
I m p r o v e m e n t s B a s e d o n C o m p u t e d Errors

E D I T O R :

The paper "On the Computa t ion of Leas t Squares Polyno-
mials ," by Mor ton Goldberg [Comm. A C M 10, 1 (Jan. 1967), 56-
57] contains an in teres t ing idea about the possibi l i ty of improving
a computed leas t squares polynomial to obta in a b e t t e r approxi-
mat ion to the true least squares polynomial, the difference be-
tween the two being due to errors accumulated during digital com-
putat ions . The procedure suggested may be summarized as fol-
lows: a computed polynomial p(x) fitted to the set of points S =
{(x~, y ,) : n = l , . . . , N } can be improved by modifying p(x)
to p (x) + ~, i.e., by adding ~ = 1 / N ~n~=l (y , - -p(x ,)) to the zeroth
degree coefficient.

Unfor tuna te ly the be t t e r approximat ion to the t rue polynomial
which was promised seems to me difficult to obta in by this method
on a digital computer . The numerical example in Table I shows
t h a t the method can lead to an approximat ion to the t rue poly-
nomial t h a t is worse than p(x). The problem solved is the follow-
ing: the f i t t ing of the polynomial of zero degree, in the leas t
squares sense, to the da ta y~. The t rue polynomial to be found is
P(x) = b and the " n o r m a l " equat ion to be solved is

N
y,~ -- Nb = O.

The computa t ions are performed wi th nonrounding floating po in t
operat ions (operation symbols given in circles), a mant i s sa of only
one decimal digit, and no l imi ta t ion on the length of the exponent .
Wi th the exceptions of the base and the word length, the ar i th-
metic used is the nonrounding normalized floating poin t ar i th-
metic of the IBM 7094 computer , and operat ions are performed
in two registers working in the same way as the AC and the iVIQ

TABLE I

n 1 2 3 4
Yn S. --5. 20. 0.

4

e y , = 20. bl = 20.~2%. = 5.

~ G bl 0. --10. 10. --5.

(Y~ 0 b~) ~ O. 100. 100. 20.

4 4

$(Y, O b~) 2 = 200. ~ = ~ ¢ (y , @ b l) ~ 4 = --1.
n = l n = l

b2 = b, $ ~ = 4.

y~ @ b: 1. --9. 10. --4.

(y~ O b2) 2 1. 80. 100. 10.

4

• (y~ G b~) ~ = 100.
n = l

register of this computer . In Table I the da ta and the results of
the operat ions are machine numbers ; fur thermore , in Table I
we assign to a ~ the meaning a ® a and to ~ n = l ~a , the meaning
of the floating point summat ion, performed in the order (. . . ((al
as) $ a3) - . . @a,).

The first result, bl = 5., is the bes t approximat ion to the true
polynomial, being b e t t e r than the " improved" resul t b~ = 4.
W h a t has apparent ly been improved in this example is the com*
puted sum of the square devia t ions (a sat isfying resul t if we solve
such problems by min imum direct search!). However i t has been
achieved at the expense of the bes t approximation. This is no t
surpris ing since the method suggested s ta tes things about num-
bers and operat ions and not about machine numbers and machine
operations.

I t is a simple ma t t e r to give an a lgor i thm to produce s imilar
examples for computa t ions wi th larger mantissas , of course. We
may conclude t h a t when the method is applied to digital com-
puters the " i m p r o v e m e n t " need not be taken l i terally, bu t r a the r
in a probabil is t ic sense. W h a t the probabi l i ty is of obta in ing an
improvement based on an accuracy measure such as the computed

(a sum of deviat ions wi th different signs, whose value should be
zero) I do not know.

I am not so pessimistic as to believe t h a t we can do nothing
against the metamorphosis of theorems in probable theorems in
digital computat ions. A more adequate formalism, like t h a t used
by Mr. Goldberg in the second pa r t of his paper to show t h a t the
procedure cannot be repeated, could prevent us f rom making has ty
conclusions.

ARTENIO D E ~ A T T E I S

Centro di Calcolo del C N E N
Bologna, I taly

A R a t i o n a l A p p r o x i m a t i o n O p t i m a l b y M o u r s u n d ' s
C r i t e r i o n

E D I T O R :

In his in teres t ing article [1] on the subjec t of opt imal s ta r t ing
approximat ions for square-root calculation, Professor Moursund
gave several i l lus t ra t ive polynomial approximat ions bu t no ra-
t ional approximations. In order to ob ta in an i l lus t ra t ive ra t ional
approximat ion t h a t would be opt imal by the cr i ter ion of the ar-
ticle, I wrote an ae hoc computer program based on the technique
of equat ing maxima, wi th which I obta ined the approximat ion

1.28977371
R*(x) = 1.68212586

x + .84106293 '

where the coefficients have been rounded to eight decimal places.
Al though there is no suppor t ing proof, i t seems reasonable to
believe t h a t for a ra t ional approximat ion R(x) expressible in the
form A + B / (x + C) , the maximum in the in terva l [1/16, 1] of

R(x) + ~ -

~ x

is as small as possible when R(x) is R*(x). The maximum of the

V o l u m e 10 / N u m b e r 11 / N o v e m b e r , 1967 Communicat ions of t h e ACM 683

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363790.363795&domain=pdf&date_stamp=1967-11-01

above expression, when R(x) is replaced by R*(x), is approxi-
mate ly 2 -1~.4~ for 1/16 N x N 1. For the comparable s ta r t ing
approximat ion given in [2], namely (IIa) , the max imum relat ive
error af ter one i t e ra t ion wi th Newton ' s method is approximate ly
2-12.470

REFERENCES:
I. MOURSUND, D . G . Opt imal s t a r t ing values for Newton-Raph-

son calculat ion of x / x . Comm. ACM 10, 7 (July, 1967,
430-432.

2. ~'IKE, C . T . S ta r t ing approximat ions for square-root calcula-
t ion on IBig{ System/360. Comm. ACM 9, 4 (April, 1966),
297-299.

C. T. FIKE
IBM Systems Research Institute
New York, N. Y. 10017

Remark on Langdon's Algorithm

~DITOR :

This letter concerns the paper entitled "An Algorithm for Gen-
erating Permutations" by G. G. Langdon Jr. [Comm. ACM 10
(May 1967), 298].

Although the algorithm given is simple to describe, its effi-
ciency in terms of the number of transpositions required to gener-
ate a complete set of K! permutations is very poor. A number of
simple and efficient algorithms have been published in the Al-
gorithms section of the Communications. Algor i thm 115 requires
only K! t ransposi t ions. Several lexicographic generators have
been described. Lexicographic generat ion requires a number of
t ransposi t ions which tends asymptot ica l ly to 1.53K! This al-
gori thm, however, requires t ransposi t ions in excess of (K--1)K!
There does not appear to be any combinator ia l advantage of cir-
cular order ing over lexicographic order.

R. J. ORD-SMITFi
University of Bradford
Bradford, England

M i n Z : A G a m e f o r M a n - M a c h i n e S t u d i e s

EDITOR :
Readers of CACM will be in teres ted in the great flexibility of

using the game "M in Z " for in t roduc tory studies in artificial in-
telligence. Special ins tances of the game are Tic-Tac-Toe (M = 3,
Z = 3) and the famous oriental game GOMOKU or R E N J U
(M = 3, Z = 19).

Optimal methods of playing can be easily de termined for M = 3
and M = 4. However, when M => 5 no general opt imal methods
are known. (I t is not known, for example, whe the r the first p layer
can ensure a win in GOMOKU.) Readers not famil iar wi th
GOMOKU may t ry to play a simplified version of the game on an
8 X 8 chess board. They will quickly discover t h a t th is is not a
t r iv ia l game.

At Hopkins, the game is being used successfully bo th on a t ime
shar ing sys tem (GE 265) and on a ba tch processing sys tem (IBM
7094). Al though the t ime shar ing sys tem is res t r ic ted to programs
of 6000 characters , we have been successful in implement ing the
following var ia t ions :

1. A general program t h a t never loses when M = 3 and M = 4.
I t plays a challenging game when M = 5. This program has won
many GOMOKU games against good opponents each las t ing about
half an hour and requiring about 2 minutes of CPU time.

2. A program t h a t can learn to improve its s t ra tegy. In a rea-
sonable number of games wi th M =< 4, the program can ensure no
losses against good opponents .

The learning is accomplished by changes in the probabi l i t ies of
selection of strategies. A win (or a loss) wi th a specific s t ra tegy
increases (or decreases) i ts p robabi l i ty of being selected. A simple
device allows one paramete r to determine a unique s t ra tegy. The

parameters are supplied as data . Other var ia t ions can easily be
programmed.

3. A program t h a t can " look ahead ." (In the previous two
programs the " look ahead" feature is not incorporated.) This
feature great ly improves the play of the machine, na tura l ly , bu t
i t also takes much longer to run.

The " look ahead" feature examines all avai lable plays by one
player, i t finds the " b e s t " response by the opponent and then
computes a "uti l i ty" for each next play. The play wi th the highest
" u t i l i t y " is then selected.

Heuris t ics can easily be added to th is program.
All programs allow s tuden t s to play agains t one ano the r or

against a va r i e ty of machine s trategies . This can be done online
or offline. Games may s t a r t a f te r any number of prede termined
moves .

Sample ou tputs , as well as BAsic tapes and FORTRAN cards, are
avai lable for d is t r ibut ion . They may be used for demons t ra t ions
(man against machine) , for ins t ruc t ion (s tudents can easily in-
corporate the i r own strategies) and for research in machine learn-
ing and the deve lopment of heurist ics.

ELIEZER NADDOR
The Johns Hopkins University
Baltimore, Maryland 21218

Character Coding for Information P r o c e s s i n g

Interchange
EDITOR:

The In te rna t iona l Organiza t ion for S tandard iza t ion has issued
a draf t recommendat ion [No. 1052] for 6- and 7-bit coded charac te r
sets for informat ion processing in terchange [ISO/TC 97 (Seer-90
141E, June 1966]. In this recommendat ion , a n u m b e r of charac-
ters needed for computer p rogramming are not defined. The resul t
of this is t h a t p rogramming groups are forced to make the i r own
choices of codes for these characters . This is equiva lent to making
graphic subs t i tu t ions , whe ther or no t the p r in t ing device ac tua l ly
p r in t s the programming character . The ISO s t anda rd forbids re-
al location of any charac ter a l ready in the code table bu t does
not control the al locations for o ther characters . The only general
rule we can follow is t h a t al locat ing such characters is a m a t t e r of
in te rna t iona l convent ion for programming usage, and the charac-
ters affected should not lie in "Na t iona l Use" posit ions.

In an a t t e m p t to avoid the confusing s i tua t ion of these charac-
ters being subs t i t u t ed at different posi t ions by different groups, I
submi t the attacihed proposal for a l te rna t ives to the s tandard
characters , which are in t roduced for programming, and would
normal ly be used in connect ion wi th computers r a the r t han for
general in format ion interchange. The var ious a l t e rna t ive charac-
ters are independent of one ano ther and are to be used only by
agreement between sender and recipient. I t is an object ive of this
proposal to get into the center 64 posi t ions of the code table the
principal characters needed, on the basis t h a t simple equipment
will be able to p r in t only these.

Proposed a l te rna t ive characters for programming in ISO7:
comparison wi th S tandard ISO7

Bit Pattern Position in table ISO7 Alternative for programming

0100001 2/1 ! I
0100010 2/2 " V
0100101 2/5 %
0100110 2/6 & A
1O0O000 4/0 @ 10
1011110 5/14 ~

Vert ical line (PL/ I)
Logical Or (ALGOL)
Implies (ALGOL)
Logical And (ALGOL)
Decimal exponent (ALGOL)
Logical No t (ALGOL and P L / I)

I. C. PYLE
AERE
Harwell, England

684 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 10 / N u m b e r 11 / N o v e m b e r , 1967

