
I m p r o v e m e n t s  B a s e d  o n  C o m p u t e d  Errors  

E D I T O R  : 

The paper  "On the Computa t ion  of Leas t  Squares Polyno-  
mials ,"  by  Mor ton  Goldberg [Comm. A C M  10, 1 (Jan. 1967), 56- 
57] contains an in teres t ing  idea about  the  possibi l i ty of improving  
a computed leas t  squares  polynomial  to obta in  a b e t t e r  approxi-  
mat ion  to the true least  squares  polynomial,  the difference be- 
tween the two being due to errors accumulated during digital  com- 
putat ions .  The procedure suggested may be summarized as fol- 
lows: a computed polynomial p(x) fitted to the set  of points  S = 
{(x~, y , ) : n = l ,  . . . , N }  can be improved by  modifying p(x) 
to p (x) + ~, i.e., by  adding ~ = 1 / N  ~n~=l (y , - -p(x , )  ) to the zeroth 
degree coefficient. 

Unfor tuna te ly  the be t t e r  approximat ion  to the t rue polynomial  
which was promised seems to me difficult to obta in  by  this  method 
on a digital  computer .  The  numerical  example in Table  I shows 
t h a t  the method can lead to an  approximat ion to the t rue poly- 
nomial t h a t  is worse than  p(x). The problem solved is the follow- 
ing: the f i t t ing of the polynomial  of zero degree, in the leas t  
squares  sense, to the da ta  y~. The t rue polynomial  to be found is 
P(x) = b and the " n o r m a l "  equat ion  to be solved is 

N 
y,~ -- Nb = O. 

The computa t ions  are performed wi th  nonrounding floating po in t  
operat ions (operation symbols given in circles), a mant i s sa  of only 
one decimal digit, and no l imi ta t ion  on the length  of the exponent .  
Wi th  the exceptions of the base and the word length,  the ar i th-  
metic used is the nonrounding normalized floating poin t  ar i th-  
metic of the IBM 7094 computer ,  and operat ions  are performed 
in two registers working in the same way as the AC and the  iVIQ 

TABLE I 

n 1 2 3 4 
Yn S. --5. 20. 0. 

4 

e y ,  = 20. bl = 20.~2%. = 5. 

~ G bl 0. --10. 10. --5.  

(Y~ 0 b~) ~ O. 100. 100. 20. 

4 4 

$(Y, O b~) 2 = 200. ~ = ~ ¢ (y ,  @ b l ) ~ 4  = --1. 
n = l  n = l  

b2 = b, $ ~ = 4. 

y~ @ b: 1. --9.  10. --4.  

(y~ O b2) 2 1. 80. 100. 10. 

4 

• (y~ G b~) ~ = 100. 
n = l  

register of this  computer .  In  Table  I the da ta  and the results  of 
the operat ions are machine numbers ;  fur thermore ,  in Table  I 
we assign to a ~ the meaning a ® a and to ~ n = l  ~a ,  the meaning 
of the floating point  summat ion,  performed in the order ( . . .  ((al 
as) $ a3) - . .  @a,).  

The  first result,  bl = 5., is the bes t  approximat ion  to the true 
polynomial,  being b e t t e r  than  the " improved"  resul t  b~ = 4. 
W h a t  has apparent ly  been improved in this  example is the  com* 
puted  sum of the square devia t ions  (a sat isfying resul t  if we solve 
such problems by  min imum direct  search!).  However  i t  has  been 
achieved at  the expense of the bes t  approximation.  This  is no t  
surpris ing since the method suggested s ta tes  things about  num-  
bers and operat ions and not  about  machine numbers  and machine  
operations.  

I t  is a simple ma t t e r  to give an a lgor i thm to produce s imilar  
examples for computa t ions  wi th  larger  mantissas ,  of course. We 
may  conclude t h a t  when the method is applied to digital com- 
puters  the " i m p r o v e m e n t "  need not  be taken  l i terally,  bu t  r a the r  
in a probabil is t ic  sense. W h a t  the probabi l i ty  is of obta in ing  an  
improvement  based on an accuracy measure such as the computed 

(a sum of deviat ions  wi th  different signs, whose value should be 
zero) I do not  know. 

I am not  so pessimistic as to believe t h a t  we can do nothing 
against  the metamorphosis  of theorems in probable  theorems in 
digital  computat ions.  A more adequate  formalism, like t h a t  used 
by  Mr. Goldberg in the second pa r t  of his paper  to show t h a t  the 
procedure cannot  be repeated,  could prevent  us f rom making has ty  
conclusions. 
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A R a t i o n a l  A p p r o x i m a t i o n  O p t i m a l  b y  M o u r s u n d ' s  
C r i t e r i o n  

E D I T O R  : 

In  his in teres t ing article [1] on the subjec t  of opt imal  s ta r t ing  
approximat ions  for square-root  calculation,  Professor Moursund  
gave several i l lus t ra t ive  polynomial  approximat ions  bu t  no ra- 
t ional  approximations.  In  order to ob ta in  an i l lus t ra t ive  ra t ional  
approximat ion t h a t  would be opt imal  by  the cr i ter ion of the ar- 
ticle, I wrote an  ae hoc computer  program based on the technique 
of equat ing  maxima,  wi th  which I obta ined  the  approximat ion  

1.28977371 
R*(x) = 1.68212586 

x + .84106293 ' 

where the coefficients have been rounded to eight  decimal places. 
Al though there  is no suppor t ing  proof, i t  seems reasonable to 
believe t h a t  for a ra t ional  approximat ion  R(x) expressible in the 
form A + B / ( x + C ) ,  the maximum in the in terva l  [1/16, 1] of 

R(x) + ~ - 

~ x  

is as small  as possible when R(x) is R*(x). The  maximum of the  
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above expression, when R(x) is replaced by  R*(x), is approxi- 
mate ly  2 -1~.4~ for 1/16 N x N 1. For  the comparable  s ta r t ing  
approximat ion  given in [2], namely  (IIa) ,  the  max imum relat ive 
error  af ter  one i t e ra t ion  wi th  Newton ' s  method  is approximate ly  
2-12.470 
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Remark on Langdon's Algorithm 

~DITOR : 

This letter concerns the paper entitled "An Algorithm for Gen- 
erating Permutations" by G. G. Langdon Jr. [Comm. ACM 10 
(May 1967), 298]. 

Although the algorithm given is simple to describe, its effi- 
ciency in terms of the number of transpositions required to gener- 
ate a complete set of K! permutations is very poor. A number of 
simple and efficient algorithms have been published in the Al- 
gorithms section of the Communications. Algor i thm 115 requires 
only K! t ransposi t ions.  Several lexicographic generators  have 
been described. Lexicographic generat ion requires a number  of 
t ransposi t ions  which tends  asymptot ica l ly  to 1.53K! This  al- 
gori thm, however,  requires t ransposi t ions  in excess of (K--1)K!  
There  does not  appear  to be any combinator ia l  advantage  of cir- 
cular  order ing over lexicographic order. 

R. J. ORD-SMITFi 
University of Bradford 
Bradford, England 

M i n  Z :  A G a m e  f o r  M a n - M a c h i n e  S t u d i e s  

EDITOR : 
Readers  of CACM will be in teres ted in the  great  flexibility of 

using the game "M in Z "  for in t roduc tory  studies in artificial in- 
telligence. Special ins tances  of the game are Tic-Tac-Toe (M = 3, 
Z = 3) and the famous oriental  game GOMOKU or R E N J U  
(M = 3, Z = 19). 

Optimal  methods  of playing can be easily de termined for M = 3 
and M = 4. However,  when M => 5 no general opt imal  methods  
are known. ( I t  is not  known, for example, whe the r  the  first p layer  
can ensure a win in GOMOKU.)  Readers  not  famil iar  wi th  
GOMOKU may t ry  to play a simplified version of the  game on an 
8 X 8 chess board. They  will quickly discover t h a t  th is  is not  a 
t r iv ia l  game. 

At  Hopkins,  the  game is being used successfully bo th  on a t ime 
shar ing sys tem (GE 265) and  on a ba tch  processing sys tem ( IBM 
7094). Al though the  t ime shar ing sys tem is res t r ic ted  to programs 
of 6000 characters ,  we have been successful in implement ing  the 
following var ia t ions :  

1. A general program t h a t  never  loses when M = 3 and M = 4. 
I t  plays a challenging game when M = 5. This  program has won 
many  GOMOKU games against  good opponents  each las t ing about  
half an  hour  and  requiring about  2 minutes  of CPU time. 

2. A program t h a t  can learn to improve its s t ra tegy.  In  a rea- 
sonable number  of games wi th  M =< 4, the program can ensure no 
losses against  good opponents .  

The learning is accomplished by changes in the probabi l i t ies  of 
selection of strategies.  A win (or a loss) wi th  a specific s t ra tegy  
increases (or decreases) i ts  p robabi l i ty  of being selected. A simple 
device allows one paramete r  to determine a unique s t ra tegy.  The 

parameters  are supplied as data .  Other  var ia t ions  can easily be 
programmed.  

3. A program t h a t  can " look ahead ."  (In the  previous two 
programs the  " look ahead"  feature  is not  incorporated.)  This  
feature  great ly  improves the  play of the  machine,  na tura l ly ,  bu t  
i t  also takes much  longer to run. 

The  " look ahead"  feature  examines all avai lable  plays by  one 
player,  i t  finds the " b e s t "  response by the opponent  and then  
computes  a "uti l i ty" for each next  play. The play wi th  the  highest  
" u t i l i t y "  is then  selected. 

Heuris t ics  can easily be added to th is  program. 
All programs allow s tuden t s  to play agains t  one ano the r  or 

against  a va r i e ty  of machine s trategies .  This  can be done online 
or offline. Games may  s t a r t  a f te r  any  number  of prede termined  
moves .  

Sample ou tputs ,  as well as BAsic tapes  and FORTRAN cards, are 
avai lable for d is t r ibut ion .  They  may  be used for demons t ra t ions  
(man against  machine) ,  for ins t ruc t ion  (s tudents  can easily in- 
corporate the i r  own strategies)  and  for research in machine learn- 
ing and the  deve lopment  of heurist ics.  

ELIEZER NADDOR 
The Johns Hopkins University 
Baltimore, Maryland 21218 

Character Coding for Information P r o c e s s i n g  

Interchange 
EDITOR: 

The In te rna t iona l  Organiza t ion  for S tandard iza t ion  has  issued 
a draf t  recommendat ion  [No. 1052] for 6- and 7-bit  coded charac te r  
sets  for informat ion  processing in terchange  [ ISO/TC 97 (Seer-90 
141E, June  1966]. In  this  recommendat ion ,  a n u m b e r  of charac- 
ters  needed for computer  p rogramming  are not  defined. The resul t  
of this  is t h a t  p rogramming groups are forced to make the i r  own 
choices of codes for these characters .  This  is equiva lent  to making 
graphic subs t i tu t ions ,  whe ther  or no t  the p r in t ing  device ac tua l ly  
p r in t s  the  programming character .  The ISO s t anda rd  forbids re- 
al location of any  charac ter  a l ready in the code table  bu t  does 
not  control  the al locations for o ther  characters .  The  only general 
rule we can follow is t h a t  al locat ing such characters  is a m a t t e r  of 
in te rna t iona l  convent ion  for programming usage, and  the  charac- 
ters  affected should not  lie in "Na t iona l  Use"  posit ions.  

In  an a t t e m p t  to avoid the confusing s i tua t ion  of these charac-  
ters  being subs t i t u t ed  at  different posi t ions by different groups, I 
submi t  the  attacihed proposal  for a l te rna t ives  to the  s tandard  
characters ,  which are in t roduced for programming,  and would 
normal ly  be used in connect ion wi th  computers  r a the r  t han  for 
general in format ion  interchange.  The  var ious  a l t e rna t ive  charac- 
ters  are independent  of one ano ther  and are to be used only by 
agreement  between sender  and recipient.  I t  is an  object ive of this  
proposal  to get into the  center  64 posi t ions of the  code table  the  
principal  characters  needed, on the basis  t h a t  simple equipment  
will be able to p r in t  only these. 

Proposed a l te rna t ive  characters  for programming in ISO7: 
comparison wi th  S tandard  ISO7 

Bit Pattern Position in table ISO7 Alternative for programming 

0100001 2/1 ! I 
0100010 2/2 " V 
0100101 2/5 % 
0100110 2/6 & A 
1O0O000 4/0 @ 10 
1011110 5/14 ~ 

Vert ical  line (PL/ I )  
Logical Or (ALGOL) 
Implies  (ALGOL) 
Logical And (ALGOL) 
Decimal  exponent  (ALGOL) 
Logical No t  (ALGOL and P L / I )  

I. C. PYLE 
AERE 
Harwell, England 
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