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1 Introduction

Beamforming is a signal processing technique where an array of antenna elements can be steered to
transmit and receive radio signals in a specific direction. The usage of millimeter wave (mmWave)
frequencies and multiple input multiple output (MIMO) beamforming are considered as the key
innovations of 5th Generation (5G) and beyond communication systems. The mmWave radio waves
enable high capacity and directive communication, but suffer from many challenges such as rapid
channel variation, blockage effects, atmospheric attenuations, etc. The technique initially performs
beam alignment procedure, followed by data transfer in the aligned directions between the trans-
mitter and the receiver [1]. Traditionally, beam alignment involves periodical and exhaustive beam
sweeping at both transmitter and the receiver, which is a slow process causing extra communica-
tion overhead with MIMO and massive MIMO radio units. In applications such as beam tracking,
angular velocity, beam steering etc. [2], beam alignment procedure is optimized by estimating the
beam directions using first order polynomial approximations. Recent learning-based SOTA strate-
gies [3] for fast mmWave beam alignment also require exploration over exhaustive beam pairs during
the training procedure, causing overhead to learning strategies for higher antenna configurations.
Therefore, our goal is to optimize the beam alignment cost functions e.g., data rate, to reduce the
beam sweeping overhead by applying polynomial approximations of its partial derivatives which can
then be solved as a system of polynomial equations. Specifically, we aim to reduce the beam search
space by estimating approximate beam directions using the polynomial solvers. Here, we assume
both transmitter (TX) and receiver (RX) to be equipped with uniform linear array (ULA) config-
uration, each having only one degree of freedom (d.o.f.) with Nt and Nr antennas, respectively.

2 Problem Formulation

Let R = log2 (1 +
α1α2

α3
∥wH

rxHwtx∥2) denote the communication data rate of the mmWave received

signal, where α1, α2, α3 ∈ R are the known constants, and H ∈ CNr×Nt is a matrix of random complex
channel values. The matrix H can be written as H = Hr + jHi, where j2 = −1, and Hr, Hi are real
Nr × Nt matrices with known entries. The beamforming vectors wrx and wtx are functions of the
transmitter and receiver beam angles, θrx and θtx. Altogether, R is considered as a function of θrx,
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θtx. We formulate the beamalignment problem as to estimate θrx, θtx by maximizing R given as,

θ∗rx, θ
∗
tx = argmax

θrx,θtx∈R
R. (1)

Exploiting the fact that θrx, θtx ∈ [0, 2π], one approach is to subdivide the interval into fixed
sub-intervals and search for the maxima of R among sub-intervals [3]. However, all the iterative
methods require a good starting point. Moreover, it is not possible to know the total number of
stationary points for a given function, thus leading to local maxima or saddle points. Instead, we
draw inspiration from computer vision problems, where algebraic methods have gained popularity
in recent times. The problems of estimating camera geometry lead to finite systems of polynomial
equations which have been successfully solved using the concepts based on the Gröbner basis and
the sparse resultant [4, 5, 6, 7]. In this work, we have adopted the Gröbner basis-based approach [5].

2.1 Algebraic approach for optimization

The optimization problem in Eq. (1) can be solved by estimating those points, say θ∗rx, θ
∗
tx ∈ R,

where the first order partial derivatives of R w.r.t. θrx and θtx, i.e., Rθrx = ∂R
∂θrx

and Rθtx = ∂R
∂θtx

,
vanish. However, Rθrx (= f1) and Rθtx (= f2) are not polynomials, and in order to facilitate an

algebraic approach, we approximate f1 and f2 as bivariate polynomials. Suppose, x =
[
θrx θtx

]⊤
.

Then, the Taylor series expansions [8] of f1 and f2 can be expressed as

f1 =
∑

(xα,c)∈T1

cxα, f2 =
∑

(xα,c)∈T2

cxα, (2)

where T1 and T2 denote the sets of coefficient and monomial pairs, occurring in the Taylor series
expansion of f1 and f2, respectively. Suppose B1 and B2 respectively denote the sets of monomials
(xα) in T1 and T2, and C1 and C2 respectively denote the sets of coefficients (c) in T1 and T2. In
order to approximate f1 and f2 in Eq. (2) as polynomials, we truncate the monomial sets B1 and
B2 as finite subsets, B1 ⊂ B1 and B2 ⊂ B2. The corresponding truncated set of coefficients, are
C1 = {c ∈ C1 | (xα, c) ∈ T1,x

α ∈ B1} and C2 = {c ∈ C2 | (xα, c) ∈ T2,x
α ∈ B2}. Thus, we have

approximated f1 and f2 respectively with the polynomials p1 =
∑

c∈C1,α∈B1

cxα and p2 =
∑

c∈C2,α∈B2

cxα.

The common roots of p1 and p2 represent the approximate solutions to f1 = f2 = 0. Let the
exponent sets of the monomials in B1 and B2 be denoted as B1 ∈ Z2

≥0 and B2 ∈ Z2
≥0, respectively.

Therefore, the functions, f1 and f2, and the truncated polynomials, p1 and p2, can be expressed as

f1 =
∑
α∈B1

(xα,c)∈T1

cxα, f2 =
∑
α∈B2

(xα,c)∈T2

cxα, p1 =
∑
α∈B1

(xα,c)∈T1

cxα, p2 =
∑
α∈B2

(xα,c)∈T2

cxα. (3)

Here, one of the common roots of p1 and p2 should be as close to a global maxima of R as possible.

Number of common roots of p1 and p2: The Bernstein–Kushnirenko theorem [9] provides the
upper bound on the number of common roots of p1 and p2, denoted as η, in the complex field C2.
Let, Pi denote the convex hull of Bi, and Vol2(Pi) denote the euclidean volume (area) of Pi, for
i = 1, 2. Then, η can be considered as a function of the exponent sets, B1 and B2. Observe that η
is the upper bound on the size of the matrix undergoing eigenvalue decomposition in the Gröbner
basis-based polynomial solvers, which in turn affects the speed of the application. We also need to
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exhaustively iterate through all of the computed roots over the communication channel values (see
Sec. 2), and pick the root that corresponds to the largest R. Thus, in the interest of application
speed, we require η be as small as possible.

Approximation error: Lowering η comes at the cost of accuracy of the solution to the optimiza-
tion problem in Eq. (1), obtained via the roots of polynomial approximations. Let θ∗rx, θ

∗
tx denote

the true maxima of R in Eq. (1). Hence, f1 and f2 vanish at θ∗rx, θ
∗
tx. Also, let θ†rx, θ

†
tx be one of

the estimated roots of the polynomials p1 and p2. Then, our objective here is to find p1 and p2,
s.t., δ =|| θ†rx − θ∗rx ||22 + || θ†tx − θ∗tx ||22 is as close to zero as possible1. One of the ways to investi-
gate the relationship of δ with p1 and p2, is by observing the terms we need to drop to obtain p1
and p2 respectively from f1 and f2 in Eq. (2). Let f |x∗,y∗ denote the evaluation of the bivariate
function f by assigning the values x∗ and y∗ to its two variables x and y, and let δθrx = θ†rx − θ∗rx
and δθtx = θ†tx − θ∗tx. Then, (f1 − p1) |θ†rx,θ†tx and (f2 − p2) |θ†rx,θ†tx both can be expressed as infi-

nite sums of terms, each term consisting of monomials in δθrx and δθtx as variables. Observe that,
δ = 0 implies that (f1 − p1) |θ†rx,θ†tx and (f2 − p2) |θ†rx,θ†tx both should vanish, for all possible roots

θ†rx, θ
†
tx of p1 and p2. One way to achieve this is by ensuring that the coefficients of the terms in

(f1 − p1) |θ†rx,θ†tx and (f2 − p2) |θ†rx,θ†tx to be as small as possible. In other words, we need to minimize

the magnitude of the dropped terms from f1 and f2 in Eq. (2). The dropped terms are infinitely
many. Instead, we aim to maximize the magnitude of the selected terms in p1 and p2. Thus, we can
loosely redefine the approximation error δ to be the inverse of the sum of the magnitudes of all the
coefficients of the terms of f1 and f2, selected to obtain the approximations p1 and p2. Specifically,

δ =
1∑

c∈C1

|c|+
∑
c∈C2

|c|
. Our ongoing work seeks to jointly minimize η and δ w.r.t. the monomial

susbets, B1 and B2. We define this minimization problem as O := argmin
B1,B2

η+ δ. We then formulate

the polynomial approximations p1 and p2 from the solution of the optimization problem O. We
note that analytical expressions for η and δ as functions of B1 and B2 are yet to be determined and
are part of our future work. Hence, in this work, we adopted a simple strategy to select B1 and
B2, which minimize δ while keeping η reasonably low. The strategy is normalize the coefficients in
C1 w.r.t. the largest observed magnitude, and choose B1 corresponding to those coefficients whose
normalized values are larger than a certain threshold, ϵ1. We perform the same steps for choosing
B2 using C2, via some threshold, ϵ2.

3 Proposed approach and conclusion

In this work, we used a setup of 2× 2 antenna array grid, i.e., Nt = Nr = 2, and assigned random
values to the matrix H, to demonstrate our approach. We studied some threshold pairs, [ϵ1; ϵ2] (see
the Figure 1 (Right)), and for each pair, we computed the monomial sets B1 and B2, and solved
the corresponding polynomial approximations p1 and p2 using the Gröbner basis-based solver [5].
For each threshold pair, we also measured the difference in the estimated data rate and the known
data rate based on the beam search, and also measured (η + δ) in the optimization problem O.
Both these quantities are depicted in Figure 1 w.r.t. the threshold pair. We observe, that the
best data-rate estimation (and hence the minimal value of δ) happens when the threshold pair is

1Note, that || ∗ ||2 denotes the 2-norm in R2.
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Figure 1: Let b1 be a vector of the monomials from B1 (≤ degree 20), ordered w.r.t. increasing
degree, with the ties broken lexicographically i.e., θtx > θrx. Let c1 represent the vector of cor-
responding coefficient magnitudes (normalized w.r.t. the largest observed magnitude) from C1.
(Left) A plot displaying c1; (Middle) The selected indices of the coefficients in c1 with ϵ1 = 0.6;
(Right) A plot (red) of the value of the objective function η + δ in the optimization problem O
and a plot (blue) for the absolute difference between the estimated data rate Re and the known
data rate from exhaustive beam search [3] Rx, for selected threshold pairs [ϵ1; ϵ2].

[0.7; 0.7]. However, the value of the objective function is not minimized ([0.7; 0.75] leads to lower
η but higher δ), indicating that it came at the expense of η. Thus, our future work will focus on
jointly minimizing, (η + δ).
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