Check for
Updates

Improvements Based on Computed Errors

EpiTor:

The paper “On the Computation of Least Squares Polyno-
mials,”” by Morton Goldberg [Comm. ACM 10, 1 (Jan. 1967), 56—
57] contains an interesting idea about the possibility of improving
a computed least squares polynomial to obtain a better approxi-
mation to the true least squares polynomial, the difference be-
tween the two being due to errors accumulated during digital com-
putations. The procedure suggested may be summarized as fol-
lows: a computed polynomial p(z) fitted to the set of points S =
{(@n, ya):n=1, -+, N} can be improved by modifying p(z)
top(z) + 3,1i.e.,byaddingd = 1/N > ¥_; (ya—p(z,)) to the zeroth
degree coefficient.

Unfortunately the better approximation to the true polynomial
which was promised seems to me difficult to obtain by this method
on a digital computer. The numerical example in Table I shows
that the method can lead to an approximation to the true poly-
nomial that is worse than p(z). The problem solved is the follow-
ing: the fitting of the polynomial of zero degree, in the least
squares sense, to the data y, . The true polynomial to be found is
P(z) = b and the “normal’’ equation to be solved is

N
Zly,. — Nb = 0.

The computations are performed with nonrounding floating point
operations (operation symbols given in cireles), a mantissa of only
one decimal digit, and no limitation on the length of the exponent,
With the exceptions of the base and the word length, the arith-
metic used is the nonrounding normalized floating point arith-
metic of the IBM 7094 computer, and operations are performed
in two registers working in the same way as the AC and the MQ

TasLe I

yn © by 0. —10. 10. —5.

(Y © b1)* 0. 100. 100. 20.

4 4
3 e © b = 200. 5= 3 @@ © b)P = ~1.

Yn © b2 1. —9. 10. —4.

(y» © bs)? 1. 80. 100. 10.

4
S @©(ya © bs)? = 100.
n=1

Volume 10 / Number 11 / November, 1967

register of this computer. In Table I the data and the results of
the operations are machine numbers; furthermore, in Table I
we assign to a? the meaning ¢ ® a and to »_~_, ®a, the meaning
of the floating point summation, performed in the order (- -- ((a1 @
az) ® as) -+ Dag).

The first result, b; = 5., 7s the best approximation to the frue
polynomial, being better than the “improved’ result b: = 4.
What has apparently been improved in this example is the com-
puted sum of the square deviations (a satisfying result if we solve
such problems by minimum direct search!). However it has been
achieved at the expense of the best approximation. This is not
surprising since the method suggested states things about num-
bers and operations and not about machine numbers and machine
operations.

It is a simple matter to give an algorithm to produce similar
examples for computations with larger mantissas, of course. We
may conclude that when the method is applied to digital com-
puters the “improvement’’ need not be taken literally, but rather
in a probabilistic sense. What the probability is of obtaining an
improvement based on an accuracy measure such as the computed
3 (a sum of deviations with different signs, whose value should be
zero) I do not know.

I am not so pessimistic as to believe that we can do nothing
against the metamorphosis of theorems in probable theorems in
digital computations. A more adequate formalism, like that used
by Mr. Goldberg in the second part of his paper to show that the
procedure cannot be repeated, could prevent us from making hasty
conclusions.

AgrTENIO DE MATTEIS
Centro di Calcolo del CNEN
Bologna, Italy

A Rational Approximation Optimal by Moursund’s
Criterion

EpiTor:

In his interesting article [1] on the subject of optimal starting
approximations for square-root calculation, Professor Moursund
gave several illustrative polynomial approximations but no ra-
tional approximations. In order to obtain an illustrative rational
approximation that would be optimal by the criterion of the ar-
ticle, I wrote an ac hoc computer program based on the technique
of equating maxima, with which I obtained the approximation

1.28977371

*(r) = 1. it
RX(z) 68212586 % + 84106203 ’

where the coefficients have been rounded to eight decimal places.
Although there is no supporting proof, it seems reasonable to
believe that for a rational approximation R(z) expressible in the
form A + B/(z+C), the maximum in the interval [1/16, 1] of

1 z
éljR(x) + 1?(;)] - Vz
Vz

is as small as possible when R(z) is R*(z). The maximum of the

Communications of the ACM 683


http://crossmark.crossref.org/dialog/?doi=10.1145%2F363790.363795&domain=pdf&date_stamp=1967-11-01

above expression, when R(z) is replaced by R*(z), is approxi-

mately 27324 for 1/16 < z < 1. For the comparable starting

approximation given in [2], namely (I1a), the maximum relative
error after one iteration with Newton’s method is approximately

9-12.470_

REFERENCES:

1. Moursunp, D. G. Optimal starting values for Newton-Raph-
son calculation of v/ z. Comm. ACM 10, 7 (July, 1967,
430-432.

2. Fikg, C. T. Starting approximations for square-root calcula-
tion on IBM System/360. Comm. ACM 9, 4 (April, 1966),
297-299.

C. T. Fixe
IBM Systems Research Institule
New York, N. Y. 10017

Remark on Langdon’s Algorithm

EDITOR:

This letter concerns the paper entitled ‘‘An Algorithm for Gen-
erating Permutations” by G. G. Langdon Jr. [{Comm. ACM 10
(May 1967), 298].

Although the algorithm given is simple to describe, its effi-
ciency in terms of the number of transpositions required to gener-
ate a complete set of K! permutations is very poor. A number of
simple and efficient algorithms have been published in the Al-
gorithms section of the Communications. Algorithm 115 requires
only K! transpcsitions. Several lexicographic generators have
been described. Lexicographic generation requires a number of
transpositions which tends asymptotically to 1.53K! This al-
gorithm, however, requires transpositions in excess of (K—1)K!
There does not appear to be any combinatorial advantage of cir-
cular ordering over lexicographic order.

R. J. Orp-SmiTh
University of Bradford
Bradford, England

Min Z: A Game for Man-Machine Studies

EpITOR:

Readers of CACM will be interested in the great flexibility of
using the game “M in Z”’ for introductory studies in artificial in-
telligence. Special instances of the game are Tic-Tac-Toe (M = 3,
Z = 3) and the famous oriental game GOMOKU or RENJU
(M = 3,7 = 19).

Optimal methods of playing can be easily determined for M = 3
and M = 4. However, when M = 5 no general optimal methods
are known. (It is not known, for example, whether the first player
can ensure a win in GOMOKU.) Readers not familiar with
GOMOKU may try to play a simplified version of the game on an
8 X 8 chess board. They will quickly discover that this is not a
trivial game.

At Hopkins, the game is being used successfully both on a time
sharing system (GE 265) and on a batch processing system (IBM
7094). Although the time sharing system is restricted to programs
of 6000 characters, we have been successful in implementing the
following variations:

1. A general program that never loses when M = 3 and M = 4.
It plays a challenging game when M = 5. This program has won
many GOMOKU games against good opponents each lasting about
half an hour and requiring about 2 minutes of CPU time.

2. A program that can learn to improve its strategy. In a rea-
sonable number of games with M < 4, the program can ensure no
losses against good opponents.

The learning is accomplished by changes in the probabilities of
selection of strategies. A win (or a loss) with a specific strategy
increases (or decreases) its probability of being selected. A simple
device allows one parameter to determine a unique strategy. The

684 Communications of the ACM

parameters are supplied as data. Other variations can easily be
programmed.

3. A program that can ‘“look ahead.” (In the previous two
programs the “look ahead’ feature is not incorporated.) This
feature greatly improves the play of the machine, naturally, but
it also takes much longer to run.

The “look ahead” feature examines all available plays by one
player, it finds the ‘best’’ response by the opponent and then
computes a ‘“‘utility’’ for each next play. The play with the highest
‘“utility’” is then selected.

Heuristics can easily be added to this program.

All programs allow students to play against one another or
against a variety of machine strategies. This can be done online
or offline. Games may start after any number of predetermined
moves,

Sample outputs, as well as Basic tapes and ForTrAN cards, are
available for distribution. They may be used for demonstrations
(man against machine), for instruction (students ean easily in-
corporate their own strategies) and for research in machine learn-
ing and the development of heuristics.

Erixzer Nabpor
The Johns Hopkins Universily
Baltimore, Maryland 21218

Character Coding for Information Processing
Interchange

EDITOR:

The International Organization for Standardization has issued
a draft recommendation [No. 1052] for 6- and 7-bit coded character
sets for information processing interchange [ISO/TC 97 (Secr-90
141E, June 1966]. In this recommendation, a number of charac-
ters needed for computer programming are not defined. The result
of this is that programming groups are forced to make their own
choices of codes for these characters. This is equivalent to making
graphic substitutions, whether or not the printing device actually
prints the programming character. The ISO standard forbids re-
allocation of any character already in the code table but does
not control the allocations for other characters. The only general
rule we can follow is that allocating such characters is a matter of
international convention for programming usage, and the charac-
ters affected should not lie in “National Use” positions.

In an attempt to avoid the confusing situation of these charac-
ters being substituted at different positions by different groups, 1
submit the attached proposal for alternatives to the standard
characters, which are introduced for programming, and would
normally be used in connection with computers rather than for
general information interchange. The various alternative charac-
ters are independent of one another and are to be used only by
agreement between sender and recipient. It is an objective of this
proposal to get into the center 64 positions of the code table the
principal characters needed, on the basis that simple equipment
will be able to print only these.

Proposed alternative characters for programming in ISO7:
comparison with Standard ISO7

Position 1507

Bit Pattern in table

Alternative for programming

0100001 2/1 Vertical line (PL/I)

to|

0100010 2/2 ” \/ Logical Or (ALcoL)

0100101 2/5 9% D Implies (Arcown)

0100110 2/6 & A\ Logical And (Aungor)

1000000 4/0 @ 10 Decimal exponent (ALGOL)

1011110 5/14 * = Logical Not (Arcor and PL/I)
I. C. Pyie
AERE

Harwell, England

Volume 10 / Number 11 / November, 1967



