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Wind is one kind of high-efficient, environmentally-friendly and cost-effective energy source. Wind power, as

one of the largest renewable energy in the world, has been playing a more and more important role in supplying

electricity. Though growing dramatically in recent years, the amount of generated wind power can be directly

or latently affected by multiple uncertain factors, such as wind speed, wind direction, temperatures, etc. More

importantly, there exist very complicated dependencies of the generated power on the latent composition of

these multiple time-evolving variables, which are always ignored by existing works and thus largely hinder

the prediction performances. To this end, we propose DEWP, a novel Deep Expansion learning for Wind Power
forecasting framework to carefully model the complicated dependencies with adequate expressiveness. DEWP

starts with a stack-by-stack architecture, where each stack is composed of (i) a variable expansion block that

makes use of convolutional layers to capture dependencies among multiple variables; (ii) a time expansion block
that applies Fourier series and backcast/forecast mechanism to learn temporal dependencies in sequential

patterns. These two tailored blocks expand raw inputs into different latent feature spaces which can model

different levels of dependencies of time-evolving sequential data. Moreover, we propose an inference block
corresponding for each stack, which applies multi-head self-attentions to acquire attentive features and maps

expanded latent representations into generated wind power. In addition, to make DEWP more expressive

in handling deep neural architectures, we adapt doubly residue learning to process stack-by-stack outputs.

Accurate wind power forecasting is then better achieved through fine-grained outputs by continuously

removing stack residues and accumulating useful stack forecasts. Finally, we present extensive experiments in

the real-world wind power forecasting application on two datasets from two different turbines, in order to

demonstrate the effectiveness of our approach.
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1 INTRODUCTION
In recent years, the blooming development of the world’s economy and population imposes an

unprecedented energy crisis that results into negative environmental consequences, such as air

pollution, ozone depletion, and global warming [2]. Renewable energy, the energy that can naturally

be replenished on a human timescale, thus becomes a viable solution to overcome the energy crisis

while being able to protect the natural environment. According to the Paris agreement, renewable

energy will make up two-thirds of energy consumption in order to limit global warming to well

below two degrees Celsius, compared to pre-industrial levels [15].

Among all the renewables, wind power has played a more and more important role in supplying

electricity. The generation of wind power grows very quickly due to its wide availability, high

efficiency, and low prices. For example, in UK, wind power generation has more than doubled

from 2016 to 2020 [38]. Despite the increasing popularity, there is a well known challenge for the

operation and management of wind power. A power grid needs to balance the electricity generation

and demand at all times. However, wind power generation is uncertain and relates with dynamically

changing environmental factors, such as wind speed [45]. As wind energy accounts for higher

percentage in electricity supply, the uncertainty makes it more difficult to balance power supply

and demand. As a result, high ramping power plants must provide some reserve capacity to meet

the demand beforehand [18]. Hence, it is important to accurately forecast for future electricity

generation, in order to manage the integration, maintain reserve capacity, control grid frequency

fluctuations, and allocate electricity generation.

Despite its great importance in evaluating future energy extraction, accurate high-resolution

wind power forecasting is very challenging as it is affected rapidly by many direct or latent factors.

For example, the speed of wind turbine blades depends on how fast the wind is blowing, and

so wind speeds directly influence electricity generation [20]. Besides, temperature, humidity or

atmospheric pressure indirectly influence wind power generation. These factors closely relate to

local air density, while different air density asserts different pressure on the rotors. The “heavier”

the air is, the more energy received by the turbine [5]. Other features like the date or the time of a

day are also important features for forecasting, as they can reveal distinctive weather conditions

like monsoons that can imply wind speed or wind direction. Generally, all these factors need to be

well-modelled for an accurate forecasting.

Turbine R80736

Turbine R80721

Fig. 1. Turbine R80736 and Turbine R80721 at ‘La-Haute-Borne’ wind farm.

Application and Domain Challenges. Our real-world application is using historical natural

observations (without power) to predict the amount of wind power generated by the turbines of a

wind farm located in north-easter France. This ’La-Haute-Borne’ farm (Figure 1) is the first open data

wind farm powered by ENGIE
1
, which provides electricity to the equivalent of 7,300 people since

1
http://www.engie.com
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Fig. 2. An example of several related sequential factor variables and target (generated power) of 6 months

since Janurary 1st, 2013 from turbine R80736.

2009 thus avoiding around 12,000 metric tons of CO2 emissions per year. The wind power data are

in the form of continuous, real-time, sequential and uniformly sampled data, whose representation

is often of multi-variate time series. As Figure 2 shows, on the one hand, the raw wind power

data includes much uncertainty and noise, and the intermediate fluctuations make the forecasting

very difficult. On the other hand, the generated power have complicated dependencies on the

composition of the multiple time-evolving variables. The generated power is latently dependent on

the variable-variable correlations (variable dependencies) and time-evolving patterns (temporal

dependencies), both of which should be carefully modelled for dependency learning and accurate

forecasting.

Our Contributions. Prior studies on wind power forecasting can be grouped into: (i) physical

methods that use physical characterisation tomodel wind turbines/farms [26]; (ii) statistical methods

that develop linear or non-linear statistical relationships between observations and generated

power [14, 30]; (iii) hybrid methods combines physical methods and statistical methods together

[13]. Recently, many deep learning based methods apply CNNs, RNNs and their variants for the

forecasting [22, 51]. However, most of them don’t thoroughly construct dependencies of generated

power on intricate sequential input observations However, most existing works towards wind

power forecasting [2, 26, 30, 31] ignore the complicated dependencies of generated power on

intricate sequential input variable observations; moreover, they use some simple designs (e.g.,

CNNs, RNNs) and thus don’t have enough network expressiveness to model these dependencies,

which largely hinders the prediction performances.

To address the aforementioned challenges, we aim to develop a generic and expressive (deep)

architecture to predict the wind power and propose a novel Deep Expansion learning for Wind Power
forecasting (DEWP) framework, which not only carefully model these complicated dependencies

but accommodate adequate expressiveness through the network designs. Specifically, the manually

extracted time-evolving variables and the embeddings mapped by timestamps are first taken as

raw input to DEWP. DEWP starts with a stack-by-stack architecture, which consists of several

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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stacked layers (called stacks) to learn dependencies and representations of the input. To learn

the complicated dependencies of variable compositions, we propose a variable expansion block
for each stack, which makes use of convolution layers on variable dimensions to model their

latent relationship for feature extraction; the raw input variables are then expanded into hidden

states. After the variable expansions, DEWP is designed to further capture the continuous temporal

dependencies through time expansions in each stack. Accordingly, we propose a time expansion
block in each stack which accepts variable expanded results and produces expansion coefficients

for backcast/forecast mechanism [33]. In particular, this block further model characteristic of

seasonality by adapting Fourier series to constrain the cyclical function, in order to mine the regular

recurring fluctuation. These designs empower DEWP to learn time dependencies and carry latent

representations to the outputs that mainly consist of two parts: the backcast part aims to represent

historically observed knowledge and the forecast part aims to predict future information towards

wind power.

Moreover, to leverage the latent representations to predict wind power generation, we propose

an inference block, corresponding for each stack of DEWP, which applies multi-head self-attentions

[39] to process the the forecast part output of the time expansion blocks to acquire attentive features,

and map the expanded representations for final forecasting. In addition, to make DEWP more

expressive in handling deep architectures, we follow [33] to conduct a doubly residue learning

from stack to stack: the backcast results are continuously removed before taken to the next stack;

the output mappings of inference blocks are accumulated to get a fine-grained forecasting towards

the final ground truths (generated power). Finally, we conduct extensive experiments in the real-

world application setting on our developed two benchmark datasets, which clearly validate the

effectiveness of our approach on the task of wind power forecasting. The experimental results

demonstrate that DEWP is a good solution for wind power prediction that can provide timely

insights to the energy market.

2 PRELIMINARIES
In this section, we will introduce the preliminaries of the real-world wind power forecasting

application, including application backgrounds, data description, and problem formulation.

2.1 Backgrounds and Contexts
Wind energy is one of the RES characterized by the lowest cost of electricity production and

the largest resource available [40]. However, the power output from renewable sources such as

wind power is highly variable and hard to predict, considering the amount of power coming from

renewable sources largely depends on nature, which cannot be thoroughly captured by human

beings.

There are many direct or indirect factors that influence wind power generation. For example,

wind speed largely determines the amount of power generated by a turbine. Figure 3(a) shows

high-speed winds allow the blades to rotate faster in the range of cut-in speed
2
and cut-out speed

3
,

thus generating more active wind power [20]. Also, wind direction is another factor that influences

power generation. Figure 3(b) shows the wind directions and wind speeds in 2013 at the location of

turbine R80736, and we easily observe that winds from different directions always have different

speeds. When the wind reaches a proper direction, the smaller difference between wind angle and

the nacelle angle allows for faster rotating speed of turbine; hence, more power is generated. Some

other factors also influence the wind power, such as temperature or humidity, which can determine

2
The cut-in speed is the point at which the wind turbine is able to generate power.

3
The cut-out speed is the point at which the turbine must be shut down to avoid damage to the equipment.
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Fig. 3. The distribution of wind speed, wind direction, and generated power of a year since Janurary 1st, 2013

from turbine R80736.

local air density and thus exerts different pressure on the rotors. In brief, the “heavier” the air is, the

more power is generated by the turbine [5]. Aside from these factors, we need to consider the date

or time of a day, because they can imply some distinctive weather conditions such as monsoons.

Seasonal climates that influence wind power generation could be represented by these time flags.

Moreover, all these factors, which can directly or indirectly influence the final output of wind

power, vary over time and have their own latent time-evolving sequential patterns. These multiple

variables that can be regarded as multi-variate time series, need to be properly modelled for the

accurate forecasting towards dynamic wind power generation.

2.2 Data Description and Preprocessing
Description. We exploit real-world wind power data from ENGIE, the largest power company

in France, supplying electricity in 27 countries in Europe and 48 countries worldwide and having

its wind-power leadership position in the world. The data
4
is collected at the “La Haute Borne”

wind farm (in the Meuse department), which provides electricity to the equivalent of 7,300 people

since 2009 and reduce around 12,000 metric tons of CO2 emissions per year. We extract data of two

turbines (R80736 and R80721) to compose two benchmark datasets.

Preprocessing. Since the raw data is collected in every 10 minutes and includes lots of uncertainty

and noises, we aggregate the data of both turbines into hourly data to reduce randomness and

augment the data patterns. Specifically, the hourly aggregation is completed by averaging all the

points available each hour, where the missing values are set as the mean values of the whole dataset.

Furthermore, inspired by feature selection process [7, 8], we manually extract series of meaningful

features, including wind speed, wind direction, nacelle angle, pitch angle, and temperatures from

different sensors. Since the start point and the end point of two benchmark datasets are 2013-1-1

and 2016-12-31, we split the data into training set and test set at the point of 2016 10-01 00:00.

The overall timestamps of the datasets are 35069 points, with the first 24076 timestamps belong to

the training set. After sliding the time series data into windows, the training data, validation data

include 27544 and 3061 data samples, respectively. Figure 2 shows an example of our processed

multi-variate time series data from Janurary, 2013 to June, 2013 at turbine R80736. Table 1 shows

the specific statistics of the datasets.

4
https://opendata-renewables.engie.com/

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:6 Fan, et al.

Table 1. Statistics of datasets.

Datasets R80736 R80721

Turbine GPS 48.4461, 5.5925 48.4497, 5.5869

Rotor Diameter 82 meters 82 meters

Start Date 01/01/2013 00 01/01/2013 23

End Date 12/31/2016 00 12/31/2016 23

Time Interval Every hour Every hour

Active Power [-18.5, 2051.1] [-17.1, 2051.9]

Wind Speed [0.0, 20.6] [0.0, 19.2]

Wind Angel [0.0, 360.0] [0.0, 360.0]

Pitch Angle [-121.2, 119.1] [-12.4, 120.9]

Outdoor Temperature [-6.3, 37.8] [-5.9, 38.4]

Hub Temperature [4.0, 37.1] [0.0, 38.0]

2.3 Problem Formulation
We study the problem of wind power forecasting with regard to historical time-evolving multiple

variables. Due to the complicated dependencies of the generated power on the multi-variate time-

evolving sequential data, we formulate the wind power forecasting problem as:

Definition 1. Wind Power Forecasting.We consider the wind power forecasting problem of

regularly sampled multi-variate time series. Let x𝑡 ∈ R𝑑 denote the values of multiple series at

time-step 𝑡 , where x𝑡 = {𝑥1𝑡 , 𝑥2𝑡 , ..., 𝑥𝑑𝑡 } is composed of 𝑑 scalars each of which represents the value

of a variable at 𝑡-th step. Here each variate stands for a specific feature of wind power: for example,

supposing the 𝑖-th variate x𝑖 is wind speed, accordingly x𝑖𝑡 is the wind speed value (m/s) at time-step

𝑡 . Given the historical observations of a certain length 𝐿, X𝑡−𝐿:𝑡 = [x𝑡−𝐿, x𝑡−𝐿+1, ..., x𝑡−1], the task
of wind power forecasting is to learn a function FΘ to project historical observations to the values

of future generated power in a period of time, y𝑡 :𝑡+𝐻 . Formally,

y𝑡 :𝑡+𝐻 = FΘ (X𝑡−𝐿:𝑡 ) + 𝜖𝑡 :𝑡+𝐻 (1)

where 𝐿 is the length of the lookback window, 𝐻 is the length of the forecast horizon, FΘ : R𝐿 →
R𝐻 is a mapping function parameterized by Θ, and 𝜖𝑡 :𝑡+𝐻 = [𝜖𝑡 , . . . , 𝜖𝑡+𝐻−1] denotes a vector of
independent and identically distributed Gaussian noises.

3 METHODOLOGY AND MODEL DESIGN
For an effective solution for wind power forecasting problem, in this section, we first show an

overview of our main framework DEWP and then introduce each component of this framework

with more details, including variable expansion block, time expansion block, inference block and

expansion residue learning.

3.1 Framework Overview
Figure 4 shows an overview of our wind power forecasting framework. To begin with, the model

takes the historical observations ofmultiple variables (without historical wind power) and timestamp

flags (including months flag, weekdays flag and dates flag) as raw input. The input is then processed

to convolutional features and time embeddings, and their concatenated vectors are regarded as

the input of the main model of DEWP. The main model, shown as the middle part of Figure 4,

is organized as a stack-by-stack architecture, where each Stack is composed of one Variable
Expansion Block, and one Time Expansion Block. The detailed architecture of each stack and

block is shown in right part of Figure 4. The variable/time expansion block aims to capture the

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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Fig. 4. Framework Overview. The left part shows the input and output of the framework; the middle part

shows the main architecture of DEWP; the right part shows inner components of each stack.

complicated dependencies on multiple variables and temporal patterns respectively. After expansion

operations, each stack will carry the hidden expanded states into the outputs that mainly include

two parts: the backcast part and the forecast part. The backcast part, regarded as the stack residues,

is subtracted before taken to the next stack, in order to conduct a stack-by-stack residue learning of

expansions. The forecast part of each stack, is taken to its corresponding Inference Block to map

the hidden expansion results to future wind power, in order to conduct a stack-by-stack fine-grained

inferences. The detailed design of the inference block is shown in bottom left of Figure 4. Finally,

the inference results of each inference block are accumulated, in order to finally contribute to the

future wind power generation.

3.2 Time Embeddings
As Figure 4 shows, for the input historical observations, apart from extracting hidden embeddings

using convolution operations, we also include the time embeddings as the extra temporal informa-

tion as input to enhance the prediction performance. Specifically, we extract three kinds of features

as the affiliated information from the timestamps:

• Month embeddings: we extract the month information from the timestamp and map different

months (e.g., January, February, etc) into different embeddings.

• Weekday embeddings: we extract the date information from the timestamp and find the

according weekday information (e.g., Monday, Tuesday, etc) to generate embddings.

• Hour embeddings: since the raw data is processed with the hourly aggregation, we thus also

extract the hourly information and accordingly generate the hour embeddings.

3.3 Variable Expansion Block
One of the main challenges of the wind power forecasting lies in how to capture the sophisticated

dependencies of the generated wind power on different compositions of multiple variables. The

latent relationship between the target and the input variables is non-linear and hard to capture,

which motivates us to develop a simple yet effective module for feature extraction and variable

dependency learning.

Though convolutional networks have been applied to sequential modelling in many studies

[1, 3, 35], all these works need to carefully design covolutions for the chronological order of series.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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Actually, the classic convolution architecture itself has strong ability of feature extraction, and

thus can handle dozens of tasks from different domains [27]. In our framework, we propose to

apply convolution architectures to model latent variable dependencies for feature extraction. As the

middle part of Figure 4 shows, the overall framework stacks many variable expansion blocks and

time expansion blocks. When it comes to the Variable Expansion Block, we want to model latent

dependencies only for variables and leave the temporal dependencies to the time expansion block.

Such a decoupled dependency learning design motivates us to apply 1-dimensional convolution

rather than 2-dimensional convolution. Thus, we adapt 1-dimensional convolution to work on the

variable dimension learning for feature extraction. Specifically, we denote the input to the ℓ-th

stack (the backcast output of (ℓ − 1) stack) as X(ℓ )
𝑡−𝐿:𝑡 ∈ R

𝑑𝑣∗𝐿
, where 𝑑𝑣 is the dimension of hidden

states after expansions of previous stacks. For variable expansion, the input directly accepted by

the ℓ-th stack is processed by four layers of convolution network:

h(ℓ ),1
𝑡−𝐿:𝑡 = 𝜎 (𝐶𝑜𝑛𝑣 (X

(ℓ )
𝑡−𝐿:𝑡 )), h(ℓ ),2

𝑡−𝐿:𝑡 = 𝜎 (𝐶𝑜𝑛𝑣 (h
(ℓ ),1
𝑡−𝐿:𝑡 )),

h(ℓ ),3
𝑡−𝐿:𝑡 = 𝜎 (𝐶𝑜𝑛𝑣 (h

(ℓ ),2
𝑡−𝐿:𝑡 )), z(ℓ )

𝑡−𝐿:𝑡 = 𝐶𝑜𝑛𝑣 (h
(ℓ ),3
𝑡−𝐿:𝑡 )

(2)

where𝐶𝑜𝑛𝑣 stands for the standard 1-𝑑 convolution operations [34] and 𝜎 is the ReLU non-linearity

[16]. This variable expansion block expands the input variables X(ℓ )
𝑡−𝐿:𝑡 with convolutions and emits

the expanded features z(ℓ )
𝑡−𝐿:𝑡 ∈ R

𝑑𝑣∗𝐿
, which is taken as input to time expansion block of ℓ-th stack.

3.4 Time Expansion Block
Aside from dependencies among variables, another main challenge of wind power forecasting is

how to capture the continuous dependencies of generated power on time-evolving patterns of

sequential data. After representation based on variable expansions, we also need to accurately

model temporal dependencies for future values based on the historical observations of time series.

Many studies have tried different strategies for sequential data, such as recurrent neural networks

[12] or attention [39]. However, most of them suffer from large computational burden. Recently, it

has shown great success of pure fully-connected networks for temporal basis expansion of series

in order for accurate forecasting [10, 33]. On top of them, we develop a time expansion block with

backcast/forecast mechanism [33] for deep expansion learning across time steps. First, the ℓ-th

time expansion block will accept ℓ-th variable expansion results z(ℓ )
𝑡−𝐿:𝑡 as input and process it with

two fully-connected layers with ReLU non-linearity:

z(ℓ ),1
𝑡−𝐿:𝑡 = 𝜎 (wzz

(ℓ )
𝑡−𝐿:𝑡 + bz)

𝜌 (ℓ ) = 𝜎 (w𝜌z
(ℓ ),1
𝑡−𝐿:𝑡 + b𝜌 )

(3)

where the projected results 𝜌 (ℓ ) ∈ R𝑑𝑣∗(𝐿+𝐻 ) is called expansion coefficients of length 𝐿 + 𝐻 , for
the following backcast and forecast. Specifically, we let the backcast part recover the historical

observation signals ( [𝑡 − 𝐿, 𝑡] steps) through prediction, while let the forecast part is to predict

future signal values ([𝑡, 𝑡 +𝐻 ] steps). Thus, we define two time vectors on a discrete grid to flag the

two parts: the backcast time vector tb = [−𝐿,−𝐿 + 1, ..., 0]𝑇 /(𝐿 +𝐻 ), and the forecast time vector

tf = [0, 1, ..., 𝐻 ]𝑇 /(𝐿 + 𝐻 ).
For further consideration of characteristic of seasonality, we use Fourier series to constrain the

cyclical function in order to capture the regular recurring fluctuation. Accordingly, we can the get

backcast expansion results with the time vector:

X̂(ℓ )
𝑏

=

⌊𝐿/2−1⌋∑︁
𝑖=0

𝜌
(ℓ )
𝑖

cos(2𝜋𝑖)tb + 𝜌 (ℓ )𝑖+⌊𝐿/2⌋ sin(2𝜋𝑖)tb (4)

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.
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where 𝜌
(ℓ )
𝑖

is the 𝑖-th dimension of 𝜌 (ℓ ) and the first 𝐿 dimensions are corresponding to the backcast.

Symmetrically, we continue using Fourier series to constrain expansion coefficients and then get

forecast expansion results with the time vector:

X̂(ℓ )
𝑓

=

⌊𝐿+𝐻/2−1⌋∑︁
𝑖=𝐿

𝜌
(ℓ )
𝑖

cos(2𝜋𝑖)tf + 𝜌 (ℓ )𝑖+⌊𝐻/2⌋ sin(2𝜋𝑖)tf (5)

where the last 𝐻 dimensions of 𝜌 (ℓ ) are corresponding for the forecast. The time expansion block

expand observations to model the temporal dependencies through backcast and forecast; thus

time-evolving patterns can be better captured. Afterwards, the backcast results X̂(ℓ )
𝑏
∈ R𝑑𝑣∗𝐿 will

be taken to the ℓ + 1 stack; the forecast results X̂(ℓ )
𝑓
∈ R𝑑𝑣∗𝐻 will be input to the corresponding

inference block for the final wind power forecasting. More details are illustrated in the following

sections.

3.5 Inference Block
The aforementioned two expansion architecture extract features and address the dependency

challenges from two different levels. After getting the expanded representations, the next challenge

of wind power forecasting is how to accurately map the hidden expansion results to the actual gen-

erated power. For this problem, we design an inference block corresponding for each variable/time

expansion block to conduct stack-by-stack fine-grained inferences.

Specifically, given forecast expansion results X̂(ℓ )
𝑓
, we aim to apply the multi-ahead attention

architectures [39] to acquire the attentive features, where the standard scaled dot-product attention

is used, written by:

Attention(𝑄,𝐾,𝑉 ) = softmax

(
𝑄𝐾𝑇
√
𝑑𝑘

)
𝑉 (6)

where𝑄,𝐾,𝑉 stands for the queries, keys and values vector and𝑑𝑘 is the dimensions of keys. To com-

pose query vectors, key vectors and value vectors, X̂(ℓ )
𝑓

is firstly mapped by three fully-connected

networks into X̂(ℓ )
𝑓 ,𝑄
, X̂(ℓ )

𝑓 ,𝐾
, X̂(ℓ )

𝑓 ,𝑉
. Then, we let𝑄,𝐾,𝑉 equal to X̂(ℓ )

𝑓 ,𝑄
, X̂(ℓ )

𝑓 ,𝐾
, X̂(ℓ )

𝑓 ,𝑉
respectively; note that

the self-attention is on first dimension of X̂(ℓ )
𝑓

(the variable-expanded dimension) to get attentive

features. Finally, a linear layer is used to project the attentive features to the target power values.

Formally, the whole process is written by:

X̂(ℓ )
𝑓 ,𝑄

= 𝐿𝑖𝑛𝑒𝑎𝑟𝑄 (X̂(ℓ )𝑓 ), X̂
(ℓ )
𝑓 ,𝐾

= 𝐿𝑖𝑛𝑒𝑎𝑟𝐾 (X̂(ℓ )𝑓 ), X̂
(ℓ )
𝑓 ,𝑉

= 𝐿𝑖𝑛𝑒𝑎𝑟𝑉 (X̂(ℓ )𝑓 ) (7)

ŷ(ℓ )
𝑓

= 𝐿𝑖𝑛𝑒𝑎𝑟𝑂 (Attention(X̂(ℓ )𝑓 ,𝑄 , X̂
(ℓ )
𝑓 ,𝐾
, X̂(ℓ )

𝑓 ,𝑉
)𝑇 ) (8)

where 𝐿𝑖𝑛𝑒𝑎𝑟𝑄 , 𝐿𝑖𝑛𝑒𝑎𝑟𝐾 , 𝐿𝑖𝑛𝑒𝑎𝑟𝑉 are standard linear layers to project query, key, value vectors;

𝐿𝑖𝑛𝑒𝑎𝑟𝑂 is the output linear projection; ŷ(ℓ )
𝑓
∈ R𝐻 is the projected wind power of ℓ-th stack.

3.6 Expansion Residue Learning
Both the variable dependencies and temporal dependencies are well modelled by two expansion

blocks, and the inference block effectively constructs mappings from the forecast states to the

empirical power. To further build a expressive and generalizable model for wind power forecasting,

we follow previous work [33] to conduct a doubly residue learning for further expansions.

The residue connections include two branches: one branch corresponds to the backcast, which

helps expansion blocks profoundly represent the existing knowledge from historical observations.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:10 Fan, et al.

Accordingly, for the ℓ-th stack backcast output X̂(ℓ )
𝑏

, we remove it to compose the input to the next

stack. As a result, the input to stack ℓ + 1 is given by:

X(ℓ+1)
𝑡−𝐿:𝑡 = X(ℓ )

𝑡−𝐿:𝑡 − X̂
(ℓ )
𝑏

(9)

where the X(ℓ )+1
𝑡−𝐿:𝑡 ,X

(ℓ )
𝑡−𝐿:𝑡 is the input to stack ℓ + 1 and stack ℓ . The other branch corresponds to the

forecast, which accumulates output of each inference block for the final predictions. The doubly

residue learning here makes each block learn the residues from layer to layer (backcast), which can

be seen as the expansion (the decomposition) for the input signal; thus we need the composition

for the output signal (forecasting results). As a result, the final predictions ŷ𝑡 :𝑡+𝐻 are:

ŷ𝑡 :𝑡+𝐻 =

𝑀∑︁
ℓ=0

ŷ(ℓ )
𝑓

(10)

where𝑀 is the number of inference blocks. Finally, the main optimization goal of our framework

is to minimize the mean-square error of predictions and ground truths, which can be written by:

L =
1

𝑁

𝑁∑︁
𝑖=1

𝑡+𝐻∑︁
𝑇=𝑡

(𝑦𝑇 − 𝑦𝑇 )2 (11)

where L is the loss function to minimize, 𝑁 is the number of input batches, and 𝑦𝑇 , 𝑦𝑇 is the true

values and predicted values at 𝑇 -th time step.

3.7 Model Discussions
The main superiority of DEWP lies in the stacked multi-view expansion architecture in summary.

The stacked multi-view expansion architecture of DEWP brings up two important merits:

• Multi-view Dependency Modeling Ability of the Expansion Mechanism. In DEWP, we pro-

pose variable expansion blocks to capture dependencies among multiple variables and time

expansion blocks with apply Fourier series and backcast/forecast mechanism to learn tem-

poral dependencies among multiple timestamps. Such two expansions are iteratively and

interactively operated on the raw wind power data, which can capture the complicated

dependencies from different aspects (among variables and timestamps). Though existing

methods also capture some dependencies, their modeling ability are limited: for example,

some methods [43, 52] usually neglected the dependencies among variables; some works

adopt recurrent units of Recurrent Neural Networks but they can only learn dependencies

sequentially from single direction [24]; however, our temporal expansion blocks are built

upon multi-layer perceptrons and Fourier series which capture bi-directional fully connected

dependencies.

• Expressive Learning Ability of the Stacked Network Architecture. In DEWP, to cooperate

different expansion operations of blocks, we set the main framework as a stack-by-stack

architecture and utilize doubly expansion residual learning to couple the stacks and blocks.

Such a stacked and residue architecture brings much more complicity of networks and enlarge

their expressiveness [19, 33]. Compared with existing wind power forecasting methods, those

shallow network designs (CNNs, RNNs) may easily reach to the bottleneck of learning ability.

Though vanilla Transformers [39] with adequate expressiveness can be applied into wind

power forecasting, their computation complexity is extremely high, which is not fit for the

training, debugging and deployment.
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4 EXPERIMENTS
We conducted extensive experiments to validate the performance of DEWP framework on two

real-world datasets.

4.1 Experimental Setup
4.1.1 Datasets. As illustrated in Section 2.2, our experiments were conducted on real-world data of

two turbines at “La Haute Borne” wind farm. We developed two benchmark datasets R80736 and

R80721 by carefully preprocessing the raw data in following steps: (i) segmenting the timestamps

to align with the calendar, (ii) completing the missing points or invalid points with mean values,

(iii) aggregating the raw samples to hourly data samples, (iv) conducting feature selection manually

on given raw features, and (v) utilizing the Min-Max normalization to regularize the raw values

into a range of [0,1]. More details of datasets are in Section 2.2.

4.1.2 Metrics. To compare different models, we utilized three different widely-used metrics of

time series prediction for evaluation: 1) Mean Absolute Error (𝑀𝐴𝐸 = 1

𝑛

∑𝑛
𝑖=1 |𝑦𝑖 − 𝑦𝑖 |), 2) Mean

Absolute Percentage Error (𝑀𝐴𝑃𝐸 =
∑𝑛
𝑖=1 |𝑦𝑖 −𝑦𝑖 |/|𝑦𝑖 |), 3) Mean Squared Prediction Error (𝑀𝑆𝑃𝐸 =∑𝑛

𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2/|𝑦𝑖 |), where 𝑛 is the number of points for evaluation, 𝑦𝑖 and 𝑦𝑖 are the target value

(generated power) and the predicted value of 𝑖-th point.

4.1.3 Evaluation. It is widely recognized that wind power forecasting can be classified into

short/long-term forecasting based on the forecasting horizon [40]. In the experiments, our eval-

uations were conducted with the horizon as 24 hours ahead (Short-Term) and 48 hours ahead

(Long-Term) following the definitions of previous work [40]. We split the datasets at the time point

of “2016-07-01 00:00” into training data and test data. To compare fairly, we used the rolling-based

strategy to predict the future wind power from ‘2016-07-01 00:00” to ‘2016-12-31 23:50”, where the

rolling interval is set the same as the size of horizon, in order to perfectly match the length of test

data. The metrics were then calculated on the forecasting values and targets.

4.1.4 Implication Details. Our model and all the deep learning baselines were implemented with

PyTorch. All methods were evaluated on a Linux server with one RTX 3090 GPU. For a robust

evaluation, we run all the models for three times in fixed random seeds. We averagely sampled

training data and used 10% as the validation set. The number of stacks𝑀 was set as 5. The variable

expansion block was set as 4 convolutional layers with hidden channels as 128. For time expansion

block, the layer size (the hidden state dimensions 𝑑𝑣) was set as 512. The inference block was with

8 heads self-attention and 1 linear layer. For training, we set the batch size as 256 and used the

Adam Optimizer with a learning rate of 1e-4 with proper early stopping. More hyper-parameter

analysis are in Section 4.4.

4.1.5 Baseline Algorithms. To comprehensively validate the performance of DEWP framework,

we compared it with several representative baseline methods, which mainly include:

• Linear: is a standard benchmark model that consists two fully-connected layers with ReLU

activations [16] to directly map the historical observations to future generated power.

• GRU: is a variant of Recurrent Neural Network (RNN) constrained by gate control, which is

widely adopted in time series tasks and wind power forecasting [28].

• BiLSTM: is another RNN-based variants, capturing the information of long-short term

memory and being improved by concatenating the forward and backward hidden states.

• LSTNet [25]: is a CNN+RNN time series modeling method, which can captures the short-term

local dependency patterns and long-term time series trend patterns with covolution and

recurrent neural network.
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Table 2. Overall performance comparisons of Short-Term wind power forecasting on R80736 dataset.

Lookback 24 72

Method
Metrics

MAPE MSPE MAE MAPE MSPE MAE

Linear 5.643 89.11 0.7596 3.947 46.74 0.6050

GRU 3.315 35.29 0.5528 3.371 36.62 0.5613

BiLSTM 3.793 43.29 0.5936 3.449 37.47 0.5651

LSTNet 3.594 42.19 0.5823 3.281 35.98 0.5608

TCN 3.568 39.26 0.5692 3.235 35.76 0.5592

WPF-GRN 3.303 34.81 0.5518 3.231 34.13 0.5591

WPF-TSA 3.288 34.32 0.5501 3.226 33.62 0.5513

Transformer 3.645 41.82 0.5805 3.339 36.94 0.5675

Autoformer 6.506 146.0 0.9785 6.364 138.9 1.0192

Informer 3.503 38.77 0.5733 3.110 31.65 0.5490

N-BEATS 3.292 34.89 0.5503 3.210 32.31 0.5520

DEWP 2.848 28.12 0.5220 2.973 28.03 0.5403

Table 3. Overall performance comparisons of Short-Term wind power forecasting on R80721 dataset.

Lookback 24 72

Method
Metrics

MAPE MSPE MAE MAPE MSPE MAE

Linear 3.936 50.40 0.5557 5.513 90.73 0.6923

GRU 3.451 41.78 0.5163 3.817 47.85 0.5431

BiLSTM 3.612 44.69 0.5265 4.018 52.75 0.5564

LSTNet 3.581 43.89 0.5463 3.995 50.08 0.5474

TCN 3.416 42.64 0.5312 3.851 47.31 0.5412

WPF-GRN 3.605 44.42 0.5234 3.821 45.13 0.5403

WPF-TSA 3.594 43.12 0.5203 3.796 44.92 0.5348

Transformer 4.051 53.06 0.5584 4.010 54.24 0.5502

Autoformer 4.441 69.39 0.6827 4.162 72.54 0.7010

Informer 3.597 43.25 0.5203 3.613 40.96 0.5288

N-BEATS 3.589 42.98 0.5198 3.721 44.76 0.5398

DEWP 3.326 37.25 0.5185 3.436 38.04 0.5178

• TCN [1]: is a generic temporal convolutional network architecture tailored-designed for

sequential modelling, including wind power forecasting [11].

• WPF-GRN [24]: is a data-driven method specifically designed for wind power forecasting in-

cluding data pre-processing, re-sampling, feature engineering process and the gated recurrent

units as the network for data driven learning.

• WPF-TSA [37]: is a two-stage attention based forecasting methods, including a feature

decomposition module to remove superfluous noise and two-stage attention module to

determine the importance of wind features.

• Transformer [39]: is a sequence modelling method that introduces self-attention based

architecture for processing multi-variate time-series data.

• Autoformer [44]: is a novel decomposition architecture with anAuto-Correlationmechanism

by conducting the dependency learning and representation aggregation for series.

• Informer [53]: is a variant of transformer which improves transformer in time complexity,

high memory usage, and limitation of the encoder-decoder architecture.

• N-BEATS [33]: is a deep neural architecture for time series forecasting with pure fully-

connected networks. Since its original version is for uni-variate time series we modify

N-BEATS into a multi-variate version.

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



DEWP: Deep Expansion Learning for Wind Power Forecasting 111:13

Table 4. Overall performance comparisons of Long-Term wind power forecasting on R80736 dataset.

Lookback 48 72

Metrics
Method

MAPE MSPE MAE MAPE MSPE MAE

Linear 4.734 65.52 0.6747 4.410 56.05 0.6430

GRU 4.292 52.29 0.6342 4.184 52.03 0.6204

BiLSTM 4.735 64.75 0.6750 4.472 57.47 0.6449

LSTNet 4.481 55.28 0.6581 4.397 54.38 0.6391

TCN 4.232 51.70 0.6291 4.210 52.37 0.6269

WPF-GRN 4.112 50.33 0.6328 4.162 51.34 0.6291

WPF-TSA 3.987 48.23 0.6131 4.007 51.16 0.6131

Transformer 4.270 53.58 0.6311 4.763 66.68 0.6696

Autoformer 6.740 141.0 1.0338 4.519 73.23 0.8983

Informer 3.920 47.63 0.6167 4.193 52.51 0.6274

N-BEATS 3.933 46.91 0.6230 4.186 51.71 0.6221

DEWP 3.876 42.75 0.6083 3.976 44.70 0.6144

Table 5. Overall performance comparisons of Long-Term wind power forecasting on R80721 dataset.

Lookback 48 72

Method
Metrics

MAPE MSPE MAE MAPE MSPE MAE

Linear 5.645 90.73 0.6952 5.111 76.62 0.6629

GRU 5.062 75.39 0.6361 4.492 59.93 0.5903

BiLSTM 5.017 74.42 0.6336 4.898 72.45 0.6201

LSTNet 4.965 74.13 0.6293 4.601 66.21 0.6038

TCN 4.831 75.08 0.6251 4.423 58.96 0.5882

WPF-GRN 4.839 74.63 0.6178 4.492 60.33 0.5903

WPF-TSA 4.781 77.12 0.6201 4.526 59.92 0.5783

Transformer 4.917 75.52 0.6131 5.007 79.10 0.6203

Autoformer 4.972 78.91 0.6728 5.478 75.31 0.6835

Informer 4.759 77.12 0.6222 4.411 57.29 0.5719

N-BEATS 4.733 73.79 0.6105 4.506 58.41 0.5841

DEWP 4.379 58.03 0.5801 4.126 54.05 0.5702

4.2 Overall Performances
Table 2 and Table 3 shows the evaluation of all methods in the Short-Termwind power forecasting

task on two datasets. We observed that DEWP beats all the baseline algorithms and achieve

the smallest prediction error in most cases, which demonstrates the superiority in short-term

wind power forecasting. For example, DEWP improves MAPE of the second best result about

(3.292 − 2.848)/3.315 ≈ 13.4% in R80736 dataset. The improvement of MASE in R80721 dataset also

comes to (41.78 − 37.25)/41.78 ≈ 10.8%. We found that DEWP with lookback as 24 can achieve the

competitive performance of lookback as 72. This verifies the strong prediction ability even with

short lookbacks of our method. We observed Linear model always has the worst performances

compared with other methods. This reveals the relationship between future generated power and

historical observations is a latent non-linear mapping. The superiority of DEWPwith regard to other

forecasting methods also indicates that the baseline methods don’t have enough expressiveness

and don’t model complicated dependencies. Thus we need the delicate modelling of deep learning

designs such as DEWP.
Table 4 and Table 5 shows the performance comparisons of the Long-Term wind power fore-

casting on two datasets. Firstly, we observed the overall performances are worse than short-term
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Fig. 5. Ablation tests of Short-Term with different experimental setups on R80736 and R80721 datasets.
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Fig. 6. Ablation tests of Long-Term with different experimental setups on R80736 and R80721 datasets.

forecasting. This is intuitive considering the historical information is not enough to predict the

distant future points, as wind power includes too much uncertainty. In this case, we can still observe

DEWP outperforms all other baselines and achieves the best performances in all metrics, which

signifies better ability for long-term wind power forecasting. Among the baselines, attention-based

methods (e.g., informer) usually have better performances than RNN-based methods (e.g., LSTNet,
WPF-GRN ), which demonstrates long-term dependencies can be better learned by self-attention

layers. DEWP also makes use of self-attention for inference, which helps long-term forecasting.

4.3 Ablation Tests
To further verify our critical designs of DEWP, we conducted extensive ablation tests under different

setups. We considered four ablated variants of DEWP corresponding for each component. Specifi-

cally, they are (i) DEWP-V : removing the variable expansion blocks from all the stacks where each

stack degenerates into a time expansion block. (ii) DEWP-T : removing the time expansion blocks

from all the stacks where each stack degenerates into a variable expansion block. (iii) DEWP-I :
replacing the inference block of the original model with a single fully-connected layer for mapping.

(iv) DEWP-R: removing all the residue connections of the original model and directly taking outputs

of the last stack as the forecasting results.

We evaluated performances of above variants in both Short-Term and Long-Term wind power

forecasting on two datasets. Figure 5 and Figure 6 demonstrate the performance comparisons of

four variants and the original model in different setups. We easily observe these variants have lower

performances than the original DEWP ; this demonstrates every component of the main model

benefits and is important to final forecasting. Among all the variants, we found that DEWP-T usually

has a significant performance loss compared with the original model; this shows the forecasting

largely depends on the time expansion modelling. We noticed DEWP-R can lead to a significant

prediction loss, which demonstrates that the residue connections are indispensable to accurate

forecasting.
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Fig. 7. Parameter analysis towards lookback on R80736 and R80721 datasets. For the choice of lookback

window length, we traverse from 24, 48, 72 to 96 to test the performances.
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Fig. 8. Parameter analysis towards horizon on R80736 and R80721 datasets. For the choice of horizon window

length, we traverse from 6 to 48 and test the performances.

4.4 Parameter Analysis
We noticed that different experimental settings and parameters largely influence the prediction

results. We presented the analysis of parameter sensitivity towards the DEWP framework.

4.4.1 Lookback. The length of lookback window determines the amount of historical information

input to the model, which is an important factor for prediction. If the lookback length is too

large, more redundant observations will be taken into the model and damage the performance.

If the lookback length is too small, there might be not enough observations to support accurate

forecasting. In this regard, we studied the prediction performances versus. lookback length: Figure 7

shows the experimental results on two datasets when other parameters are fixed. The experimental

result further verifies DEWP has a strong ability to make full use of recent observations for accurate

forecasting, even with a small lookback window (24).

4.4.2 Horizon. The length of forecast horizon determines the number of points to forecast. Fixing

lookback equals to 72 and the rest parameters, we evaluated the performances of DEWP with

forecast horizon varying from 6 to 48. Figure 8 demonstrate the experimental results on two

datasets. From the figures, we observed that larger forecast horizon makes larger prediction errors

(MAPE). This is quite intuitive because larger horizon brings up more uncertainty to predict and

increases prediction difficulty. As a result, long-term wind power forecasting leads to more errors

than short-term forecasting. We used forecasting 24 hours ahead and 48 hours ahead as the main

setting.

4.4.3 Stack. As introduced before, DEWP is a stack-by-stack architecture, which has many stacked

layers to make a generic and expressive model. In this regard, we studied the impacts of stacks
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Fig. 9. Parameter analysis towards stack on R80736 and R80721 datasets. For the choice of stack size, we

traverse from 1 to 8 to test the performances.
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Fig. 10. Parameter analysis towards layer size on R80736 and R80721 datasets. For the choice of layer size, we

traverse from 32 to 512 to test the performances.

on predictive performances by varying the number of stacks from 1 to 8. As Figure 9 shows, the

performance improves when the number of stacks increases, which indicates that shallow layers

have limitation in expressiveness, and deeper architectures can boost the forecasting to certain

degree.

4.4.4 Layer Size. The layer size of DEWP determines the number of neurons in hidden states of

each block. We studied the size of inner layers of DEWP by varying the size from 32 to 512, in order

to compare their performances. Figure 10 shows the experimental results with five layer sizes on

two datasets. We found that larger layer size usually brings a performance gain in prediction, but

the gain is not so significant. Moreover, larger layer size leads to more memory consumption and

training time; thus we need to balance efficiency and effectiveness for layer size setting.

4.4.5 Training Duration. We have collected the training time of our DEWP model under different

experimental settings, including short-term window power forecasting and long-term wind power

forecasting. Table 6 and Table 7 show the overall training time and training speed of short-term

and long-term wind power forecasting. From the tables, we notice that with the increase of length

of lookback windows, the training time is slightly enlarged, which signifies the larger input would

cause more computation resource. Moreover, we notice that with the increase of horizon length,

long-term forecasting requires more training time and the training speed is also slightly slower

than short-term forecasting, which is also acceptable.
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Table 6. Training time and training speed of Short-Term wind power forecasting. The training speed is by

calculating the training time of each iteration.

Lookback Training Time Training Speed

24 169.1245s 0.0160s/iter

72 187.9539s 0.0177s/iter

Table 7. Training time and training speed of Long-Term wind power forecasting. The training speed is by

calculating the training time of each iteration.

Lookback Training Time Training Speed

48 190.4898s 0.0180s/iter

72 205.8578s 0.0194s/iter

5 EXPERIMENTAL DISCUSSIONS
5.1 Time Complexity Analysis
DEWP is composed of several stacked layers, each of which is composed of one Variable Expansion

Block, one Time Expansion Block, and one Inference Block. For the Variable Expansion Block, we

adopt four 1-dimensional convolution layers. The complexity of convolution layers is O(𝑘) given
the kernel size of 𝑘 . As a result, operating 𝑛 times convolution for a given time series infers to

O(𝑛𝑘). Given the length of time series windows of length 𝐿, we have 𝑛 = [𝐿/𝑘] and we can equally

have the complexity of variation expansion block is O([𝐿/𝑘] × 𝑘) ≈ O(𝐿). For the time expansion

block, we adopt the fully-connected layers for both generating coefficients and calculating Fourier

series. Accordingly, the complexity of time expansion block is approximately equal to O(𝐿) which
is the complexity of linear layers. In addition, we adopt multi-head self-attention mechanisms

in the inference block and the complexity of self-attention computation comes to O(𝐿2) [39]. In
summary, the complexity of DEWP is O(𝐿) + O(𝐿) + O(𝐿2) ≈ O(𝐿2).

5.2 Deployment Plan
DEWP is developed to provide robust and accurate wind power forecasting for industrial partners.

We present Algorithm 1 that describes the details of training procedure of DEWP. Given the

evidence provided, our algorithm will be deployed on the backend to automatically predict the

wind power given the natural observations.

Under a new wind power forecasting situation, to begin with, all the collected historical data can

be used to initially train the DEWP base model. Then, DEWP can be re-trained frequently, such as

weekly or monthly, using new upcoming data to update the base model. During the real-world

deployment, several DEWPmodels with different setup (different seeds, different lookback windows,

different horizons) can be trained in order to report a robust ensembled results. After the backend

results are acquired, they can be shown up in the frontend for further analysis.

5.3 Managerial Implications
Generally, the electricity market is build upon two mechanisms. The first one is Day Ahead market,

where the bulk energy necessary to cover the demand for the next day is traded on the market. The

accurate wind power forecasting permits the settlement of electricity price ahead of time during

the bidding and the auction process. The second mechanism is ancillary service market, where the

gap between planned production and actual load is traded (due to the power plant failure or due

to intermittence of wind power generation). The accurate wind power forecasting can support a
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stable operation of the power grid by arranging power production in the ancillary service market.

It is very important for consumers and suppliers because they can imply the future electricity price

ahead of time and make strategies accordingly.

Algorithm 1: DEWP training procedure.

Input: Multi-variate natural observations X ∈ R𝑑∗𝑙 , Actual generated wind power data

y ∈ R𝑙 , where 𝑑 is the number of variables and 𝑙 is length of training series.

Output: Predicted wind power generation ŷ
1 while not converged do
2 Sample a lookback window data of length 𝐿 for 𝑏 times to make a batch X𝐵

𝑡−𝐿:𝑡 ∈ R
𝑏∗𝑑∗𝐿

;

3 Sample the corresponding label batch y𝐵
𝑡 :𝑡+𝐻 ∈ R

𝑏∗𝐻
with forecast horizon as 𝐻 ;

4 Initialize X(0)
𝑡−𝐿:𝑡 = X𝐵

𝑡−𝐿:𝑡 , Initialize ŷ𝑡 :𝑡+𝐻 = 0 ;

5 for ℓ ← 1 to𝑀 do
6 backcast X̂(ℓ )

𝑏
, forecast X̂(ℓ )

𝑓
= 𝑆𝑡𝑎𝑐𝑘𝑃𝑟𝑜𝑐𝑒𝑠𝑠 (X(ℓ )

𝑡−𝐿:𝑡 ) ;
7 ŷ(ℓ )

𝑓
= 𝐼𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒𝐵𝑙𝑜𝑐𝑘 (X̂(ℓ )

𝑓
) ;

8 X(ℓ+1)
𝑡−𝐿:𝑡 = X(ℓ )

𝑡−𝐿:𝑡 − X̂
(ℓ )
𝑏

;

9 ŷ𝑡 :𝑡+𝐻 = ŷ𝑡 :𝑡+𝐻 + ŷ(ℓ )𝑓 ;

10 end
11 Calculate loss L = 𝑀𝑒𝑎𝑛𝑆𝑞𝑢𝑎𝑟𝑒𝐸𝑟𝑟𝑜𝑟 (ŷ𝑡 :𝑡+𝐻 , y𝐵𝑡 :𝑡+𝐻 ) ;
12 Update parameters of stacks and inference blocks ;

13 end

5.4 Limitations and Future Work
In this section, we discuss the limitations of DEWP and also some future thoughts. The main

limitations lie in two aspects: First, DEWP is a deep-learning based model, which cannot take

real-time data as input. Thus, we need to retrain the models after a period of time, in order to

keep the data updated with the upcoming data. Second, the inference block applies self attention

mechanisms, which requires enough computational resources in a 𝑂 (𝑁 2) complexity. The two

limitations naturally inspire us to improve DEWP from these perspectives: (i) improve DEWP with

some real-time algorithms; (ii) improve the computation efficiency with other mechanisms (e.g.,

more efficient attention) in inference blocks.

6 RELATEDWORK
6.1 Time Series Forecasting
Time series forecasting is a classic problem that has been extensively studied for decades. At

the beginning, researchers developed simple statistical modeling methods, such as exponentially

weighted moving averages [21], auto-regressive moving averages (ARMA) [41]. However, these

statistical approaches only considered simple linear dependencies of future signals on historical

observations. Later, with the great successes of deep neural networks (DNNs), many DNN-based

methods have been proposed. One kind of methods is to use recurrent neural networks (RNN)

for time series forecasting [36]. As RNN’s variants, Long Short-Term Memory (LSTM) [12] or and

Gated Recurrent Unit (GRU) [4] become more popular for series data. Due to the effectiveness of

the self-attention mechanisms, Transformer [39] and its improved version like Informer [53] or
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Autoformer [44] have taken the place of RNN models many sequence modeling tasks [47]. Other

researchers also tried to apply convolution networks [1, 46], graph neural networks [47, 48] or pure

fully-connected networks [9, 10, 33, 49], showing much effectiveness in time series forecasting.

6.2 Wind Power Forecasting
As a special kind of time series task, Wind Power Forecasting (WPF) has received significant atten-

tion due to its practical value in industry and society. Based on the time-scale, WPF approaches can

be grouped into immediate-short-term (8 hours-ahead) forecasting, short-term (day-ahead) fore-

casting, long-term (multiple-days-ahead) forecasting [40]. There exist different kinds of approaches

for WPF [31]: (i) Physical approaches use physical characterisation to model wind turbines/farms

based on the numerical weather prediction (NWP) data [26]; (ii) Statistical methods construct linear

relationships between NWPs data and the generated power and use autoregressive processes to

model such relationships: for example, [52] proposes to use ARIMA (autoregressive integrated

moving average) together with least- squares support-vector machine (LS-SVM) to model the linear

component of WP time series; [43] proposes a non-parametric statistical model based on Markov

state transition process; (iii) Deep Learning-based methods apply deep neural networks into the

wind power forecasting: Some methods are based on recurrent neural network (RNN) such as

LSTM-EFG [51], Gated Recurrent Neural Network [24], HBO-LSTM [6]; Some methods are based

on convolution neural network (CNN) such as temporal convolution network [11], conformalized

temporal convolutional quantile regression networks [23] and an improved residual-based con-

volutional neural network [50]; Recently, the development of attention mechanisms has fostered

many attention-based methods such as dual-stage self-attention network [37], temporal fusion

transformers for wind prediction [42], etc. In addition, some methods are hybrid methods composed

of different networks, such as decomposition network and convolution network [29], recurrent

network and attention network [17, 32]. Though many mechanisms have been used, their sophisti-

cated architectures would potentially bring expensive computation consumption. And they don’t

construct the multi-view dependencies of future wind power on the historical observations which

hinders the prediction performances.

7 CONCLUSION
In this paper, we presented DEWP, a novel deep expansion learning framework for wind power

forecasting. Our model is built upon several tailored-designed blocks: variable expansion blocks

captured dependencies among variables and expanded input for feature extraction; time expansion

blocks captured dependencies in temporal patterns and expanded representations to backcast

and forecast; inference blocks carefully mapped expanded forecasts to the target wind power

values. All these blocks were coupled with doubly residue learning for better expansions. Extensive

experiments were conducted on real-world wind power datasets to prove the effectiveness of our

method. As a successful neural forecasting tool, our DEWP model will be deployed on a wind

power data mining platform, in order to provide energy generation prediction towards better plant

operation and management.
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