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ABSTRACT
Recent development of clinical Computed tomography (CT) tech-
nologies has led to research for novel CT systems that allow safer
and faster imaging, such as low-dose cardiac CT imaging via station-
ary CT. However, the complex data acquisition schemes in station-
ary CT often cause severe artifacts and noise in the resulted images;
this calls for the development of a new kind of image reconstruction
algorithms. Recent advancements in deep learning have shown
remarkable progress in medical image reconstruction, processing,
and analysis. In this paper, we propose a generative network with
dual-domain discriminators for low-dose CT reconstruction in a sta-
tionary CT system. The image-domain discriminator optimizes the
generation network by comparing the generated CT images with
the reference images, while the sinogram-domain discriminator
preserves the structure of the sinograms and suppresses the noise.
The network incorporates uncertainty to automatically adjust the
weights of a multi-term loss function, eliminating the need for the
manual tuning of hyperparameters in the loss function. The results
from our numerical experiments demonstrate the effectiveness of
our proposed reconstruction algorithm for low-dose imaging in
stationary CT.
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1 INTRODUCTION
Computed tomography (CT), utilizing X-ray radiation, provides
cross-sectional images of the body and is one of the most impor-
tant imaging modalities in clinical diagnosis [1]. One of the major
developments in CT primarily focuses on improving the tempo-
ral resolution of cardiac CT, because higher temporal resolution
in cardiac CT scans allows for more effective ”freezing” of heart
motion, resulting in clearer images with fewer artifacts. Currently,
the speed of cardiac computed tomography (CT) scans is not fast
enough for patients with very high or irregular heart rates, leading
to noticeable motion artifacts in cardiac images. These artifacts may
potentially impact the diagnostic accuracy of disease detection.

To achieve higher temporal resolution, researchers have pre-
viously investigated two strategies. The first strategy involves
attaining a faster gantry rotation speed [2]. Over the past decades,
significant improvements have been made in temporal resolution
with increasingly faster rotation speeds. Typically, CT scanners
with a single X-ray source can achieve scanning speeds of up to
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3 Hz. However, pushing for higher temporal resolution through
faster gantry rotation speed is approaching the current mechani-
cal limits. While rotating-gantry CT dominates in hospitals and
clinics today, they may not deliver ideal imaging performance in
challenging cases [3].

The second strategy involves obtaining multiple projections si-
multaneously through multi-source-detector imaging chains. It is
well-known that this strategy can enhance the temporal resolution
of CT scanners. Liu et al. improved the image quality in a simu-
lated five-source cone-beam micro-CT using the Feldkamp-type
reconstruction algorithm [4]. Cao et al. proposed a CT system
with a stationary-source-and-rotating-detector architecture, which
includes three stationary X-ray source arrays and smaller rotating
X-ray detectors [5]. Yueh et al. proposed a fixed-head CT prototype
with an array of three carbon nanotube X-ray sources [6].

Another significant improvement in CT is the reduction of radi-
ation dose. Computed tomography (CT) is an important medical
imaging modality for diagnostic purposes. However, patient expo-
sure to X-ray radiation during CT examinations increases the risk
of cancer [7, 8]. Therefore, there is a pressing need for low-dose CT
(LDCT) techniques. In CT scanning, the most common approach to
reducing radiation dose is by decreasing X-ray tube current (or volt-
age). However, images reconstructed by conventional algorithms
from LDCT always suffer from severe noise.

Stationary multi-source CT with multiple x-ray sources can im-
prove temporal resolution and reduce radiation dose. However, the
image reconstruction process is complex, and the reconstructed
images often suffer from severe artifacts and noise. In recent years,
deep learning methods have made significant advancements in
medical image reconstruction, segmentation, post-processing, and
analysis [9-11]. Using deep learning frameworks, low-dose CT de-
noising methods have achieved the state-of-the-art performance.
Chen et al. proposed a residual encoder-decoder CNN (RED-CNN)
that uses residual connections between the encoder and decoder to
suppress noise in LDCT images [12]. Yang et al. added a perceptual
loss to the Wasserstein generative adversarial network (WGAN)
and proposed the WGAN-VGG network model to reduce image
noise while preserving important image details [13]. Zhang et al.
proposed a framework utilizing independent computing and search-
ing units to achieve LDCT denoising [14]. Guo et al. proposed a
dual-domain denoising network with an added texture-aware mech-
anism [15].

In this paper, we employ deep learning methods to reconstruct
low-dose images generated by a stationary multi-source CT system.
We propose a generative network with dual-domain discriminators
(DUD-WGAN) for low-dose CT reconstruction of stationary-source
CT. Our neural network consists of a ”generator” network respon-
sible for CT image reconstruction and two ”discriminator” net-
works. The image-domain discriminator compares the generated
CT images with reference CT images to optimize the generation
network’s ability to produce high-quality images. The sinogram-
domain discriminator compares the forward-projected sinograms
of the generated CT images with reference sinograms. The internal
structure of the sinogram typically represents data characteristics
in the sinogram domain, but this structure can be disrupted by ran-
domly occurring noise during the imaging process. By designing
a discriminator based on the internal structure of the sinogram,

the structure in the sinogram domain can be effectively preserved.
Furthermore, uncertainty-based weights are introduced to auto-
matically adjust the hyperparameters of the loss function. Manual
adjustment of the weights for each loss term is challenging and
time-consuming, as the network’s performance strongly depends
on the relative weights between the loss terms. With automatic
adjustment, the optimal parameters can be easily obtained. Ex-
periments were conducted on a simulated dataset to demonstrate
the effectiveness of the proposed method through qualitative and
quantitative comparisons.

In the subsequent section, the overall architecture of the pro-
posed network is described. Then, we present the comprehensive
details regarding the datasets utilized in the experiments, the em-
ployed hyperparameters, and a comparative analysis of the results
obtained with other reference methods. In the final section, the
impact, limitations, future work, and conclusion of this study are
discussed.

2 METHODS
In this section, each component of the proposed DUD-WGAN net-
work is introduced. First, the generator part of the network is pre-
sented. Next, detailed information about the DUD-WGAN image-
domain discriminator and sinogram discriminator are provided.
Finally, the overall loss function used for training is presented.

The proposed DDU-WGAN aims to train an optimal generatorG∗

that can estimate NDCT (normal-dose CT) images from stationary
source LDCT images, as shown in Equation (1):

�∗ (�!� ) ≈ �#� , , �!� = ��% (%!� ) (1)

Here, �!� represents the stationary source low-dose CT image,
�#� represents the stationary source normal-dose CT image, and
%!� represents the measured low-dose projection. FBP refers to
the filtered back projection algorithm.

2.1 Overview of DUD-WGAN
The overall architecture is shown in Figure 1. The proposed DUD-
WGAN network is optimized within the Wasserstein Generative
Adversarial Network (WGAN) framework [16], which is one of
the state-of-the-art frameworks capable of effectively reducing
blurriness caused by the Mean Squared Error (MSE) loss. In this
study, the proposed framework consists of three components: the
generator network � , the image-domain discriminator network
��"� , and the sinogram-domain discriminator �(�# . The goal of
� is to denoise and de-artifact CT images that contain artifacts and
noise, resulting in high-quality CT images. ��"� inputs images
from G and real images from the ground truth dataset, while �(�#

inputs sinograms from� and real sinograms from the ground truth
dataset, both aiming to discriminate between real and generated
inputs. The introduction of the discriminators helps improve the
texture of reconstructed images. All the three networks undergo
optimization simultaneously during the training process.

Unlike conventional Generative Adversarial Networks (GAN)
[17], the WGAN framework utilizes the Wasserstein distance in-
stead of the logarithmic term in the loss function, which enhances
training stability. The objective function of the WGAN framework
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Figure 1: Architecture of the proposed DUD-WGAN. The generator generates denoised CT images, while two separate branches
with discriminators operate in the image and sinogram domains. Where LDSS stands for low-dose stationary sources CT,
IDG-NET refers to the image-domain generator network, ID-NET represents the image-domain discriminator network, and
SD-net denotes the sinogram-domain discriminator network.
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where �!� represents the stationary-source low-dose CT image,
�#� represents the stationary-source normal-dose CT image, (#�

represents the sinogram obtained by performing the forward pro-
jection (FP) on �#� , respectively. � (0) denotes the expectation of
0, and ∇(·) represents the gradient. �̂ represents uniform sampling
along lines connecting corresponding points between the generated
image and the original image. (̂ represents uniform sampling along
lines connecting corresponding points between the generated sino-
gram data and the original sinogram data. _ is a parameter used to
balance the Wasserstein distance and the gradient penalty.

2.2 Generator
In this paper,the ResUNet [18] was utilized as the network generator.
ResUNet consists of operations such as Conv, DeConv, Resblock,
and Concat. The kernel size for all convolutions and deconvolutions
is set to 3×3. The Resblock includes two consecutive convolutions
and a residual connection. Leaky ReLU [19] is used as the activation
function. The stride for both downsampling and upsampling is set
to 2. During the downsampling process, the number of feature
channels increases from 32 to 256. During the upsampling process,
it decreases from 256 to 1.

2.3 Dual-domain Discriminators
The discriminator network D takes inputs from G or the ground
truth dataset and attempts to classify the authenticity of the in-
put data. DUD-WGAN consists of two discriminators, namely the
image-domain discriminator and the sinogram discriminator, which
have identical structures. The discriminator network comprises
six convolutional layers with 64, 64, 128, 128, 256, and 256 filters,
followed by two fully connected layers with 1024 and 1 neurons,
respectively. Leaky ReLU activation function with a negative slope
of 0.2 is applied after each layer. All convolutional layers employ
3×3 kernel size and zero-padding for two-dimensional convolutions.
The stride for each layer is set to two.

2.4 Loss Functions for Generator
In this subsection, we introduce different objective functions used
for reducing artifacts and noise. We employ a composite objective
function L to optimize DUD-GAN. The functions used are shown
in Equation 3:

! =
1

2(f1)2
!,��# + 1

2(f2)2
!"! + ;>6 (f1f2f3f4f5) (3)

Wheref: (: = 1, . . . , 5) represents trainable hyperparameters that
are automatically adjusted through a neural network. We used
uncertainty [20] as a mean of automatic weight learning, enabling
us to learn the relative weights of each loss term in a principled
and informed manner. This uncertainty-weighted loss is smooth,
differentiable, and well-structured, preventing the task weights
from converging to zero.
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Mean Squared Error (MSE) [21, 22] is a popular choice for denois-
ing and artifact removal. However, it can lead to over-smoothed
images [23]. On the other hand, utilizing Multi-Scale Structural
Similarity (MS-SSIM) [24] helps preserve the global structural simi-
larity between images. In the image domain, we employ a mixed
loss function of MSE and MS-SSIM, while in the sinogram domain,
we only use the MSE loss to preserve the pixel accuracy in the
sinogram domain. LML refers to the multi-loss that includes both
the image domain and sinogram domain.

!"! = 1
2(f3 )2

‖� (�!� ) , �#� ‖2 + 1
2(f4 )2

"(_((�" (� (�!� ) , �#� )
+ 1
2(f5 )2

‖(%'� , (#� ‖2
(4)

where (%'� is obtained from� (�!� ) using forward projection oper-
ation. (#� is obtained from �#� via forward projection operation
| | · | |2 is the MSE term.

The purpose of the adversarial loss is to make the generator
produce images that the discriminator network cannot distinguish
from real ones. LWGAN represents the adversarial loss of the DUD-
WGAN network.

!,��# = −��!� (��"� (� (�!� )))−�(!� (�(�# (� (�!� ))) (5)

2.5 Stationary-Sources CT System
We employed the SSRD-CT system as described by Cao et al [5]. It
consists of three fixed distributed X-ray sources and three rotating
detectors. The three identical source-detector chains are symmet-
rically positioned around an object. It has parameters similar to
most commercial CT scanners, with a source-to-isocenter distance
(SID) of 540mm and a source-to-detector distance (SDD) of 950mm.
The sinogram data generated by this system differs from sinograms
produced by conventional CT, as it lacks data in the range of [0,
81.4◦], [81.4°, 120°] and [201.4°, 240°] during a 360° scan. Conse-
quently, CT images reconstructed using the FBP algorithm exhibit
artifacts and noise.

3 EXPERIMENTAL DESIGN AND RESULTS
3.1 Datasets
To train and evaluate the proposed network, we utilized the pub-
licly available ”2016 NIH-AAPM-Mayo Clinic Low Dose CT Grand
Challenge” dataset [9]. This dataset consists of real clinical data,
including normal-dose abdominal CT images from 10 anonymous
patients and the corresponding simulated quarter-dose CT images.

To simulate data acquired from a stationary x-ray sources CT
system, we performed forward projection on the quarter-dose CT
images. The distances from source to detector and from source to
rotation center were set to 950.00 mm and 540.00 mm, respectively.
There were 888 detector elements, and each had a dimension of 1
mm. The forward projections were collected from 720 views with
a 0.5-degree angular interval in this study. The start angle is 0
degrees, and the end angle is 359.5 degrees. Only projections in
[0, 81.4◦], [120◦, 201.4◦], and [240◦, 321.4◦] are needed for the
SSRD-CT architecture.

Table 1: Quantitative comparison of the proposed DUD-
WGAN with other reference methods (Mean ± SD).

Method PSNR SSIM

FBP 18.7755±1.734 0.6622±0.0477
RED-CNN 27.8104±1.0351 0.8322±0.0249
WGAN-VGG 26.6742±1.5310 0.8367±0.0228
DUD-WGAN 29.5319±1.0927 0.8511±0.0245

3.2 Training and Implementation Details
The DUD-WGAN method was implemented using PyTorch and
trained/validated on a workstation equipped with an NVIDIA A100
80GB PCIe GPU. During the end-to-end training process, the Adam
algorithm was used to optimize all parameters. The learning rate
for Adam was set to U = 1 × 10−3, and the two exponential de-
cay rates were set to V1 = 0.5 and V2 = 0.9. The hyperparameters
f: (: = 1, . . . , 5) are automatically learned during the training
process.

4 RESULTS
In order to evaluate the performance of the proposed method, it is
compared with several state-of-the-art methods., namely RED-CNN
andWGAN-VGG. RED-CNN is a CNN-based method, whileWGAN-
VGG is a GAN-based method. To visualize the reconstruction
results of different algorithms, we present a representative slice of
case L096 from the Mayo dataset in Figure 2. The display window
was set to [-160, 240]. As shown in Figure 2, there are noticeable
artifacts in the FBP image. The image generated by RED-CNN is
overly smooth and lacks texture information. Compared to RED-
CNN, WGAN-VGG improves the visual quality of the images. Our
proposed DUD-WGAN achieves the best image quality. Figure
3 shows the absolute difference images, where brighter shades
indicate larger errors. Table 1 provides a quantitative analysis of
different methods. From Table 1, it can be observed that DUD-
WGAN outperforms other methods, achieving the highest PSNR
and SSIM.

5 CONCLUSION
In conclusion, we proposed a generative network with dual-domain
discriminators for low-dose stationary sources CT reconstruction.
The network consists of an image domain generator and two
discriminators—one for the image domain and another for the sino-
gram domain. Through the incorporation of the sinogram discrimi-
nator, a better differentiation between the generated images and the
ground truth images is achieved from the perspective of sinograms,
thereby assisting in the denoising task by capturing sinogram-level
details. Additionally, uncertainty is utilized to automatically adjust
the weights of the composite loss function. Through this automatic
adjustment, improved and optimized results can be readily obtained.
Experimental results demonstrate that the proposed method effec-
tively reconstructs low-dose stationary-source CT images with
good artifact reduction and denoising capabilities.
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Figure 2: Results of different methods on the Mayo data. Zoomed ROI of the red rectangle is shown below the full-size one. (A)
NDCT, (B) FBP, (C) RED-CNN, (D) DUD-WGAN. The display window is [−140, 260] HU.

Figure 3: Absolute difference images relative to the NDCT image. (A) FBP, (B) RED-CNN, (C)WGAN-VGG, (D) DUD-WGAN. The
display window is [0,200] HU.
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