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F I N D I N G  A S O L U T I O N  O F  N F U N C T I O N A L  

E Q U A T I O N S  I N  N U N K N O W N S  [C5] 

D .  B.  DULLEY AND M .  L.  V.  PITTEWAY (Recd. 7 Apr. 1966, 
19 Oct .  1966 a n d  5 J u l y  1967) 

C r i p p s  C o m p u t i n g  C e n t r e ,  U n i v e r s i t y  of N o t t i n g h a m ,  

E n g l a n d  

p r o c e d u r e  ndinvt (.functions, initstep, error, cycles, x, f ,  accest, n) ; 
v a l u e  n; procedure  functions; real  initstep, error; 
i n t e g e r  cycles, n; a r r a y  x, f ,  accest; 

c o m m e n t  This procedure performs inverse interpolat ion in n 
dimensions, i.e., i t  will find a set  of values for n variables x, 
such tha t  n functions f (x)  are zero. A more sophist icated tech- 
nique, suitable for large values of n, has been developed by 
S. M. Robinson (Interpolat ive Solution of Systems of Nonlinear  
Equat ions,  S I A M  Journal of Numerical  Analysis ,  3 (1966), 
650-658). I t  can also be used to fit a curve with n arbi t rary  
parameters  to a set of points, the n functions being formed, in 
this case, by equating to zero the differential of the sum of the 
squares of the residues with respect to each parameter  in turn.  

The functions required are specified by a procedure of the 
form funct ions (f, x) where f and x are declared as arrays from 
1 to n: This procedure should calculate the n functions from a 
set  of values given in x, placing the results in f. The first s tep is 
made by forming partial derivatives over an interval initstep. 
h0 -- 6 should be suitable for values of x of the order 1 to 10. 
Exi t  from the procedure will occur if: 

(i) the root sum square of the x increments is less than 
error. If error is negative, this condition must  be 
satisfied for ] error [, and in addit ion this process is 
continued until the root sum square of the incre- 
mentsfails to decrease 

or (ii) the number of i terat ions is greater  than cycles, implying 
tha t  too much accuracy has been requested 

or (iii) the specified equations are singular. In  this case exit 
is by a jump to a label fails. 

On entry,  the array x should contain the s tar t ing values. On 
exit, the array x will contain the accurate root, f the residues and 
accest the last  increments made to x as a measure of the accuracy. 

This procedure calls on a global procedure eqnsolve 
(A,  b, n, label), which solves n linear simultaneous equations in 
n unknowns A x  = b, placing the result in b. If A is singular, i t  
is assumed tha t  an exit is made by a jump to label; 

b e g i n  
r ea l  work, sumsqres, prevres; 
i n t e g e r  i, j ,  count; 
]Boolean switch; 
a r r a y  prevf[1 :n], eopydelf[1 :n, 1 :n], delx, dell[1 :n, 1 : n+ l ] ;  
funct ions(prevf  , x) ; 
for i := 1 s t e p  1 u n t i l  n do 
b e g i n  

x[i] := x[i] + initstep; 
funct ions (f, x) ; 
for j := 1 s t e p  1 u n t i l  n do 
b e g i n  

dell[i, j] := f[j] -- prevfgj]; 
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delx[i, j] := ,9; 
e n d  differencing initial point;  
delx[i, i] := initstcp; 
x[i] := x[i] - initstep; 

e n d  set t ing up the initial matrix of points;  
sumsqres := 11030; 
count := 0; 

ilerate : 
switch := true;  
prevres := sumsqres; 

tryagain : 
for i := 1 s t e p  1 u n t i l  n do 
b e g i n  

f[i] := prevf[i]; 
for j := 1 s t e p  1 u n t i l  n do copydelf[i, j] := dell[i, j] 

e n d  copying dell for destruct ive use in procedure eqnsolve; 
eqnsolve (copydelf , f ,  n,  inline) ; 
sumsqres := 0; 
for := 1 s t e p  1 u n t i l  n do 
b e g i n  

work := O; 
for j : = 1 s t e p  1 u n t i l  n do work := work -- delx[i, j] X f[j] ; 
accest[i] := work; 
x[i] := x[i] + work; 
sumsqres := sumsqres ~ work X work 

e n d  calculation of next point;  
count := count Jr 1; 
funct ions (f, x) ; 
i f  count > cycles V sumsqres < error X error A 

(error > 0 V sumsqres > prevres) t h e n  go to  exit; 
for i := 1 s t e p  1 u n t i l  n do 
b e g i n  

work := f[i] -" prevf[i]; 
prevf[i] := f[i]; 
for j := n s t e p  -- 1 u n t i l  1 do 
b e g i n  

delx[i, j + l ]  := delx[i, j] -- aecest[i]; 
delf[i, j + l ]  := dell[i, j] -- work 

e n d  calculation of new differences; 
delx[i, 1] := --accest[i]; 
delf[i, 1] := --work 

e n d  moving points up one place in tables;  
go to  iterate; 

inl ine : 
for i := 1 s t e p  1 u n t i l  n do 
b e g i n  

delx[i, n] := delx [i, n + l ] ;  
delf[i, n] := ddf[i ,  n + l ]  

c u d  discarding al ternative point;  
switch := -~ switch; 
i f  switch t h e n  go to  fails  else  go to  tryagain; 

exit: 
c u d  ndinvt 

ALGORITHM 315 
THE DAMPED TAYLOR'S SERIES METHOD FOR 
MINIMIZING- A SUM OF SQUARES AND FOR 
SOLVING SYSTEMS OF NONLINEAR EQUATIONS 
[E4, C5] 
H .  SrXTH ( R e c d .  25 Oct .  1966 a n d  19 J u n e  1967) 

I n s t i t u t  ff ir  N e u t r o n e n p h y s i k  u n d  R e a k t o r t e c h n i k  

K e r n f o r s c h u n g s z e n t r u m  K a r l s r u h e ,  G e r m a n y  

p r o c e d u r e  T A  Y L O R  (n, m,  x, h, f ,  i tmax, epsl ,  eps2, der, S,  K E N N  , 
E X I T )  ; 
va lue  n, m,  epsl ,  eps2; i n t e g e r  n, m,  itmax, K E N N ;  

real  epsl,  eps2, S;  
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B o o l e a n  der; array x, h, f ;  l a b e l  E X I T ;  
c o m m e n t  

Let  

S(x l , ' " ,x~)  = ~ f~'(xl,...,x~) (m~n)  (1) 
i = l  

the funct ion to be minimized. Such functions always appear if 
you apply the method of least squares to es t imate  nonlinear 
parameters.  The following sequence 

F = ( / , , . . .  ,f~),  F :  = ( o f , ~  = 1, " " , ~ , J =  ~,"" ,n (2) 
\ o x j /  

where ~, which is always possible, is chosen to be such tha t  

S(x(k)--~Ax (k>) < (1--flX)S(x(k)7 (0<X<l)  (37 

is known to converge [1] for any x(0) to a s ta t ionary  point of 
S (grad S=2F:TF(x)=0) ,  if on the carrying out of the i terat ion 
the matrix F~TF: does not  become singular. 

For  m = n you have Ax = F:-iF(x) and (2) becomes a damped 
version of Newton ' s  method for solving the sys tem of nonlinear 
equat ions 

F(x) = 0 (4) 

All zeros of (47 are s ta t ionary  points of (1). Thus we are able to 
generate a sequence which converges for any x(0) to a s ta t ionary  
point of (17 and the possible divergence of Newton ' s  method 
(~=17 is avoided. I t  is not assured, however, tha t  the method 
will always converge to a solution of (47. Numerical experience 
has shown tha t  though Newton 's  method (~=1) diverges for a 
certain x (0) the damped sequence converges to a solution of (4) 
for the same x (0). 

In  the program we have chosen X = .2. At  each i terat ion we 
set  f i rs t~ = i and then, if (3) i sno t  valid, f~ = 2-~ (j=1,2, . . .  ,16). 
If j is greater than 16 then ~ < .00002 and we assume to have 
reached a s ta t ionary  point of S. 

Meaning of the formal parameters:  
n the number of variables x~ 
m the number of functions f~ 
x the array x[1 :n] which nmst  first contain a s tar t ing value 

x (°) and finally will contain a s ta t ionary  point of S, if 
F'~rF'~ or for m = n F'~, respectively, has not become 
singular 

h hi1 :n] is a s tep size vector  for the approximation of F~ 
(see below) 

f the array f[1 :m] will contain the function values at  the 
last  x calculated in TAYLOR 

itmax must  initially contain the maximum number of i terat ions 
to be performed. Leaving TAYLOR regularly, itmax 
contains the actual number of performed i terat ions 

epsl the i terat ion is s topped when S < epsl 
eps2 the i teration is discontinued when ~-lIAX~t~) I < 

eps2 X ~ = 1  Ix!k+1) i 
der if der = t r u e  the matrix F'~ must  be produced by a global 

procedure named DERIVE(x ,  dfdx) which adjoins to 
the vector  x[1 :n] the array dfdx[1 :m, 1 :n]. In  this case 
the array h can be loaded by an arbi t rary  vector,  for 
instance x. 

if der = fa l se  the matrix F :  is approximated by 

Of._j~ = f i ( X l  , . . . , X j  + h~ . . . .  , xn) -- f ~(xl , . . . ,x¢ -- h¢ . . . .  , x~) 
Ox~ 2hi 

where h is a given step size vector. With a suitable choice 
of the hj the convergence behavior of the sequence (27 
is not destroyed. DERIVE(x,  dfdx) must  be formally 
declared outside of TAYLOR in this case. 

[In some eases, part icularly when solving nonlinear  
equations,  the extra accuracy achieved by  using 
central differences to est imate the derivat ives is not  
necessary. A considerable saving in execution t ime can 
be obtained by using one-sided differences which 
means only minor changes in the program below. 
--REF.] 

S should init ially contain the greatest  positive number  
tha t  the employed computer  can store.  Final ly S con- 
tains S = S(x(~t~)), if T A Y L O R  is regularly left. 

K E N N  if after  having called T A Y L O R  
K E N N  = 0 then one of the above interrupt ions applies 

(epsl, eps2), 
K E N N  = 1 then itmax i terat ions were carried out and 

TA YLOR is left, 
K E N N  = - 1  then ~ = 2 -17 and T A Y L O R  is left. 

E X I T  T A Y L O R  goes to this global label if i encounters  a 
singular matrix.  

Fur the r  two global procedures must  be made available to 
T A Y L O R  : 
i) FUNCTION(x,  f)  which is able to calculate for a given vector  

x[1 :n] the function values f[1 :m] 
ii) GAUSS(n,  A,  b, x, E X I T )  which solves the linear sys tem of 

n equations Ax = b for x. If A is singular then GAUSS returns 
to the global label E X I T .  Any linear equation solver may be 
used for GAUSS; 

b e g i n  i n t e g e r  i, j ,  k, z, l; real  hf, hl, hs, hz; 
array  fp ,  fm[1 :m], b, dx[1 :n], dfdx[1 :m, 1 :n], aa[1 :n, 1 :n]; 
hs : = S ;  K E N N  := z : = 0 ;  

I T E R A T I O N :  z := z + 1; 
i f  z > itmax t h e n  b e g i n  K E N N  := 1; go to  E N D E  e n d ;  

1 := 0; hl := 1.0; 
D A M P :  l := l + 1; 

i f l  > 16 t h e n  b e g i n  K E N N  := --1; go to  E N D E  end;  
FUNCTION(x,  f ) ;  hf := 0; 
f o r i  := 1 s t e p  1 u n t i l m  d o h f  := hf +f[ i ]  X f[i]; 
i f h f  > hs X (1.0--  .2 X hl) t h e n  
b e g i n  hl := hl X .5; 

for k := 1 s t e p  1 u n t i l n  dox[k]  := x[k] "4- hl X dx[k]; 
go to  D A M P  

e n d  ; 
hs := hf; i f h s  < eps 1 t h e n  go t o E N D E ;  
i f  der t h e n  DERIVE(x,  dfdx) e lse  
b e g i n  

for i := 1 s t e p  1 u n t i l  n do 
b e g i n  hf := h[i]; hz := 2.0 X hf; 

x[i] := x[i] + hf; FUNCTION(x,  fp) ; 
x[i] := x[i] - hz; FUNCTION(x,  fm) ; 
x[i] := x[i] + hf; hz := 1.O/hz; 
for k := 1 s t e p  1 u n t i l  m do 
dfdx[k, i] := hz X (fp[k] --fm[k]) 

e n d  
end;  

i f  m = n t h e n  GAUSS(n,  dfdx, f ,  dx, E X I T  7 e l se  
b e g i n  

for i := 1 s t e p  1 u n t i l  n do 
b e g i n  hf := 0; 

for k := 1 s t e p  1 u n t i l  m do 
hf := hf + dfdx[k, i] X f[k]; b[i] := hf; 

for k := i s t e p  1 u n t i l  n do 
b e g i n  hf := 0; 

for j := 1 s t e p  1 u n t i l  m do 
hf := hf + dfdx[j, i] X dfd~[j, k]; 

aa[i, k] := aa[k, i] := hf 
e n d  

end;  
GAUSS(n,  aa, b, dx, E X I T )  
end;  
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hz := hf := O; 
for i := 1 s t e p  1 u n t i l  n do 
b e g i n  

x[i] := x[i] -- dx[i]; hz := hz + abs(x[i]); 
hf := hf + abs(dx[i]) 

end;  
i f  hf > eps2 X hz t h e n  go to  I T E R A T I O N ;  

E N D E : F U N C T I O N ( x , f ) ;  S := O; itmax := z; 
for i := 1 s t e p  1 u n t i l  m do S := S + f[i] X f[i] 

e n d  T A Y L O R  

~:~EFERENCE : 

[1] BRAESS, D. Uber  Diimpfung bet Minimalisierungsverfahren. 
Computing 1 (1966), 264-272. 

ALGORITHh~[ 316 
SOLUTION OF SIMULTANEOUS NON-LINEAR 
EQUATIONS [C5] 
K. M. BROWN (Recd. 27 Oct. 1966, 31 Mar. 1967, 17 July 

1967, ~nd 26 July 1967) 
Depurtment of Computer Science, Cornell University, 

Ithacu, New York 

p r o c e d u r e  nonlinearsystem (n, maxit, numsig, singular, x); 
va lue  n, numsig ; i n t e g e r  n, maxit, numsig, singular; a r r a y  x; 

c o m m e n t  This procedure solves a sys tem of n simultaneous 
nonlinear equations.  The method is roughly quadrat ical ly con- 
vergent  and requires only ((n~/2)+ (3n/2)) function evaluat ions 
per i terat ive s tep as compared with (hi+n) evaluations for 
Newton ' s  Method.  This results in a savings of computat ional  
effort for sufficiently complicated functions.  A detailed de- 
scription of the general method and proof of convergence are 
included in [1]. Basically the technique consists in expanding 
the first equation in a Taylor  series about  the s tar t ing guess, 
retaining only linear terms, equating to zero and solving for 
one variable, say xk, as a l inear combination of the remaining 
n - 1 variables. In  the second equation,  xk is el iminated by 
replacing it with its l inear representat ion found above, and 
again the process of expanding through linear terms, equat ing 
to zero and solving for one variable in terms of the now remain- 
ing n -- 2 variables is performed. One continues in this fashion, 
el iminating one variable per equation,  until  for the n th  equa- 
tion, we are left with one equat ion in one unknown. A single 
Newton step is now performed, followed by back-subst i tu t ion 
in the triangularized linear sys tem generated for the xi 's.  A 
pivoting effect is achieved by choosing for elimination at  any 
step tha t  variable having a partial derivative of largest absolute 
value. The pivoting is done without  physical interchange of 
rows or columns. 

The vector  of initial guesses x, the number of significant digits 
desired numsig, the maximum number  of i terat ions to be used, 
maxit, and the number of equations n, should be set  up prior to 
the procedure call which act ivates  nonlinearsystem. After  execu- 
tion of the procedure, the vector  x is the solution of the sys tem 
(or best  approximation thereto),  maxit is now the number  of 
i terat ions used and singular = 0 is an indication tha t  a Jaco- 
bian-related matr ix  was s ingular-- indicat ive  of the process 
"blowing-up,"  whereas singular = 1 is an indication tha t  no 
such difficulty occurred. Storage space may be saved by imple- 
menting the algorithm in a way which takes advantage of the 
fact  tha t  the s t r ic t  lower triangle of the array pointer and the 
same number  of positions in the array coe are not  used; 

b e g i n  i n t e g e r  converge, m, j ,  k, i, jsub, itemp, kmax, kplus, tally; 
real  f ,  hold, h, fplus, dermax, test, factor, relconvg; 
i n t e g e r  a r r a y  pointer[1 :n, 1 :n], isub[1 :n-- 1]; 
array  temp, part[1 :n], coe[1 :n, 1 :n+l ]  ; 
p r o c e d u r e  backsubstitution (k, n, x, isub, coe, pointer); 

v a l u e  k, n;  
i n t e g e r  k, n;  i n t e g e r  array  isub, pointer; a r r a y  x, coe; 

c o m m e n t  This procedure back-solves a triangular linear 
sys tem for improved x[i] values in terms of old ones; 

b e g i n  in t e ge r  ibm, kmax, jsub ; 
for km := k s t e p  - 1  u n t i l  2 do 
b e g i n  kmax := isub[km--1]; x[kmaz] := 0; 

for j := km s t e p  1 u n t i l  n do 
b e g i n  jsub := pointer[kin, j] ; 

x[kmax] ::= x[kmax] + coe[km--1, jsub] X x[jsub] 
e n d ;  
x[kmax] := x[kmax] + coe[km--1, n + l l  

end;  
e n d  backsubstitution ; 
p r o c e d u r e  evaluatekthfunetion (x, y, k); 

i n t e g e r  k; r ea l  y; a r r a y  x; 
b e g i n  commenLt the body of this procedure must  be provided 

by the user. One call of the procedure should cause the value 
of the kth funct ion at  the current  value of the vector  x to be 
placed in y; 

e n d  evaluatekthfunction ; 
converge := 1; singular := 1; relconvg :-- 10 T (-numsig); 
for  m := 1 s t e p  i u n t i l  maxit do 
b e g i n  

c o m m e n t  An intermediate  ou tpu t  s t a t emen t  may be in- 
serted at  this point  in the procedure to pr in t  the successive 
approximation vectors x generated by each complete i tera-  
t i r e  s tep;  

for  j := 1 s t e p  1 u n t i l  n do  pointer [1, j] := j; 
for  k := 1 s t e p  1 u n t i l  n do  
b e g i n  i f k  > 1 t h e n  baeksubstitution (k, n, x, isub, coe, pointer) ; 

evaluatekthfunction (x, f ,  k) ; factor := .001; 
A A A :  tally := 0; fo r  i := k s t ep  1 u n t i l  n do  

b e g i n  itemp := pointer[k, i]; hold := x[itemp]; 
h := factor X hold; i f h  = 0 t h e n h  := .001; 
x[itemp] := hold + h; 
i f  k > 1 t h e n  backsubstitution (k, n, x, isub, coe, pointer); 
evaluatekt,~function (x, fplus, k) ; 
part[itemp] := ( fp lus - f )  /h; 
x[itemp] := hold; i f  (abs(part[itemp])=O)V 
(abs(f/part[itemp]) > 1.01020)then tally := tally + 1; 

end;  
i f  tally ~ n -- k t h e n  go to  A A ;  factor := factor X 10.0; 
i f  factor > .5 t h e n  go to  SING; go to  A A A ;  

A A :  i f  k < n t h e n  go to  A; i f  abs (part[itemp]) = 0 
t h e n  go to, SING; 
coe[k, n+l]  := 0; kmax := itemp; go to  ENDK;  

A:  kmax := pointer[k, k]; dermax := abs(part[kmax]) ; 
kplus := k + 1; 
for i := kplus s t e p  1 u n t i l  n do 
b e g i n  jsub := pointer[k, i]; test := abs(part[jsub]); 

i f  test < dermax t h e n  go to  B; dermax := test; 
pointer [kplus, if := kmax; kmax := jsub; 
go to  ENDI;  

B: pointer [kplus, if := jsub; 
END[:  

end;  
i f  abs(part[i~max]) = 0 t h e n  go to  SING; isub[k] := kmax; 
coe[k, n + l ]  := O; 
for j := kplus s t e p  1 u n t i l  n do 
b e g i n  jsub := pointer[kplus, j] ; 

coe[k, jsub] := --part[jsub]/part[kmax]; 
coe[k, n + l ]  := coe[k, n + l ]  + part[jsub] X x[jsub] 

end;  
ENDK:  

coe[k, n + l ]  := (coe[k, n + l ] - f ) /  part[kmax] + x[kmax] 
e n d  k; 
x[kmax] := coe[n, n + l ] ;  
i f  n > 1 t h e n  backsubstitution (n, n, x, isub, coe, pointer); 
i f m  = 1 t h e n  go r o D ;  
for i := 1 s t e p  1 u n t i l  n do 

i f  abs((temp[i]--x[i])/x[i]) > relconvg t h e n  go to  C; 
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converge : =  converge -~- 1; 

i f  converge >= 3 t h e n  g o  t o  T E R M I N A T E i e l s e  g o  t o  D ;  

C: converge := 1 ; 
D :  f o r  i : =  1 s t e p  1 u n t i l  n d o  temp[iJ :-- x[i] 

e n d  m ;  

g o  t o  T H R O U G H ;  
T E R M I N A T E :  

maxi t  := m;  g o  t o  T H R O U G H ;  
S I N G :  

s ingular  := 0;  

T H R O U G H :  
e n d  nonl inearsys tem 

APPENDIX 
W e  i n c l u d e  a s a m p l e  p r o c e d u r e  evaluatekthfunction f o r  t h e  

2 × 2 s y s t e m :  

1 - -  47r (e2~i - -  e )  + ~- x2 - -  2ex~ = 0 

1 X~ Xl 
- s i n  (xlx2) 0,  
2 4~- 2 

o n e  s o l u t i o n  o f  w h i c h  i s  ( .5,  ~-) s ee  [2] 

p r o c e d u r e  evaluatelcthfunction (x, y, k ) ;  

i n t e g e r  k ;  r e a l  y ;  a r r a y  x ;  

b e g i n  s w i t c h  f u n c t i o n n u m b e r  := F1, F 2 ;  

g o  t o  f u n c t i o n n u m b e r  [k] ; 

F I :  y : =  2 .71828183  X (.920422528 X ( e x p ( 2 X x [ 1 ] - l ) - l ) - b  

x[2]/3 .14159265-2Xx[1])  ; 

g o  t o  R E T U R N ;  

F2: y := .5 X sin(x[1]Xx[2]) -- x[2]/12.5663706 -- x[1]/2; 
R E T U R N :  
e n d  evaluatekthfunction ; 
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ALGORITHM 317" 
PERMUTATION [G6] 
CHARLES L. RORI~SO~¢ (Recd. 12 Apr. 1967, 2 May 1967 

and 10 July 1967) 
Institute for Computer Research, U. of Chicago, Chicago, 

Ill. 
* T h i s  w o r k  w a s  s u p p o r t e d  b y  A E C  C o n t r a c t  n o .  A T  (11-1) -614 .  

p r o c e d u r e  p e r m u t e ( n ,  k, v) ;  v a l u e  n, k;  i n t e g e r  a r r a y  v; 
i n t e g e r  n ,  k ;  

c o m m e n t  T h i s  p r o c e d u r e  p r o d u c e s  i n  t h e  v e c t o r  v t h e  k t h  

p e r m u t a t i o n  o n  n v a r i a b l e s .  W h e n  k = 0,  v t a k e s  o n  t h e  v a l u e  

1, 2,  3,  4 ,  . . .  , n .  T h i s  a l g o r i t h m  i s  n o t  a s  e f f i c i e n t  a s  p r e -  

v i o u s l y  p u b l i s h e d  a l g o r i t h m s  [1], [2], [3] f o r  g e n e r a t i n g  a 

c o m p l e t e  s e t  o f  p e r m u t a t i o n s  b u t  i t  i s  s i g n i f i c a n t l y  b e t t e r  

f o r  g e n e r a t i n g  a r a n d o m  p e r m u t a t i o n ,  a p r o p e r t y  u s e f u l  i n  

c e r t a i n  s i m u l a t i o n  a p p l i c a t i o n s .  A n y  n o n - n e g a t i v e  v a l u e  o f  

k w i l l  p r o d u c e  a v a l i d  p e r m u t a t i o n .  T o  g e n e r a t e  a r a n d o m  

p e r m u t a t i o n ,  /c s h o u l d  b e  c h o s e n  f r o m  t h e  u n i f o r m  d i s t r i b u -  

t i o n  o v e r  t h e  i n t e g e r s  f r o m  0 t o  n !  - -  1 i n c l u s i v e ;  
b e g i n  i n t e g e r  i ,  if, r ,  x ,  j ;  

f o r  i : =  1 s t e p  1 u n t i l  n d o  v[i] : =  0 ;  

f o r  i : =  n s t e p  - - 1  u n t i l  1 d o  

b e g i n  

q : = k ÷ i ;  r : = b - - q X i ;  x : - - 0 ;  j : = n ;  

no: i f  v[j] = 0 t h e n  

b e g i n  

i f x  = r t h e n  g o  t o  i t  e l s e x  : =  x --b 1 

e n d ;  

j : =  j - -  1 ;  g o  t o  no; 
it:  v[j] : =  i ;  /~ : =  q;  

e n d  

e n d  
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A l g o r i t h m s  P o l i c y  • R e v i s e d  A u g u s t ,  1966 

A contribution to the Algorithms Department  should be in the form of an 
algorithm, a certification, or a remark. Contributionsehould be sent in dupli- 
cate to the editor, typewrit ten double spaced. Authors should carefully 
follow the style of this depar tment  with especial attention to indentation 
a n d  completeness of references. 

An algorithm must  normally be written in the ALGOL 60 Reference 
Language [Comm. ACM 6 (Jan. 1963), 1-17] or in ASA Standard F O R T R A N  
or Basic F O R T R A N  [Comm. ACM 7 (Oct. 1964), 590-625]. Consideration 
will be given to algorithms written in other languages provided lhe language 
has been fully documented in the open literature and provided the author 
presents convincing arguments that  his algorithm is best described in the 
chosen language and cannot be adequately described in either ALGOL 60 
or F O R T R A N .  

An algorithm written in ALGOL 60 normally consists of a commented 
procedure declaration. I t  should be typewritten double spaced in capital and 
lower-case letters. Material to appear in bo ldface  type should be under- 
lined in black. Blue underlining may be used to indicate italic type, bu t  this 
is usually best left to the Editor. An algorithm written in F O R T R A N  nor- 
mally consists of a commented subprogram. I t  should be typewritten double 
spaced in the form normally used for F O R T R A N  or it should be in the form 
of a listing of a F O R T R A N  card deck together with a copy ot the card deck. 
Each algorithm must  be accompanied by a complete driver program in its 
language which generates test data,  calls the procedure, and produces test 
answers. Moreover, selected previously obtained test answers should be given 
in comments in either the driver program or the algorithm. The driver pro- 
gram may be publishedwith the algorithm if it  would be of major assistance 
to a user. 

For ALGOL 60 programs, input and output  should be achieved by  pro- 
cedure statements,  using any  of the following eleven procedures (whose body 
is not specified in ALGOL) [See "Repor t  on Input -Output  Procedures for 
ALGOL 60," Comm. ACM 7 (Oct. 1964), 028-029]: 

in.symbol inreal oularray ininteger 
outsymbol outreal  outboolean outinteger 
length inarray ougstring 

If only one channel is used by  the program for output ,  it should be desig- 
nated by  1 and similarly a single input  channel should be designated by 2. 
Examples: 

ouSstring (1, '~ffi'); outreal (l,x); 
fo r  i :~  1 s tep  1 u n t i l  n do  outreal (1,A[i]); 
ininteger (2, digit [17]): 

For F O R T R A N  programs, input  and output  should be achieved as described 
in the ASA preliminary report on F O R T R A N  and Basic FORTRAN.  

I t  is intended tha t  each published algorithm be well organized, clearly 
commented, syntactically correct, and a substantial contribution to the 
literature of Algorithms. I t  is necessary but  not sufficient that  a published 
algorithm operate on some machine and give correct answers. I t  must  also 
communicate a method to the reader in a clear and unambiguous manner. 
All contributions will be refereed both by  human beings and by  an appro- 
priate compiler. Authors should pay considerable attention to the corzectness 
of their programs, since referees cannot be expected to debug them. 

Certifications and remarks should add new information to tha t  already 
published. Readers are especially encouraged to test and certify previously 
uncertified algorithms. Rewritten versions of previously published al- 
gorithms will be refereed as new contributions and should not be imbedded 
in certifications or remarks. 

Galley proofs will be sent to authors; obviously rapid and careful proof- 
reading is of paramount  importance. 

Although each algorithm has been tested by its author,  no liability is 
assumed by the contributor, the editor, or the Association for Computing 
Machinery in connection therewith. 

The reproduction of algorithms appearing in this department  is explicitly 
permitted without any  charge. When reproduction is for publication pur- 
poses, reference must  be made to the algorithm author and to the Communi- 
cations Lasue bearing the algorithm.--J.G.Herriot 
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