
J. G. HERRIOT, Editor

A L G O R I T H M 314

F I N D I N G A S O L U T I O N O F N F U N C T I O N A L

E Q U A T I O N S I N N U N K N O W N S [C5]

D . B. DULLEY AND M . L. V. PITTEWAY (Recd. 7 Apr. 1966,
19 Oct . 1966 a n d 5 J u l y 1967)

C r i p p s C o m p u t i n g C e n t r e , U n i v e r s i t y of N o t t i n g h a m ,

E n g l a n d

p r o c e d u r e ndinvt (.functions, initstep, error, cycles, x, f , accest, n) ;
v a l u e n; procedure functions; real initstep, error;
i n t e g e r cycles, n; a r r a y x, f , accest;

c o m m e n t This procedure performs inverse interpolat ion in n
dimensions, i.e., i t will find a set of values for n variables x,
such tha t n functions f (x) are zero. A more sophist icated tech-
nique, suitable for large values of n, has been developed by
S. M. Robinson (Interpolat ive Solution of Systems of Nonlinear
Equat ions, S I A M Journal of Numerical Analysis , 3 (1966),
650-658). I t can also be used to fit a curve with n arbi t rary
parameters to a set of points, the n functions being formed, in
this case, by equating to zero the differential of the sum of the
squares of the residues with respect to each parameter in turn.

The functions required are specified by a procedure of the
form funct ions (f, x) where f and x are declared as arrays from
1 to n: This procedure should calculate the n functions from a
set of values given in x, placing the results in f. The first s tep is
made by forming partial derivatives over an interval initstep.
h0 -- 6 should be suitable for values of x of the order 1 to 10.
Exi t from the procedure will occur if:

(i) the root sum square of the x increments is less than
error. If error is negative, this condition must be
satisfied for] error [, and in addit ion this process is
continued until the root sum square of the incre-
mentsfails to decrease

or (ii) the number of i terat ions is greater than cycles, implying
tha t too much accuracy has been requested

or (iii) the specified equations are singular. In this case exit
is by a jump to a label fails.

On entry, the array x should contain the s tar t ing values. On
exit, the array x will contain the accurate root, f the residues and
accest the last increments made to x as a measure of the accuracy.

This procedure calls on a global procedure eqnsolve
(A, b, n, label), which solves n linear simultaneous equations in
n unknowns A x = b, placing the result in b. If A is singular, i t
is assumed tha t an exit is made by a jump to label;

b e g i n
r ea l work, sumsqres, prevres;
i n t e g e r i, j , count;
]Boolean switch;
a r r a y prevf[1 :n], eopydelf[1 :n, 1 :n], delx, dell[1 :n, 1 : n+ l] ;
funct ions(prevf , x) ;
for i := 1 s t e p 1 u n t i l n do
b e g i n

x[i] := x[i] + initstep;
funct ions (f, x) ;
for j := 1 s t e p 1 u n t i l n do
b e g i n

dell[i, j] := f[j] -- prevfgj];

726 C o m m u n i c a t i o n s of t h e ACM

delx[i, j] := ,9;
e n d differencing initial point;
delx[i, i] := initstcp;
x[i] := x[i] - initstep;

e n d set t ing up the initial matrix of points;
sumsqres := 11030;
count := 0;

ilerate :
switch := true;
prevres := sumsqres;

tryagain :
for i := 1 s t e p 1 u n t i l n do
b e g i n

f[i] := prevf[i];
for j := 1 s t e p 1 u n t i l n do copydelf[i, j] := dell[i, j]

e n d copying dell for destruct ive use in procedure eqnsolve;
eqnsolve (copydelf , f , n, inline) ;
sumsqres := 0;
for := 1 s t e p 1 u n t i l n do
b e g i n

work := O;
for j : = 1 s t e p 1 u n t i l n do work := work -- delx[i, j] X f[j] ;
accest[i] := work;
x[i] := x[i] + work;
sumsqres := sumsqres ~ work X work

e n d calculation of next point;
count := count Jr 1;
funct ions (f, x) ;
i f count > cycles V sumsqres < error X error A

(error > 0 V sumsqres > prevres) t h e n go to exit;
for i := 1 s t e p 1 u n t i l n do
b e g i n

work := f[i] -" prevf[i];
prevf[i] := f[i];
for j := n s t e p -- 1 u n t i l 1 do
b e g i n

delx[i, j + l] := delx[i, j] -- aecest[i];
delf[i, j + l] := dell[i, j] -- work

e n d calculation of new differences;
delx[i, 1] := --accest[i];
delf[i, 1] := --work

e n d moving points up one place in tables;
go to iterate;

inl ine :
for i := 1 s t e p 1 u n t i l n do
b e g i n

delx[i, n] := delx [i, n + l] ;
delf[i, n] := ddf[i , n + l]

c u d discarding al ternative point;
switch := -~ switch;
i f switch t h e n go to fails else go to tryagain;

exit:
c u d ndinvt

ALGORITHM 315
THE DAMPED TAYLOR'S SERIES METHOD FOR
MINIMIZING- A SUM OF SQUARES AND FOR
SOLVING SYSTEMS OF NONLINEAR EQUATIONS
[E4, C5]
H . SrXTH (R e c d . 25 Oct . 1966 a n d 19 J u n e 1967)

I n s t i t u t ff ir N e u t r o n e n p h y s i k u n d R e a k t o r t e c h n i k

K e r n f o r s c h u n g s z e n t r u m K a r l s r u h e , G e r m a n y

p r o c e d u r e T A Y L O R (n, m, x, h, f , i tmax, epsl , eps2, der, S, K E N N ,
E X I T) ;
va lue n, m, epsl , eps2; i n t e g e r n, m, itmax, K E N N ;

real epsl, eps2, S;

V o l u m e 10 / N u m b e r 11 / November,r1967

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363790.363826&domain=pdf&date_stamp=1967-11-01

B o o l e a n der; array x, h, f ; l a b e l E X I T ;
c o m m e n t

Let

S(x l , ' " ,x~) = ~ f~'(xl,...,x~) (m~n) (1)
i = l

the funct ion to be minimized. Such functions always appear if
you apply the method of least squares to es t imate nonlinear
parameters. The following sequence

F = (/ , , . . . ,f~), F : = (o f , ~ = 1, " " , ~ , J = ~,"" ,n (2)
\ o x j /

where ~, which is always possible, is chosen to be such tha t

S(x(k)--~Ax (k>) < (1--flX)S(x(k)7 (0<X<l) (37

is known to converge [1] for any x(0) to a s ta t ionary point of
S (grad S=2F:TF(x)=0) , if on the carrying out of the i terat ion
the matrix F~TF: does not become singular.

For m = n you have Ax = F:-iF(x) and (2) becomes a damped
version of Newton ' s method for solving the sys tem of nonlinear
equat ions

F(x) = 0 (4)

All zeros of (47 are s ta t ionary points of (1). Thus we are able to
generate a sequence which converges for any x(0) to a s ta t ionary
point of (17 and the possible divergence of Newton ' s method
(~=17 is avoided. I t is not assured, however, tha t the method
will always converge to a solution of (47. Numerical experience
has shown tha t though Newton 's method (~=1) diverges for a
certain x (0) the damped sequence converges to a solution of (4)
for the same x (0).

In the program we have chosen X = .2. At each i terat ion we
set f i rs t~ = i and then, if (3) i sno t valid, f~ = 2-~ (j=1,2, . . . ,16).
If j is greater than 16 then ~ < .00002 and we assume to have
reached a s ta t ionary point of S.

Meaning of the formal parameters:
n the number of variables x~
m the number of functions f~
x the array x[1 :n] which nmst first contain a s tar t ing value

x (°) and finally will contain a s ta t ionary point of S, if
F'~rF'~ or for m = n F'~, respectively, has not become
singular

h hi1 :n] is a s tep size vector for the approximation of F~
(see below)

f the array f[1 :m] will contain the function values at the
last x calculated in TAYLOR

itmax must initially contain the maximum number of i terat ions
to be performed. Leaving TAYLOR regularly, itmax
contains the actual number of performed i terat ions

epsl the i terat ion is s topped when S < epsl
eps2 the i teration is discontinued when ~-lIAX~t~) I <

eps2 X ~ = 1 Ix!k+1) i
der if der = t r u e the matrix F'~ must be produced by a global

procedure named DERIVE(x , dfdx) which adjoins to
the vector x[1 :n] the array dfdx[1 :m, 1 :n]. In this case
the array h can be loaded by an arbi t rary vector, for
instance x.

if der = fa l se the matrix F : is approximated by

Of._j~ = f i (X l , . . . , X j + h~ , xn) -- f ~(xl , . . . ,x¢ -- h¢ , x~)
Ox~ 2hi

where h is a given step size vector. With a suitable choice
of the hj the convergence behavior of the sequence (27
is not destroyed. DERIVE(x, dfdx) must be formally
declared outside of TAYLOR in this case.

[In some eases, part icularly when solving nonlinear
equations, the extra accuracy achieved by using
central differences to est imate the derivat ives is not
necessary. A considerable saving in execution t ime can
be obtained by using one-sided differences which
means only minor changes in the program below.
--REF.]

S should init ially contain the greatest positive number
tha t the employed computer can store. Final ly S con-
tains S = S(x(~t~)), if T A Y L O R is regularly left.

K E N N if after having called T A Y L O R
K E N N = 0 then one of the above interrupt ions applies

(epsl, eps2),
K E N N = 1 then itmax i terat ions were carried out and

TA YLOR is left,
K E N N = - 1 then ~ = 2 -17 and T A Y L O R is left.

E X I T T A Y L O R goes to this global label if i encounters a
singular matrix.

Fur the r two global procedures must be made available to
T A Y L O R :
i) FUNCTION(x, f) which is able to calculate for a given vector

x[1 :n] the function values f[1 :m]
ii) GAUSS(n, A, b, x, E X I T) which solves the linear sys tem of

n equations Ax = b for x. If A is singular then GAUSS returns
to the global label E X I T . Any linear equation solver may be
used for GAUSS;

b e g i n i n t e g e r i, j , k, z, l; real hf, hl, hs, hz;
array fp , fm[1 :m], b, dx[1 :n], dfdx[1 :m, 1 :n], aa[1 :n, 1 :n];
hs : = S ; K E N N := z : = 0 ;

I T E R A T I O N : z := z + 1;
i f z > itmax t h e n b e g i n K E N N := 1; go to E N D E e n d ;

1 := 0; hl := 1.0;
D A M P : l := l + 1;

i f l > 16 t h e n b e g i n K E N N := --1; go to E N D E end;
FUNCTION(x, f) ; hf := 0;
f o r i := 1 s t e p 1 u n t i l m d o h f := hf +f[i] X f[i];
i f h f > hs X (1.0-- .2 X hl) t h e n
b e g i n hl := hl X .5;

for k := 1 s t e p 1 u n t i l n dox[k] := x[k] "4- hl X dx[k];
go to D A M P

e n d ;
hs := hf; i f h s < eps 1 t h e n go t o E N D E ;
i f der t h e n DERIVE(x, dfdx) e lse
b e g i n

for i := 1 s t e p 1 u n t i l n do
b e g i n hf := h[i]; hz := 2.0 X hf;

x[i] := x[i] + hf; FUNCTION(x, fp) ;
x[i] := x[i] - hz; FUNCTION(x, fm) ;
x[i] := x[i] + hf; hz := 1.O/hz;
for k := 1 s t e p 1 u n t i l m do
dfdx[k, i] := hz X (fp[k] --fm[k])

e n d
end;

i f m = n t h e n GAUSS(n, dfdx, f , dx, E X I T 7 e l se
b e g i n

for i := 1 s t e p 1 u n t i l n do
b e g i n hf := 0;

for k := 1 s t e p 1 u n t i l m do
hf := hf + dfdx[k, i] X f[k]; b[i] := hf;

for k := i s t e p 1 u n t i l n do
b e g i n hf := 0;

for j := 1 s t e p 1 u n t i l m do
hf := hf + dfdx[j, i] X dfd~[j, k];

aa[i, k] := aa[k, i] := hf
e n d

end;
GAUSS(n, aa, b, dx, E X I T)
end;

V o l u m e 10 / N u m b e r 11 / N o v e m b e r , 1967 C o m m u n i c a t i o n s o f t h e ACM 727

hz := hf := O;
for i := 1 s t e p 1 u n t i l n do
b e g i n

x[i] := x[i] -- dx[i]; hz := hz + abs(x[i]);
hf := hf + abs(dx[i])

end;
i f hf > eps2 X hz t h e n go to I T E R A T I O N ;

E N D E : F U N C T I O N (x , f) ; S := O; itmax := z;
for i := 1 s t e p 1 u n t i l m do S := S + f[i] X f[i]

e n d T A Y L O R

~:~EFERENCE :

[1] BRAESS, D. Uber Diimpfung bet Minimalisierungsverfahren.
Computing 1 (1966), 264-272.

ALGORITHh~[316
SOLUTION OF SIMULTANEOUS NON-LINEAR
EQUATIONS [C5]
K. M. BROWN (Recd. 27 Oct. 1966, 31 Mar. 1967, 17 July

1967, ~nd 26 July 1967)
Depurtment of Computer Science, Cornell University,

Ithacu, New York

p r o c e d u r e nonlinearsystem (n, maxit, numsig, singular, x);
va lue n, numsig ; i n t e g e r n, maxit, numsig, singular; a r r a y x;

c o m m e n t This procedure solves a sys tem of n simultaneous
nonlinear equations. The method is roughly quadrat ical ly con-
vergent and requires only ((n~/2)+ (3n/2)) function evaluat ions
per i terat ive s tep as compared with (hi+n) evaluations for
Newton ' s Method. This results in a savings of computat ional
effort for sufficiently complicated functions. A detailed de-
scription of the general method and proof of convergence are
included in [1]. Basically the technique consists in expanding
the first equation in a Taylor series about the s tar t ing guess,
retaining only linear terms, equating to zero and solving for
one variable, say xk, as a l inear combination of the remaining
n - 1 variables. In the second equation, xk is el iminated by
replacing it with its l inear representat ion found above, and
again the process of expanding through linear terms, equat ing
to zero and solving for one variable in terms of the now remain-
ing n -- 2 variables is performed. One continues in this fashion,
el iminating one variable per equation, until for the n th equa-
tion, we are left with one equat ion in one unknown. A single
Newton step is now performed, followed by back-subst i tu t ion
in the triangularized linear sys tem generated for the xi 's. A
pivoting effect is achieved by choosing for elimination at any
step tha t variable having a partial derivative of largest absolute
value. The pivoting is done without physical interchange of
rows or columns.

The vector of initial guesses x, the number of significant digits
desired numsig, the maximum number of i terat ions to be used,
maxit, and the number of equations n, should be set up prior to
the procedure call which act ivates nonlinearsystem. After execu-
tion of the procedure, the vector x is the solution of the sys tem
(or best approximation thereto), maxit is now the number of
i terat ions used and singular = 0 is an indication tha t a Jaco-
bian-related matr ix was s ingular-- indicat ive of the process
"blowing-up," whereas singular = 1 is an indication tha t no
such difficulty occurred. Storage space may be saved by imple-
menting the algorithm in a way which takes advantage of the
fact tha t the s t r ic t lower triangle of the array pointer and the
same number of positions in the array coe are not used;

b e g i n i n t e g e r converge, m, j , k, i, jsub, itemp, kmax, kplus, tally;
real f , hold, h, fplus, dermax, test, factor, relconvg;
i n t e g e r a r r a y pointer[1 :n, 1 :n], isub[1 :n-- 1];
array temp, part[1 :n], coe[1 :n, 1 :n+l] ;
p r o c e d u r e backsubstitution (k, n, x, isub, coe, pointer);

v a l u e k, n;
i n t e g e r k, n; i n t e g e r array isub, pointer; a r r a y x, coe;

c o m m e n t This procedure back-solves a triangular linear
sys tem for improved x[i] values in terms of old ones;

b e g i n in t e ge r ibm, kmax, jsub ;
for km := k s t e p - 1 u n t i l 2 do
b e g i n kmax := isub[km--1]; x[kmaz] := 0;

for j := km s t e p 1 u n t i l n do
b e g i n jsub := pointer[kin, j] ;

x[kmax] ::= x[kmax] + coe[km--1, jsub] X x[jsub]
e n d ;
x[kmax] := x[kmax] + coe[km--1, n + l l

end;
e n d backsubstitution ;
p r o c e d u r e evaluatekthfunetion (x, y, k);

i n t e g e r k; r ea l y; a r r a y x;
b e g i n commenLt the body of this procedure must be provided

by the user. One call of the procedure should cause the value
of the kth funct ion at the current value of the vector x to be
placed in y;

e n d evaluatekthfunction ;
converge := 1; singular := 1; relconvg :-- 10 T (-numsig);
for m := 1 s t e p i u n t i l maxit do
b e g i n

c o m m e n t An intermediate ou tpu t s t a t emen t may be in-
serted at this point in the procedure to pr in t the successive
approximation vectors x generated by each complete i tera-
t i r e s tep;

for j := 1 s t e p 1 u n t i l n do pointer [1, j] := j;
for k := 1 s t e p 1 u n t i l n do
b e g i n i f k > 1 t h e n baeksubstitution (k, n, x, isub, coe, pointer) ;

evaluatekthfunction (x, f , k) ; factor := .001;
A A A : tally := 0; fo r i := k s t ep 1 u n t i l n do

b e g i n itemp := pointer[k, i]; hold := x[itemp];
h := factor X hold; i f h = 0 t h e n h := .001;
x[itemp] := hold + h;
i f k > 1 t h e n backsubstitution (k, n, x, isub, coe, pointer);
evaluatekt,~function (x, fplus, k) ;
part[itemp] := (fp lus - f) /h;
x[itemp] := hold; i f (abs(part[itemp])=O)V
(abs(f/part[itemp]) > 1.01020)then tally := tally + 1;

end;
i f tally ~ n -- k t h e n go to A A ; factor := factor X 10.0;
i f factor > .5 t h e n go to SING; go to A A A ;

A A : i f k < n t h e n go to A; i f abs (part[itemp]) = 0
t h e n go to, SING;
coe[k, n+l] := 0; kmax := itemp; go to ENDK;

A: kmax := pointer[k, k]; dermax := abs(part[kmax]) ;
kplus := k + 1;
for i := kplus s t e p 1 u n t i l n do
b e g i n jsub := pointer[k, i]; test := abs(part[jsub]);

i f test < dermax t h e n go to B; dermax := test;
pointer [kplus, if := kmax; kmax := jsub;
go to ENDI;

B: pointer [kplus, if := jsub;
END[:

end;
i f abs(part[i~max]) = 0 t h e n go to SING; isub[k] := kmax;
coe[k, n + l] := O;
for j := kplus s t e p 1 u n t i l n do
b e g i n jsub := pointer[kplus, j] ;

coe[k, jsub] := --part[jsub]/part[kmax];
coe[k, n + l] := coe[k, n + l] + part[jsub] X x[jsub]

end;
ENDK:

coe[k, n + l] := (coe[k, n + l] - f) / part[kmax] + x[kmax]
e n d k;
x[kmax] := coe[n, n + l] ;
i f n > 1 t h e n backsubstitution (n, n, x, isub, coe, pointer);
i f m = 1 t h e n go r o D ;
for i := 1 s t e p 1 u n t i l n do

i f abs((temp[i]--x[i])/x[i]) > relconvg t h e n go to C;

728 C o m m u n i c a t i o n s o f t h e ACM V o l u m e I0 / N u m b e r 11 / November , 1967

converge : = converge -~- 1;

i f converge >= 3 t h e n g o t o T E R M I N A T E i e l s e g o t o D ;

C: converge := 1 ;
D : f o r i : = 1 s t e p 1 u n t i l n d o temp[iJ :-- x[i]

e n d m ;

g o t o T H R O U G H ;
T E R M I N A T E :

maxi t := m; g o t o T H R O U G H ;
S I N G :

s ingular := 0;

T H R O U G H :
e n d nonl inearsys tem

APPENDIX
W e i n c l u d e a s a m p l e p r o c e d u r e evaluatekthfunction f o r t h e

2 × 2 s y s t e m :

1 - - 47r (e2~i - - e) + ~- x2 - - 2ex~ = 0

1 X~ Xl
- s i n (xlx2) 0,
2 4~- 2

o n e s o l u t i o n o f w h i c h i s (.5, ~-) s ee [2]

p r o c e d u r e evaluatelcthfunction (x, y, k) ;

i n t e g e r k ; r e a l y ; a r r a y x ;

b e g i n s w i t c h f u n c t i o n n u m b e r := F1, F 2 ;

g o t o f u n c t i o n n u m b e r [k] ;

F I : y : = 2 .71828183 X (.920422528 X (e x p (2 X x [1] - l) - l) - b

x[2]/3 .14159265-2Xx[1]) ;

g o t o R E T U R N ;

F2: y := .5 X sin(x[1]Xx[2]) -- x[2]/12.5663706 -- x[1]/2;
R E T U R N :
e n d evaluatekthfunction ;

REFERENCES:

1. BROWN, K . M . A quadratically convergent m e t h o d f o r s o l v -

i n g s i m u l t a n e o u s n o n - l i n e a r e q u a t i o n s . D o c t o r a l T h e s i s ,

D e p t . C o m p u t e r S c i e n c e s , P u r d u e U . , L a f a y e t t e , I n d . , A u g . ,
1966.

2. BROWN, K . M., AND CONTE, S . D . T h e s o l u t i o n o f s i m u l t a n e -

o u s n o n l i n e a r e q u a t i o n s . P r o c . A C M 2 2 n d N a t . C o n f . , p p
111-114 .

ALGORITHM 317"
PERMUTATION [G6]
CHARLES L. RORI~SO~¢ (Recd. 12 Apr. 1967, 2 May 1967

and 10 July 1967)
Institute for Computer Research, U. of Chicago, Chicago,

Ill.
* T h i s w o r k w a s s u p p o r t e d b y A E C C o n t r a c t n o . A T (11-1) -614 .

p r o c e d u r e p e r m u t e (n , k, v) ; v a l u e n, k; i n t e g e r a r r a y v;
i n t e g e r n , k ;

c o m m e n t T h i s p r o c e d u r e p r o d u c e s i n t h e v e c t o r v t h e k t h

p e r m u t a t i o n o n n v a r i a b l e s . W h e n k = 0, v t a k e s o n t h e v a l u e

1, 2, 3, 4 , . . . , n . T h i s a l g o r i t h m i s n o t a s e f f i c i e n t a s p r e -

v i o u s l y p u b l i s h e d a l g o r i t h m s [1], [2], [3] f o r g e n e r a t i n g a

c o m p l e t e s e t o f p e r m u t a t i o n s b u t i t i s s i g n i f i c a n t l y b e t t e r

f o r g e n e r a t i n g a r a n d o m p e r m u t a t i o n , a p r o p e r t y u s e f u l i n

c e r t a i n s i m u l a t i o n a p p l i c a t i o n s . A n y n o n - n e g a t i v e v a l u e o f

k w i l l p r o d u c e a v a l i d p e r m u t a t i o n . T o g e n e r a t e a r a n d o m

p e r m u t a t i o n , /c s h o u l d b e c h o s e n f r o m t h e u n i f o r m d i s t r i b u -

t i o n o v e r t h e i n t e g e r s f r o m 0 t o n ! - - 1 i n c l u s i v e ;
b e g i n i n t e g e r i , if, r , x , j ;

f o r i : = 1 s t e p 1 u n t i l n d o v[i] : = 0 ;

f o r i : = n s t e p - - 1 u n t i l 1 d o

b e g i n

q : = k ÷ i ; r : = b - - q X i ; x : - - 0 ; j : = n ;

no: i f v[j] = 0 t h e n

b e g i n

i f x = r t h e n g o t o i t e l s e x : = x --b 1

e n d ;

j : = j - - 1 ; g o t o no;
it: v[j] : = i ; /~ : = q;

e n d

e n d
REFERENCES :

1. COVEYOU, ~:~. R . , AND SULLIVAN, J . G . Algorithm 71, P e r -

m u t a t i o n . Comm. A C M ~ (N o v . 1961) , 497.

2. PECK, J . E . L . , AND SCHRACK, G . F . Algorithm 86, P e r m u t e .

Comm. A C M 5 (A p r . 1962) , 208.

3. TROTTER, I~I. F . A l g o r i t h m 115, P e r m . Comm. A C M 5 (A u g .

1962) , 434.

A l g o r i t h m s P o l i c y • R e v i s e d A u g u s t , 1966

A contribution to the Algorithms Department should be in the form of an
algorithm, a certification, or a remark. Contributionsehould be sent in dupli-
cate to the editor, typewrit ten double spaced. Authors should carefully
follow the style of this depar tment with especial attention to indentation
a n d completeness of references.

An algorithm must normally be written in the ALGOL 60 Reference
Language [Comm. ACM 6 (Jan. 1963), 1-17] or in ASA Standard F O R T R A N
or Basic F O R T R A N [Comm. ACM 7 (Oct. 1964), 590-625]. Consideration
will be given to algorithms written in other languages provided lhe language
has been fully documented in the open literature and provided the author
presents convincing arguments that his algorithm is best described in the
chosen language and cannot be adequately described in either ALGOL 60
or F O R T R A N .

An algorithm written in ALGOL 60 normally consists of a commented
procedure declaration. I t should be typewritten double spaced in capital and
lower-case letters. Material to appear in bo ldface type should be under-
lined in black. Blue underlining may be used to indicate italic type, bu t this
is usually best left to the Editor. An algorithm written in F O R T R A N nor-
mally consists of a commented subprogram. I t should be typewritten double
spaced in the form normally used for F O R T R A N or it should be in the form
of a listing of a F O R T R A N card deck together with a copy ot the card deck.
Each algorithm must be accompanied by a complete driver program in its
language which generates test data, calls the procedure, and produces test
answers. Moreover, selected previously obtained test answers should be given
in comments in either the driver program or the algorithm. The driver pro-
gram may be publishedwith the algorithm if it would be of major assistance
to a user.

For ALGOL 60 programs, input and output should be achieved by pro-
cedure statements, using any of the following eleven procedures (whose body
is not specified in ALGOL) [See "Repor t on Input -Output Procedures for
ALGOL 60," Comm. ACM 7 (Oct. 1964), 028-029]:

in.symbol inreal oularray ininteger
outsymbol outreal outboolean outinteger
length inarray ougstring

If only one channel is used by the program for output , it should be desig-
nated by 1 and similarly a single input channel should be designated by 2.
Examples:

ouSstring (1, '~ffi'); outreal (l,x);
fo r i :~ 1 s tep 1 u n t i l n do outreal (1,A[i]);
ininteger (2, digit [17]):

For F O R T R A N programs, input and output should be achieved as described
in the ASA preliminary report on F O R T R A N and Basic FORTRAN.

I t is intended tha t each published algorithm be well organized, clearly
commented, syntactically correct, and a substantial contribution to the
literature of Algorithms. I t is necessary but not sufficient that a published
algorithm operate on some machine and give correct answers. I t must also
communicate a method to the reader in a clear and unambiguous manner.
All contributions will be refereed both by human beings and by an appro-
priate compiler. Authors should pay considerable attention to the corzectness
of their programs, since referees cannot be expected to debug them.

Certifications and remarks should add new information to tha t already
published. Readers are especially encouraged to test and certify previously
uncertified algorithms. Rewritten versions of previously published al-
gorithms will be refereed as new contributions and should not be imbedded
in certifications or remarks.

Galley proofs will be sent to authors; obviously rapid and careful proof-
reading is of paramount importance.

Although each algorithm has been tested by its author, no liability is
assumed by the contributor, the editor, or the Association for Computing
Machinery in connection therewith.

The reproduction of algorithms appearing in this department is explicitly
permitted without any charge. When reproduction is for publication pur-
poses, reference must be made to the algorithm author and to the Communi-
cations Lasue bearing the algorithm.--J.G.Herriot

V o l u m e 10 / N u m b e r 11 / N o v e m b e r , 1967 C o m m u n i c a t i o n s o f t h e A C M 729

