Check for
Updates

converge 1= converge + 1;
if converge = 3 then go to TERMINATE else go to D;
C: converge := 1;
D: for ¢ := 1 step 1 until n do templt] := z[7]
end m;
go to THROUGH;
TERMINATE:
maxit := m; go to THROUGH;
SING:
singular := 0;
THROUGH:
end nonlinearsystem

APPENDIX

We include a sample procedure evaluaiekthfuncition for the
2 X 2 system:

1
<1—~—)(e211—e)+€x2—-26x1=0
4 T

one solution of which is (.5, ») see [2]

procedure evaluatekthfuncition (x, y, k);

integer k; realy; array z;
begin switch functionnumber := F1, F2;
go to functionnumber [k);
Fl: y := 2.71828183 X (.920422528 X (exp(2Xz[1]—1)—1)+
2[2]/3.14159265— 2% 2[1]) ;
go to RETURN;

F2: y := 5 X sin(z[11Xz[2]) — 2[2]/12.5663706 — =z[1]1/2;

RETURN:

end evaluatekthfunction;

REFERENCES:

1. Brown, K. M. A quadratically convergent method for solv-
ing simultaneous non-linear equations. Doctoral Thesis,
Dept. Computer Sciences, Purdue U., Lafayette, Ind., Aug.,
1966.

2. Brown, K. M., anp Contr, S. D. The solution of simultane-
ous nonlinear equations. Proc. ACM 22nd Nat. Conf., pp
111-114.

ALGORITHM 317*

PERMUTATION [G6]

CHARLES L. RoBinsoN (Reed. 12 Apr. 1967, 2 May 1967
and 10 July 1967)

Institute for Computer Research, U. of Chicago, Chicago,
Il
* This work was supported by AEC Contract no. AT (11-1)-614.

procedure permute(n, k, v); value n, k; integer array v;
integer n, k;

comment This procedure produces in the vector » the kth
permutation on n variables. Whenk = 0, v takes on the value
1,2, 3,4, -, n This algorithm is not as efficient as pre-
viously published algorithms [1], [2], [3] for generating a
complete set of permutations but it is significantly better
for generating a random permutation, a property useful in
certain simulation applications. Any non-negative value of
k will produce a valid permutation. To generate a random
permutation, ¥ should be chosen from the uniform distribu-
tion over the integers from 0 to n! — 1 inclusive;

begin integer 7, ¢, 7, z, j;
for 7 := 1 step 1 until n» do v[7] := 0;
for ¢ := n step —1 until 1 do
begin

qg:=k+14; ri=k~gXi; z2:=0; j:=mn;

Volume 10 / Number 11 / November, 1967

no: if v[j] = 0 then
begin
ifr =rthengotoilelsezr :=z + 1
end;
Jj:=7—1; go tono;
it: off] =145 k= g;
end
end
REFERENCES :

1. Covevou, R. R., anp Suruivan, J. G. Algorithm 71, Per-
mutation. Comm. ACM 4 (Nov. 1961), 497.

2. Peck, J. E. L., AnND Scurack, G. F. Algorithm 86, Permute.
Comm. ACM 6 (Apr. 1962), 208.

3. TrorreERr, H. F. Algorithm 115, Perm. Comm. ACM 5 (Aug.
1962), 434.

Algorithms Policy « Revised August, 1966

A contribution to the Algorithms Department should be in the form of an
algorithm, a certification, or a remark. Contributionsshould be sent in dupli-
cate to the editor, typewritten double spaced. Authcrs should carefully
follow the style of this department with especial attention to indentation
and completeness of references.

An algorithm must normally be written in the ALGOL 60 Reference
Language [Comm. ACM 6 (Jan. 1963), 1-17] or in ASA Standard FORTRAN
or Basic FORTRAN [Comm. ACM 7 (Oct. 1964), 590-625]. Consideration
will be given to algorithms written in other languages provided the language
has been fully documented in the open literature and provided the author
presents convincing arguments that his algorithm is best described in the
chosen language and cannot be adequately described in either ALGOL 60
or FORTRAN.

An algorithm written in ALGOL 60 normally consists of a commented
procedure declaration. It should be typewritten double spaced in capital and
lower-case letters. Material to appear in boldface type should be under-
lined in black. Blue underlining may be used to indicate italic type, but this
is usually best left to the Editor. An algorithm written in FORTRAN nor-
mally consists of a commented subprogram. It should be typewritten double
spaced in the form normally used for FORTRAN or it should be in the form
of a listing of a FORTRAN card deck together with a copy of the card deck.
Each algorithm must be accompanied by a complete driver program in its
language which generates test data, calls the procedure, and produces test
answers. Moreover, selected previously obtained test answers should be given
in comments in either the driver program or the algorithm. The driver pro-
gram may be publishedwith the algorithm if it would be of major assistance
10 a user.

For ALGOL 60 programs, input and output should be achieved by pro-
cedure statements, using any of the following eleven procedures (whose body
is not specified in ALGOL) [See “Report on Input-Output Procedures for
ALGOL 60,” Comm. ACM 7 (Oct. 1964), 628-629]:

insymbol inreal oularray ininteger

outsymbol outreal outboolean outinteger

length narray outstring
If only one channel is ugsed by the program for output, it should be desig-
nated by 1 and similarly a single input channel should be designated by 2.
Examples;

outstring (1, ‘z="); outreal (1,7);

for i := 1 step 1 until n do outreal (1,4[{]);

ininteger (2, digit [17]):
For FORTRAN programs, input and output should be achieved as described
in the ASA preliminary report on FORTRAN and Basic FORTRAN.

It is intended that each published algorithm be well organized, clearly
commented, syntactically correct, and a substantial contribution tc the
literature of Algorithms. It is necessary but not sufficient that a published
algorithm operate on some machine and give correct answers. It must also
communicate a method to the reader in a clear and unambiguous manner.
All contributions will be refereed both by human beings and by an appro-
priate compiler. Authors should pay considerable attention to the correctness
of their programs, since referees cannot be expected to debug them.

Certifications and remarks should add new information to that already
published. Readers are especially encouraged to test and certify previously
uncertified algorithms. Rewritten versions of previously published al-
gorithms will be refereed as new contributions and should not be imbedded
in certifications or remarks.

Galley proofs will be sent to authors; obviously rapid and careful proof-
reading is of paramount importance.

Although each algorithm has been tested by its author, no liability is
assumed by the contributor, the editor, or the Association for Computing
Machinery in connection therewith.

The reproduction of algorithms appearing in this department is explicitly
permitted without any charge. When reproduction is for publication pur-
poses, reference must be made to the algorithm author and to the Communi-
cations issue bearing the algorithm.—J.G.Herriot

|

Communications of the ACM 729



http://crossmark.crossref.org/dialog/?doi=10.1145%2F363790.363834&domain=pdf&date_stamp=1967-11-01



