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This paper addresses itself to the problem of analyzing data 
generated by computer simulations of economic systems. We 
first turn to a hypothetical firm, whose operation is represented 
by a single-channel, multistation queueing model. The firm 
seeks to maximize total expected profit for the coming period 
by selecting one of five operating plans, where each plan in- 
corporates a certain marketing strategy, an allocation of pro- 
ductive inputs, and a total cost. 

The results of the simulated activity under each plan are 
subjected to an F-test, two multiple comparison methods, and 
a multiple ranking method. We illustrate, compare, and evalu- 
ate these techniques. The paper adopts the position that the 
particular technique of analysis (possibly not any one of the 
above) chosen by the experimenter should be an expression 
of his experimental objective: The F-test tests the homogeneity 
of the plans; multiple comparison methods quantify their 
differences; and multiple ranking methods directly identify the 
one best plan or best plans. 

Introduction 

The major impetus behind the use of computer simula- 
tion by decision makers and policy makers is the possi- 
bility of testing and evaluating alternative decision rules, 
strategies, and policies before they are put into effect on 
actual business and economic systems. Complete exploita- 
tion of simulation experiments implies a thorough analysis 
of the data so generated. Yet a preoccupation with model 
building among many experimenters simulating business 
and economic systems has unduly diverted attention from 
experimental design and output analysis. 
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The aim of this paper is to meet the problem of analyz- 
ing data generated by computer simulation experime~lts 
especially for business and economic systems. For this task 
we have selected three alternative forms of the analysis of 
variance which are particularly well-suited for comparing 
outputs of computer models, where those outputs repre- 
sent the simulated results associated with alternative deci- 
sion rules and policies. These techz~iques include the 
F-test, multiple comparison methods, and multiple 
ranking methods. Of.  course, other techniques exist, 
notably sequential sampling methods, spectral analysis 
[IS, 40, 41], and response surface techniques. 

With the aid of an example model of a firm we shall il- 
lustrate, compare, and evaluate the techniques listed 
above. However, our analysis of these techniques will not 
be restricted to their application to the example model. 
Following a brief exposition of the model, we shall present 
the results of several simulation runs--that is, the data 
necessary for evaluating five alternative strategies which 
are available to the firm. To this end, the output of the 
simulations shall be subjected to an F-test, two different 
multiple comparison methods, and a multiple ranking 
procedure. Lastly, we shall discuss the relative advantages 
and shortcomings of each of these techniques as well as the 
necessary assumptions underlying their application to the 
analysis of data generated by computer simulation experi- 
ments. 

An Example Model 

We have chosen a relatively simple model of a firm 
developed by Chu and Nay]or [9]. A complete mathemati- 
cal description of this model and its corresponding com- 
puter flowchart may be found elsewhere [9, 38]. The as- 
sumptions underlying the model are summarized below: 
(1) The firm possesses an n-stage production process 
capable of manufacturing a single product. Without 
exception, each unit of final output of the firm must pass 
through all n stages in a particular order (see Figure 1). 

(2) Each process has its own separate production func- 
tion which is independent of the production functions of 
the other n -- 1 processes. 

(3) The rate of output (production rate) of the j th  

Fro. 1. A flowchart  for the  model of a firm 
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T A B L E  I. THEORETICAL VALUES 

Theorctic~fl values for expected demand  and expected produc t ion  
ra tes  (in uni t s  per day) and totM cost and approximate  

expec tedpro f i t  (in dollars) for a computer  
model of the  firm. 

I 
II 
III 
IV 
V 

Expected 
Plans demand 

rate E(D) Process 1 
E(O0 

3.00 3.33 
3.00 3.50 
3.00 5.00 
3.75 5.00 
3.75 5•00 

Expected production rates 

r0cess 2 Process 3 Process 
E(Q~) E(Qa) E(Q,) 

3.75 4.00 3.50 
3.33 6.00 3•50 
4.25 6.00 5.00 
4.25 6.00 5.00 

• • • 4.50 4.50 

Total  
cost C 

M 

$800 
$800 

$1250 
$1550 
$1720 

Approximate 
expected 

Total  profit 1] 

$2918.64 
$2918.64 
$2704.00 
$3285.~) 
$3147.50 

process, Qj (j = 1, 2, . . .  , n) during planning period T 
is a random variable. Its probability density function 
f~(q) is completely determined by the level of factor inputs 
for process j during planning period T--which is to say 
that by altering its allocation of productive inputs the firm 
can alter the probability distributions of the Q~.i If 
fj(q) is determined then obviously the expected vMue 
E(Q~) and variance Var (Qi) for process j are also deter- 
mined. 

(4) The number of orders which arrive at the firm per 
unit time (or the quantity of output which can be sold per 
unit time at a particular price) is a random variable D 
with probability density function f (d) ,  expected value 
E(D) ,  and variance Var (D). Hence the firm cannot 
ordinarily (Var (D) ~ 0) predict with complete certainty 
the number of units which it can sell at a given price 
during T. However, it is able to influence f(d),  E(D) ,  and 
Var (D) by adjusting its expenditure strategies for ad- 
vertising, marketing and promotion. 2 

(5) Once committed to a chosen rate of factor inputs, 
then the firm accepts all orders which are received through- 
out planning period T, even though it may not be able to 
finish production (or possibly begin production) on all 
such orders in the period. 

(6) At the beginning of planning period T, management 
must make two different types of decisions: (a) those per- 
taining to levels of expenditure for advertising and 
marketing, and (b) those pertaining to factor input alloca- 
tions for the n production processes. Recall that the former 
completely determine f (d) ,  E(D) ,  and Var (D) over 
T, while the latter likewise govern f j (q) ,  E(Q~), and 
Var (Qj) (j  = 1, 2, -.- , n). 

Having set forth the model, let us now endow the firm 
with more specific characteristics. The length of the firm's 
planning horizon is three months (T = 90 days) and is 
assumed to have been determined by the environment in 
which the firm exists rather than on the basis of statistical 

See the  deta i led descr ipt ion of the  model in [9, pp. 740-742] or 
[38, pp. 141-143] for an exp lana t ion  of how the  factor  inpu t  decision 
var iab les  are re la ted  to the  ra te  of product ion  Qi and  the  prob-  
abi l i ty  dens i ty  funct ion  fi(q) for each process. 
2 The  way in which adver t is ing,  marke t ing ,  and  promot ion  ex- 
pendi tu res  affect demand  is out l ined in [9, pp. 740, 749-750] and 
[38, pp. 141, 153]. 
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considerations. That is, the firm's decision-makers are 
interested in making plans for the next 90 days--no more, 
no less• 

The response variable or dependent variable in our 
simulation is profit• The factors in the experiment are (1) 
expenditures for productive inputs (labor, raw materials, 
equipment, etc.) and (2) expenditures for advertising, 
marketing, and promotion. As previously defined in the 
description of the model, both of these factors are quantita- 
tive2 That is, in theory there exists a functional relation- 
ship between tlhe numerical values of the levels of (1) 
expenditures for productive inputs and (2) expenditures 
for advertising, marketing, and promotion and the profit- 
ability of the firm. Although the firm's decision makers 
may choose from among an infinite number of levels for 
each factor, in practice, due to indivisibilities, institu- 
titional rigidities, incomplete information, and other 
reasons, the decision makers may restrict their factor level 
decision to a finite number of levels. In our example 
model, we assume that the firm has simplified its factor 
level decision to the point where it is considering only five 
different operating plans, each one featuring (1) a par- 
ticular advertising and marketing strategy, (2) a par- 
ticular allocation of inputs to the various stages of produc- 
tion, which we limit to four in number (0 < n ~ 4), and 
(3) a total cost, C. (We have already elaborated on points 
(1) and (2) in the preceding section; total costs appear in 
Table I). In otlher words, the firm's controllable quantita- 
tive factors have in effect been reduced to five levels of a 
single qualitative factor, i.e., five operating plans or 
decision rules• 

As a further simplification, we specify f (d)  and the 
f j(q) to be Poisson distributions (arising from Poisson 
processes) for all five operating plans. This means that 
each operating plan consists of the specification (Table I) 
of a total expenditure C and a set of values for the param- 
eters E ( D ) , E ( Q1) , E ( Q2 ) , E ( Q3 ) , and E ( Q4 ) . The purpose 
of the experiment is to evaluate the profitability of the 
five plans. 

The steady-state properties of a single-channel, multi- 
station queueing model with Poisson arrivals aud service 
rates are available and will serve as a guide to the theoreti- 
cal values for the expected total profit (II) associated 
with each operating plan, which is near steady-state after 
90 days. Our model can accommodate without complica- 
cation any type of probability distribution or empirical 
distribution for both f (d)  and any number of f j (q) ,  thus 
extending the reach of investigation into the realm where 
analytical solutions or approximations are too difficult to 
obtain) 

In any event; with the approximate (steady-state) 

a A factor  is q u a n t i t a t i v e  if i ts  lewels are numbers  which are ex- 
pected to have a meaningful  re la t ionship  wi th  the  responses.  
Otherwise a factor  is qua l i t a t ive  [7]. 
4 See [38, Ch. 4] for a collection of FORTRAn subrout ines  for gen- 
e ra t ing  s tochast ic  var ia tes  on a computer  for most  of the s t anda rd  
theoret ical  p robabi l i ty  d is t r ibut ions ,  as well as any empirical  
d is t r ibut ion.  
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theoretical values for the expected total profit 5 at hand as 
a guide (Table I ) ,  we may better  evaluate the F-test, 
multiple comparisons, and multiple rankings as techniques 
for differentiating between the firm's five alternatives 
when the sample (output)  has been generated by a com- 
puter simulation experiment. Using a constant price P 
of $15 per unit of finished product, II may  be calculated 
by  the following formula [32, 44]: 

II = expected total r evenue-expec ted  total cost 

E(D)/E(Qi)  -] 
= P E ( D ) . T  - ~ 1 : E ( D ) ~ i ) J  - C 

where 

E(D).  T = the expected number of orders which enter 
the system or expected total demand during 
the planning period, 

E(D)/E(Qi) 
j=~ 1 -- E(D)/E(Qj) 

= the expected number of units 
remaining in the system either 
being processed or waiting to be 
processed at the end of the ~plan- 
ning period, 

E(D).  T - ~ E(D)/E(Qj) 
~=1 1 Z E(~)/E(Qj) 

= the expected num- 
ber of completed 
orders or expected 
sales measured in 
units during the 
planning period. 

P,  T, n, and C have already been defined. This formula 
for expected profit assumes E(D)/E(Q~) < 1, and is 
merely a~l approximation, since it assumes that  the system 
has reached a steady-state within 90 days. 

The computer simulation which we conducted on this 
model consisted of 5 runs, one for each operating plan. 
The parameters used--demand rate (in units per day),  
production rates (iu units per day),  and total cost - -are  
tabulated in Table I. Note  that  plan V consists of 3 
processes rather than 4. 

Initial Conditions and Sample Size 

The initial conditions were identical for all replications of 
each simulation run. The system was assumed to be 
"empty"  at the beginning of each replication for all 5 
simulation runs3 Activity was simulated for a period of 90 
days and total profit was calculated for the period. The 
simulation was repeated 50 times using the given param- 
eters for plan I. (Repetit ion was accomplished by altering 
the starting value of the pseudorandom number genera- 
tor. 7) In a similar manner, 90-day runs, each repeated 50 
times, were made for strategies I I  through V. For  each 

5 Mathemat ical  expectat ion--a lso called long-run average or true 
profit. 
e See [9, p. 743] and [38, p. 144]. 
7 We used a variat ion of the "combinat ion me thod"  of generating 
pseudorandom numbers  developed by MaeLaren and Marasaglia 
[36]. 

sample of 50 observations, the sample mean and standard 
deviation were calculated and tabulated in Table II .  

We now turn our attention to the rationale underlying 
the sample sizes chosen for this experiment as well as an 
analysis of some of the effects which these sample sizes 
have had on the experimental results. 

The problem of sample size with computer simulation 
experiments is indeed complex and has been treated by a 
number of researchers including Burdick and Naylor  [7], 
Fishman and Kiviat  [18], Gafarian and Ancker [19], 
Geisler [20], and Mechanic and NicKay [37]. With com- 
puter simulation, sample size may be increased in two 
different ways: (1) the total length of the simulation run 
may be increased from, say one mouth of simulated time to 
two months of simulated time; (2) runs of a given length 
may be replicated by using different sets of pseudorandom 
nnmbers. 

First, consider the length of the simulation run. The 
length of the firm's planning horizon, 90 days, is assumed 
to be given. The choice of a suitable planning horizon is 
assumed to have been made by the firm's policy makers 
prior to and independent of the decision to use simulation 
as a mode of analysis, s In other words, the length of the 
simulation run was not determined on the basis of sta- 
tistical considerations. 

Second, we consider the number of replications for each 
of our five simulation runs. We elected to use the same 
number of replications for each of the five simulation runs, 
because inequality of variances over the five operating 
plans has little effect on inferences about population means 
in the analysis of variance when the sample size is the 
same for all five operating plans [45, p. 345]. 

I t  is well known that  the optimal sample size in analysis 
of variance depends on the answers one gives to the follow- 
ing three questions: (1) How large a shift in means do you 
wish to detect? (2) How much variability is present in the 
population? (3) What  size risks are you willing to take? 
Power function charts for the specification of sample size 
in analysis of variance are available for determining n, 
the number of replications per plan for: (1) a given number 
of plans k; (2) a given population variance ~ for each 
plan; (3) a givenlevelof significance a; and (4) a given power 
P to detect (5) a specified difference II s -- II between 
the j th  population mean and the grand mean. 

Although it may be possible to specify a difference 
IIj -- II which we wish to detect for each plan, a level of 
significance, and a power for our experiment, meaningful 
estimates of the unknown parameter 2 are not so easy to 
obtain. Estimates of cr 2 must be based on past experi- 
mentation, a pilot study, or familiarity with the system 
being simulated. Matters are further complicated by the 
fact that  there is reason to believe that  the variance is not 
exactly the same for all five plans in our experinaent. 
However, in order to obtain some idea of what n should 

s The assumption of a given planning horizon is not at all uncom- 
mon in the l i terature in economics. See, for example [38,Ch. 6]. 
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be, we assume that  
k =  5, 
rr = 225, 
a = .05, 

P = .90, 
r 100, / =  1,2, 

I I j - -  lI = ~ 0, j 3, 
[--100, j 4,5.  

Using the power function charts described in [50, p. 104], 
we obtain a sample size of n = 20 for each plan2 For 

= 350, and everything else held constant, we would ob- 
tain n = 50. To be safe, we have set the sample size at 50 
replications per plan. 

In the remainder of this paper we shall apply the F- 
test, multiple comparisons, and multiple rankings to the 
data generated by the aforementioned experiment. Before 
turning to these specific data analysis techniques we 
should inquire about the accuracy of the sample means 
which appear in Table II. This question can be answered 
in part by constructing 99 % (or any other appropriate 
level) confidence intervals using the formula [35, p. 175]: 

n = 2 ± z s / ~ / n  

where X is the sample mean, s is the sample standard 
deviation, n = 50 is the sample size, z is the percentile of 
the normal distribution which leaves .5 % probability in 
each tail, and II is the true profit. (This formula is only 
an approximation since s is used for ~r.) Constructing 99 % 
confidence intervals for each of the five plans we obtain: 

Plan I 2912 < II~ < 3040 
Plan I I  

Plan I I I  
Plan IV 

Plan V 

2918 < ~2 < 3065 

2584 < H3 < 2766 
3185 < H4 < 3345 

3031 < Ha < 3233. 

The approximate (steady-state) true profits IIj are, in 
fact, contained in these confidence intervals. We notice, 
however, that  in plans I and II  that  the steady-state H~ 
come close to missing the confidence interval. This is 
because these two plans involve the most congested queues 
( that  take the longest to reach the steady state), and 
therefore have their true IIj approximated most poorly. 
A longer planning horizon (greater than 90 days) would 
have brought us closer to the steady-state and doubtless 
improved the accuracy of the approximate true profit in 
Table I. 

Analysis of Variance 
The analysis of variance is a collection of techniques 

which are appropriate when the factors affecting the re- 
sponse are qualitative. We shall illustrate three different 
forms of the analysis of variance: the F-test [45], the mul- 
tiple comparisons of Tukey [45] and Dunnett  [14], and the 
multiple ranking procedure of Becbhofer, Dunnett ,  and 
Sobel [4]. 

Similar power funct ion char t s  appear  in [45, App]. 

T A B L E  II .  COMPA.RISON OF PROFIT 

Compar ison of approximt~te expected profit  wi th  s imula t ion  
resul ts  for five Mterna t ive  plans  for a computer  model 

of the  firm. 

Approximate expected Sample mean of Sample standard 
Plans profit (ii) profit (X) deviation of profit 

(s) 

I $2918.64 $2976.40 $175.83 
I I  $2918.64 $2992.30 $202.20 

I I I  $2704.00 $2675.20 $250.51 
IV $3285.00 $3265.30 $221.81 

V $3147.50 $3131.90 $277.04 

Assumptions 

All of these procedures were developed on three assump- 
tions: (1) independence of the statistical errors, (2) 
equality of variance, and (3) normality. The first assump- 
tion is satisfied by virtue of the independence of the 
pseudorandom numbers [36]. We know that  the second and 
third assumptions are not exactly satisfied by our queueing 
model  The means of the five plans are slightly different 
(Table II) .  The variances are doubtless different too, 
although the sample standard deviations in Table II  
indicate that  the differences are slight. Profit fluctuates 
according to the number of orders arriving in 90 days, 
less the number of orders remaining in the system. Both 
of these numbers are approximately normally distributed 
(Poisson variates with large means are very nearly 
normal), so th~bt we can expect the total profit to be ap- 
proximately normal too. This expectation was borne out 
by sample histograms and data analysis. 

However, all is not lost as a result of the departure from 
assumptions two and three of the analysis of variance. 
Certain procedures, such as the F-test, are known to be 
robust, that  is:, quite insensitive to departures from as- 
sumptions [45, pp. 331-368]. For example, Scheff6 argues 
that, "inequality of variances in the cells of a layout has 
little effect on :inferences about means if the cell numbers 
are equal, serious effects with unequal cell numbers," 
[45, p. 345]. I t  is for this reason that  we have chosen 
equal sample sizes for each of our five simulation runs. 
With regard to non-normality, Scheff6 concludes in 
chapter 10 that  "the effect of violation of the normality 
assumption is slight on fifferences about means but 
dangerous on ilfferences about variances." Unfortunately, 
the robustness properties of multiple comparisons and 
multiple ranking procedures are not as well known as 
those of the simple F-test. We can safely hope that  our 
departures from the assumptions of a common variance 
and normality are small enough not to seriously matter. 
An interesting extension of this paper might include the 
use of Monte Carlo sampling techniques to evaluate the 
robustness of various multiple comparison and multiple 
ranking procedures. In any event, a methodological paper 
of this type cannot dwell on a matter  that  has to be 
judged in individual cases. 
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T A B L E  I I I .  FORMULAS FOR O N E - W A Y  ANALYSIS OF VARIANCE 

Source of variation Sum of squares Degrees of freedom Mean square 

k 

Between p lans  SSDi~O~ = n ~  (X . y  - ~7..)  2 tc - 1 
j = i  

Er ro r  S S  . . . . .  ~ k _ = ~ ( x ~ s  2.~.)~ k (n  - 1) 
i-i j=i 

Tota l  SStot~l = ~ ~ ( X i i  - -  X . . )  ~ n k  - -  1 
i=l j--1 

M S p  = S S p l ~ . , / k  - -  1 

M S ~  = S S  . . . . .  / k ( n  - -  1) 

TABLE IV. STATISTICS FOR 0NE-WAY 
ANALYSIS OF VARIANCE 

Source of Sum of squares Degrees of 
variation freedom Mean square 

Between plans 9,677,758 4 2,419,440 
Er ro r  12,715,825 245 51,901 

Tota l  22,393,583 249 

F-Test 
We may wish to test the null hypothesis, H0, that the 

expected profits for each of the five operating plans are 
equal; in symbols: 

H0: Hi = II~ . . . . .  IIs. 

By employing the F-statistic, the decision rule for accept- 
ing or rejecting H0 becomes 

If F => F,.~-Lk(~-i), reject H0; 

otherwise accept H0. 

where F is the appropriate percentile of the F-distribution, 
is the significance level, k = 5 is the number of operating 

plans, and n = 50 is the number of replications per operat- 
ing plan. If H0 is accepted, then one tentatively concludes 
that the sample differences between plans are attributable 
to random fluctuations rather than to actual differences in 
population values (expected profits). On the other hand, 
if H0 is rejected, then further analysis, such as multiple 
comparisons and multiple rankings, is recommended. 

Since the pseudorandom numbers generated for the j th  
operating plan are independent of those for the other four 
plans, our experiment is analyzed as a single-factor ex- 
perimental design. Let X~, denote the total profit for the 
ith replication of plan j. X ,  is the average profit for plan 
j over all 50 replications..X., is the grand average for all 
5 plans over all 50 replications./° 

Table III  contains a summary of the formulas necessary 
to compute the statistics used in the analysis of a single- 
factor experiment. 

m At  this  poin t  we shall  make our only explicit  reference to experi-  
menta l  design. The  analysis  could have  been considerably 
sharpened  by  using the same random numbers  for all five plans,  in 
each repl icat ion.  Thus,  the  numbers  Xl l  , X12 , X,a , X14 , X15 , 
for example, in shar ing  the  same random numbers ,  would share  

The F-statistic is then computed by the formula: 

F = M S p / M S o .  

By substituting the results of our experiment for the 
quantities in Table III,  we obtain Table IV. From the 
data in Table IV, we see that F = 46.6, easily exceeding 
the critical value F.0~.4.245 = 2.21.  In this case, F is even 
much greater than the critical value for a = .001. Hence, 
the data generated by the simulation experiment do not 
support the null hypothesis that the expected profits are 
equal for each of the five strategies. One may check the 
decision to reject H0 against Tables I and II, which show 
that the approximate expected profits do indeed vary from 
plan to plan. 

The papers by Box and Andersen [6] and Kruskal and 
Wallis [33], among others, describe even more robust 
tests for testing hypotheses about differences in popula- 
tion means. 

Multiple Comparisons 
Typically, economic policy makers are interested not 

only in whether alternatives differ but also in h o w  they 
differ. Multiple comparison and nmltiple ranking pro- 
cedures often become tools relevant to meeting the latter 
query, for they have been designed specifically to attack 
questions of how means of many populations differ. 

In contrast with the analysis of variance, multiple com- 
parison methods emphasize the use of confidence intervals 
rather than the testing of hypotheses. Because our con- 
cern in this paper has centered upon differences in popula- 
tion means, it may be tempting at this point to construct a 
nmnber of 95 % (say) confidence intervals of II~. - llj: 

( 2 ,  - 2 j )  ± t . ~ i / n ,  j ,  J = 1, 2 , . . . ,  k, 
by employing the familiar Student's t-statistic. But a 
problem arises. The intervals developed in this manner are 
not all s i m u l t a n e o u s l y  true at the 95 % level; indeed, the 
confidence level for the aggregate of intervals sinks con- 
siderably. 

What is needed, therefore, is a way of constructing a 
set of confidence intervals which will all simultaneously be 

roughly the  same s ta t i s t ica l  f luctuat ions,  so t h a t  differences be- 
tween t hem could be a t t r i b u t e d  pr imar i ly  to the  real differences 
in the  under ly ing  I I / s .  All 50 repl icat ions would enjoy  th i s  prop-  
er ty,  as would the  averages for each of the  five plans.  This  type  of 
exper imenta l  design is called "b lock ing"  or "close repl icat ion,"  
and requires the  use of two-way analysis  of var iance.  
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T A B L E  V .  DIFFERENCES OF SAMPLE MEANS 

(2 .~  - 2 . D  

J 
~ 2 3 4 5 

1 --15.9 301.2" --288.9* --155.5" 
2 - "  317.1" - -273.0* - -139.6" 
3 . . . . . . .  590.1" - -456.7* 
4 . . . . . . . . . .  133.4* 

T A B L E  VI .  DIFFERENCES OF SAMPLE MEANS 
(2 .~  - 2,o) 

j 2 3 4 5 

(.,Y.j -- ,X.o) 15.9 - -301.2" 288.9* 155.5" 

true with probability 95 %. The May, 1965 issue of Techno- 
metrics [12, 13, 21, 22, 34] contains a comprehensive review 
of alternative methods which have been proposed for 
solving this problem. For illustrative purposes, we shall 
discuss two of these methods and relate each of them to 
our simulation experiment: (1) Tukey's method [45, 48, 
50], and (2) Dunnett 's  method [14, 16]. The general form 
of these methods can be found in the appropriate refer- 
ences. In  this paper we shall give the specific form for 
one-factor experiments, although they are equally valid 
for many-factor experiments. 

Tukey's method [45, 48, 50] yields simultaneous con- 
fidence intervals (of the type previously described) for 
the differences between all pairs. With 95 % probability, 
all of the following confidence intervals for II~. - II~ are 
true: 

(.2.j -- :~.j) ± qk,~x/M~/n,  j ,  J = 1, 2, 3, . . .  , k, 

where qk., is tabulated under the title "Distribution of the 
Studentized Range Statistic" [50], /c is the number of 
sample means, and v is the number of degrees of freedom 
for M S , ,  k ( n  --  1) in the case of one-factor experiments. 
For the actual data generated by our single-factor com- 
puter simulation experiment the formula for 95 % con- 
fidence intervals is given by 

(2 .~  - .2..,) ± q ~ . ~ / M ~ J n  
= (.X.j -- .~.j) ± 3.86~/51,901/50 
= (..Y.~ - . 2 j )  =t= 124, 

j ,  J =  1, 2, 3, 4, 5. 

Table V contains a tabulation of the differences between 
sample means for all 10 pairs of differences in our experi- 
ment. An asterisk ( . )  indicates that  a particular difference 
exceeds the confidence allowance 124, thus making the 
difference "statistically significant," if this form of in- 
ference is desired. At  the same time, and still covered by 
95 % certainty, we can make more subtle comparisons, 
technically called linear contrasts. For example, "Does 
the difference (II1 -- II2) exceed the difference (II2 -- II3) 
and by how much?" "Do the first 3 means exceed the last 
2 means on the average, and by how much?" If  general 
linear contrasts are of more interest to the experimenter 

than the paired comparisons, then Seheff6's method [45] 
is usually preferred. 

Dunnett 's  [14, 16, 50] method of multiple comparisons 
compares one specific mean, called the control mean, with 
all others. In simulations of business and economic sys- 
tems the control mean is usually the mean associated with 
the present operating plan, decision rule, or managerial 
strategy. Dunnett 's  multiple comparison procedure is 
summarized as follows: with 95 % probability, all of the 
following confidence intervals for IIy -- IL are true: 

(.X.~ - :~-.c) ~ d ~ / 2 M S , / n ,  j = 2, . . .  , k, 

where IIc = the control population mean, 

.X.c = the control sample mean, 

d = the percentile of Dunnett 's  t-statistic 
[14, 16, 50] with degrees of freedom 
equal to k(n -- 1) for one-factor ex- 
periments. 

In our simulation experiment we assume that  plan I is the 
control plan and compare it with all the other plans. The 
formula for 95 % confidence intervals is given by 

- -  ,X.c)  ~ :  2 . 1 6  , l f f  ( 2 ) ( 5 1 '  901) 
( 2 . j  

"V 50 

= ( :~ . j - -X.c ) : t=98 .4 ,  j = 2 , 3 , 4 , 5 .  

Table VI contains a tabulation of the differences between 
sample means for comparisons between the control mean 
(plan I) and the means for plans II  through V. Again an 
asterisk ( , )  indicates that  a particular difference exceeds 
the confidence allowance 98.4 thus making the difference 
"statistically significant," if this form of inference is of 
interest. 

M u l t i p l e  R a t l L k i n g s  

Frequently, the objective of computer simulation ex- 
periments with economic systems is to find the "best ,"  
"second best, . . . .  third best," etc. plan (or others unlisted). 
Although multiple comparison methods of estimating the 
sizes of differences between plans (as measured by popu- 
lation means) are often used as a way of attempting, in- 
directly, to achieve goals of this type, multiple ranking 
methods represent a more direct approach to a solution 
of the ranking problem. 

The best estimate of the rank of a set of operating plans 
is simply the ranking of the sample means associated with 
the given plans. Because of random error, however, sample 
rankings may yield incorrect results. With what probabil- 
i ty  can we say that  a ranking of sample means represents 
the true ranking of the population means? I t  is basically 
this question which multiple ranking procedures a t tempt  
to answer. 

Bechhofer [1] has developed a procedure for selecting a 
single population and guaranteeing with probability P 
that  the selected population is the "best"  provided some 
other condition on the parameters is satisfied. Like the 
F-test and multiple comparisons Bechhofer's procedure 
assumes normality and statistical independence. However, 
it also assumes known variances which may be equal or 
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unequal. Unfortunately, this procedure is not applicable 
to our experiment since a s is unknown. 

Bechhofer and Sobel [5], Bechhofer, Dunnett ,  and Sobel 
[4], Chambers and Jarrat t  [8], and Huyet t  and Sobel [31] 
have considered several variations of multiple ranking 
procedures. The paper by Beehhofer, Dunnett ,  and Sobel 
[4] is of particular interest, since it describes a two-sample 
multiple decision procedure for ranking the means of 
normal populations ~dth a common unknown variance. 
Similar problems with various specific probability distribu- 
tions have been treated by Gupta [22-25], Gupta and 
Sobel [26-30], Rizvi [43], and Seal [46, 47]. The article by 
Gupta [22] contains a comprehensive review of multiple 
ranking procedures. 

We now turn to a more detailed description of Bech- 
hofer, Dunnett,  and Sobel's two-sample multiple decision 
procedure for ranking means of normal populations with a 
common unknown variance [4] and the application of this 
procedure to our experiment, n Using the notation of our 
experiment, we assume that  for a given population (plan) 
j ,  X~ i is a normally and independently distributed random 
variable with expected value lIi and common variance 

2 2 ~j = (j = 1, 2 , . . - ,  k). We further assume t h a t a  2 
and the Hi are unknown. Denote the ranked H i by 

II[~] < < "- < = II[21 = • = II[k] 

and the differences between the ranked means by 

~i = II[~] -- II[s], i , j  = 1 , 2 , . . - , k .  

We do not know which population is associated with 
I I [ i ] .  

Assume that  the experimental goal calls for the selection 
of the population having the largest expected value. (This 
is by no means the only goal which may be chosen [2, 4].) 
Assume also that  the experimenter specifies a parameter 
6" which is the smallest value of ~k.k--~ that  he is willing to 
accept. In addition, the experimenter specifies the smallest 
acceptable value P for the probability of achieving his 
given goal when ~k.k--1 ~ ~*. 

Beehhofer, Dunnett,  and Sobel's two-sample procedure 
consists of the following five steps: 

1. Take a first sample of N~ observations from each of 
the k populations. 

2. Calculate the mean square error, MS~,  which is an 
unbiased estimate of ~ having v = /c(n -- 1) degrees of 
freedom for n = N~. 

3. Take a second sample of N2 -- N~ observations from 
each of the k populations, N2 = max {Ni, [2MS,(h/~*)2]}, 
where the brackets [ ] denote the smallest integer equal to 
or greater than the rational number contained within the 
brackets and h is obtained from Table 3 of Dunnett  and 
Sobel [17] for given values of v and P. If  2MS,(h/~*) ~ __< 
N~, then no second sample is necessary and, therefore, 
N~ = N1. 

n In  a for thcoming paper  on the  use of sequent ia l  sampling me th -  
ods to analyze da ta  from s imula t ion  exper iments  we shall  invest i -  
gate a sequent ia l  mult iple-decis ion procedure developed by  Bech- 
hofer and  Blumentha l  [3] for selecting from a group of k normal  
popula t ions  wi th  a common bu t  unknown popula t ion  var iance  
the  one wi th  the  largest  popula t ion  mean.  

4. For each population calculate the overall sample 
mean Xj where 

At2 
Xj = 1 ~ = i 1  ~ X ~ i ,  j = 1,2, . . . , k .  

5. Denote the ranked values of Xj by 

Rank the populations according to the ranking of the ob- 
served Xj and select the population which gives rise to 
X[k] as the population having the largest population mean. 

For our experiment, suppose that  we want to select the 
plan having the largest expected profit and to guarantee 
that  the probability of correctly choosing that  population 
will be at least .90 when the difference between the plan 
with the highest expected profit and the plan with the 
second highest expected profit is $100.00. In other words, 
we are assuming that  P = .90 and 6" = 100. We then let 
N1 = n = 50 and calculate MSe = 51,901. For P = .90 
and v = k(n -- 1) = 245 weobta inh  = 1.58 from Table 
3 of [17]. Next we determine max {N1, [2MSdh/~*)2]} = 
max{ 50, [2(51,901)(1.58/100)~]/ = max {50, 261 = 50. 
Since 26 < 50 no second sample is required and N2 = 
N1 = n = 50. Sample means for n = 50 were previ- 
ously calculated in Table II.  On the basis of the ranking of 
the sample means we would select operating plan IV as the 
plan with the highest expected profit. If  in fact the best 
operating plan has an expected profit that  is $100.00 
larger than the next best, we have at least a probability of 
90 % of correctly choosing it despite the random statistical 
fluctuations of sampling. Similar probabilistie statements 
can be made with this procedure concerning (1) the 
"best two" plans, (2) the "best three" plans, (3) the 
"best," "second best," "third best," etc. plans. 

Summary 
With the aid of a simple example we have attempted to 

demonstrate the use of three alternative forms of the analy- 
sis of variance to analyze data generated by computer 
simulation experiments with economic systems--the 
F-test, multiple eomparisons, and multiple rankings. The 
differences in these three types of analysis of variance lie 
not so much in the assumptions underlying their use, but 
rather with the types of experimental objectives with 
which they are most compatible. If one's experimental 
objective is to test the hypothesis that  there is no differ- 
enee between two or more plans or policies then the F-test 
is an appropriate analytical tool. If one's objective is to 
obtain estimates of the sizes of these differences then 
multiple comparisons are more appropriate. But  if the 
obieet is to find with a specified degree of eertaint7 the 
best plan, second best plan, etc., then multiple ranking 
procedures represent the more direct approach. The reader 
is cautioned, however, to avoid the indiscriminate use of 
these techniques without due regard for the assumptions 
on which they are based. This is particularly true of the 
latter two techniques. 

Finally, we note that  although we have limited our 
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analysis to a single-factor experiment, all of the tech- 
niques described in this paper can be extended to experi- 
ments with many factors. 
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