Check for
Updates

S. GORN, Editor; R. W. BEMER, Asst. Editor, Glossary & Terminology
E. LOHSE, Asst. Editor, Information Interchange
R. V. SMITH, Asst. Editor. Programming Languages

A Correspondence Between
ALGOL 60 and Church’s Lambda-
Notation: Part I*

By P. J. Laxviny

This paper describes how some of the semantics of ALGOL
60 can be formalized by establishing a correspondence
between expressions of ALGOL 60 and expressions in a
modified form of Church’s \-notation. First a model for com-
puter languages and computer behavior is described, based on
the notions of functional application and functional abstraction,
but also having analogues for imperative language features,
Then this model is used as an “abstract object language' into
which ALGOL 60 is mapped. Many of ALGOL 60’s features
emerge as particular arrangements of a small number of struc-
tural rules, suggesting new classifications and generalizations.

The correspondence is first described informally, mainly by
illustrations, The second part of the paper gives a formal
description, i.e. an “abstract compiler” info the “abstract object
language.” This is itself presented in a “purely functional”
notation, that is one using only application and abstraction.

Contents

(Pari I} The Coustants and Primitives of
Introduetion :\[‘('QL’ i)
Motivation [{ustrations of the Correspondence

Identifiers
Variables
Expressions

T.ong-term Prospeets
Short-term Aims
Imperative Applicative Expressions

. R Bloe
A Generalization of Jumps P 0C kls block
. N . . seudo blocks
Introducing Commands into o Func- I)ulu)t' Oeks
tional Scheme ee arations
Statements

The Sharing Machine

ALGOL 60 as Sugared [AEs
Informal Presentation of the Corre-

spondence

Brief Outline

T'he Domain of Reference of

Labels and Jurmps
Own Identifiers

(DPart IT)

Formal Presentation of the Correspond-
ence

ALGOL 60 Abstract ALGOL
For-lists The Synthetic Syntax Funetion
Streauns The Semantic Function
Types Conclusion

Volume § / Number 2 / February, 1965

Introduction

Anyone familiar with both Chureh’s h-caleuli (see c.g-
[71) and Avrcon 60 {6] will have notliced a superficial re-
semblance between the way variables tie up with the X's
in a nest of h-expressions, and the way identifiers tie up
with the headings in a nest of procedures and blocks. Some
may also have observed that in, say

INf(a) + F(D)} e’ + pr + g

the two A-expressions, i.e. the operator and the operand,
play roughly the roles of block-body and procedure-
declaration, respeciively. The present paper exploves this
rescmblance in some detail,

The presentation falls into four seetions. The first see-
tion, following this introduction, gives some motivation
for examining the correspondence. The second seetion de-
seribes an abstract language based on Church’s A-caleuli.
This abstract language is a development of the AE/SECD
system presented in [3] and some acquaintance with that
paper (hereinafter referred to as [MEE]) is assumed here.
The third section describes informally, mainly by illus-
trations, a correspondence between expressions of Ancorn
60 and expressions of the abstract language. The last
section formalizes this correspondence; it first describes
a sort of “abstract Ancorn 60”7 and then presents two fune-
tions that map expressions of abstract Arcon 60 into, on
the one hand, Ancorn 60 texts, and on the other hand
sxpressions of the abstract language.

Motivation

It seems possible that the correspondence might form
the basis of a formal deseription of the semantics of Avgor
60.! As presented here it reduces the problem of specifying
Avcor 60 semanties to that of specifying the semantics of
a structurally simpler language. The formal treatment of
the latter problem is beyond the scope of this paper, and
hence likewise a formal proof that the correspondence de-
scribed here is correet. It is hoped that the informal ac-
count of the semantics of the abstract “object language”

*Part Il of this paper, which gives the Formal Presenta-
tion of the Correspondence, will appear in the March, 1965 issue
of the Communications of the ACM.

T Present address: Univac Division of Sperry Rand Corpora-
tion, Systems Programming Research, New York, New York.

1 This view is expanded in [10].

Communications of the ACM 89

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363744.363749&domain=pdf&date_stamp=1965-02-01

will be enough to justify the choice of correspondence in all
but a few details.

Loxg-TERM PROSPECTS

There are two ways in which this work might be rele-
vant to the job of providing software.

(1) TFormal syntax has been used to practical advan-
tage by language designers and implementers. There might
be analogous advantages in formal semantics.

(2) 1If several languages are being used concurrently by
the users of a computer, a common formal basis for them
might help in intermixing them (e.g. referring in one lan-
cuage to program that originated in another).

Clearly, significance in these fields depends on the possi-
bility of applying to other languages the technique illus-
trated here in respect to Ancor 60. So far only sketchy
trials have been made, since even for ALGoL 60 the present
state of the investigation is not satisfactory. Discussion of
other languages is largely beyond the scope of this paper,
hut the sketchy trials confirm what will be obvious to the
present reader-—that the method is at its best with lan-
guages that rely mainly on elaborate “descriptive” {orms,
and at its worst with those that rely mainly on elaborate
“imperative” forms. Thus it favours what currently tend
to be called “advanced” languages—those with good defi-
nition facilities, localized naming, and recursive structure
of right-hand sides and programs. It has little value with a
fixed-format, absolute-address language that makes exten-
sive use of sequencing and of state-indicators that modify
the cffect of subsequently executed instructions.

SHoRT-TERM ArMs

In [MEE] it was shown how certain features of program-
ming languages can be modeled in a modified form of
Church’s A-notation. More precisely, a model language,
based on A-caleuli, and called applicative expressions (ALs)
was described in abstract terms, that is to say, independ-
ently of any particular written representation. It was
shown how AEs provide facilities essentially equivalent to
auxiliary definitions, conditional expressions and recur-
sion, and that with a suitable choice of written representa-
tion these facilitics take on a familiar appearance. Further-
more, an abstract machine, called the SECD-machine, was
described capable of “interpreting” AEs. Still more pre-
cisely, there is a family of languages and a matching family
of machines, each characterized by an “environment,” i.e.
a set of named objects that are related to one another by
rules concerning the results of applying them one to an-
other. The present paper is based on a development of this
scheme, intended to incorporate ALgoL 60.

The attempt to fit Arcor 60 into the AE/SECD frame-
work can be considered from two sides. On the one hand,
for someone familiar with Avcor 60 it may clarify some of
the features of AEs. Iirstly, the analysis of Arcon 60 in
terms of AEs illustrates the distinction made in [MEE], be-
tween “applicative structure” and “syntactic sugar.”

90 Communications of the ACM

Secondly, we shall give many examples of the use of AR
as a descriptive tool, and in particular some that exhibitiy
AEs features that correspond to the sequencing control of
conventional programming languages. It emerges that the
choice of an AE from a certain class of similar AEy i
rather like the choice of an order for a set of assign.
ments, and that the issue of whether or not this choice
affects the outcome has an analogy in terms of Alls.

For example, it follows from the definition of the “value”
of an AE that

1if(a

A

0)(a*, 1/a)

and

A

if(a = 0)(N().a’, M) a) ()

are not necessarily equivalent; if @ = 0 the first is wn-
defined. This difference is reflected in the behavior of the
SECD-machine. In evaluating the [irst it attempis to
evaluate both a® and 1/a, whereas in evaluating the second,
both A()-expressions are cvaluated but only one of their
bodies. The use of A, and in particular (to avoid an ir-
relevant bound variable) of A(), to delay and possibly
avoid evaluation is exploited repeatedly in our model of
Ancorn 60. A function that requires an argument-list of
length zero is called a none-adic function.

On the other hand, AEs illuminate the structure of
AvcoL 60.

Firstly, the definitive description of Ancorn 60 1s spht
into sections headed “syntax’ and “semantics.” The syn-
tax is described formally, the semantics mainly by nama-
tive. This paper provides a way of formalizing some of the
semantics by associating semantic features of Arcor 60
with syntactic features of AEs. (More precisely, we should
say structural features of ALs, since AEs have an existence
independent of any specific written representation.)

Secondly, the analysis leads to a classification of the
grammatical units of ALcoL 60 that provides a unified
framework for such features as (i) the fact that amay
bounds are necessarily specified in terms of noulocals (and
hence, for instance, cannot use a procedure declared in
parallel); and (ii) the commonly observed similarity be-
tween procedures and actual parameters called by name.
More generally it shows that many features of Avncot 60,
including call by name, declarations, own, for-lists, and
labels, have parallels in a language that lacks assignment,
and are hence not essentially related to “imperative” lan-
guages. Also, mainly by default, it suggests a new view of
own.?

Thirdly, the analysis brings out certain respects in which
ArcorL 60 is “incomplete,” in that it provides differing fa-
cilities in situations that are closely analogous. It dictates
what extensions (and small changes) are required to ¢
move this incompleteness. Whether or not "(30111p1m,eness,”
in the technical sense that emerges below, is a desirable at-

Developed in [10].

Volume 8§ / Number 2 / February, 198

tribule of programming language will not be discussed
directly in this paper beyond the following remarks.

Tnits favor it can be said that, given completeness, many
of the proposals for extensions that are put forward with
reference to current programming languages become mere
syntactic proposals, Le. proposals for writing in an allegedly
more convenient way some particular kind of expression
that is alrcady in the language. There is an important
qualification to this: such a proposal might have some eco-
nomic overtones; i.e. it might be a syntactic proposal that
helps the machine to recognize when special “cheap” tech-
niques are appropriate, or it might deter the user from
writing forms of expression that are expensive to imple-
mett.

The above claim for complete languages sounds like one
often made to rebut a proposed language extension—*“You
can do that already merely by writing”” The question
therefore arises whether a complete language forestalls its
extensions in any more significant sense than do Turing
machines, Markov algorithms, built-in instruction codes
of general-purpose computers, or programming languages
with Arcor-like procedure facilities. We shall not pursue
this question here.

Fourthly, the analysis of ALcown 60 in terms of AEs sug-
gests a new way of comparing various run-time setups for
Arcow 60, and displays the interactions between run-time
setup and the extensions mentioned above.

Imperative Applicative Expressions

We now describe the abstract language used later to
model ALcoL 60. We give a formal account of its structure
(i.e. its “abstract syntax,” to use McCarthy’s phrase [5])
and an informal account of its semantics—very much what
the official deseription does for ALcor 60. The semantics of
this abstract language are deseribed in terms of an abstract
machine for interpreting it. This language consists of ex-
pressions we call imperative AEs (IAEs), and the machine
is called the sharing machine. The IAE/sharing machine
system is a development of the AE/SECD system de-
seribed in [MEE]. However there is an important way in
which the relationship of IAEs to the sharing machine
differs from that of AEs to the SECD-machine. The se-
mantics of AEs can be specified formally without recourse
{o a machine. [n fact this specification provides a criterion
for judging the “correctness” of a machine that purports to
evaluate AEs. The SECD-machine satisties this criterion
but it is not the only (abstract) machine to do so. With
IATs on the other hand it appears impossible to avoid
specifying semantics in terms of a machine.

A relationship was established in [MEE] between Alls
and certain informally introduced pieces of notation; for
example, we consider

X where z =27
as a way of writing the operator/operand combination
whose operand is Z and whose operator is a A-expression

Volume 8 / Number 2 / February, 1965

Whosq bound variable is © and whose A-body is X; this is
the AL that in a more rigid notation is written
{Ae. XHZ]

In this paper we use another picce of “syntactic sugar”
for the same AL structure, namely,

let =17, X
or, letting layout obviate punctuation,
let z=2
X

Here is a typical form of AT, presented both informally
and formally,

leta = A

and b = B

and f(z,y) = F

let rec g(z) = G
and h(y, 2) = H

let k(u, v)(z) = K

X

{Ma, b, f).
{Ag, h).
Ve XV (%, 0) Az K}
[¥X(g, k). (\z.G, My,). H]}
(4, B, (@, y).F]

The only consideration in choosing between let and where
will be the relative convenience of writing an auxiliary
definition before or after the expression it qualifies.

The use of commas for denoting lists, — for conditional
expressions, and let and where for auxiliary definitions,
provides a way of representing AEs on paper, i.e. onc par-
ticular “syntax” for AEs. Though this syntax has not been
rigorously defined, enough has been said to ensure that
each formula could be rewritten in a rigid, prefixed oper-
ator, fully bracketed notation (rewritten, that is to say, in
at least one way and possibly several equivalent ways).
Another way of saying this is that if we know how to trans-
late ALcoL 60 into a language based on just operator/
operand combination, conditional expressions and auxiliary
definitions (including function definitions and recursive
definitions) then we effectively know how to translate
Arcor 60 into AEs. We shall use this fact to make the in-
formal discussion here less technical than it otherwise
would be.

In the formulas of [MEE], AEs play two independent
roles. First they are part of the subject matter in the sense
that certain subexpressions denote AEs. Second they are
the language in use, since all the expressions are to be con-
sidered as written presentations of AEs. This dual role i
maintained in the present paper. It is fortuitous in the
sense that we might have used some other means of ex-
pressing what we have to say about Ak, or we might have
chosen some other topic and nevertheless have used Alls.
However, the coincidence is designed in the sense that our
interest in AEs springs partly from their success in de-
seribing their own features.

A GENERALIZATION OF JUMPS

We introduce into the SECD-machine an operation de-
noted by J’, that is applicable to functions, or more pre-

Communications of the ACM 91

cisely to closures, and modifies their subsequent exib

behavior.
For example, consider a definition of f as follows:

Fle) = oog(eeny o)
where ¢ = JA(u, v).

where the subexpression g(---, -++) may occur at any
A-depth within the right-hand side, and in any context.
If during an application of f this subexpression is evalu-
ated, its value will immediately become the result pro-
duced by f. This is reminiscent of an alarm exit from a
subroutine. In fact the generalization of labels to permit
arguments may be a useful way of providing for alarm
exits in Arcor-like languages.

Further, to define precisely the meaning of “J°, we extend
the class of possible resulls of evaluation by introducing
2 new kind of object, a bundle of information called a
“program-closure.” When J is applied to a closure it
transforns into a program-closure.

The resulting program-closure, like a closure, includes
the current environment (for subsequent installation) and
an expression (for subsequent evaluation). However it also
includes the current dump, and when the bundle eventually
comes to be activated, this dump is also installed. This
process is to be contrasted with the activation of a closure,
in which the dump is used to record the current state in
order that il may be resumed later.

We call an expression of the form

J(}\[/ASY)

a “program-point.”” Roughly speaking, ALcon 60’s labels
are a special case of program-points. They are parameter-
less, and the A-body is typically a functional product whose
terms correspond to the statements following the label.
Moreover, references to both closures and program-clos-
ures are restricted in Avcon 60 in a way that prevents
them from being carried outside the scope in which they
are produced. (In LISP [4] references to closures are free
of this restriction, hence the neced for a chained stack.
However program-closures are more severely constrained
in that they cannot be carried into an inner scope.)

IntrODUCING CoMMANDS INTO A FUNCTIONAL ScHEME

Any attempt to fit most current programming languages
into the ALL/SECD scheme involves the questions: Are
commands to be construed as subexpressions and, if so,
what do they denote? In particular, what does an assign-
ment denote and what does a jurap denote? We postpone
these questions here (although claiming to leave them
rather more clearly formed than we found them) by using
another family of languages similar to the one associated
with the AE/SECD system but differing as follows.

The notion of AL is extended to comprise one new for-
mat that models assignment. We characterize the en-

3 T think this term is due to Peter Naur,

92 Communications of the ACM

larged set as follows.
An imperative applicative expression (TAL) is
either an idenidfier,
or a h-expression (Aexp) and consists of
its boundvariable part (bv), which is a list-strueture of idept.
fiers, and
its A-body (body), which is an TAT,
or an assigner, which consists of
its lefthandside (Ths), which is an TAT, and
its righthandside (vhs), which is an TAT,
or a combination, which consists of
its operator (rator), which is an TAI, and
its operand (rand), which is an TAR.

We adopt, informally, the f[ollowing notation for as
signers,

Ihs €= rhs

This extension of the notion of an expression brings in ifs
train the problen of extending the notion of the meaning of
an expression. The next subsection is an informal approach
to this task. It is hoped a more exact account will be st
forth for publication elsewhere, and that enough is said
here to define all but the details of the main purpose of this
paper-—explaining Ancorn 60 in terms of TAISs.

THE SHARING MACIUNE

In [MELE] we described an abstract machine, the SECD-
machine, capable of evaluating an AE. Although the value
of an AE was defined independently of this machine, it was
given a more delinite status by being backed up by s
specific machine. The notion of the meaning of an IAE
on the other hand, is completely dependent on an abstraet
machine, the “sharing machine,” for executing TAFs—the
word “execute” seems more appropriate than “evaluate”
in the case of IAEs. The sharing machine is an elaboration
and an extension of the SECD-machine. The elaboration
is concerned with modeling the fact that distinct state
positions having equal occupants might ‘‘share’ the same
representation and hence get updated collectively. The
extension is concerned with the execution of the two nev
features, namely assigners and J (covered above). ’

The Transition Rule of the Sharing Machine. The main
features of the elaboration are the following four specif
rules governing whether or not two state-positions “share”
For, each state of the sharing machine is characterized by
an SECD-state (fogether with an cquivalence relation
namely “sharing,” among its component-positions. In the
straightforward computer representation, each equivalenc
class corresponds to an address. For each step we must
say how this equivalence relation changes.

When an identifier is seanned, the stack-head is left shat
ing with the environment position holding the identi[iel"f \
value. Also when a closure is applied, the youngest level of
the new environment shares with any surviving ¢
sharers” of the old stack-head (i.c. the argument). 3%
consequence of these two provisions a funetion can achie®
nonlocal effects by assigning to its formals (i.c. argumen®

Volume 8§ / Number 2 / February, 1o

are called by “simple name” [8)rechristened “reference”
in CPL[1]; this is the mode used for arguments of Torrran
functions). They also cosure that no special provision is
needed for scanning an identifier when it oceurs as the lhs
of an assigner. Since the classification of identifiers into
conslants and variables is not reflected in the behavior of
the machine, constants are not invulnerable to resetting.

A third rule is that when a closure is applied, the com-
ponents of older levels of the new enviromment share with
corresponding componenls of the environment from which
it was derived. As a consequence of this provision, a fune-
tion can achieve nonlocal cffects by assigning to its free
identificrs (including to constants).

Fourthly, when a control siring is exhausted the new
stack-head is left sharing with any surviving co-sharers of
the old stack-hcad. This provision ensures that an applica-
tion of a function can be appropriate as a lhs, e.g.

e df (v = 0) (w,0)}a) & ---
(N a,))& s

The Function “separate”. There is a function separate
that enables us to avoid nonlocal effects at will, That is to
say, suppose the current stack-head has been obtained by
loading some environment component (e.g. the value of an
identifier of subscripted identifier); then if it is later in-
corporated in a new environment the above-mentioned
provistons ensure that any assignment to its new position
will also reset its old position. This is avoided if it is sub-
jected to separate before incorporation in a new environ-
ment. (There are other suggestive names for separate that
are rejected here since their suggestiveness does not en-
tirely avoid misleading: copy is used in Lisp {4] to mean
copying all components “down to the level of” atoms, Le.
components named by variables (as opposed to constants),
whercas we postulate that separate insulates every com-
ponent from future resetting; value as used in Avrcor 60
coincides with separate in the case of operands that are
suitable lhs’s, but has acquired too many mutually in-
compatible connotations in discussing three relationships
that we wish to delineate clearly, namely the relation be-
tween expressions and their denotations, between functions
and their results, and between state-positions and their
occupants.)

Frecuting an assigner. The lhs and rhs of an assigner
can be evaluated in the same way as each other. The only
difference is that, to be appropriate on the lhs, an IAE
must denote some previously produced object, for example
a named object or component of a named object. Every
intermediate result of evaluation occupies a certain posi-
tion in the current state of the machine; hence a lhs ex-
pression determines a state-position. Scanning an assigner
resets this state-position and also every state-position
sharing with it; it leaves a nugatory result on the stack,
namely nullist.

The “meaning” of an [AE. Io the AIS/SECD system,
cach ALl denotes an abstract object that is completely

Volume § / Number 2 / February, 1965

characterized by (a) the result produced by applying it to
each abstract object that is amenable to it, and (b) the re-
sult yielded by subjecting it to each abstract object that is
applicable to it.

With TAEs the situation can be very much more compli-
cated. For each case of application the question arises, not
merely what result is loaded onto the stack, but also, for
each possible pattern of sharing throughout the current
state, how it is changed. However, in the case of the primi-
tives we use to model Ancown 60, it is possible to overlook
most of this complication. All but two are straightforward
funetions without side-effects. The two exceptions are sepa-
rate, and assignandhold, which is a dressed-up version of
the assigner format. For present purposes we can roughly
say that the meaning of an TAE has two aspects, a descrip-
tive and an imperative aspect, of which one or other may
be unimportant. The descriptive aspect corresponds to the
value, or denotation, of an AE. The imperative aspect cor-
responds to the change of machine state caused by execut-
ing the TAE.

ArcoL 60 as Sucarep TAEs

The sharing machine provides a precise criterion for the
correctness of the correspondence between Arcor 60 and
IAEs, namely that they should have corresponding effects
when executed in corresponding environments. On account
of the absence of specified input/output facilities in ALcor
60, the meaning of this criterion is less clear with regard to
whole programs than it is with regard to subblocks, operat-
ing on, and producing, the values of declared variables.
However, input/output devices can be modeled as named
lists, with special, rather restricted functions associated.
Reading is modeled by a procedure (or function) that
operates on a list, resets it by removing some initial seg-
ment, and also resets other variables with values derived
from the initial segment (or, if a function, produces these
values as its result). Writing is modeled by a procedure
that operates on a list, and appends a new final segment
derived from other variables. (Alternatively, a purely
functional approach can be contrived by including the
transformed list among the results.) So no new principle is
raised by input/output, nor hence by whole programs.

We give later a formal presentation of a function that
associates an TAE with each ArcoL 60 program. This func-
tion is intended to satisfy the criterion stated above. Dis-
covering whether it does or not is a task that can be ap-
proached in two ways: cither experimentally, using an
implementation of the sharing machine; or with pen and
paper, developing a proof. The length of what one accepts
as a satisfactory proof will depend on his intuitive grasp of
component ideas used in the formalization. -

This formalization determines the “‘syntax” of Arcor 60
in the special sense explained above. The identifiers oc-
curring free in the TAEs that model Avcor 60, will be the
“constants” of Arcor 60 in our special sense. They com-
prise the nine standard function identifiers, the score or so

Communications of the ACM 93

of such symbols as +, < and /\, the numerical, Boolean
and character-string constants, a handful of funetions to
deal with Avcon 60’s array and iteration facilities, and
another handful that are so unproblem-oriented that they
are probably implicit in any tolerable language (in the
sense that they would be needed were it subjected to the
treatment that Arcor 60 gets here).

By saying what each constant denotes, we shall be say-
ing what are the “primitives” of Arcor 60. The closuret
under application and abstraction of this set of primitives
is the “universe of discourse” of Arcorn 60. Actually, the
syntax of ALgoL 60 is such that some TAILs have no written
representation, and even such that some members of the
universe of discourse (for example function-producing
functions) are not denoted by any text.

Informal Presentation of the Correspondence

We now give a detailed but informal description of a
correspondence between expressions of Arcor 60 and IATs.
The interest of this particular correspondence is that it is
“correct” in the sense put forward above; i.e. correspond-
ing expressions executed in corresponding environments
have corresponding outcomes. Subsequently we formalize
the correspondence. However the informal treatment in-
cludes some material not covered by the formalization,
namely a description of the “basic Avgor 60 environment”,
i.e. the primitive objects whose names appear in the TAEs
that model Avncor 60. If our formalization were to not
merely specify the correspondence but also prove its cor-
rectness, then 1t would have to include a formal specifica-
tion of these primitives.

There is often considerable choice of [AEs to model a
particular Arcor 60 expression. This is true even when the
primitives and the “constants” that name them have been
chosen. In particular there is a conflict between using IAEs
that correspond naturally in each individual case, and
using a uniform and easily specified rule. For this reason
the illustrations in our informal account sometimes de-
viate from the general rule presented in the formal account
that follows it.

Brigr OUuTLINE

Table 1 gives a rough indication of the correspondence.

There are two feature§ of Arcor 60 that give rise to par-
ticularly elumsy IAEs.

1. Own identifiers declared other than in the head of the
body of a globally declared procedure.

2. Conditional statements that are entered unnaturally
(i.e. by a go to) and exited naturally (i.e. other than by
a go to).

Tue DoMAIN or REFERENCE OF ALGOL 60

The correspondence given in this paper associates with
each Arcorn 60 text an TAE whose principal significance is

4 In the usual algebraic sense, not the special sense attributed
to this word by me here and in (MEE].

94 Communications of the ACM

cither denotational or state-transformational. If the former
it denotes either an integer, a real (we postulate two dis-
junct classes of abstract objects—so 3 and 3.0 are not
equivalent), a truth-value or a character-string; or a list,
array or function. State-transformational TAEs model
statements and labels; a switch is related to such IAks in
much the same way as a vector is related to numerical
expressions.

Declarations are considered as giving initial values to
the local identifiers. For instance integer and real identi-
fiers are initialized respectively to integer zero and real
zero. A Boolean is initialized to false. Switches and pro-
cedures are initialized to vectors and functions respec-

tively (and not subsequently reset).
Lists are characterized by the following structure defi-

nition.

A list is either nuil,
or else it has a head (h),

and a tail (¢) which is a list.

TABLE 1

ALGOL 50
Identifiers, operator symbols,
also some special words and
configurations
Local identifiers

Formal parameters

Function designator, sub-
seripted variable, and pro-
cedure statement

Procedure

Actual parameter called by
name

Occurrence of a formal called
by name

Value part of & procedure dec-
laration

Specification part

Block

Statement,

Compound statement

Label

Labeled segment of program
go to—statement

Switch

Conditional
statement

expression or

IAEs
Identifiers

Variables bound in a A-expres-
sion oceurring as operator
Variables bound in a A-expres-
sion oceurring as operand
Operator/operand combination

A-expression
A {)-expression

Application to null operand
list

Auxiliary definition qualifying
the procedure body, rede-
fining some of the formals

Auxiliary definition qualifying
the procedure body, redefin-
ing some of the formals

Combination whose operator is
the block-body, and whose
operand denotes the (pos-
sibly concocted) initial val-
ues of the locals

Expression denoting a none-
adic function, changing the
environment by side-effects

Funectional produect of none-
adic funetions

Identifier defined by a none-
adic program point

Program point whose body, de-
notes a none-adic function

Last (i.e. outer) term of a func-
tional product

Vector of program closures

Selection of an item from &
listing

Volume 8 / Number 2 / Februarv. 1965

In our model every procedure, switch and array operates
st of zero or more arguments. An expression that

onoa li E '
terms of subexpressions denoting each item

denotes a list in
of the list is called a listing. For example,
fa+b, cHd, e+)

{a-+b, c+d) '

initlistla+b) or ula+b)

0
are listings. In [MBEE] the first of these was considered as a
convenient way of writing

prefic(a-b) (prefiz(c+d) (prefiz(e+1) 0))

This, coupled with the fact that operands are evaluated be-
fore operators, ensures that the items of a listing are
evaluated in the right-to-left order. Hence in transcribing
from Ancon 60 to TAEs the order of the items of every
listing (including the implicit listings of operands of -+,
=, ele)) must be reversed. This minor complication is
avoided here by adopting a different analysis of listings, by
which

(a-+b, c-+d, e+f)
ix considered as a convenient way of writing
suffiz (e-+f) (suffic (c4d) (suffix(a-+b)()))

(It might alternatively have been avoided by varying the
evaluation mechanism so as to evaluate operators before
operands, In view of the limited form of operator oceurring
in Arcorn 60 such a change would have few other reper-
CUSsIons.)

There is no feature of the correspondence that “explains’
the left-to-right rule of Arcor 60. In this respect the
correctness of the model depends on a similar rule for
[AFs. We can put this another way. The correspondence
presented in this paper “explains” semantic features of
AuGon 60 in terms of syntactic, or more precisely strue-
tural, features of TAEs. But the left-to-right rule is a
semantic feature of Avcor 60 that relies for its explanation
on o semantic feature of 1AEs. The semantic feature we
use s that operands are evaluated before operators, (A
logically more economical approach would use me?ély
ih(:, fact that an operand to a \-expression is evaluated
before its X-body. Thus in evaluating (\z.a"+2") (b4c¢),
the subexpression b4c is evaluated before @', whether
the machine evaluates an operand before, after or con-
currently with its operator.)

Au array is considered as a function whose domain is a
subset of the set of integer-lists. It is initialized with the
3!)!)'1‘()1‘)1&&10 domain (not subsequently.altered) and with
all its elements equal. Thus

erpandioarray (0, m), {0, n)) (@)

dérmef’v an (m+1) X (n+1) array each of whose ele-
!;?“115 l~ @. An own array is initialized with the appropriate
“iensionality but with array bounds (—ow, 4o0).

Volume g / Number 2 / February, 1965

These are “pared down’’ to finite values at the first entry
to the array’s block. Thus if A is a two-dimensional array
then

parearray ({0, m), (0, n))(a, 4}

denotes an (m+41) X (n+1) array whose elements are
the same as those of A insofar as their domains overlap,
and otherwise a.

A switch is initialized by the function arrangeasarray,
that transforms a given list structure into an array of
given domain, e.g.

arrangeasarray((0, 2), (0, 3 {(a, b, ¢, d), (e, f, g, b), (G, J, k, I})

denotes a 3X4 array whose elements (row by row) are
a,bye, -,k L
For-Lists
Let us use the term “control-list” to mean the list of sue-

cessive values assigned to the controlled variable during
one execution of a for-statement. The point of departure of
our treatment of for-statements is that a for-list might
roughly be said to “denote” the control-list, with each for-
list-element denoting one segment of it. This suggests the
following incorrect rendering.
forv:= g step b until ¢, for{v,

d, concatenate (step(a, b, ¢),

e while p wnitlist (d),

while(e, p)),
p)

do T

where for, concalenate, step and while are defined as follows.?

[

if — null S then [v := AS;
T,
Jor (v, £S, T)]

rec for(v, S, T)

rec concatenate S = null 8 — ()

null (hS) — concatenatz (tS)
else — S concatenate (tAS) i4S)
(@ — ¢) X stgn(b) > 0— ()
else — a:step(u+b, b, ¢)

p > e:while(e, p)

else — ()

I

rec step(a, b, ¢)

I

rec while(e, p)

However, these definitions fail to reflect the sequence of
execution prescribed for Arcor 60. When interpreted by
the sharing machine they would lead to an attempt to
evaluate the entire control-list before the first iteration of
the loop. The inadequacy of this approach is especially
flagrant in the case of while. We therefore consider for-
list-clements as denoting not lists but a particular kind of
function, called here a stream, that is like a list but has
special properties related to the sequencing of evaluation.
Principally, the items of an intermediately resulting
stream need never exist simultaneously. So streams might
have practical advantages when a list is subjected to a
cascade of editing processes.

5 Following [MEE], an infixed eolon indicates prefixing. Thus
“o:L” 1s equivalent to “prefic x L.

6 [t appears that in stream-transformers we have a functional
analogue of what Conway [12] calls “‘co-routines.”

Communications of the ACM 95

However, the user of a purely functional system (ie.
AL/SECD rather than TAE/sharing machine) would have
no way of telling whether his intermediately resulting lists
were in fact being streamed or not, since the only differ-
ences in outcome are concerned with the amount of store
used, or the range of jobs possible with a given size of
store. On the other hand, the introduction of imperatives
makes it possible to write list-expressions whose outcome
is affected by whether they are represented as streams or
not. Henee it becomes necessary to introduce a new set of
identifiers that play the same role for streams that h, ,
ete. play for lists. The next subsection is concerned with
these opcrations.

STREAMS

There is a relationship between lists and functions that
is used here in modeling for-statements (and would be used
to model inpul/output if Arcor 60 included such). In this
relationship a nonnull list [, is mirrored by a none-adic
function S that produces a 2-list consisting of (1) the
head of L, and (2) the function mirroring the tail of L.
The common functions, cte. associated with lists are
mirrored as follows.

nullist

A0

null (L) null(SC))
head (L) 1st(8())

tail (L) 2nd(S())
prefiz (x) (L) ANz, S)
cons(z, L) Az, 8)
unitlist (z) INOREANOHS)!

It is easy to see that the first five expressions on the
right satisfy the four relationships that characterize nullst,
null, h, t and prefix.
null((NC).OD)
el (M) @8 1))

D =

st (). @S D =2
2nd (MO (@, S)H) =8

null (nullist)

—null (prefix xl))
hprefix L) = x
t(prefic cl) = I,

This correspondence serves two related purposes. It
enables us to perform operations on lists (such as generat-
ing them, mapping them, concatenating them) without
using an “extensive,” item-by-item representation of the
intermediately resulting lists; and it enables us to postpone
the evaluation of the expressions specifying the items of a
list until they are actually needed. The second of these is
what interests us here.

The expressions that make use of this technique ean be
made slightly clearer by using the following definitions.
nullist* = X().()
nell*(S) = null(S())

R*(S) = 1st(8())
(S) = 2nd(8())
However, the analogous definitions for the constructors
cannol be used since they would not preserve the sequenc-

96 Communications of the ACM

ing of evaluation. The best that can be done 18 to Introduyce
a new syntactic device whereby for any two expressions [,
M

L*M stands for N().(L, M}

We now define functions that correctly mirror Avncor
60’s three kinds of for-lisi-element.

rec step*(a, b, ¢) =
N (@' =€) X sign(d’) > 0] = ()
else — [a’, step* (A ().a’+b', b, ¢)]
wherea’, b, ¢’ = a(),b(),c()
unitlist* (a) = a() * nullist*
vec while*(e, p) = A).p’ — [¢/, while* (e, p)]
else — ()
where ¢/, p’ = ¢(), p()

The matching definitions for concatenate® and for* should
be obvious.

The above formulas reflect certain choices of Avrcor 60's
designers, e.g.

(a) that all parameters are evaluated “when they are
come to,” rather than e.g. evaluating the parameters of 4
step-element (arithmetic progression) all together;

(b) that the decision whether the current iteration is
the last is taken after it, not before it;

(¢) that any resetting of the controlled variable during
the execution of the for-body affects its subsequent values.

That is to say, had different choices been made in these
matters, then a different IAE, or different definitions of
the auxiliary functions involved, would have been needed
to mirror for-statements.

Tyres

Roughly speaking our model deals with types “interpre-
tively.” Specifiers in Avcon 60 affect the preseribed out-
come of a program only by causing transfer between real
and integer, or by rejecting an argument outside the
specified class. We suppose that associated with each
specifiable class there is a transfer function whose range
is within that class. For instance, float is defined for num-
bers, i.e. for reals and integers, and leaves reals unchanged;
similarly with unfloat, which is preseribed in the Arcorn 60
report to be defined by

unfloat(z) = entier(z + 0.5)

The transfer function for truthvalues is merely a very
limited form of the identity function that is defined by

rejectallbutiruthvalues (@) = Boolean(x) — 2

not distinguish—whose members are the truthvalues. A
conditional expression none of whose conditions hold 15
taken as undefined.) Morc generally we define a function
in as follows:

n(d)(@) = A@) —=2

Volume 8 / Number 2 / February, 1967

so that if 4 is a class then i is a filter that rejects non-
members of A, For example in(Boolean) is the function
rejectallbuttruthvalues defined above. Bo the transfer fune-
tions for Booleans and strings are respectively in(Boolean)
and n(string).

The function defined by

Soatresult (f) (x) = foat(f(x))

transforms any number-producing function into a real-
producing function. (This definition exploits the fact that
we consider any function as operating on a single argument
allbeit a list.) More generally, if ¢ is the transfer function
for some class 4, then the transfer function for A-pro-
ducers is Bf, where B (Curry’s combinator B [2]) 1s de-
fined by

Bifx = t{jx)

So for instance Bfloat is the function floatresull defined
above. The transfer functions for type-procedures are
therefore Bfloat, Bunfloat and B{in(Boolean)). Since ar-
rays are treated as functions these also serve as transfer
funetions for arrays.

Imperatives are treated as nullist-producing functions;
so 1t would appear that the best we can do for a transfer
function for labels is B(én(null)). Hence the transfer func-
tions for nontype procedures and for switches (which are
considered as arrays whose elements are program-closures)
is B{B(in(null))).

The effect of the above provisions for checking argu-
ments is that a mismatched procedure, array, label or
switch is not itself immediately rejected. Instead it is modi-
fied so that any result it produces, whenever and if ever it
is applied, is rejected. Hence our model is overtolerant in
that a mismateh will not lead to rejection if the procedure
is never applied, or if it is exited unnaturally and thus
evades producing a result. Furthermore, a label denotes a
program-closure and so even when its result, namely
nullist, is produced, the context is never resumed and so
the check never occurs. Hence the identity function serves
equally well as transfer function.

TrE CoNSTANTS AND PRIMITIVES OF ALGOL 60

The correspondence given in this paper associates with
each ALcor 60 text an TAE in which the identifiers occur-
ring free are drawn from the following three groups.

Group 1 consists of the arithmetical, Boolean and string con-
stants. An arithmetical constant is an unsigned number as defined
in the Arcor 60 report, and designates an integer or a (rational)
real. However the integers also include ‘—«’ and 4=, used in
the initial array bounds of own arrays. The Boolean constants are
‘true’ and ‘false’ and designate the truthvalues. The string
constants are certain character-strings whose first and last 1tems
are ‘7 ’and ¢ ~ 7, respectively; such a constant designates the
string obtained by removing its first and last items. (It would be
possible to avold an infinity of primitives by considering each
written number and each character-string as having internal
applicative structure. These might conveniently use such number-

Yolume 8 / Number 2 / February, 1965

forming and string-forming functions as: decimal(mn) = 10m
+ n; quole(s) = concatenate(n' = ', s u‘ "))

Group 2 consists of symbols and identifiers whose meaning is
laid down in the Argor 60 report, and also a number of identifiers
coined by us and explained above, We assume that any collisions
between these coinages and Avrcorn 60 identifiers are avoided by
some device such as the use of a different typeface, e.g. italic
instead of roman.

o= X Tt e, S, =02, 0, L ALY,
o, =,
abs, sign, sqrt, sin, cos, arctan, In, exp, entier
The infixed operators are taken as applying to 2-lists, either 2-
number-lists or 2-Boolean-lists. Numerical functions are applie-
able to both reals, and integers; if n and float(n) are both amenable
to a function then they yield the same result, The coinages are
for, concatenate, step™, unitlist*, while®, expandtoarray,
arrangeasarray, parearvay, float, wnfloat, in, real, integer,
Boolean, string, alom

Group 3 consists of names for very basic objects.

null, nullist, suffix, of, B, K, I, Y, separate, assignandhold
null is the prediecate that tests whether a list has zero length.
nullist is a list of length zero.
suffic makes a list one longer, e.g.

suflic (@) (a,b,c) = (a,b,c,2)
if satisfies the following:

if (true) = lst

if (false) = 2nd
B forms a functional produet

BB = zb{f(z))

It is used in delaying transfer functions for type procedures
and formals called by name.

K produces “constant functions”
K@) (y) ==

So for instance K3 is a function whose result is 3 for any argu-

ment; it is used to tidy up assignments.
1 is the identity function, defined by

Ia) ==
It plays the role of dummy statements.
Y is the “fixed-point finder.” In so far as it is reasonably repre-
sentable it can be defined by
Y(F) = let z = separate(rullist)
let 2’ = F(z)
2nd((z<=2"),2)

This definition relies on the fact that when a function-trans-
former is applied to the (arbitrarily chosen) argument nullist,
rejection does not occur unless, or until, the argument is
actually applied.

separate avoids unwanted side-effects; it is used when parameters
are called by value.
assignandhold is defined by
assignandhold{z)(y) = let z = real y — floal =
integer y — unfloat x
Boolean y ~» in(Boolean)z
2nd((y=2z),x)

In this subsection and the four preceding ones we have
characterized the abstract objects comprising the “domain
of reference” that our analysis imputes to Avcorn 60. The
characterization has been partly formal and parily in-
formal, taking for granted such things as numbers, propo-
sitional relations, etc.” In the next subsection we turn to the
main topic of this paper, namely how Arcor 60 texts can
be eonstrued as TAEs referring to these abstract objects.

"In (9], Béhm is concerned with the formal treatment of this
topic.

Communications of the ACM 97

ILLustRATIONS 0F THE CORRESPONDENCE

Fach example below illustrates the correspondence be-
fween a partieular feature of Ancor 60 and a particular
feature of TAEs, That is to say, each example illustratega
rule for climinating a particular feature of Avcor 60 1n
terms of TALLs. In order to turh a picee of Angown 60 into an
[AL it will usually be necessary to make many successive
applications of these rules. In some of the examples the
transformation into an TAR has been only partially per-
formed to betier emphasize the particular point being
made by the example. So the right-hand half of an illustra-
tion may not always contain an TAE] but it always con-
{ains something that is nearer 1o one of the four forms of
LALS than the left-hand, Ancon 60 expression.

[denlifiers. [ixcept for the treatient of individual oc-
cwrrences of identifiers, the correspondence is context in-
dependent. The TAT corresponding to cach occurrence of
an Avncorn 60 identifier depends on the way the identifier
is declared or otherwise introduced, as follows.

[. Whenever a local declaved 1o identify a type pro-
cedure oceurs as a leff-hand side within its deelaration, it
is replaced by a variant identifier, indicated here by deco-
rating 16 with an asterisk. We call this the result variant of
the procedure identifier.

2. Bvery oceurrence of a formal not specified by value,
or of a local declared to identify a parameterless pro-
cedure, is (provided [does not apply) modified by attach-
g an empty operand listing to it. This is indicated here by
an emply bracket pair. Thus we treat actual parameters
called by name, and parameterless procedures, as none-
adic functions,

3. Owns are treated as globally declared and are replaced
by variants to avoid collision between two declarations of
the same identifior. These variants are called own variants
of the identifier appearing in the text and are indicated
here by decorating it with one or more daggers. (This is
one of the two unsatisfactory features of the correspond-
ence between Ancor, 60 and TALs, Which party is to blame
ts & question we return Lo later.)

Here is an example of these substitutions.

begin
own integer a;
real procedure f(x,y,9);
value 2; real z;
begin
own real a;
Y=ty ly)ta; y(hi=atg () ()) +alt;
ka(f‘(fﬂfcc;?/).})) ./*’T“I“U.:g()J(Tall<)’]))
end end
real procedure h; real procedure i();
b=k (f,4,h); B=k{f. k()
: -f(ll,h,f) a’?::f(a‘ryh():f)

end

begin
own integer of;
own real off;
real procedure f(v,y,g);
value 1,y,9;
begin

With the exception of these provisions each subsequent,
example is self-contained; that is to say the given bit of
Arcon 60 corresponds to the given IAE whatever its
context (provided it is grouped sensibly—for instance,

98 Communications of the ACM

not every occurrence of the (:hura,ot,‘(\r«si,ring ‘a4 iy
Ancon 60 corresponds to the TAT “+(a, b)) —witness
‘eXa+bXd').
Variables. The treatment of individual identificrs has
already been explained. In summary
formal called by name z()
type procedure as ths 2*
x {parameterless procedure x()
own identifier afztt, ete.
|straightforward z
If all the identificrs involved are straightlorward the
treatment of subseripted identifiers and function desig-
nators is as follows.
Ali+g, bl AG+), k)
flety, 2y FOM a4y, A).2)
The transformation of actual parameters into none-adic
functions is associated with the possibility that a pro-
cedure might call its formals by name. It is complemented
by a peculiarity in the treatment of procedure declara-
tions as noted below,
If the identifiers involved are all formals called by name
then the transcription o IAEs is

AC)EC) + 70, k(D)
FOOO20) +y(,x(0)2())

In the last example, ‘A().z()’ can be replaced by ‘2. In
future illustrations all ocecurrences of identifiers are as
sumed to be straightforward unless the reason for non-
straightforwardness is contained in the example. Any
nonstraightforwardness would involve superimposing the
appropriate treatment on any other transformations that
are needed.
Lxpressions.

a+b +(sufiz b (suffiza ()
In future illustrations (as in previous ones) the treatment
of argument lists, as also usually of infixed operators, wil
be taken for granted.
—~a+b A (—x),b)
The symbol — ,; designatos the monadic function “negate.”
a+b—c+d +(_(+ (a)b>)0))d>
This example shows how “left, association” is reflected
(as opposed to the left-to-right rule which is quite 1

dependent). The following examples show how the “pe-
cedence’” rules are reflected.

eXa+bXd (X (e,a), X (b,d))
a—=b/ecld =@,/ (6,7 (e,d)))

alb/e—~d ~(/(T@b),c), &
PAGVTAs NV (A, Alr,s)

N e .
Conditional expressions use the function ¢f, such that

if true = 1st
if false = 2nd

Volume § / Number 2 / February, 196>

E.g.
))a, MO0 (O

So the evaluation of the above TAT] involves selecting one
from a list of (wo nonc-adic functions and then applying
the sclected one to the nullist.

Blocks. Twach declaraltion s construed as a definition
whose definee consists of one or more local identifiers and
whose definiens denotes nitial values for them. In the
case of type and array declarations the initial value is
concocted with zeros. In the case of switehes and pro-
cedures the definiens is alveady in Ancon 60. (In fact the
mitial value is never changed sinee there are no assign-
ments (o switch and procedure identifiers.)

Array declarations arc initialized in terms of nonlocals
(e.g. a procedure identifier declared in parallel with an
array cannol be used in the array bound expressions).
On the other hand switches and procedures may refer to
locals, i.¢. to arrays, reals, cte., and also to each other.
Hence array definitions qualily switch and procedure
definitions (as well as the block body). Whereas switch
and procedure definitions do not qualify array definitions,
they do qualily themselves; that is to say they may be
“self-referential,” 1.e. “ecircular’” or “recursive.” We
accordingly speak of “recursive” and “nonrccursive”
definitions or declarations. This dichotomy leaves type
declarations uncommitted since they contain no initializ-
ing expression. If they did it would be difficult to mech-
anize self-referential initializations (e.g. ree © = 2° + 1);
so we class them as nonrecursive.

Definitions can also arise from the block-body-—their
definees being the labels that are local to the block. These
are defined in terms of loeals, including each other, and
they may be referred to by procedure and switch declara-
tions. Hence labels must be grouped with switches and
procedures as a single simultaneously recursive definition.
The overall treatment of a block is therefore as follows.

if p then o else b

begin real a; leta = ¢
array A ¢y ; and A = ¢
procedure P ¢y ; let ree P = ¢
switeh S ¢y and S = ¢,

b5 3 and L = ¢

L: ¢s; and M = ¢
M: ¢r @3

end

1.c,

M@,) NP8, L, M) s}
LYN(P S, L M) (hsybadedn) 1}

[o1,¢02]
The detailed structure of the ¢’s 18 the subject of the
following sections. In the last example, and in some that
follow, the TALL was presented twice, in a less and more
formal notation. This emphasizes the fact that the cor-
respondence being illustrated is between Ancorn 60 texts
and certain abstract objects, not written representations of

themn.

VYolume § / Number 2 / February, 1963

Pseudoblocks. There are three contexts that may or
may not be occupied by blocks, but are in any case like
blocks in the treatment of labels. These contexts are pro-
cedure-bodies, for-bodies and whole programs, We call
thew pseudoblocks. Whole programs must also be qualified
by a conglomeration of all the own-declarations that occur
in the program. Their role in a pscudoblock is the same as
that of the nonrecursive declarations in a block.

Declarations.

real z fet © = separate (0.0)

integer ¢, j Let ¢ = separate (0)
and j = separate (0)

Boolean p let p = separate (false)

By initializing every local identifier, TAEs impute meaning
to certain Areon 60-like programs to which the Argor 60
report prescribes no meaning. The use of separale prevents
subsequent assignments from altering the environmental
objects designated by ‘0.0, ‘0’ and “false’.

let @ = expandtoarray((4,7),(k,0))
0.0)

real array ali:j, k]

let (a,b,c) =
(separate A, separate A,
separate A)
where 4 = expardtoarray
(u(2,4)) (0)
let ({a,b,c)u(d)) =
((separate A, separate A,
separate A)
where A = expandtoarray
(u(1,m) (z),
unitlist (separate A)
where A = expandtoarray
((1,r),(1,8))
{z))
where z = 0.0
let S = arrangeasarray (u(1,3))
(L;M;‘V)

integer array a, b, cf7.7]

array a, b, c[lm], d[1:7,1:5]

switch § := L, M, N

A procedure declaration is treated as a definition whose
definiens is a A-expression. Our treatment of actual param-
eters matches that of formals called by name. So if a
formal is ealled by value the procedure body needs some
decoration.

procedure f(x,y,2); let f(z,y,2) = let © = separate(x())
value 2, z; and z = separate (2()
¢ 4
ie. let f = Nzy,2).
Mz2)0}
[separate(x(), separate(z())]

If separate were omitted the effect would be that of “calling
by simple name.”
Specifiers also involve decorating the body.

let f{z,r,p) =
let &+ = separate(x())
and r = separate(r())
and p = separate(p())
let x = float(x)
and r = unfloat(r)
and p = in(Boolean) (p)
S)atr, N).p)

procedure f(z,r,p);
value 2, 7, p;
real r;
integer 1;
Boolean p;

S-t+r, p)

Communications of the ACM 99

The specification of a formal called by name involves
preparing to transfer its result.

procedure f(x,r,s,P); let f(z,r;s,P) =
value z; let z = separate(z())
real z; let « = float(x)
integer 7; and 7 = Bunfloat(r)

and s = B(n string)(s)
and P = B(Bfloat)(P)
PONCO a+r(), MO)s()

string s;
. 1 P
real procedure I;
plotr,)

This treatment of procedures as arguments might be clari-
fied by observing that it suggests a particular extension of
Avcor 60, by which, for example

if a<b then sin clse cos

would be a permissible actual parameter. There would then
be a natural sense in which one might distinguish calling
procedures by name or value.

This extension raises a speecial question concerning
paramelerless procedures, since at first sight the designers
of Arcor 60 appear to have forestalled it by giving an in-
compatible meaning to calling a parameterless procedure
by value. However, the situation is saved by other limita-
flons in ALcow 60. For, it uses the identifier of a parameter-

less procedure, say ‘p’, as an abbreviation for its result,
Le. for ‘p(). Tt is thus impossible in ALcorn 60 to refer
to a parameterless procedure except in the context of ap-
plying it. Thus all “genuine” cases of procedures as argu-
ments are called by name. And, as it happens, for all such
operands that Arcor 60 allows (namely identifiers) calling
by name and calling by value have the same outcorne, since
procedure identifiers cannot be assigned to in Anaon 60.

A parameterless procedure gives rise to an TAE with an
explicat null operand listing, as in

procedure p; a 1= b let p = X().(a := b)

The next example shows how a type procedure can be
matched by an TAE.
real procedure f(y) let f(y) = 2nd [(f* := ay’+by+c),
value y; f¥

fi=aXyT 24+ bXy + ¢ where y = separate(y())
where /* = 0.0

Notice the way in which the TAE distinguishes the two
roles played by the type procedure identifier. It is il-
luminating to compare the above expression with the fol-
lowing equivalent:

let fly) = ay? + by + ¢

There are two provisions needed in general for rendering
Arcor 60 that are otiose in this particular example: (i)
the ability to reassign to the result variable and to include
assignments to other variables, and (ii) the ability to call
parameters by name.

Statements. FEach statement is rendered as a 0-list-
transformer, i.e. a none-adic function produeing the nullist
for its result. It achicves by side-effects a transformation of
the current state of evaluation.

100 Communications of the ACM

Since the execution of the IAE assigner format makes p
provision for type transfer, assignment stalements gy
rendered in terms of assignandhold.

M)LK () (assignandhold(b+c) (o))
MNO)LK () (assignandhold (b-+-¢) (@ (3,1,%)))

a 1= btc
ali,j k] = bt
The operator K() is needed to cnsure that an assignmey;
produces nullist.

@ = b = ¢ = dte A =

assignandhold (assignandhold(d-+e)e)h

Compound statements are considered as funetions|
products (which we indicate informally by infixed dots).
begin R; S; 1" end ANOLTESRO)
ie. T-8-R
It should be observed that the dot notation, eg. in
T(x) S(u,v,w) R, is used here as an abbreviation for g
A()-expression, and not for

B(B(Tx)(S(u, v, w))(R) (1)
For, while (1) and
AT () (Suy 0, w)(R())) (2)

are equivalent AEs, they are not equivalent IAEs. In
fact the execution of (1) involves the execution of
S(u,v,w) and T'(x), whereas in (2) they will not be
executed until (if ever) the resulting function is applied.

Dummy statements are construed as compounds con-
taining no items.

ALO)

For-statements involve several auxiliary definitions,
already explained.

begin end

for v := a step b until ¢, for(v,
d, concatenate®
¢ while p (step*(N().a, N().b, N().0),
unitlist* (7 ().d),
whele*(A().e, N().p)),
S)
Procedure statements are treated as function designa-
tors occurring as terms in the functional produect.

S Py); T T-Plzy)S

do S

In a conditional statement the treatment for conditional
expressions is superimposed on that for statements.

if p then begin P; Q end HPYNONOQP(),

else begin 7; S end AONOSERO))
O
Here some abbreviation is possible, namely
f(P)AO)QP()),
AOSEO))

But this is not always so. For example in

@A) PO, MO,
AORO) e, M)
)

if p then P(xy)
else R(u,v)

Yolume 8 / Number 2 / February, 1965

the corresponding abbreviation would result in both arms
being executed.

One-armed conditionals are filled out with dummy
second arms:

EpYNOQP()), 1)

if p then begin P; Q end

Labels and Jumps. The treatment of jumps springs
from the observation that the symbol ‘go to’ in Avrcor 60
is redundant, and could be ignored by a processor. That is
to say, there is a counsiderable similarity between labels
and the identifiers of parameterless nontype procedures.
It is possible to use the same “ealling mechanism’” for
both, leaving any differences to be made by the thing that
15 “called.” Thus there is a natural meaning to be given to
& program that, at different times, substitutes labels and
procedures for the same formal, e.g.
procedure P;

if » then go to M;

TP L.

It might therefore be supposed that labels can be elimi-
nated formally by considering each labelled segment of
program as a parameterless procedure declaration (and
henee as a definition whose definiens is a A)-expression),

The present purpose is semantic specification, not cheap
running, So this device is not invalidated by the fact that
it involves accumulating a pile of “resumption points,”
one for every executed jump, that are never taken up.
However, the device only yields a valid treatment of pro-
cedure exits at the cost of abandoning the facility for
closed subroutines that is embodied in Ancorn 60%s pro-
cedures. We are thus led® to “program-points.” Labels are
climinated in favour of program-point declarations.

As mentioned earlier, a further complication is presented
by the possibility that a statement can be entered un-
naturally and then exited naturally. This is met, by the
formal treatment below,

Own Identifiers. The treatment of own’s can best be
considered as involving a preliminary transformation of
Arncor 60, which eliminates own declarations except in
the head of a whole program ar the head of the body of a
globally declared procedure. This transformation may re-
uire systematic changes of identifiers to avoid collisions.

The treatment of own’s would have been more elegant
had they been associated with procedures instead of with
blocks, and had their active life been prescribed as coter-
minous with the life of their procedure (which may include
zero of more activations of the procedure). One consequence
of this would have been that two nesting activations of a

* In {11} van Wijngaarden meets this point by using an explicit
“link” as an extra parameter to each procedure.

Volume 8 / Number 2 / February, 1963

procedure would shave theiy own’s or not, according as
they were activations of the same life of the procedure or
of two nesting lives. This meaning of own almost exactly
coincides with the generally accepted meaning, if own's
are restricted to the heads of the bodies of procedures
declared in the head of the whole program.?

Conclusion

One little sung use of Avrcor 60 has been as a standard
with which to describe and compare other languages. Its
suttability for this role arose from being deseribed with
remarkable precision, and from its greater power and
elegance, so that its own idiosyneracies and limitations
did not overshadow those of the languages being measured
against it.

The language of IAEs is put forward here for considera-
tion as a further step in this divection, and the supporting
evidence is a detailed mapping of Avcor 60 into TALs. So
far in this paper we have laid the groundwork for the
mapping, namely a description of the “primitive objects”’
it refers to, and we have given specific instances of its
application. The remainder of the paper is devoted to its
formal characterization.

REFERENCES

L. Barron, D. W., Buxron, J. N, Harruey, D. F., Nixo~, B,
AND Baractmy, C. The main features of CPL. Comput. J.
6, 2 (July 1963), 134-143.

2. Curny, H. B., axo Teys, R, Combinalory Logic, Vol. 1.
Notrth Holland, Amsterdarm, 1058,

8. Laspin, P J. The mechanieal evaluation of expressions.
Comput. J. 6, 4 (Jan. 1964), 308-320.

& McCartuy, J., Br an. LISP 1.5 Programmer’s Manual.
MIT, Cambridge, 1962.

5. ——. Towards a mathematical science of computation.
IFTP Munich Conference 1962, North Holland, Amsterdam,
1963.

6. Navr, P., wr an. Revised Report on the Algorithmic Lan-
guage ALGOL 60. Comm. ACM 6, 1 (Jan. 1963), 1-17.

7. Rosensroom, P. The Elements of Mathematical Logic. Dover,
New York, 1950.

8. Swracuey, C., anp WiLkes, M. V.
proving the efficiency of ALGOL 60. Comm. ACM 4 11
(Nov. 1961), 488-491.

0. Boum, C. The CUCH as a formal and deseriptive language.
Presented at IFTP Working Conf., Baden, Sept. 1964,

10. Lanpin, P.J. A formal description of ALGOL 60. Presented
at IFTP Working Conf., Baden, Sept. 1964.

11. van WrosngaarpEN, A. Recursive dehnition of syntax and
semantics. Presented at IFIP Working Conf., Baden, Sept.
1964. o '

12. Conway, M. E. Design of a separable transition-diagram
compiler. Comm. ACM &, 7 (July 1963}, 396-408.

Some proposals for im

? For fuller discussion of the present approach to labels and
own's sce [10].

Communications of the ACM 101

