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ABSTRACT
Screening for breast cancer using mammograms and ultrasound
images is an essential but time-consuming and expensive process
that requires a trained clinician’s interpretation. To address this
issue, machine learning (ML) methods have been developed in
recent years as clinical decision-support tools. However, most of
these algorithms face challenges related to computational feasibility,
reliability, and interpretability. We present a new approach for
feature extraction in mammograms and ultrasound images using
topological data analysis (TDA) methods. The proposed method
uses persistent homology to capture distinct topological patterns in
healthy and unhealthy patient images, which are then transformed
into powerful feature vectors. These vectors are combined with
standard ML techniques to create the Topo-BRCA model, which
provides competitive results with state-of-the-art deep learning
(DL) models in several benchmark datasets. Unlike most DL models,
Topo-BRCA does not require data augmentation or preprocessing
and is effective for both small and large datasets. Additionally, the
topological feature vectors can easily be integrated into future DL
models to enhance their performance further.
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1 INTRODUCTION
Breast cancer is a global health problemwith a significant impact on
women’s health, as it is the most prevalent cancer and leads to more
disability-adjusted life years (DALYs) lost than any other type of
cancer [39]. In 2020 alone, 2.3 million women were diagnosed with
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breast cancer, resulting in 685,000 deaths worldwide. Additionally,
7.8 million women who were previously diagnosed with breast
cancer were alive at the end of 2020. Early diagnosis is crucial for
the successful treatment of breast cancer, and mammography is a
commonly used screening method to detect it [12]. However, due
to limitations such as a small dataset, long pre-processing times,
and the lack of interpretability in decision-making, the existing
machine learning (ML) algorithms for breast cancer detection have
not been implemented at the clinical stage.

To address this challenge, we propose using topological data
analysis (TDA) techniques. TDA has been effective in feature ex-
traction and can reveal hidden patterns in data. By identifying
relevant topological features and combining them with ML mod-
els, we can create more reliable and transparent models for breast
cancer detection. Our proposed approach aims to improve early
diagnosis, which is crucial for successful treatment. In 2020 alone,
2.3 million women were diagnosed with breast cancer, leading to
685,000 deaths worldwide. Our work seeks to contribute to reducing
these statistics and improving women’s health globally.

Our proposed method uses TDA to identify distinct topological
patterns in breast ultrasound and mammogram images that distin-
guish healthy and cancerous images (Figure 4 and 5). The main tool
used in TDA, persistent homology, converts these patterns into
highly effective feature vectors that, when paired with suitable ML
models, produce outstanding results in benchmark datasets (See Ta-
ble 2). Our model is computationally efficient and robust, does not
require any data augmentation or pre-processing, and can easily be
combined with deep learning methods to boost their performance.

1.1 Our contributions:
We study a novel approach to breast cancer diagnosis by applying
the latest topological data analysis methods.

• By studying the evolution of topological patterns in mam-
mogram and ultrasound images, we observe that normal
and abnormal images produce distinct topological patterns
(Figure 4 and 5).

• With our unique topological feature extraction method, our
computationally feasible model gives competitive results in
detecting breast cancer for mammograms, it falls behind for
ultrasound images.

• With our powerful topological descriptors, our proposed
model is highly explainable and interpretable (Section 4.2).

• Our topological feature vectors provide a key ingredient for
any future ML and DL models in the domain to boost their
performance and improve robustness.
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2 RELATEDWORK
2.1 ML in Breast Cancer Detection
In recent years there has been significant enhancement in ML tools
and they have been widely employed in breast cancer image clas-
sification. In [43] they work on Deep Learning assisted Efficient
Adaboost Algorithm (DLA-EABA) for breast cancer detection with
advanced computational techniques. This study starts with examin-
ing the CNN-based transfer learning to characterize breast masses
for different diagnostic, predictive tasks or prognostic or in several
imaging modalities, such as Magnetic Resonance Imaging (MRI),
Ultrasound (US), digital breast tomosynthesis and mammography.
The deep learning framework contains several convolutional layers,
LSTM, Max-pooling layers.

On the other hand, in [2], the authors proposed the Full reso-
lution Convolutional Network (FrCN) with a CAD framework for
X-ray mammograms. To detect the mass as malignant or benign
and classify it. The publicly accessible and annotated INbreast data-
base was used for the calculation of the suggested integrated CAD
framework in terms of accuracy of classification, identification, and
segmentation.

Similarly, in [9] they study the consequence of transfer learning
and by experimentation establish the fine-tuning tactic to imple-
ment when working out a CNNmodel. They fine-tuned some of the
recent, most powerful CNNs and achieved better results compared
to other state-of-the-art methods which classified the same public
datasets. After pre-processing and normalizing all the obtained Re-
gions of Interest (ROIs) from the full mammograms, they combined
all the datasets to create one large dataset of images and applied
it to fine-tune the CNNs. In [27] new CAD system is proposed for
classifying benign and malignant mass tumors in breast mammog-
raphy images. The deep convolutional neural network (DCNN)
architecture named AlexNet is used and is fine-tuned to classify
two classes. The last fully connected (fc) layer is connected to the
support vector machine (SVM) classifier to obtain better accuracy
on publicly available datasets (1) the digital database for screening
mammography (DDSM); and (2) the Curated Breast Imaging Subset
of DDSM (CBIS-DDSM).

There are several other works on breast cancer diagnosis with
deep learning methods. For a thorough review and comparison of
these approaches, see excellent surveys [34], [17], [31]

2.2 TDA in Image Analysis
Persistent homology (PH) has been quite effective for pattern recog-
nition in image and shape analysis in the past two decades. In
medical image analysis, PH produced power results in cell develop-
ment [22], tumor detection [10], neuronal morphology [19], brain
artery trees [5], fMRI data [30], and genomic data [6].

See the excellent survey [36] for a thorough review of TDA
methods in biomedicine. For a collection of TDA applications in
several domains, see TDA Applications Library [16]. For a nice
introduction to applications of TDA in biology, see the book on the
subject [26].

3 BACKGROUND
3.1 Persistent Homology
Persistent homology is a mathematical concept and computational
tool used in topological data analysis (TDA) to analyze and under-
stand the shape and structure of complex data sets. In general, it
can be applied to various forms data, including point clouds, graphs,
and images. PH allows us to systematically assess the evolution of
various hidden patterns in the data as we vary a scale parameter [8].
While PH is a very effective data mining method for many data
types (e.g., point clouds, networks), here we only summarize PH
setup in image data case, in particular cubical persistence. For details
of other forms of data, see [13].

Figure 1: In the left, we have original grayscale mammogram
imageX. Next three imagesX0,X50 andX100 are binary images
in the filtration where in X𝑘 , all pixels with color value ≤ 𝑘

are activated (black) where all others are not activated (white).
𝛽0 (X𝑘 ) and 𝛽1 (X𝑘 ) represent the number of components and
loops in X𝑘 respectively.

In practice, PH machinery is a 3-step process. For a given image
X (say 𝑟 × 𝑠 resolution), the first step is to create a nested sequence
of binary images (aka cubical complexes).To create such sequence,
one can use grayscale (or other color channels) values 𝛾𝑖 𝑗 of each
pixel Δ𝑖 𝑗 ⊂ X . In particular, for a sequence of grayscale values
(𝑡1 < 𝑡2 < · · · < 𝑡𝑁 ), one obtains a nested sequence of binary
images X1 ⊂ X2 ⊂ · · · ⊂ X𝑁 such that X𝑛 = {Δ𝑖 𝑗 ⊂ X | 𝛾𝑖 𝑗 ≤ 𝑡𝑛}
(See Figure 1). In other words, we start with empty 𝑟 × 𝑠 image, and
start activating (coloring black) pixels when their grayscale value
reach the given threshold. This is called sublevel filtration for X
with respect to given function (grayscale in this case). Then in the
second step, PH captures the evolution of topological features in
this sequence, and records as persistence diagram (PD). In particular,
if a topological feature 𝜎 first appears in X𝑚 and disappears in X𝑛

with 1 ≤ 𝑚 < 𝑛 ≤ 𝑁 , we call 𝑏𝜎 = 𝑡𝑚 birth time and 𝑑𝜎 = 𝑡𝑛 the
death time of the topological feature 𝜎 . Then, PD is the collection
of all such 2-tuples 𝑃𝐷𝑘 (X) = {(𝑏𝜎 , 𝑑𝜎 )} where 𝑘 represent the
dimension of the topological features. The difference 𝑑𝜎 − 𝑏𝜎 is
called lifespan of the topological feature.

PDs being collection of 2-tuples are not very practical to be used
with ML tools. Instead, a common way is to convert PD information
into a vector or a function, called vectorization [13], which is the
final step of PH process. A common function for this purpose is
the Betti function, which basically keeps track of the number of
"alive" topological features at the given threshold. In particular, the
Betti function is a step function with 𝛽0 (𝑡𝑛) the count of connected
components in the binary image X𝑛 , and 𝛽1 (𝑡𝑛) the number of
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Figure 2: Sublevel filtration. For an image X of 5 × 5 size with
the given pixel values, the sublevel filtration is the sequence
of binary images X1 ⊂ · · · ⊂ X5.

holes (loops) in X𝑛 . In ML applications, Betti functions are usually
taken as a vector ®𝛽𝑘 of size 𝑁 with entries 𝛽 (𝑡𝑛) for 1 ≤ 𝑛 ≤ 𝑁 . i.e.,
−→
𝛽𝑘 (X) = [𝛽𝑘 (𝑡1) 𝛽𝑘 (𝑡2) 𝛽𝑘 (𝑡3) . . . 𝛽𝑘 (𝑡𝑁 )]. e.g., for the image X
in Figure 2, we have

−→
𝛽0 (X) = [3 2 1 1 1] and −→

𝛽1 (X) = [0 2 1 2 0],
e.g., 𝛽0 (1) = 3 is the count of components in X1 and 𝛽1 (4) =

2 is the count of holes (loops) in X4. There are several ways to
convert PDs into a vector, e.g, Persistence landscapes, Persistence
Images, Silhouettes [13], but to keep the model interpretable, we
specifically chose to use Betti functions in this work as others are
not easy to interpret.

4 BREAST CANCER DIAGNOSIS WITH TDA
4.1 Topo-BRCA for Breast Cancer Detection
In the flowchart (Figure 3), we summarized our machine learning
model. For a given breast cancer ultrasound or mammogram image
X, we first get its grayscale image. Then, by constructing a sub-
level filtration with a grayscale function, we obtain the persistence
diagrams PD0 (X) and PD1 (X). As explained in Section 3.1, the
filtration is nothing but a sequence of black-white figures where
the dark points represent the pixels with a grayscale value less
than the given threshold (Figure 2). Then, the persistence diagram
PD0 (X) is the summary of 0-dimensional topological features (con-
nected components in the figures in the sequence), and PD1 (X) s
the summary of 1-dimensional topological features (loops in the
figures in the sequence). Then, we induce functions (topological
summaries) out of these persistence diagrams to use ML tools more
effectively.

In this paper, we mainly used one type of topological summaries
to convert the induced persistence diagrams from breast cancer
ultrasound or mammogram images to topological fingerprints, i.e.,
induced feature vectors/functions as a unique identifier of an input
image. These vectorization methods with different parameters gave
us two topological fingerprints for each input image, i.e., Betti-0
and Betti-1 functions. There are other vectorization methods to be
used in this setting (3.1), but to keep the discussion focused; we
only used these two topological fingerprints. For details of Betti
functions.

We employed the Random Forest and XGBoost algorithms in the
machine-learning portion of our model. All the 200 features can
currently be used as input for these methods. However, initially,
with PCA, we tried to perform dimensionality reduction, but our
models did not perform well. We used feature significance values
generated by the models to make feature selection. One can per-
form this process manually by looking into the Betti confidence
bands. However, to fully automate the process, feature selection

from the model is used to choose the most important characteris-
tics and remove collinearity between features, which increases the
performance of the ML model.

The next step is to apply ML tools to these topological finger-
prints. For each dataset, we applied different ML methods like
Random Forest and XGBoost to these topological fingerprints of
the chest X-ray images in the dataset for the classification prob-
lem (Benign/Malignant classes). The feature selection helps a lot
in fine-tuning the models as it reduces the computation time. In
Tables 2, 3, and 4, we give the performance of several variations of
our methods obtained by different ML models on our benchmark
datasets.

4.2 Explainability and Interpretability of
Topological Fingerprints

As mentioned in the introduction, one of the main advantages of
our model is explainability and interpretability. In Figure 4 and
5, we illustrate the topological patterns created by each class in
Breast Mammogram and Ultrasound images. In these figures, we
give median curves and 40% confidence bands of each class for the
corresponding dataset. To obtain our median curves and confidence
bands we used a common method called nonparametric confidence
band for the median [15].

In Figure 4 and 5, we observe that our topological feature vec-
tors (Betti-0 and Betti-1 vectors) successfully distinguish different
classes in Mammogram and Ultrasound images. As mentioned be-
fore while other vectorization methods for PH are hard to interpret,
we use Betti functions as vectorization methods to keep the model
interpretable. Recall that in grayscale, the value 0 represents black,
and 255 represents white. In our experiments, we renormalized
[0, 255] interval to [0, 100], hence we get 100-dimensional Betti-0
and Betti-1 vectors. In the figures, 𝑥-axis represent the grayscale
value in [0, 100] (0 is black, 100 is white). For Betti-0 curves, the
𝑦-axis represents the count of components, and for Betti-1 curves,
𝑦-axis represents the count of holes/loops. Hence, for an ultra-
sound image X, for grayscale value 𝑡 ∈ [0, 100], 𝛽0 (𝑡) represent the
number of components in the binary image X𝑡 (See Figure 2). For
example, in Figure 5-left, we observe that median curves and confi-
dence bands for two classes are very different around 𝑥 = 10 and
𝑥 = 40, e.g. 𝛽0 (40) ∼ 75 for benign and 𝛽0 (40) ∼ 125 for malignant.
This interprets benign ultrasound images at 𝑥 = 40 (unnormalized
grayscale value 100) have much more components than the benign
class. In other words, benign binary images X40 are more spread
out (disconnected) than malignant ones. Similarly, in Figure 4-right,
we have Betti-1 curves for a mammogram (CC view) images. For
benign class 𝛽1 (50) ∼ 350 while for malignant class 𝛽1 (50) ∼ 200.
This means benign mammogram images have much more holes
(loops) than the malignant ones at 𝑥 = 50 (unnormalized grayscale
value 125), i.e., benign binary images X50 have more holes than the
malignant ones (Figure 2).

FromML perspective, these figures prove how strong our feature
vectors are. For any image, we get 100-dimensional Betti-0, and
Betti-1 vectors. The thinness/thickness of the confidence bands
represents how well the given class forms a cluster in R100. In our
case, one can consider that the median curves represent the center
of the cluster for each class, and the feature vector of each image
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Figure 3: Flowchart of our Topo-BRCAmodel: For any input image. we get their persistence diagrams by using these pixel values
and obtain their topological features (Betti curves). Along with other features, we employ standard ML tools (RF, XGBoost),
which provide highly accurate results for breast cancer diagnosis.

(a) Betti-0 (CC) (b) Betti-1 (CC)

Figure 4: Breast Mammogram: In the figures above, we give
the median curves and 40% confidence bands of our topolog-
ical feature vectors (Betti functions) for each class in CBIS-
DDSM datasets. 𝑥-axis represents grayscale values (renormal-
ized from [0,255] to [0,100]) and 𝑦-axis represents count of
components (Betti-0) or count of loops (Betti-1).

in that class lands somewhere nearby. The separation of median
curves and confidence bands represents the distance between the
clusters in the latent (feature) space.

(a) Betti-0 all (b) Betti-1 all

Figure 5: Breast Ultrasound: In the figures above, we give the
median curves and 40% confidence bands of our topological
feature vectors (Betti functions) for each class in Breast Ul-
trasound datasets. 𝑥-axis represents grayscale values (renor-
malized from [0,255] to [0,100]) and 𝑦-axis represents count
of components (Betti-0) or count of loops (Betti-1).

5 EXPERIMENTS
5.1 Datasets
BUSI Datasetwas compiled in 2018 from Baheya Hospital for Early
Detection and Treatment of Women’s Cancer in Cairo, Egypt is
publicly available [3]. As one of the few publicly available datasets
for breast ultrasounds, the dataset serves as benchmark dataset for
different ML models in the domain (Table 4).
CBIS-DDSM is a revised and standardized edition of DDSM
dataset [21]. It involves a subset of the DDSM data selected and
curated by a trained mammographer, revised mass segmentation
and bounding boxes, and pathologic diagnosis for training data,
configured similarly to modern computer vision data sets. It serves
as a benchmark dataset for ML models for mammograms (Table 2).
The statistical details of the datasets are given in Table 1.

Table 1: Summary Statistics of Benchmark datasets for Breast
Cancer images

Dataset Total Benign Malignant Normal

BUSI [3] 780 210 437 133
CBIS-DDSM [21] 1696 912 784 0

5.2 Experimental Setup
We give the details of our datasets in 1. Note that the majority of
datasets do not have a predefined train-test split. This is why many
models used their train:test split, as it can be seen from our accuracy
tables (Tables 2,3 and 4). We used 5 and 10-fold cross-validation in
this study. To ensure a fair comparison, the basic details of each
method are provided in the accuracy tables. The study did not
use data augmentation as the topological features extracted are
invariant under rotations or flips and perform well on small and
unbalanced datasets.

We have used different configurations of classes for classification.
For the ultrasound image dataset, we have done 3-class, as well
as binary classification. We have used only binary classification
(benign vs. malignant) for theMammogram dataset as they provided
only two classes.
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Wefirst obtained each image’s topological fingerprints (TFs), gen-
erated 200 features, and used feature selection to select the 50 most
important features for the model. This is achieved using importance
weights from the model trained with the default configuration. We
selected 50 features with the highest importance values. We used
select_from_model method from the python-sklearn package [25]
to obtain these features. Then, we obtained our accuracy results
by applying ML models (RF, KNN, XGBoost, QDA) and fine-tuning
these models to these TFs. In the tables below, we only reported our
best results. In Table 5, we give the performances of all variations of
our models with different combinations of topological fingerprints
and ML models.

In this expriment, for 500 tiles, it takes < 8 minutes for 200
feature extraction on the system with Intel Core i5-9600K and
16GB Memory (No GPU). We used Giotto-TDA [37] to obtain
persistence diagrams and Betti functions. The code is given at
https://anonymous.4open.science/r/TOPO-BRCA-F415.

5.3 Results
We give the comparison of the performance of our Topo-BRCA
model with state-of-the-art methods in Tables 2, 3,4. In Table 2, we
observe that our topological approach gives highly accurate results
for mammogram images by outperforming most of the SOTA DL
models. Considering that we use no data augmentation or pre-
processing, this high performance in such a small dataset show the
robustness of our model. It also indicates that topological feature
vectors can be very helpful to obtain a reliable clinical-decision
support method for mammogram images.

Table 2: Accuracy results for tumor diagnosis from mam-
mogram images on CBIS-DDSM dataset. Note that train-test
splits are different.

Mammogram Results
Method Ben:Mal Train:Test Sen Spec Acc AUC
DensetNet [7] 912:784 80:20 - - 87.5 93.0
Unet [38] 912:784 5 fold CV - - 77.6 86.2
VGG [35] 912:784 85:15 86.1 80.1 - 91.0
InceptionV3 [1] 912:784 5 fold CV - 98.0 88.8 -
MVFF [24] 912:784 78:22 81.8 72.0 77.6 84.0
DCNN [28] 912:784 5 fold CV 86.2 87.7 87.2 94.0
FusionMR8 [42] 912:784 70:30 89.9 97.9 94.3 97.0
2D V-net [29] 912:784 80:20 95.0 - 97.0 98.0
Topo-BRCA 912:784 5 fold CV 94.4 94.4 94.3 97.3

Table 3: Accuracy results for tumor diagnosis from ultra-
sound images on BUSI dataset. Note that train-test splits are
different.

Ultrasound Binary Results
Method Ben:Mal Train:Test Sen Spec Acc AUC
SAC [18] 109:54 10 fold CV 88.2 78.7 - -
BVA Net [40] 210:437 90:10 75.8 88.3 84.3 88.9
MCWT [32] 210:437 10 fold CV 94.3 97.7 96.6 -
Topo-BRCA 210:437 10 fold CV 79.3 77.2 79.3 84.8

On the other hand, our experiments show that topological ap-
proach does not work very well in ultrasound images (Table 3 and

Table 4: Accuracy results for tumor diagnosis from ultra-
sound images on BUSI dataset for three classes. Note that
train-test splits are different.

Ultrasound 3-class Results
Method Ben:Mal:Nor Train:Test Sen Spec Acc AUC
SAC [18] 210:437:133 10-Fold CV 82.5 62.8 - -
ViT [14] 210:437:133 85:15 - - 83.0 92.0
BGWO [20] 210:437:133 10-Fold CV - - 84.9 97.0
ResNet-18 [11] 210:437:133 10-Fold CV - - 88.9 -
BUViTNet [4] 210:437:133 90:10 - - 91.3 93.7
HAHCC [33] 130:130:130 5-Fold CV - 92.7 91.7 92.3
CNN [23] 210:437:133 80:20 83.7 90.3 88.4 90.5
RMTL-Net [41] 210:437:133 5-Fold CV 93.3 86.1 91.0 96.7
Topo-BRCA 210:437:133 5 Fold CV 68.6 79.2 68.4 77.5

4). One of the possible reasons for this performance is the mixed
resolution images in BUSI dataset [3]. The values of our Betti func-
tions depends on the resolution, and mixed size images can produce
highly different Betti functions for the same class.

5.3.1 Ablation Study. In our ablation study, we study the relative
performance of our topological feature vectors (Betti functions) in
different dimensions (Table 5). Our results indicate that combining
all dimensions improves the results in general, and

Table 5: Comparison of the performances of different topo-
logical feature vectors for BUSI dataset. Accuracy results are
given in %.

Ablation Study
Input Features 3 Class B vs M N vs M B vs N
100 Betti-0 63.3 74.6 78.1 79.4
100 Betti-1 65.6 74.0 80.7 81.4
200 Betti Features 68.1 77.2 79.8 82.4

6 CONCLUSION
Breast cancer is the most prevalent type of cancer in women next to
lung cancer, and early detection significantly increases the survival
rate. Screening for breast cancer using mammograms and ultra-
sound images is an essential but time-consuming and expensive
process that requires a trained clinician’s interpretation. In this
work, we studied a novel approach to this problem by applying the
latest topological data analysis tools. Our computationally efficient
model has yielded highly competitive results when compared to
the latest deep learning models in mammogram screening. It’s note-
worthy, however, that similar methods don’t yield the same success
when applied to ultrasound images. Considering that mammograms
remain the primary mode of breast cancer screening, we anticipate
that our topological features will emerge as invaluable resources in
the years of research and study ahead. Furthermore, when fused
with state-of-the-art deep learning models, our distinctive topo-
logical feature vectors have the potential to play a pivotal role in
the development of exceptionally precise and robust topological
deep learning models, thus addressing this crucial necessity more
effectively. Moving forward, our forthcoming studies will focus on
this specific direction.
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