c2

2c2+3c3

R1

R2

R3

Decode

6c1+3c2 +7c3Relay

2 11

(c) Network coded block propagation. The transmitter sends
randomly combines and send coded fragments to relays R1,
R2 and R3. Then the receiver is able to decode the block from
any of these relays. The receiver also acts as a relay by sending
a random combination of received coded fragments.

Fig. 7. Block propagation of conventional, coded and network coded
blockchains.

causes blockchain forks [98], meaning there are inconsisten-

cies in the blockchain that affect the security of a blockchain

system [99]. In this respect, proof-of-work computation must

be longer than the maximum propagation delay to ensure

blocks have a chance to propagate to all nodes [62]. Apart from

that, large propagation delays may result in orphan blocks,

meaning a node has wasted its computational resources on a

block that is rejected by other nodes [45]. To this end, the key

aim of prior works is to reduce the factors that contribute to

the propagation delay of a block.



7

A. Block Propagation

A promising approach to improve the dissemination of

blocks is via coding. Fig. 7 shows examples of replica-

tion, coded and network coded block propagation. We see

that coded block propagation, see Fig. 7(b), reduces re-

transmission cost when there is a transmission failure as

compared to replication based block propagation, see Fig. 7(a).

Fig. 7(c) shows an example of network coding. In particular,

a sender sends random linear combinations of fragments. A

receiver is then able to decode and reconstruct the original

block from sufficient number of such fragments. From the

Fig. 7(c), we see that with network coding, the link from each

relay to the receiver only needs to transmit 1

3
of the entire

block, which reduces the maximum bandwidth requirement.

This advantage thus motivate the use of network coding to

improve different protocols and applications. For example, in

[100], it is used to improve the throughput of a transport

protocol, and in [101], it is used for video streaming.

To date, two works have considered exploiting network

coding to reduce the communication cost of PBFT; their

approach is similar to the transport and video streaming

examples above. In [47], Braun et al. study how random linear

network coding improves the different phases of PBFT. They

consider nodes (replicas) that communicate over multi-hop

paths or intermediate nodes. Consequently, these intermediate

nodes are able to apply network coding. Their simulation

results show that network coding helps improve the prepare

and commit phases of PBFT. Moreover, increasing number

of replicas and having larger block sizes further improve

performance. Lastly, the number of intermediate nodes has

an impact on time taken for receivers to receive all blocks.

Another work is carried out by Cebe et al. [41]. The

authors consider a permissioned blockchain system operated

by resource constrained wireless devices. These devices are

connected in a mesh; i.e., they have a direct connection to

one another. A transmitter encode blocks into generations,

where each generation consists of a number of fragments. A

transmitter then encodes each fragment and broadcast coded

fragments to other devices. Receivers then decode these coded

fragments. Once they have managed to decode all fragments

in a generation, they send an acknowledgment message to the

transmitter. The transmitter stops transmission once all gener-

ations have been acknowledged by receivers. In addition, they

consider retransmission policy, e.g., timeout, of a generation.

This is important because devices operate over wireless links.

Unlike the above works, Chawla et al. [44] apply rateless

erasure codes. Specifically, a block is encoded using a fountain

code by a node. It is then advertised to neighbors of the

said node. Each neighbor then proceeds to request symbols

of the block from their neighbors. A node decodes the block

once they have received sufficient number of coded symbols.

Advantageously, nodes do not become bottlenecks as symbols

are downloaded from different neighbors.

Recently, Jin et al. [45] consider erasure coding and cluster-

ing. Their goal is to ensure all participants have the same set

of transactions. Their method creates clusters of participants.

Each cluster has a leader. A sender who wishes to send

A

B

C

D

P���������� �� !"#$ %&'()*

Block

Block

Block

Block

Block

Block

(a) In conventional Byzantine consensus, node A transmits a block to
all nodes in the pre-prepare stage. Then each node validates the block.
Once verified, a node broadcasts the block to other nodes in the prepare
stage. Lastly, if a node receives more than f + 1 prepare messages, it
broadcasts a commit message to other nodes. Consensus is reached if
at least 2f+1 nodes are honest. This incurs a communication overhead
of O(Bn2), where B is the block size.

A

B

+

D

,-./0123456 789:;<= >?@ABD

GHIJKL

c1 c2 c3

Block

c4

Decode and check

Block

Block

Block

Block

(b) By leveraging error correction codes, the block producer A encodes
the block into coded fragment using (n−2f, n) Reed-Solomon codes,
e.g., two original fragments and two parity fragments, and sends each
fragment to one other node. It also sends a Merkle tree proof to show
the correctness of the coded fragments [40]. After receiving a coded
fragment, a node validates it and broadcasts it if is correct. Lastly, upon
receive four fragments, each node recovers the original block. It is able
to correct up to f error fragments [25]. This incurs a communication
overhead of O( B

n−2f
n) = O(Bn).

Fig. 8. Block propagation in conventional and coded Byzantine consensus.
There are n = 4 nodes and the number of tolerable Byzantine nodes is f = 1.

transaction(s) to participants send the ID of these transactions

to each leader. The leader then forwards transaction IDs to

cluster members, which in turn reply with the ID of missing

transactions. This information is relayed back to the sender.

It then creates Reed-Solomon coded blocks and send them to

leaders. The participants of each cluster then recover missing

transactions using these coded blocks.

Lastly, we note that a number of works have used erasure

codes to reduce the communication or broadcast cost of

consensus protocols in the presence of byzantine faults. A

notable effort is HoneyBadgerBFT [40], which aims to im-

prove throughput. To this end, it equips the reliable broadcast

protocol of [102] with an erasure code in order to reduce

its communication cost or the size of the protocol’s initial

and echo message. Further, nodes only transmit the hash of

coded fragments. This process can be seen in Figure 8(b).

Note that BEAT [42] offers variants of HoneyBadgerBFT that

are optimized for various scenarios. Recently, reference [49]

notes that the time to reach consensus can be delayed if there

are straggler nodes; i.e., nodes with a low bandwidth. A key

concern is that these nodes require a significant amount of

time to download and verify a block. To this end, they apply

the verifiable information dispersal protocol [24] to reduce

the amount of data downloaded by each node. Specifically,



8

a node with a new block applies erasure coding on the block

and sends coded fragments/segments plus their respective hash

to other nodes. As each coded fragment is small, straggler

nodes are able to download these coded fragments quickly.

Further, this allows a node to check for data availability as

it can download pieces from other nodes to reconstruct a

block. Choi et al. [43] also consider the bandwidth of nodes.

Specifically, they propose a general scheme to distribute coded

blocks to nodes. It generalizes sharded blockchain [103] when

partitioning a blockchain to further consider minimizing the

maximum bandwidth between nodes when running PBFT [97]

amongst a group of nodes. They apply network coding [104]

where they design a coded block assignment scheme that

ensures nodes have some number of coded fragments that

correspond to its available bandwidth. Advantageously, their

scheme does not require nodes to carry out decoding first in

order to verify a block.

B. Propagation Delay

To date, there are two key approaches that aim to minimize

the propagation delay of a block. The first approach aims to

speed up the time taken by a node to verify and propagate a

block. The second approach considers placing required coded

blocks within some number of hops away from participants.

Zhang et al. [50] consider the first approach. Their approach

also uses the compact block relay protocol [105], which helps

reduce communication bandwidth via payload reduction or

compression. They note that the method in [44] uses a store-

and-forward protocol, meaning a node is required to decode

a block before propagating it to the next node. To this end,

Zhang et al. propose a cut-though coded block propagation

scheme that takes advantage of rateless codes, which allows a

node to download coded fragments from different neighbors.

A key advantage of their approach is that when a receiver

node receives a coded fragment, it directly propagates this

coded fragment to the next node. Hence, the decoding and

propagating are carried out simultaneously.

Another approach to reduce communication cost is to store

coded fragments within some number of hops away from

a node. To this end, Yang et al. [48] proposed a Q-hop

localization problem, which calls for a solution to ensure

coded fragments are available for download from a node

located Q-hops away. Critically, these coded blocks must allow

for the reconstruction of any blocks. To this end, they propose

an integer linear program (ILP) to determine the assignment of

coded fragments to nodes. Further, they outlined an encoded

block transmission routing algorithm to download a needed

coded fragment from the nearest node. They also proposed

a distributed algorithm that allows nodes to independently

decide whether to store coded blocks.

Similarly, Qu et al. [46] propose to group nodes that

are close to each other in terms of their physical distance.

Each group has a duty or leader node that is responsible for

creating coded fragments. Further, the leader is responsible

for detecting and banning malicious nodes; i.e., nodes that

refuse to respond to request for coded fragments. They use a

fractional repetition code [106] to deal with dynamic group

membership. In particular, the code allows its parameters to

be adjusted easily as nodes leave and join a group.

V. BOOTSTRAPPING NODES

When a new node joins a blockchain system, it needs

to obtain the latest blockchain state. This process is called

node bootstrapping. This means a new node is required to

download the entire blockchain from one or more full nodes.

However, as noted in [51], the storage size/cost of full nodes

is considerable, which places a significant strain on full nodes

in terms of communication and computation cost to bootstrap

new nodes. In particular, full nodes become congestion points,

and thus they limit the creation of new full nodes, which in turn

has an impact on the decentralization property of blockchain.

To this end, the following research questions are of interest:

(i) how does a newly joined node obtain all blocks or the

current blockchain state without overwhelming existing full

nodes? (ii) how does a solution protect against nodes that inject

malicious blocks? (iii) how to reduce communication cost? In

this respect, a key performance metric is bootstrap cost, which

is defined as the number of honest, as opposed to adversarial,

full nodes to be contacted in order to recover all blocks.

Next, we discuss how approaches based on fountain codes

and repair codes address the aforementioned questions.

A. Fountain Codes

The main idea is for full nodes to apply fountain codes

on validated blocks. This also means they only need to store

coded blocks, which reduces their storage requirement. A new

full node then collects k coded fragments from some subset of

full nodes. This thus helps reduce the amount of traffic directed

at a full node. Note the decoding process can be carried out

using the iterative peeling decoding process [84].

The work in [51] uses the above idea to reduce the storage

of full nodes. Their results show that a full node with 191.48

GB of data can be reduced to only 195.6 MB. Further, they

consider adversarial nodes that inject tampered coded blocks.

To address this issue, the authors propose to incorporate the

hash of decoded blocks in the iterative decoding process.

This helps avoid propagating a tampered coded block onto

subsequent iterations when decoding future blocks. A key

limitation, however, is that the method in [51] assumes a new

node has access to correct block headers in order to verify the

correctness of decoded blocks. However, these headers may

have been corrupted by an attacker. To solve this problem, Pal

[53] proposes to add a verification field in each block. This

verification field contains a certificate signed by a random

selected committee to guarantee the integrity of a block. A

new node checks both hash and verification field of a block

during decoding. If one of the hash and verification fields are

not consistent, it discards the coded block.

Another limitation with the method in [51] is that its decod-

ing complexity increases logarithmically with the number of

input blocks [55]. To this end, the authors of [55] employ

Raptor codes [85], which have almost constant decoding

complexity per block. Briefly, the proposed encoding process

has two layers. In the first layer, a full node encodes raw



9

blocks using an LDPC code to obtain some intermediate coded

blocks. The second layer uses an LT code. Advantageously,

due to the said intermediate coded blocks, the LT code at

the second layer can use a less complex degree distribution.

However, as shown in [55], this results in a higher bootstrap

cost as compared to [51]. To bootstrap a node, it first obtains

some coded fragments from honest full nodes. It then applies

the said iterative peeling decoder. Once it has sufficient number

of decoded intermediate blocks, it applies an LDPC decoder

to obtain raw blocks. Advantageously, if some intermediate

blocks are not decodable in the LT code layer, they can be

treated as erasures and corrected in the LDPC layer. Hence,

the method in [55] has a higher probability of decoding success

than the method in [51].

B. Repair Codes

Recall that fountain code based methods require a new

node to first download coded fragments and decode the entire

blockchain before encoding the raw blocks to create new coded

fragments. This incurs a high bootstrapping or communication

cost [54]. It is also inefficient because the new node discards

all the downloaded coded fragments used to obtain raw blocks.

One approach to improve communication efficiency is by

applying regenerating codes [82]. These codes are known

for their bandwidth efficiency. Briefly, given k fragments, we

generate ∆k fragments and encode them into nα pieces. Then

we distribute these pieces to n devices, where each device

stores α coded pieces. We can contact any k devices to recover

the k fragments. Further, as part of its node repair process, a

regenerating code has a parameter d. A new device contacts

d other devices and retrieves β < α coded pieces from each

device. The new device then stores α of the dβ downloaded

pieces. The parameter ∆ and α have a direct impact on the

storage requirement of devices and also communication cost.

Applying the idea of regenerating codes, Gadiraju et al.

[54] improve RapidChain [19], a sharded blockchain system.

Their aim is to reduce the communication cost of new nodes

joining shards. To do this, their scheme considers a new

participant joining a shard as being equivalent to node repair in

regenerating codes, where it contacts d participants in a shard

to determine its α coded pieces. The encoding of blocks in a

shard is carried out using a Vandermonde matrix [107]. This

allows easy addition of nodes, whereby after a new node is

added into a shard, the code remains a minimum bandwidth

regenerating code. Apart from that, Gadiraju et al. consider p
malicious nodes. Consequently, a bootstrapping node contacts

d + 2p devices to ensure it recovers its coded fragments

correctly. Further, a shard re-configures its coding parameters

at each time epoch to account for larger block sizes.

An interesting approach is to take advantage of node failure

patterns. Specifically, erasure codes are traditionally optimized

for all possible erasure patterns. However, Mitra et al. [52] ob-

serve that the uptime of nodes in a blockchain system exhibits

periodic patterns In other words, some coded fragments are

lost periodically. This means an erasure code can be optimized

to only account for these erasure patterns. To this end, Mitra et

al. designed a a coded fragment repairing algorithm that uses

MNOQR-shard

S
TU
VW-sh

ard

X
YZ
[\

-s
h
a
rd

]^_-chains

shard-1 shard-2

shard-3

(a) In conventional sharding blockchains, each shard maintains an
independent sub-chain. They use cross-shard transactions to exchange
information among shards. However, a shard is compromised if a
majority of nodes in a shard are malicious. In this example, an attacker
is able to manipulate a shard by controlling three nodes.

`abcdefghij

k
l
mno

p
q
rstu

v
w
xy
z
{
|
}~
��

�������������

coded sub-chains 

computation

shard-1 shard-2

shard-3

(b) In a coded sharding blockchain, e.g., [56], when a shard generates
a block, it calculates a polynomial over blocks from all shards in a
distributed manner. Then each shard stores the chain of polynomials
instead of an independent sub-chain. This ensures the same security
level as conventional un-sharded blockchains, e.g., Bitcoin [2].

Fig. 9. Comparison between conventional sharding and coded sharding
blockchains.

Reed-Solomon codes, where its parameters are optimized to

repair erasures caused by known (patterned) node failures.

VI. CODED SHARDS AND COMPUTING

Sharding or partitioning is a well-known technique used to

scale databases [108]. To this end, Luu et al. [103] apply it

to permissionless blockchains with the aim to improve their

transaction rates. Critically, they are the first to develop a

secure sharding protocol, called ELASTICO, that considers

byzantine nodes. The key idea is to partition nodes into

smaller committees, where each committee, aka sub-chain, is

responsible for a part of the blockchain; i.e., the transactions

managed by committees are disjoint. Each committee runs a

byzantine consensus algorithm, e.g., PBFT [97], to determine

a valid shard. It then signs and sends the valid shard to a

final or consensus committee. Members of the final committee

also run a consensus algorithm to determine (i) that the shard

from each committee is signed correctly, and (ii) to agree on

a final hash value that is computed over all shards. Further,



10

it creates a set of random values for use by all committees

in their proof-of-work for the next shard. The final committee

then broadcasts the union of all shards, corresponding hash

value, and random values to all participants.

One concern with ELASTICO [103] is that if there a few

nodes in each shard, then it is vulnerable to an attack, see

Fig. 9(a) for an example. Specifically, as noted in [56], in

order for ELASTICO to scale with the number of nodes, more

sub-chains or committees will have to be created. However,

this reduces the number of committee members, meaning an

entire shard could be compromised if a majority of com-

mittee members are dishonest. To this end, coded sharding

or Polyshard [56], [57] aims to scale sharded blockchain

and retain the security provided by blockchain. Each node

stores a coded sub-chain that is calculated using all other

sub-chains. Specifically, the coded sub-chain, which allows

data to be corrected even when an attacker controls a whole

shard, see Fig. 9(b) for an example. To do this, Polyshard

employs a balance based verification mechanism, whereby a

new block is broadcasted to all shards. Each node in each

shard then verifies the correctness of the new block through

Lagrange coded computing (LCC) [109]. Next, all nodes

exchange their verification results to achieve consensus. A

key advantage of Polyshard is that it has the same storage

requirement as ELASTICO but provides the same security

level as conventional un-sharded blockchain. Further, as noted

in [62], the use of LCC means that there is no longer any need

to re-assign or rotate committee members; it thus solves the

risk of having a majority of dishonest committee members.

Inspired by Polyshard, Wang et al. [58], [62] propose a

coded sharding scheme that enables cross shard transactions

and low block propagation latencies. Note that Polyshard does

not support inter-shard transactions. Wang et al. propose a

two-dimension shard, where transactions inputs and outputs

are divided into shards. For each block, the inputs of all

transactions are divided into incoming strip shards, and outputs

are divided into outgoing strip shards. LCC [109] is then

applied to each input and output strip shard. Since they

partition transactions into inputs and outputs, cross shard

transactions, where their input and output belong to different

shard, can be verified. In addition, Wang et al. propose a

coded propagation scheme to reduce propagation latencies due

to limited bandwidth. Specifically, each community selects a

leader to first exchange outgoing and incoming strips to form

a whole block. These leaders then propagate the entire block

within its community.

There are two other works that seek to exploit LCC to

improve blockchain. In [61], Asheralieva et al. consider block

generation in resource restricted devices, e.g., an Internet

of Things (IoT) device with limited computational power

and bandwidth. They divide blockchain nodes into miners

and validators. Miners generate block using LCC [109] and

validators check newly generated blocks. When generating a

block, miners encode the block into LCC coded segments and

send them to validators. After a validator receives sufficient

number of coded segments, it decodes and obtains a raw block

and verifies it. It then encodes the verification result using LCC

and broadcasts it to other validators. Finally, all validators

decode the verification results and accept the block if there

is consensus.

There are also works that consider issues relating disparity

of information and anonymity. Specifically, the aim is to

create differential information between honest and malicious

shards, which interrupts honest shards from performing LLC

decoding. In [59], Khooshemehr et al. introduce a differential

attack on PolyShard [56]. Recall that in PolyShard, the new

block generated by each shard is broadcasted to the entire

network for LCC decoding. An attacker can control a shard,

makes it a malicious shard by compromising a small number

of nodes. This is achievable since there is only a few nodes in

each shard. Then an attacker sends the new block generated

by malicious shards only to other malicious shards. Further,

when these malicious nodes received a coded fragment from

an honest shard, they can send a wrong verification result.

To preserve anonymity, conventional blockchain uses

anonymous accounts. Another approach is to employ private

information retrieval protocols [110]. Briefly, these protocols

hide the items being requested even when servers collude

with one another. To this end, Sasidharan et al. [60] propose

a Private Information Retrieval (PIR) protocol for sharded

blockchain. It allows checking of account balances assuming

Reed-Solomon coded shards.

VII. DATA AVAILABILITY ATTACK

Light nodes rely on full nodes to verify transactions are

legitimate or correct [2]. Specifically, they are not responsible

for checking whether a block producer’s work is correct.

That responsibility lies with full nodes. In this respect, the

data availability attack (DAA) is concerned with malicious

full nodes that aim to convince light nodes to accept blocks

with invalid or missing transactions [63], [72]. Specifically,

a malicious full node can propagate a block with fraudulent

transaction(s) to light nodes, which then readily accept the

block as long as it is part of the longest blockchain. A notable

example was demonstrated by Peter Todd at the 2016 MIT

Bitcoin Expo [111], where he showed a light node that is

fooled into thinking he owns 21 million bitcoins!

Addressing DAA involves a number of issues. The first

is data availability, meaning all data or transactions must

be available to be checked by any nodes. This discourages

malicious behaviors as all data are public, and thus it can be

verified by any parties. In this respect, it is thus important

to make data unavailability difficult. Moreover, DAA can be

detected by a node if a full node does not reply to (anonymous)

requests for some transactions. As we will discuss later, this

problem can be addressed using erasure codes and random

sampling. Second, light nodes must incur low computational

and communication cost in order to ascertain the validity

of a block transmitted by a full node. Further, a full node

that generated a proof must provide supporting data that

a transaction or coded symbol is invalid. In this respect,

exploiting Merkle proof is a key ingredient to such a method.

In summary, we need method(s) to prove fraud committed by

nodes, aka fraud proof. Further, we require a proof that all

data is available, so called data availability proof. Further, the



11

TABLE IV
SUMMARY OF DAA SOLUTIONS FOR SPV (LIGHT) NODES. THE TERM N IS THE NUMBER OF NODES, T IS THE NUMBER OF BLOCKS, B IS THE BLOCK

SIZE, k IS THE NUMBER OF FRAGMENTS TO BE ENCODED IN A BLOCK.

Reference
Light node

storage

Light node
communica-

tion

Random

sample

Require
full

node

Code Key ideas

Al-Bassam et al.
[63]

O(T
√
B) O(N

√
B logB) X X RS

1. Encode block into coded fragments using RS
code.

2. Light nodes randomly request coded fragments
from full nodes and send to a full node to decode.

3. Hidden information is retrieved after decoding.
4. Honest full nodes send fraud proof if there is

inconsistency.

Santini et al. [70] O(T
√
B) O(N

√
B logB) X X RS

1. Model the adversarial probability in [63] as a
coupon collector’s problem

2. Optimize finite field size and communication cost
given the number of light nodes

SPAR [64] O(T ) O(logNB) X X LDPC

1. Construct coded Merkle tree
2. Reduce the number of coded fragment that light

nodes need to transmit
3. Reduce computational complexity for fraud

proofs

Mitra et al. [68] O(T ) O(logNB) X X LDPC
1. Construct LDPC codes that reduce decoding fail-

ure probability
2. Consider weak and strong adversary model

Mitra et al. [71] O(T ) O(logNB) X X Polar Construct coded merkle tree using Polar code.

Cao et al. [65]
O(T +

1

k
B logB)

O(k logN) X X LDPC
1. Light nodes issue fraud proof without full nodes
2. Does not require locally majority of honest

cost to download and verify a fraud proof must be low. In

addition, any developed schemes should not rely on having

more honest full nodes than malicious full nodes.

A. Simple Payment Verification (SPV)

This section discusses approaches that aim to protect light

nodes via fraud proofs. A summary of these approaches is

shown in Table IV. These approaches are designed to allow

light nodes to identify/check a fraudulent block efficiently

using limited amount of data. The key concerns include

communication cost, i.e., amount of data downloaded by light

nodes to facilitate proofs checking, and computation cost, i.e.,

the run-time complexity of algorithms used to validate a proof.

The seminal work by Al-Bassam et al. [63] propose two

types of fraud proofs: state transitions and data availability.

First, recall that a blockchain transitions to a new state

after all transactions in a block are committed, and there is

one Merkle root for each block. Al-Bassam et al. propose

intermediate states, which are created following the processing

of some number of transactions. Each intermediate state has a

corresponding Merkle root. If an honest full node finds that the

Merkle root of an intermediate state is incorrect, it can then

inform light nodes. These light nodes only need to confirm the

finding of the full node, which can be carried out efficiently.

Specifically, the said full node only needs to send light nodes

the Merkle root in question and some data. Advantageously,

this method only requires one honest full node to detect a

fraudulent block and inform all light nodes.

Second, Al-Bassam et al. propose the following innovations

to ensure data availability: (i) Reed-Solomon codes, and (ii)

random sampling. Specifically, full nodes encode each block

using a Reed-Solomon code. Light nodes send anonymized

requests for symbols of a block and its Merkle proof to differ-

ent full nodes. Light nodes then transmit received symbols to

connected full nodes. Once an honest full node has received

sufficient number of symbols, it reconstructs the block and

checks its validity. If a block is deemed to be invalid, the full

node sends a fraud proof to light nodes. This causes the block

to be rejected by light nodes. To prevent a fraud proof from

being issued, a malicious full node may not reply to requests

from light nodes. In this case, a light node ignores a block.

Further, to prevent decoding of a block, malicious nodes may

code a block incorrectly. This is addressed using an incorrect

decoding proof [64].

Note that applying only random sampling on un-coded or

data blocks does not work. This is because it is possible for a

malicious full node to hide a small amount of data that cannot

be detected via random sampling. However, with an erasure

code, missing data can be recovered after a node has received

sufficient number of symbols. This means a malicious node

needs to hide more data to ensure a block is not decoded

to be verified by a full node. This, however, makes it easier

to detect that some parts of a block are unavailable. Apart

from that, sampling requests must be anonymized to ensure a

malicious full node does not target a light node selectively.

A key concern is the probability that a malicious node is

able to deceive a light node when using the protocol in [63];

aka adversarial error probability. Another key concern is the

signaling overheads generated by the random sampling process

carried out by light nodes. To this end, Santini et al. [70]

propose a simple mathematical model to compute the said

adversarial error probability. They relate the sampling process

to the well-known coupon collector’s problem [112]. Advan-

tageously, the model can be used to study the relationship

between code rate, adversarial error probability, number of

light nodes, and transmission overhead of light nodes. Hence,



12

it can be used to optimize finite field size and communication

cost given the number of light nodes and desired adversarial

error probability.

Communication cost incurred by light nodes to ensure data

availability and to validate a block are of key interest to

researchers. To this end, the authors of [64] propose SParse

frAud pRotection (SPAR), which has a constant, i.e., O(1),
download cost (in bytes) for hash commitments (Merkle

roots) and number of samples, O(
√
blog(k)) complexity for

incorrect-coding proof and linear decoding complexity of

O(b). Here b is the block size, and k is the number data

symbols. The corresponding complexity for the work in [63] is

O(
√
b), O(1), O(

√
blog(k)) and O(b1.5). The key innovation

in SPAR is a novel hash accumulator called Coded Merkle

Tree (CMT). It helps light nodes check the availability of

coded symbols; note that CMT also helps a full node determine

the membership of coded symbols, meaning every coded

symbol for a given block has a Merkle proof. The key idea

is to apply LDPC codes to each layer of a Merkle tree,

where hashes are grouped into data symbols. This in turn

allows the application of the peeling decoder [84] and reduces

proof size, which is a function of the number of parity check

equations [69]. In addition, SPAR uses random sampling to

ensure the CMT of a block is available. Specifically, random

sampling is used to check the availability of each CMT layer.

A key concern in [64] is that the peeling decoder may fail

if malicious nodes deliberately hide coded symbols in the

stopping set of an LPDC code. Specifically, the probability

of decoding failure is a function of the smallest stopping

set [113]. This induces a decoding failure whereby a full node

is unable to determine the availability of a CMT. This means

full nodes are unable to generate an incorrect decoding proof

or that there is DAA. Thus, a key aim is to construct an

LDPC code with a large minimum stopping set [67]. This in

turn allows light nodes, which use random sampling, to detect

DAA with a high probability. Unfortunately, constructing such

a LDPC code is known to be an NP-hard problem [113].

To address this problem, Mitra et al. [67] design specialized

LDPC codes and a greedy sampling strategy. Further, they

note that the LDPC codes used in [64] are constructed using

standard methods and optimized for the binary symmetric

channel (BSC) as opposed to detecting DAA in blockchain

systems. To this end, the work in [67] builds on progressive

edge-growth (PEG) [114] to construct LDPC codes that require

light nodes to only sample a small number of variable nodes

in order to detect whether a full node is hiding symbols in

the stopping sets of an LDPC code. These set of variable

nodes have the highest probability or entropy in being part

of stopping sets. In their follow up work [68], they further

consider weak and strong adversary models, respectively. A

weak attacker only interrupts decoding at one layer of the

CMT, while a strong attacker can interrupt decoding of certain

symbols at all layers. Apart from that, for the strong adversary

model, they outline a linear programming based method that

takes as input all stopping sets with a given size for a given

LDPC code; this exhaustive collection of stopping sets can

be obtained for short code lengths using an integer linear

program. In a subsequent work, in [71], Mitra et al. construct

(a) In conventional side chain solutions, each side chain submits a
commitment, i.e., the hash of a block, to the main chain. The main chain
then ensures the data integrity of side chains. However, a malicious side
chain node may submit a commitment without sharing it with others
in the same side chain network. This lead to DAA.

(b) By using an error correction code, a group of nodes form a
committee and construct an oracle layer that interfaces side chains to
the main chain. Side chain nodes submit coded blocks instead of a
commitment to oracle layer nodes, which then decode and verify the
content therein. If there is a decoding failure, oracle nodes send a fraud
proof to inform other nodes in the corresponding side chain.

Fig. 10. Comparison between conventional and coded side chains.

a coded Merkle tree using Polar codes [115].

Another approach to validate blocks is to bypass full nodes.

To this end, Cao et al. [65] propose a collaborative verification

protocol that involves only light nodes. Each light node checks

some transactions in a block and issues a fraud proof if

necessary. Advantageously, their protocol scales sub-linearly

with block size in terms of communication, computation and

storage. Further, it does not require a majority of honest light

nodes. Their protocol has a number of features. First, they

design a new block structure that allows light nodes to check

each transaction in a block; this is similar to the work in [63]

but considers states that are distributed to light nodes. Second,

each light node verifies transactions belonging to specific

senders/accounts. Consequently, the approach in [65] is secure

if all senders of transactions of a block are covered/verified

by an honest light node. Third, to ensure data availability,

Cao et al. designed a protocol that uses the coded Merkle tree

of [64]. Specifically, light nodes randomly sample symbols

from each layer of the Merkle tree. Further, to reduce storage

requirement, each light node only processes transactions in a

fixed number of blocks. Lastly, Cao et al. equip light nodes

with a gossip protocol, e.g., [116], to obtain symbols of interest

and propagate fraud proofs.



13

TABLE V
SUMMARY OF CODED BLOCKCHAIN SOLUTIONS.

Aim Issues Solutions & Reference

Storage

Distribute storage of coded
blockchain

1. Distribute storage use Network code [28]
2. Operating with nodes storing coded blockchain [21] [29] [32]

Secure the distributed stored
coded blockchain data

1. Secret key sharing [15] [37]
2. Secret key sharing of coded block [39]
3. Global and local keys to reduce communication cost [36]
4. Adjust storage ratio in dynamic networks with at most a third are byzantine nodes [38]

Communication

Communication cost

1. Use network coding to reduce re-transmission cost [41] [47]
2. Reduce bandwidth requirement at bottleneck node [44] [43]
3. Reconstruct transactions and use code to restore missing transactions [45]
4. Use network coding to reduce message overhead in BFT consensus [40] [42] [49]

Communication delay
1. Directly forward coded fragments [50]
2. Optimize coded fragments storage and transmission [31] [48]
3. Locally encode and disperse coded fragments [46]

Bootstrap new nodes

1. Reduce bandwidth requirement of full nodes [51]
2. Ensure the correctness of block headers [53]
3. Reduce decoding complexity [55]
4. New node directly stores coded fragment without decoding [54] [52]

Computation
Improve the security of sharded

blockchains

1. Distribute computing among all shards [56]
2. Enable cross shard transactions in coded shards [58], [62]
3. Differential attack for coded shards [59]
4. Ensure privacy of cross shards transactions [60]
5. Reduce computation at each node [61]

Security

Improve the security of SPV
clients

1. Send a fraud alarm to a light node after a full node decodes a block [63] [70]
2. Generate a fraud alarm using a coded Merkle tree [64] [65] [67] [68] [71] [72]

Improve side chains security 1. Encode blocks, and have them decoded and checked by some oracle nodes [66] [69]

B. Side Chains

Side chains aim to improve throughput and reduce the

storage requirement of a blockchain system [79], [117]. Fur-

ther, it helps facilitate innovations, where the main features,

e.g., consensus protocol, of the main chain remain intact. A

side chain, however, can incorporate new trust models and/or

algorithms/protocols to process transactions [117]. A key idea

is the transfer of assets, e.g., cryptocurrencies, between the

main chain and side chains [117]. For example, the authors

of [118] propose an off-chain payment protocol, where users

use a main chain to setup a collateral or deposits and to

settle disputes. Advantageously, arbitrary number of payments

are executed using a side chain or payment channel between

users. The main chain is only used to consolidate the account

balance of users. Another example is Arbitrum [119], which

aims to scale smart contracts by moving the verification of

their executions to a side chain or off-chain.

Side chains usually store the hash of blocks or executions

states from side chains. This means the main chain is used only

to guarantee the data integrity of side chains. For example, in

Arbitrum [119], miners only need to verify hashes of smart

contract states. However, this may result in DAA because

the main chain is not able to verify the said transactions or

executions of a contract. Hence, a key requirement is that

a side chain node feeds the correct hash to the main chain.

Unfortunately, a malicious side chain node can feed the hash

of a block to the main chain but not share the block [66]. To

address the above issue, Sheng et al. [66] propose to add an

oracle layer between a side side and main chain. Side chain

nodes must first send LDPC coded blocks to nodes in the

oracle layer. These so called oracle nodes then decode and

verify the correctness of these blocks. Only valid blocks are

fed to the main chain. Mitra et al. [69] build on their coded

Merkle tree work [68] to design an LDPC code for a side chain

oracle. They focus on communication efficiency where oracle

nodes verify blocks fed from side chain nodes. They propose

an algorithm based on PEG [114] that maximizes decoding

probability using the fewest number of coded blocks.

VIII. CONCLUSION AND FUTURE WORKS

The growth in blockchain technologies and wide ranging

applications have resulted in scaling issues relating to data

storage, communication, computation and security. To this end,

this paper considers approaches that employ error correction

codes. Some of their main advantages include (i) reduced

storage and communication cost, and thus allowing more

nodes, especially light nodes, to participate in a blockchain.

Further, communication cost is reduced as as each node is

only required to communicate a small proportion of coded

fragments. In addition, it facilitates bootstrapping of new

nodes, (ii) better security, where coded blockchains are more

resistant to manipulation by malicious nodes and promote data

availability. These key features are highlighted in Table V.

There are a number of possible future works. To date, no

prior coded blockchain approaches have used machine learn-

ing approaches to optimize coding parameters for different

network conditions. For example, the work in [120] shows

that computational cost can be significant if parameters of

regenerating codes are not chosen correctly. Another example

is to identify patterned erasures due to nodes leaving a

blockchain system caused by failures or duty cycling in order

to conserve energy. Another avenue is to use machine learning

approaches to determine the degree distribution of fountain

codes such as LT, e.g., [121]. Further, coding parameters must

be adjusted subject to the cost and availability of communica-

tion, computation and storage resources.



14

Another possible research direction relates to communi-

cation cost. A number of works use Reed-Solomon codes,

e.g., [31], [38]. However, maximum distance separable codes

are known to have a large repair bandwidth [122]. This has

implication on light nodes that have limited bandwidth. Fur-

ther, for works that use network coding, e.g., [47], the number

of coefficients used to encode fragments have an impact on

communication cost. A key challenge is the dynamic topology

of a blockchain system. Hence, adapting coefficients over

time whilst ensuring low communication cost and decoding

success is critical. Apart from that, there are limited number

of works that consider the underlying network conditions when

distributing or coding blocks. For example, participants may be

far apart, which increases propagation delays, or connected via

congested links, which delays consensus time and distribution

of coded fragments.

REFERENCES

[1] S. Underwood, “Blockchain beyond bitcoin,” Communications of the

ACM, vol. 59, no. 11, pp. 15–17, 2016.
[2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-

tralized Business Review, p. 21260, 2008.
[3] “Ethereum,” 2008. [Online]. Available: https://ethereum.org/en/.
[4] M. Mettler, “Blockchain technology in healthcare: The revolution starts

here,” in IEEE 18th international conference on e-health networking,
applications and services (Healthcom), (Munich, Germany), pp. 1–3,
Sept. 2016.

[5] Q. Zhu and M. Kouhizadeh, “Blockchain technology, supply chain
information, and strategic product deletion management,” IEEE En-

gineering Management Review, vol. 47, no. 1, pp. 36 – 44, 2019.
[6] Z. Ma, M. Jiang, H. Gao, and Z. Wang, “Blockchain for digital rights

management,” Future Generation Computer Systems, vol. 89, pp. 746–
764, Dec. 2018.

[7] Y. Chen, H. Li, K. Li, and J. Zhang, “An improved P2P file system
scheme based on IPFS and blockchain,” in IEEE International Con-
ference on Big Data (Big Data), (Boston, USA), pp. 2652–2657, Dec.
2017.

[8] N. Teslya and I. Ryabchikov, “Blockchain-based platform architecture
for industrial IoT,” in 21st Conference of Open Innovations Association
(FRUCT), (Helskin, Finland), pp. 321–329, Nov. 2017.

[9] w. Chen, Z. Xu, S. Shi, Y. Zhao, and J. Zhao, “A survey of blockchain
applications in different domains,” in International Conference on

Blockchain Technology and Application, (Xian, China), pp. 1–6, Dec.
2018.

[10] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” in Operating Systems Design and Implementation,
(New Orleans, USA), pp. 173–186, 1999.

[11] “A peer-to-peer electronic cash system,” 2008. [Online]. Available:
https://bitcoin.org/bitcoin.pdf .

[12] “Blockchain size,” 2021. [Online]. Available:
https://www.blockchain.com/charts/blocks-size.

[13] “Capacity planning.” https://developers.ripple.com/capacity-planning.html,[Online;
Accessed on 06/20/2019].

[14] “XRP ledger, ripple blockchain size,” 2008. [Online]. Available:
https://xrpl.org/capacity-planning.html.

[15] R. K. Raman and L. R. Varshney, “Coding for scalable blockchains
via dynamic distributed storage,” IEEE/ACM Trans. on Netw., vol. 29,
pp. 2588–2601, Dec. 2021.

[16] U. Nadiya, K. Mutijarsa, and C. Y. Rizqi, “Block summarization and
compression in bitcoin blockchain,” in International Symposium on
Electronics and Smart Devices (ISESD), (Indonesia), pp. 1–6, Oct.
2018.

[17] T. Kim, J. Noh, and S. Cho, “SCC: Storage compression consensus
for blockchain in lightweight IoT network,” in IEEE International
Conference on Consumer Electronics (ICCE), (Las Vegas, USA), pp. 1–
4, Jan. 2019.

[18] “Mina protocol,” 2008. [Online]. Available: https://minaprotocol.com/.
[19] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: scaling

blockchain via full sharding,” in ACM SIGSAC Conference on Com-

puter and Communications Security, (Toronto, Canada), pp. 931–948,
Oct. 2018.

[20] G. O. Karame and E. Androulaki, Bitcoin and Blockchain Security.
Artech House, 2016.

[21] D. Perard, J. Lacan, Y. Bachy, and J. Detchart, “Erasure code-based
low storage blockchain node,” in IEEE International Conference on

Internet of Things (iThings) and IEEE Green Computing and Commu-

nications (GreenCom) and IEEE Cyber, Physical and Social Computing
(CPSCom) and IEEE Smart Data (SmartData), (Halifax, NS, Canada),
pp. 1622–1627, July 2018.

[22] S. Das, A. Kolluri, P. Saxena, and H. Yu, “On the security of blockchain
consensus protocols,” in International Conference on Information Sys-
tems Security, (Funchal, Portugal), pp. 465–480, Jan. 2018.

[23] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on
network codes for distributed storage,” Proc. IEEE, vol. 99, no. 3,
pp. 476–489, 2011.

[24] C. Cachin and S. Tessaro, “Asynchronous verifiable information dis-
persal,” in 24th IEEE Symposium on Reliable Distributed Systems,
(Orlando, FL, USA), pp. 1–11, Oct. 2005.

[25] S. B. Wicker and V. K. Bhargava, Reed-Solomon codes and their

applications. Wiley-IEEE Press, 1994.

[26] “Ethereum light node,” 2008. [Online]. Available:
https://ethereum.org/en/developers/tutorials/run-light-node-geth/.

[27] “Bitcoin pruned node,” 2008. [Online]. Available:
https://bitcoin.org/en/full-node#reduce-storage.

[28] M. Dai, S. Zhang, H. Wang, and S. Jin, “A low storage room
requirement framework for distributed ledger in blockchain,” IEEE

Access, vol. 6, pp. 22970–22975, 2018.

[29] H. Wu, A. Ashikhmin, X. Wang, C. Li, S. Yang, and L. Zhang,
“Distributed error correction coding scheme for low storage blockchain
systems,” IEEE Internet Things J., vol. 7, no. 8, pp. 7054–7071, 2020.

[30] L. Quan and Q. Huang, “Transparent coded blockchain,” in ACM

CoNEXT, (Orlando, USA), pp. 12–13, Dec. 2019.

[31] C. Li, J. Zhang, X. Yang, and L. Youlong, “Lightweight blockchain
consensus mechanism and storage optimization for resource-
constrained IoT devices,” Information Processing & Management,
vol. 58, no. 4, p. 102602, 2021.

[32] Q. Huang, L. Quan, and S. Zhang, “Downsampling and transparent
coding for blockchain,” IEEE Trans. Netw. Sci. Eng., vol. 9, pp. 2139
– 2149, Aug. 2022.

[33] R. K. Raman and L. R. Varshney, “Dynamic distributed storage for
scaling blockchains.” arXiv preprint arXiv:1711.07617, 2017.

[34] R. K. Raman and L. R. Varshney, “Distributed storage meets secret
sharing on the blockchain,” in Information Theory and Applications

Workshop (ITA), (San Diego, CA, USA), pp. 1–6, Feb. 2018.

[35] R. K. Raman and L. R. Varshney, “Dynamic distributed storage for
blockchains,” in IEEE International Symposium on Information Theory

(ISIT), (Colorado, USA), pp. 2619–2623, June 2018.

[36] Y. Kim, R. K. Raman, Y.-S. Kim, L. R. Varshney, and N. R. Shanbhag,
“Efficient local secret sharing for distributed blockchain systems,” IEEE
Commun. Letters, vol. 23, no. 2, pp. 282–285, 2019.

[37] S. Mesnager, A. Sınak, and O. Yayla, “Threshold-based post-
quantum secure verifiable multi-secret sharing for distributed storage
blockchain,” Mathematics, vol. 8, no. 12, p. 2218, 2020.

[38] X. Qi, Z. Zhang, C. Jin, and A. Zhou, “BFT-Store: storage partition
for permissioned blockchain via erasure coding,” in IEEE 36th In-

ternational Conference on Data Engineering (ICDE), (Dallas, USA),
pp. 1926–1929, Apr. 2020.

[39] J. Singh, A. Banerjee, and H. Sadjadpour, “Secure and private fountain
code based architecture for blockchains,” in IEEE WCNC, (Austin, TX,
USA), pp. 1521–1526, Apr. 2022.

[40] A. Miller, Y. Xia, and K. Croman, “The honey badger of BFT proto-
cols,” in Proceedings of the ACM SIGSAC Conference on Computer

and Communications Security, (Vienna, Austria), pp. 1–14, Oct. 2016.

[41] M. Cebe, B. Kaplan, and K. Akkaya, “A network coding based
information spreading approach for permissioned blockchain in IoT
settings,” in ACM Mobiquitous, (New York, USA), pp. 470–475, Nov.
2018.

[42] S. Duan, M. K. Reiter, and H. Zhang, “BEAT: asynchronous BFT
made practical,” in Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security, (Toronto, Canada), pp. 1–14,
Oct. 2018.

[43] B. Choi, J.-y. Sohn, D.-J. Han, and J. Moon, “Scalable network-
coded PBFT consensus algorithm,” in IEEE International Symposium
on Information Theory (ISIT), (Paris, France), pp. 857–861, July 2019.

[44] N. Chawla, H. W. Behrens, D. Tapp, D. Boscovic, and K. S. Candan,
“Velocity: Scalability improvements in block propagation through rate-
less erasure coding,” in IEEE International Conference on Blockchain

https://ethereum.org/en/
https://bitcoin. org/bitcoin. pdf
https://www.blockchain.com/charts/blocks-size
https://developers.ripple.com/capacity-planning.html
https://xrpl.org/capacity-planning.html
https://minaprotocol.com/
https://ethereum.org/en/developers/tutorials/run-light-node-geth/
https://bitcoin.org/en/full-node#reduce-storage


15

and Cryptocurrency (ICBC), (Seoul, South Korea), pp. 447–454, May
2019.

[45] M. Jin, X. Chen, and S.-J. Lin, “Reducing the bandwidth of block
propagation in bitcoin network with erasure coding,” IEEE Access,
vol. 7, pp. 175606–175613, Dec. 2019.

[46] B. Qu, L. E. Wang, P. Liu, Z. Shi, and X. X. Li, “GCBlock: a grouping
and coding based storage scheme for blockchain system,” IEEE Access,
vol. PP, no. 99, pp. 1–1, 2020.

[47] M. Braun, A. Wiesmaier, N. Alnahawi, and J. ßeibler, “On message-
based consensus and network coding,” in 12th International Conference

on Network of the Future (NoF), (Coimbra, Portugal), pp. 1–9, 2021.

[48] C. Yang, X. Wang, and A. Ashikhmin, “Storage and communica-
tion tradeoff for wireless coded blockchains,” IEEE Systems Journal,
vol. 16, pp. 2911 – 2922, June 2022.

[49] L. Yang, S. J. Park, M. Alizadeh, S. Kannan, and D. Tse, “Disperse-
dLedger: High-throughput byzantine consensus on variable bandwidth
networks,” in USENIX NSDI, (Renton, WA, USA), pp. 493–512, Oct.
2022.

[50] L. Zhang, T. Wang, and S. C. Liew, “Speeding up block propagation
in bitcoin network: Uncoded and coded designs,” Computer Networks,
vol. 206, p. 108791, Apr. 2022.

[51] S. Kadhe, J. Chung, and K. Ramchandran, “SeF: A secure fountain ar-
chitecture for slashing storage costs in blockchains.” arXiv:1906.12140,
Jan. 2019.

[52] D. Mitra and L. Dolecek, “Patterned erasure correcting codes for low
storage-overhead blockchain systems,” in 53rd Asilomar Conference on

Signals, Systems, and Computers, (Pacific Grove, CA, USA), pp. 1734–
1738, Nov. 2019.

[53] R. Pal, “Fountain coding for bootstrapping of the blockchain,” in IEEE

COMSNETS, (Bengaluru, India), pp. 1–5, Jan. 2020.

[54] D. S. Gadiraju, V. Lalitha, and V. Aggarwal, “Secure regenerating codes
for reducing storage and bootstrap costs in sharded blockchains,” in
IEEE International Conference on Blockchain, (Rhodes Island, USA),
pp. 229–236, Nov. 2020.

[55] A. Tiwari and V. Lalitha, “Secure raptor encoder and decoder for low
storage blockchain,” in IEEE COMSNET, (Bangalore, India), pp. 161–
165, Jan. 2021.

[56] S. Li, M. Yu, C.-S. Yang, A. S. Avestimehr, S. Kannan, and
P. Viswanath, “PolyShard: Coded sharding achieves linearly scaling ef-
ficiency and security simultaneously.” arXiv preprint arXiv:1809.10361,
2018.

[57] S. Li, M. Yu, C. S. Yang, A. S. Avestimehr, and P. Viswanath,
“Polyshard: Coded sharding achieves linearly scaling efficiency and
security simultaneously,” IEEE Trans. Inf. Forensics Security, vol. 16,
pp. 249 – 261, July 2020.

[58] C. Wang and N. Raviv, “Low latency cross-shard transactions in coded
blockchain,” in IEEE International Symposium on Information Theory

(ISIT), (Melbourne, Australia), pp. 2678–2683, July 2021.

[59] N. A. Khooshemehr and M. A. Maddah-Ali, “The discrepancy attack
on polyshard-ed blockchains,” in IEEE International Symposium on

Information Theory (ISIT), (Melbourne, Australia), pp. 2672–2677,
July 2021.

[60] B. Sasidharan and E. Viterbo, “Private data access in blockchain
systems employing coded sharding,” in IEEE International Symposium

on Information Theory (ISIT), (Melbourne, Australia), pp. 2684–2689,
July 2021.

[61] A. Asheralieva and D. Niyato, “Throughput-efficient lagrange coded
private blockchain for secured IoT systems,” IEEE Internet Things J.,
vol. 8, no. 19, pp. 14874–14895, 2021.

[62] C. Wang and N. Raviv, “Breaking blockchain’s communication barrier
with coded computation,” IEEE Journal on Selected Areas in Informa-

tion Theory, July 2022.

[63] M. Al-Bassam, A. Sonnino, and V. Buterin, “Fraud and data availability
proofs: Maximising light client security and scaling blockchains with
dishonest majorities.” arXiv preprint arXiv:1809.09044, 2018.

[64] M. Yu, S. Sahraei, S. Li, S. Avestimehr, S. Kannan, and P. Viswanath,
“Coded merkle tree: Solving data availability attacks in blockchains,”
in International Conference on Financial Cryptography and Data

Security, (Kota Kinabalu, Malaysia), pp. 114–134, Feb. 2020.

[65] S. Cao, S. Kadhe, and K. Ramchandran, “CoVer: Collaborative
light-node-only verification and data availability for blockchains,” in
IEEE International Conference on Blockchain, (Rhodes Island, USA),
pp. 45–52, Nov. 2020.

[66] P. Sheng, B. Xue, S. Kannan, and P. Viswanath, “ACeD: scalable data
availability oracle.” arXiv preprint arXiv:2011.00102, 2020.

[67] D. Mitra, L. Tauz, and L. Dolecek, “Concentrated stopping set design
for coded merkle tree: Improving security against data availability
attacks in blockchain systems,” in IEEE Information Theory Workshop

(ITW), (Riva del Garda), pp. 1–6, Apr. 2021.

[68] D. Mitra, L. Tauz, and L. Dolecek, “Overcoming data availability
attacks in blockchain systems: LDPC code design for coded merkle
tree.” arXiv preprint arXiv:2108.13332, 2021.

[69] D. Mitra, L. Tauz, and L. Dolecek, “Communication-efficient LDPC
code design for data availability oracle in side blockchains,” in IEEE
Information Theory Workshop (ITW), (Kanazawa, Japan), pp. 1–6, Oct.
2021.

[70] P. Santini, G. Rafaiani, M. Battaglioni, F. Chiaraluce, and M. Baldi,
“Optimization of a reed-solomon code-based protocol against
blockchain data availability attacks.” arXiv preprint arXiv:2201.08261,
2022.

[71] D. Mitra, L. Tauz, and L. Dolecek, “Polar coded merkle tree: Improved
detection of data availability attacks in blockchain systems,” in IEEE

International Symposium on Information Theory (ISIT), (Espoo, Fin-
land), June 2022.

[72] M. Battaglioni, P. Santini, G. Rafaiani, F. Chiaraluce, and M. Baldi,
“A data availability attack on a blockchain protocol based on LDPC
codes.” arXiv preprint arXiv:2202.07265, 2022.

[73] Q. Zhou, H. Huang, Z. Zheng, and J. Bian, “Solutions to scalability of
blockchain: A survey,” IEEE Access, vol. 8, pp. 16440–16455, 2020.

[74] S. Kim, Y. Kwon, and S. Cho, “A survey of scalability solutions on
blockchain,” in International Conference on Information and Commu-

nication Technology Convergence (ICTC), (Jeju Island , South Korea),
pp. 1204–1207, Oct. 2018.

[75] J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, and Y. Liu, “A survey on
the scalability of blockchain systems,” IEEE Network, vol. 33, no. 5,
pp. 166–173, 2019.

[76] A. Hafid, A. S. Hafid, and M. Samih, “Scaling blockchains: A com-
prehensive survey,” IEEE Access, vol. 8, pp. 125244–125262, 2020.

[77] G. Yu, X. Wang, K. Yu, W. Ni, J. A. Zhang, and R. P. Liu, “Survey:
Sharding in blockchains,” IEEE Access, vol. 8, pp. 14155–14181, 2020.

[78] A. A. Mazlan, S. M. Daud, S. M. Sam, H. Abas, S. Z. A. Rasid, and
M. F. Yusof, “Scalability challenges in healthcare blockchain systema
systematic review,” IEEE Access, vol. 8, pp. 23663–23673, 2020.

[79] A. Singh, K. click, R. M. Parizi, Q. Zhang, A. Dehghantanha, and
K. K. R. Choo, “Sidechain technologies in blockchain networks:
An examination and state-of-the-art review,” Journal of Network and
Computer Applications, vol. 149, pp. 1–16, Jan. 2020.

[80] A. I. Sanka and R. C. Cheung, “A systematic review of blockchain
scalability: Issues, solutions, analysis and future research,” Journal of
Network and Computer Applications, vol. 195, p. 103232, 2021.

[81] M. H. Nasir, J. Arshad, M. M. Khan, M. Fatima, K. Salah, and
R. Jayaraman, “Scalable blockchainsa systematic review,” Future Gen-

eration Computer Systems, vol. 126, pp. 136–162, 2022.

[82] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ram-
chandran, “Network coding for distributed storage systems,” IEEE

Trans. Inf. Theory, vol. 56, no. 9, pp. 4539–4551, 2010.

[83] G. Cancellieri, “Low-density parity-check codes,” Wiley-IEEE Press,
2002.

[84] M. Luby, “LT codes,” in 43rd Symposium on Foundations of Computer
Science (FOCS), (Vancouver, Canada), Nov. 2002.

[85] A. Shokrollahi, “Raptor codes,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2551–2567, 2006.

[86] M. O. Rabin, “Efficient dispersal of information for security, load
balancing, and fault tolerance,” Journal of the ACM, vol. 36, no. 2,
pp. 335–348, 1989.

[87] R. Zhang, R. Xue, and L. Liu, “Security and privacy for healthcare
blockchains,” IEEE Trans. Services Comput, pp. 1–1, 2021.

[88] Y. Wang and A. Kogan, “Designing confidentiality-preserving
blockchain-based transaction processing systems,” International Jour-

nal of Accounting Information Systems, vol. 30, pp. 1–18, Sept. 2018.

[89] R. Zhang, R. Xue, and L. Liu, “Security and privacy on blockchain,”
ACM Computing Surveys, vol. 52, pp. 1–34, May 2020.

[90] D. Wang, J. Zhao, and Y. Wang, “A survey on privacy protection
of blockchain: The technology and application,” IEEE Access, vol. 8,
pp. 108766–108781, May 2020.

[91] W. Liang, Y. Fan, K.-C. Li, D. Zhang, and J.-L. Gaudiot, “Secure data
storage and recovery in industrial blockchain network environments,”
IEEE Trans. Ind. Informat., vol. 16, pp. 6543–6552, Oct. 2020.

[92] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, p. 612613,
nov 1979.



16

[93] R. Bitar and S. Jaggi, “Communication efficient secret sharing in the
presence of malicious adversary,” in IEEE International Symposium
on Information Theory (ISIT), (Los Angeles, CA, USA), pp. 548–553,
June 2020.

[94] W. Huang and J. Bruck, “Secret sharing with optimal decoding and
repair bandwidth,” in IEEE International Symposium on Information

Theory (ISIT), (Aachen, Germany), pp. 1813–1817, June 2017.

[95] P. Feldman, “A practical scheme for non-interactive verifiable secret
sharing,” in 28th Annual Symposium on Foundations of Computer

Science, (Los Angeles, CA, USA), pp. 427–438, Oct. 1987.

[96] N. Loizou and P. Richtárik, “Revisiting randomized gossip algorithms:
General framework, convergence rates and novel block and accelerated
protocols,” IEEE Trans. Inf. Theory, vol. 67, no. 12, pp. 8300–8324,
2021.

[97] M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Trans. Comput. Syst., vol. 20, p. 398461,
Nov. 2002.

[98] C. Decker and R. Wattenhofer, “Information propagation in the bitcoin
network,” in IEEE International Conference on Peer-to-Peer Comput-

ing, (Trento, Italy), pp. 1–10, Sept. 2013.

[99] J. Göbel and A. Krzesinski, “Increased block size and bitcoin
blockchain dynamics,” in 27th International Telecommunication Net-
works and Applications Conference (ITNAC), (Melbourne, Australia),
Nov. 2017.

[100] J. K. Sundararajan, D. Shah, M. Medard, M. Mitzenmacher, and
J. Barros, “Network coding meets TCP,” in IEEE INFOCOM, (Rio
de Janeiro, Brazil), pp. 280–288, Apr. 2009.

[101] Z. Liu, C. Wu, B. Li, and S. Zhao, “UUSee: Large-scale operational on-
demand streaming with random network coding,” in IEEE INFOCOM,
(San Diego, CA, USA), pp. 1–9, Mar. 2010.

[102] G. Bracha, “An asynchronous [(n−1)/3]-resilient consensus protocol,”
in Proceedings of the Third Annual ACM Symposium on Principles of
Distributed Computing, (Vancouver, Canada), pp. 154–162, Aug. 1984.

[103] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in ACM SIGSAC

Conference on Computer and Communications Security, (Vienna, Aus-
tria), pp. 17–30, Oct. 2016.

[104] R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung, “Network information
flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, 2000.

[105] R. Nagayama, R. Banno, and K. Shudo, “Identifying impacts of
protocol and internet development on the bitcoin network,” in IEEE
Symposium on Computers and Communications (ISCC), (Rennes,
France), July 2020.

[106] S. El Rouayheb and K. Ramchandran, “Fractional repetition codes
for repair in distributed storage systems,” in 48th Annual Allerton

Conference on Communication, Control, and Computing (Allerton),
(Chicago, USA), pp. 1510–1517, Sept. 2010.

[107] D. Kalman, “The generalized vandermonde matrix,” Mathematics Mag-

azine, vol. 57, no. 1, pp. 15–21, 1984.

[108] B. Schwartz, P. Zaitsev, V. Tkachenko, J. D. Zawodny, A. Lentz,
and D. J. Balling, High Performance MySQL: Optimization, Backups,
Replication and More. O’Reilly Media, June 2008.

[109] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and
S. A. Avestimehr, “Lagrange coded computing: Optimal design for
resiliency, security, and privacy,” in The 22nd International Conference

on Artificial Intelligence and Statistics, pp. 1215–1225, 2019.

[110] A. Beimel and Y. Ishai, “Information-theoretic private information
retrieval: A unified construction,” in International Colloquium on

Automata, Languages, and Programming (ICALP), (Malaga, Spain),
pp. 1–15, July 2001.

[111] P. Todd. https://diyhpl.us/wiki/transcripts/mit-bitcoin-expo-2016/fraud-
proofs-petertodd/, 2016.

[112] W. Stadje, “The collector’s problem with group drawings,” Advances

in Applied Probability, vol. 22, no. 4, pp. 866–882, 1990.

[113] C. Di, D. Prioietti, E. Telatar, T. J. Richardson, and R. L. Urbanke,
“Finite-length analysis of low-density parity-check codes on the binary
erasure channel,” IEEE Trans. Inform. Theory, vol. 48, pp. 1570–1580,
June 2002.

[114] X.-Y. Hu, E. Eleftheriou, and D.-M. Arnold, “Irregular progressive
edge-growth (PEG) tanner graphs,” in Proceedings IEEE International

Symposium on Information Theory,, (Lausanne, Switzerland), pp. 480–
486, 2002.

[115] P. Trifonov, “Efficient design and decoding of polar codes,” IEEE

Trans. Commun., vol. 60, no. 11, pp. 3221–3227, 2012.

[116] K. Birman, “The promise, and limitations, of gossip protocols,” ACM

SIGOPS Operating Systems Review, vol. 41, no. 5, pp. 8–13, 2007.

[117] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell,
A. Miller, A. Poelstra, J. Timón, and P. Wuille, “En-
abling blockchain innovations with pegged sidechains.”
http://www.blockstream.com/sidechains.pdf. Accessed: 2022-07-
26.

[118] M. Diouf, D. Declercq, S. Ouya, and B. Vasic, “Sprites and state chan-
nels: Payment networks that go faster than lightning,” in International

Conference on Financial Cryptography and Data Security, (Frigate
Bay, Saint Kitts), p. 508526, Feb. 2019.

[119] H. Kalodner, S. Goldfeder, X. Chen, S. M. Weinberg, and E. W. Felten,
“Arbitrum: Scalable, private smart contracts,” in 27th USENIX Security

Symposium, (Baltimore, MD), pp. 1353–1370, Aug. 2018.
[120] A. Duminuco and E. Biersack, “A practical study of regenerating

codes for peer-to-peer backup systems,” in 29th IEEE International

Conference on Distributed Computing Systems, (Montreal, Canada),
pp. 376–384, 2009.

[121] Y. Savchenko and Y. Liu, “Optimizing degree distributions of lt-based
codes with deep reinforcement learning,” in IEEE Infocom (Workshop),
(Paris, France), pp. 228–233, May 2019.

[122] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis,
R. Vadali, S. Chen, and D. Borthakur, “XORing elephants: novel
erasure codes for big data,” Proc. of VLDB Endowment, vol. 6, pp. 325–
336, Mar. 2023.

http://www.blockstream.com/sidechains.pdf


This figure "fig1.jpg" is available in "jpg"
 format from:

http://arxiv.org/ps/2208.09255v1

http://arxiv.org/ps/2208.09255v1

	I Introduction
	I-A Contributions

	II Distributed Storage
	III Secure Distributed Storage
	IV Communication Cost and Delays  
	IV-A Block Propagation
	IV-B Propagation Delay

	V Bootstrapping Nodes
	V-A Fountain Codes
	V-B Repair Codes

	VI Coded Shards and Computing
	VII Data Availability Attack
	VII-A Simple Payment Verification (SPV)
	VII-B Side Chains

	VIII Conclusion and Future works
	References

