J. G. HERRIOT, Editor

ALGORITHM 314

FINDING A SOLUTION OF N

EQUATIONS IN N UNKNOWNS [C5]

D. B. DuLLey anp M. L. V. Prrreway (Recd. 7 Apr. 1966,
19 Oct. 1966 and 5 July 1967)

Cripps Computing Centre, University of Nottingham,
England

FUNCTIONAL

procedure ndinvt (funciions, initstep, error, cycles, , f, accest, n);
‘value n; procedure funciions; real initstep, error;
integer cycles, n; array z, f, accest;

comment This procedure performs inverse interpolation in =
dimensions, i.e., it will find a set of values for n variables z,
such that » functions f(z) are zero. A more sophisticated tech-
nique, suitable for large values of n, has been developed by
S. M. Robinson (Interpolative Solution of Systems of Nonlinear
Equations, SIAM Jowrnal of Numerical Analysis, 8 (1966),
650-658). It can also be used to fit a curve with n arbitrary
parameters to a set of points, the n functions being formed, in
this case, by equating to zero the differential of the sum of the
squares of the residues with respect to each parameter in turn.

The functions required are specified by a procedure of the
form functions (f, z) where f and z are declared as arrays from
1 to n. This procedure should calculate the n functions from a
set of values given in z, placing the results in f. The first step is
made by forming partial derivatives over an interval ¢nitstep.
1 — 6 should be suitable for values of z of the order 1 to 10.
Exit from the procedure will occur if:

(i) the root sum square of the x increments is less than
error. If error is negative, this condition must be
satisfied for | error |, and in addition this process is
continued until the root sum square of the incre-
mentsfails to decrease

or (ii) the number of iterations is greater than cycles, implying
that too much accuracy has been requested

or (iii) the specified equations are singular. In this case exit
is by a jump to a label fazls.

On entry, the array z should contain the starting values. On

exit, the array z will contain the aceurate root, f the residues and

accest the last increments made to x as a measure of the accuracy.

This procedure calls on a global procedure egnsolve
(4, b, n, label), which solves n linear simultaneous equations in
n unknowns Az = b, placing the result in b. If A is singular, it
is assumed that an exit is made by a jump to label;

begin
real work, sumsqres, prevres;
integer 2, j, count;

Boolean swilch;

array prevf[l:n], copydelf[l:n, 1:m], delz, delf(1m, L im+1];
Sfunctions(prevf, x);

for ¢ := 1 step 1 until n do

begin

z[7] 1= z[{] + intistep;

functions (f, z);

for j := 1 step 1 until n do

begin

delfls, 71 := flj] — prevfijl;

726 Communications of the ACM

delzli, j] := 0;
end differencing initial point;
delz[i, 1| := initslep;
z[t) 1= z[i] — initsiep;
end setting up the initial matrix of points;

sumsqres := 11030;
count := 0;
tlerate:
swilch ;= true;
prevres 1= SUMSGres;
tryagain :
for 7 := 1 step 1 until n do
begin
flel = prevflil;

for j := 1 step 1 until n do copydeif[i, j] := delf[z, jl
end copying delf for destructive use in procedure egnsolve;
eqnsolve (copydelf, f, n, inline);
sumsgres 1= 0;
for := 1 step 1 until n do
begin
work := 0;
for j := 1 step 1 until n do work := work ~ delx[z, j1 X f[j];
accest[t] = work;
x[i] = z[¢] + work;
sumsqres 1= sumsqres + work X work
end calculation of next point;
count := count + 1;
functions (f, z);
if count > cycles \/ sumsgres < error X error /\
(error > 0 \/ sumsgres > prevres) then go to exit;
for ¢ := 1 step | until n do
begin
work := f[i] — prevf[il;
prevffi] := f1il;
for j := n step — 1 until 1 do
begin
delz[i, j+1] := delx[z, j1 — accest[l];
delfli, j+1] = delf[s, 7] — work
end calculation of new differences;
delz[i, 1] := —accest[t];
delf[i, 1] := —work
end moving points up one place in tables;
go to tlerate;
inline:
for ¢ := 1 step 1 until » do
begin
delzli, n] := delz [, n+41];
delf[i, n] := delf{t, n+1]
end discarding alternative point;
swilch 1= — switch;
if switch then go to fails else go to tryagain;
extl:
end ndinvt

ALGORITHM 315
THE DAMPED TAYLOR’S SERIES METHOD FOR
MINIMIZING A SUM OF SQUARES AND FOR
SOLVING SYSTEMS OF NONLINEAR EQUATIONS
[E4, C5]
H. Seita (Recd. 25 Oct. 1966 and 19 June 1967)
Institut fir Neutronenphysik und Reaktortechnik
Kernforschungszentrum Karlsruhe, Germany
procedure TAYLOR (n,m,x, h, f, itmaz, epsl, eps2, der,S, KENN,
EXIT);
value n, m, epsl, eps2; integer n, m, itmaz, KENN;
real epsl, eps2, S;

Volume 10 / Number 11 / November, 1967


http://crossmark.crossref.org/dialog/?doi=10.1145%2F363790.363826&domain=pdf&date_stamp=1967-11-01

Boolean der; array z, h, f; label EXIT;

comment

Let

m
S@ueeean) = 2 fily.oma)  (mZn) @
=
the function to be minimized. Such functions always appear if
you apply the method of least squares to estimate nonlinear

parameters. The following sequence

¢ = g0 — BAT® = g — g(F' T VR T F(z®)

(k) z (k) z (k)

— Gyt F;=(%)i=1,--.’m’j=1’...’7,, @

oz
where 8, which is always possible, is chosen to be such that

SE®—paz®) < 1—pNSE®)  (0<A<1) ®3)

is known to converge [1] for any z® to a stationary point of
S (grad 8= 2F’ TF(x)=0), if on the carrying out of the iteration
the matrix F,7 F, does not become singular.

Form = n you have Az = F,~1F(z) and (2) becomes a damped
version of Newton’s method for solving the system of nonlinear
equations

F@) =0 )

All zeros of (4) are stationary points of (1). Thus we are able to
generate a sequence which converges for any (9 to a stationary
point of (1) and the possible divergence of Newton’s method
(8=1) is avoided. It is not assured, however, that the method
will always converge to a solution of (4). Numerical experience
has shown that though Newton’s method (8=1) diverges for a
certain £(® the damped sequence converges to a solution of (4)
for the same z©®,

In the program we have chosen A = .2. At each iteration we
set first 8 = 1 and then, if (3) isnot valid, 8 = 27 (=1,2,...,16).
If j is greater than 16 then 8 < .00002 and we assume to have
reached a stationary point of S.

Meaning of the formal parameters:

n the number of variables z:
m the number of functions f;
z the array z[1:n] which must first contain a starting value

2(® and finally will contain a stationary point of 8, if
F.IF, or form = n F,, respectively, has not become

singular

h k(1] is a step size vector for the approximation of F,,
(see below)

I the array f[1:m] will contain the function values at the

last x calculated in TAYLOR

itmazr Tustinitially contain the maximum number of iterations
to be performed. Leaving TAYLOR regularly, itmaz
contains the actual number of performed iterations

epsl  the iteration is stopped when S < epsl

eps2  the iteration is discontinued when 3 5 |Azi?| <
eps2 X i |2t |

der if der = true the matrix F, must be produced by a global
procedure named DERIVE (z, dfdr) which adjoins to
the vector z[1:n] the array dfdz[1:m, 1:n]. In this case
the array k can be loaded by an arbitrary vector, for

instance z.

if der = false the matrix F, is approximated by
('ifi _f.-(:z:l,...,x,--{-h]-,...,xn) —f.'(xl,...,x,-—h,-,...,x,.)
oz; 2h;

where is a given step size vector. With a suitable choice

of the h; the convergence behavior of the sequence (2)
is not destroyed. DERIVE (z, dfdr) must be formally
declared outside of 774 YLOR in this case.

Volume 10 / Number 11 / November, 1967

[In some cases, particularly when solving nonlinear
equations, the extra accuracy achieved by using
central differences to estimate the derivatives is not
necessary. A considerable saving in execution time can
be obtained by using one-sided differences which
means only minor changes in the program below.
—REr.]

S should initially contain the greatest positive number
that the employed computer can store. Finally S con-
tains 8 = S(zGtmen)) if TAYLOR is regularly left.
if after having called TA YLOR

KENN = 0 then one of the above interruptions applies
(epsl, eps2),

KENN = 1 then 4tmax iterations were carried out and
TAYLOR is left,

KENN = —1 then 8 = 2717 and TAYLOR is left.
EXIT TAYLOR goes to this global label if i encounters a

singular matrix.
Further two global procedures must be made available to

TAYLOR:

1) FUNCTION (z, f) which is able to calculate for a given vector
z[1:n] the function values f[1:m]

ii) GAUSS(n, 4, b, x, EXIT) which solves the linear system of
n equations Az = b for z. If A is singular then GAUSS returns
to the global label EXIT. Any linear equation solver may be
used for GAUSS;

begin integer ¢, j, k, 2, I; real if, hl, ks, hz;
array fp, fm{l:m], b, dz{l:n], dfdz[l:m, 1:n],
hs :=8; KENN :=z:=0;

ITERATION: z := z + 1;
if z > <imaz then begin KENN := 1; go to ENDE end;

l:=0; Al := 1.0;

DAMP: 1 :=1+1;
if]1 > 16 then begin KENN := —1;
FUNCTION (z, f); hf := 0
for 7 := 1 step 1 until m do hf := hf + f[] X f[i];
if Bf > hs X (1.0 — .2 X hl) then
begin il := hl X .5;

KENN

aa[l:mn, 1:n];

go to ENDE end;

for k := 1 step 1 until » do z[k] := z[k] + Al X de[k];
go to DAMP
end;

hs := hf; if hs < eps 1 then go to ENDE;
if der then DERIVE (z, dfdz) else
begin
for 7 := 1 step 1 until » do
begin hf = hlz]; hz := 2.0 X hf;
zft] := 2[i] + hf; FUNCTION (z, fp);
z[?] := z[t] — hz; FUNCTION (z, fm);
z[t] := z[i] + hf; hz := 1.0/hz;

for k := 1 step 1 until m do
dfdzlk, 7] := hz X (fplk] — fm[k])
end
end;
if m = n then GAUSS(n, dfdx, f, dz, EXIT) else
begin
for ¢ := 1 step 1 until n do
begin hf :=
for k := 1 step 1 until m do

bf := hf - dfdzlk, 7] X flkl; bli] := Af;
for k := ¢ step 1 until n do
begin Af := 0;
for j := 1 step 1 until m do
kf := bf + dfdz[j, 1] X dfdz]j, k];
aalt, k] 1= aalk, 7] := hf
end
end;
GAUSS(n, aa, b, dx, EXIT)

end;

Communications of the ACM 727



hz ;= hf := 0;
for ¢z := 1 step 1 until » do
begin

z[z] = z[t] — dz[i]; hz := hz + abs(z[i]);
hf = hf + abs(dz[d])
end;
if hf > eps2 X hz then go to ITERATION;
ENDE: FUNCTION (z, f); S :=0; <dtmaz := z;
for 7 := 1 step 1l until m do § := 8 + f[i] X f[i]
end TAYLOR

REFERENCE: B
[1] Bragss, D. Uber Dampfung bei Minimalisierungsverfahren.
Computing 1 (1966), 264~272.

ALGORITHM 316

SOLUTION OF SIMULTANEOUS NON-LINEAR

EQUATIONS [C5]

K. M. BrowN (Recd. 27 Oct. 1966, 31 Mar. 1967, 17 July
1967, and 26 July 1967)

Department of Computer Science, Cornell University,
Ithaca, New York

procedure nonlinearsystem (n, mazit, numsig, singular, z);
value n, numsig; integer n,maxit, numsig, singular; array z;

comment This procedure solves a system of n simultaneous
nonlinear equations. The method is roughly quadratically con-
vergent and requires only ((n2/2)+4(3n/2)) function evaluations
per iterative step as compared with (n?+n) evaluations for
Newton’s Method. This results in a savings of computational
effort for sufficiently complicated functions. A detailed de-
scription of the general method and proof of convergence are
included in [1]. Basically the technique consists in expanding
the first equation in a Taylor series about the starting guess,
retaining only linear terms, equating to zero and solving for
one variable, say zx , as a linear combination of the remaining
n — 1 variables. In the second equation, zx is eliminated by
replacing it with its linear representation found above, and
again the process of expanding through linear terms, equating
to zero and solving for one variable in terms of the now remain-
ing n — 2 variables is performed. One continues in this fashion,
eliminating one variable per equation, until for the nth equa-
tion, we are left with one equation in one unknown. A single
Newton step is now performed, followed by back-substitution
in the triangularized linear system generated for the z.’s. A
pivoting effect is achieved by choosing for elimination at any
step that variable having a partial derivative of largest absolute
value. The pivoting is done without physical interchange of
rows or columns.

The vector of initial guesses z, the number of significant digits
desired numsig, the maximum number of iterations to be used,
mazit, and the number of equations =, should be set up prior to
the procedure call which activates nonlinearsystem. After execu-
tion of the procedure, the vector z is the solution of the system
(or best approximation thereto), mazit is now the number of
iterations used and singular = 0 is an indication that a Jaco-
bian-related matrix was singular—indicative of the process
“blowing-up,’’ whereas singular = 1 is an indication that no
such difficulty occurred. Storage space may be saved by imple-
menting the algorithm in a way which takes advantage of the
fact that the strict lower triangle of the array poinfer and the
same number of positions in the array coe are not used;

begin integer converge, m, j, k, ©, jsub, itemp, kmazx, kplus, tally;
real f, hold, h, fplus, dermaz, lest, factor, relconvg;
integer array potnter(l:mn, 1], isub[lm—1];
array temp, pari[l:n], coe[l:n, 1:n4-1];
procedure backsubstitution (&, n, z, tsub, coe, pointer);
value k, n;
integer k, n; integer array <sub, pointer; array z, coe;

728 Communications of the ACM

comment This procedure back-solves a triangular linear
system for improved z[7] values in terms of old ones;
begin integer tm, kmaz, jsub;
for km := k step —1 until 2 do
begin kmax := tsublkm—1]; zlkmaz] := 0;
for j := km step 1 until » do
begin jsub := pointer(km, 7];

z[kmaz] = z[kmaz] + coelkm—1, jsub] X z[jsub]
end;
zlkmaz] = zlkmaz] + coelkm—1, n+41)}
end;

end backsubstitution;

procedure evaluatekthfunction (z, y, k);
integer k; real y; array z;

begin comment the body of this procedure must be provided
by the user. One call of the procedure should cause the value
of the kth function at the current value of the vector z to be

placed in y;
end evaluatekthfunction;
converge := 1; singular := 1; relconvg := 107 (-numsig);
for m := 1 step 1 until maxit do
begin

comment An intermediate output statement may be in-
serted at this point in the procedure to print the successive
approximation vectors x generated by each complete itera-
tive step;
for j := 1 step 1 until n do pointer [1, j] := j;
for k := 1 step 1 until n do
begin if k > 1 then backsubstitution (k, n, x, isub, coe, pointer);
evaluatekthfunction (z, f, k); factor := .001;
AAA: tally := 0; for 7 := k step 1 until n do
begin itemp := pointerlk, 1]; hold := z[itemp];
h := factor X hold; if h = 0 then h := .001;
zl[ttemp] := hold + h;
if & > 1 then backsubstitution (k, n, z, tsub, coe, poinier);
evaluatekthfunction (x, fplus, k);
part[itemp] := (fplus—f)/h;
zlitemp] := hold; if (abs(part[itemp])=0)\/
(abs(f/part[itemp]) > 1.01520) then tally := tally + 1;
end;
if tally < n — k then go to AA; factor := factor X 10.0;
if factor > .5 then go to SING; go to AAA;
AA: if k<n then go to A; if abs (pari[itemp]) = 0
then go te SING;
coelk, n+1| := 0; kmaz := itemp; go to ENDK;
A:  kmaz := pointer(k, k]; dermax := abs(part[kmaz]);
kplus : =k + 1;
for 7 := kplus step 1 until n do
begin jsub := pointerk, i]; test := abs(pari[jsub]);

if test < dermax then go to B; dermax := lest;
pointer [kplus, 7] := kmaz; kmaz := jsub;
go to ENDI,;
B: pointer [kplus, ©] := jsub;
ENDI:
end;

if abs(pari[kmaz]) = 0 then go to SING; isublk] := kmazx;
coelk, n+1] := 0;

for j := kplus step 1 until n do

begin jsub := pointer(kplus, jl;

coelk, jsub] := —part[jsubl/part{kmaz];
coelk, n+1] := coelk, n+1] -4 part[jsub] X z[jsub]
end;

ENDK:
coelk, n+1] := (coelk, n+11—f)/ partlbmaz] + z[kmaz]
end k;
zlkmax] := coe[n, n+1];
if » > 1 then backsubstituiion (n, n, z, tsub, coe, pointer);
if m = 1 then go to D;
for ¢ := 1 step 1 until n do
if abs((temp[i]—z[<]) /z[Z]) > relconvg then go to C;

Volume 10 / Number 11 / November, 1967



converge 1= converge + 1;
if converge = 3 then go to TERMINATE else go to D;
C: converge := 1;
D: for ¢ := 1 step 1 until n do templt] := z[7]
end m;
go to THROUGH;
TERMINATE:
maxit := m; go to THROUGH;
SING:
singular := 0;
THROUGH:
end nonlinearsystem

APPENDIX

We include a sample procedure evaluaiekthfuncition for the
2 X 2 system:

1
<1—”‘)(62”1—6)+€x2—-26x1=0
4 T

one solution of which is (.5, ») see [2]

procedure evaluatekthfuncition (x, y, k);

integer k; realy; array z;
begin switch functionnumber := F1, F2;
go to functionnumber [k);
Fl: y := 2.71828183 X (.920422528 X (exp(2Xz[1]—1)—1)+
2[2]/3.14159265— 2% 2[1]) ;
go to RETURN;

F2: y := 5 X sin(z[11Xz[2]) — 2[2]/12.5663706 — =z[1]1/2;

RETURN:

end evaluatekthfunction;

REFERENCES:

1. Brown, K. M. A quadratically convergent method for solv-
ing simultaneous non-linear equations. Doctoral Thesis,
Dept. Computer Sciences, Purdue U., Lafayette, Ind., Aug.,
1966.

2. Brown, K. M., anp Contr, S. D. The solution of simultane-
ous nonlinear equations. Proc. ACM 22nd Nat. Conf., pp
111-114.

ALGORITHM 317*

PERMUTATION [G6]

CHARLES L. RoBinsoN (Reed. 12 Apr. 1967, 2 May 1967
and 10 July 1967)

Institute for Computer Research, U. of Chicago, Chicago,
Il
* This work was supported by AEC Contract no. AT (11-1)-614.

procedure permute(n, k, v);
integer n, k;

comment This procedure produces in the vector » the kth
permutation on n variables. Whenk = 0, v takes on the value
1,2, 3,4, -, n This algorithm is not as efficient as pre-
viously published algorithms [1], [2], [3] for generating a
complete set of permutations but it is significantly better
for generating a random permutation, a property useful in
certain simulation applications. Any non-negative value of
k will produce a valid permutation. To generate a random
permutation, ¥ should be chosen from the uniform distribu-
tion over the integers from 0 to n! — 1 inclusive;

begin integer 7, ¢, 7, z, j;
for 7 := 1 step 1 until n» do v[7] := 0;
for ¢ := n step —1 until 1 do
begin

qg:=k+14; ri=k~gXi; z2:=0; j:=mn;

value n, k; integer array v;

Volume 10 / Number 11 / November, 1967

no: if v[j] = 0 then
begin
ifr =rthengotoilelsezr :=z + 1
end;
Jj:=7—1; go tono;
it: off] =145 k= g;
end
end
REFERENCES :

1. Covevou, R. R., anp Suruivan, J. G. Algorithm 71, Per-
mutation. Comm. ACM 4 (Nov. 1961), 497.

2. Peck, J. E. L., AnND Scurack, G. F. Algorithm 86, Permute.
Comm. ACM 6 (Apr. 1962), 208.

3. TrorreERr, H. F. Algorithm 115, Perm. Comm. ACM 5 (Aug.
1962), 434.

Algorithms Policy « Revised August, 1966

A contribution to the Algorithms Department should be in the form of an
algorithm, a certification, or a remark. Contributionsshould be sent in dupli-
cate to the editor, typewritten double spaced. Authcrs should carefully
follow the style of this department with especial attention to indentation
and completeness of references.

An algorithm must normally be written in the ALGOL 60 Reference
Language [Comm. ACM 6 (Jan. 1963), 1-17] or in ASA Standard FORTRAN
or Basic FORTRAN [Comm. ACM 7 (Oct. 1964), 590-625]. Consideration
will be given to algorithms written in other languages provided the language
has been fully documented in the open literature and provided the author
presents convincing arguments that his algorithm is best described in the
chosen language and cannot be adequately described in either ALGOL 60
or FORTRAN.

An algorithm written in ALGOL 60 normally consists of a commented
procedure declaration. It should be typewritten double spaced in capital and
lower-case letters. Material to appear in boldface type should be under-
lined in black. Blue underlining may be used to indicate italic type, but this
is usually best left to the Editor. An algorithm written in FORTRAN nor-
mally consists of a commented subprogram. It should be typewritten double
spaced in the form normally used for FORTRAN or it should be in the form
of a listing of a FORTRAN card deck together with a copy of the card deck.
Each algorithm must be accompanied by a complete driver program in its
language which generates test data, calls the procedure, and produces test
answers. Moreover, selected previously obtained test answers should be given
in comments in either the driver program or the algorithm. The driver pro-
gram may be publishedwith the algorithm if it would be of major assistance
10 a user.

For ALGOL 60 programs, input and output should be achieved by pro-
cedure statements, using any of the following eleven procedures (whose body
is not specified in ALGOL) [See “Report on Input-Output Procedures for
ALGOL 60,” Comm. ACM 7 (Oct. 1964), 628-629]:

insymbol inreal oularray ininteger
outsymbol  outreal outboolean outinteger
length narray outstring

If only one channel is ugsed by the program for output, it should be desig-
nated by 1 and similarly a single input channel should be designated by 2.
Examples;

outstring (1, ‘z="); outreal (1,7);

for i := 1 step 1 until n do outreal (1,4[{]);

ininteger (2, digit [17]):
For FORTRAN programs, input and output should be achieved as described
in the ASA preliminary report on FORTRAN and Basic FORTRAN.

It is intended that each published algorithm be well organized, clearly
commented, syntactically correct, and a substantial contribution tc the
literature of Algorithms. It is necessary but not sufficient that a published
algorithm operate on some machine and give correct answers. It must also
communicate a method to the reader in a clear and unambiguous manner,
All contributions will be refereed both by human beings and by an appro-
priate compiler. Authors should pay considerable attention to the correctness
of their programs, since referees cannot be expected to debug them.

Certifications and remarks should add new information to that already
published. Readers are especially encouraged to test and certify previously
uncertified algorithms. Rewritten versions of previously published al-
gorithms will be refereed as new contributions and should not be imbedded
in certifications or remarks.

Galley proofs will be sent to authors; obviously rapid and careful proof-
reading is of paramount importance,

Although each algorithm has been tested by its author, no liability is
assumed by the contributor, the editor, or the Association for Computing
Machinery in connection therewith.

The reproduction of algorithms appearing in this department is explicitly
permitted without any charge. When reproduction is for publication pur-
poses, reference must be made to the algorithm author and to the Communi-
cations issue bearing the algorithm.—J.G.Herriot

|

Communications of the ACM 729




