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In o recent paper, Gregory and Raney described a tech- 
nique for double-precision floating-point arithmetic. A similar 
technique can be developed for triple-precision floating-point 
arithmetic and it is the purpose of this note to describe this 
technique. Only the multiptication and the division algorithms 
are described, since the addition-subtraction algorithm can be 
obtained by a trivial modification of the algorithm in Gregory's 
and Raney's paper. 

1. ln t roduct io ,~  

1~ is assumed, as Gregory a~d Raney [1] did, that  we 
have a :machi~e with a word length of 48 bits and that  each 
triple-pre(:ision floating-point mtmber is in the "s tandard" 
formal namely, the 12-bit sign-and-exponent (of which 
the leflmost bit represents the sign of the number, the 
second bit ~he sign of lhe exponent and the next 10 bits 
the mag~itude of the exponent) plus a normalized 132- 
bit (= 36 + 48 + 48) mantissa. We further assume that  
we are using one's eomplemenl arithmetic. Hence, the 
negative of each number is obtained by a bit-by-bit com- 
plementing of the binary representation. 

2. Mu l t i p l i e a t i on  

Let A and B be triple-precision floating-point numbers. 
It is desired to compute the product A B  in the same for- 
mat. To do this the exponent and the mantissa are com- 
puted separately. Since the computation of the exponent 
is trivial, we describe here the computation of the man- 
tissa. Assume A > 0 and B > 0. Let the mantissa of A 
and B be denoted by a and b respectively. We first extract 
each of a and b in the following bit pattern. 

T 

(Here the ~ signifies the location of the b inary  point.) 

Now a and b have the following representations: 

a = a~ + a~. 2 '~ + a;~. 2 '~e ( 1 )  

b = b, + b.~'2 -4~ + ha.2 -~  (2) 
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where in the bit patterns (P l ) ,  (1'2), (P3) respectively: 

2_~ < ~(a,) < 1 - 9 -'~ (3) 

0 < i < - 2--% (4)  
= Lb2j = 

{al~ < 1 - 9-'° (5) 0=< b = ~ . 

Thus 

ab = aJ)l + (alb2 + a2t)i)2 -4'G 

+ (alba + a2b~ + aabl)2 -92 

(approximately), where, using the above inequMities 
(3), (4) and (5), 

2 --2 ~ a,bl =< 1 - 2 -45 @ 2 -'92, (7 )  

0 =< alb2+a2bl  ~ 2 - -  2 4~ + 2  - ~ ,  ( 8 )  

0 =< a~ba + azb~ + a~b~ =< 3 -- 2 -a'~ - 2  - ~  
(9) 

+ 2 -s~ + 2 - ~ ,  

The relation (6) shows the method for carrying out the 
computation. In fact, we propose the scheme which im- 
mediately follows. 

Step 1. Compute (atba + a~b~ + aabO'2-% 
Compute first a~ba, a~b~ and aabz in double length using the 

fixed-point operations. Retain only the upper 46 significant bits 
of each product and arrange them in the pat tern:  

atba , a~b, , aab, : I 0 t 0 t 46 significant bi ts]  (P4) 

T 

Add them bi t-by-bi t  using fixed-point addition. The inequali ty 
(9) and the fact that  our fixed-point addit ion is modulo 24s - I 
shows that  overflow never occurs in the last addition. We obtain 
the sum a~ba + a~b~ + aab, in the form 

a~ba + a~bz + aab, : [ c~ lee I 46 significant bits I 

where 

? 

are possible carry bits to tim left of the b inary  point. Separate the 
carry bits from tile fra~ction part of the sum in the following form 
and store them in the memory. 

Cl ~ carry : 46 zeros i ci I e2 ] (P5) 
{ 

/71 ~ fraction: 0 I 0 l 46 significant bits I (P6) 
? 

Step 2. Compute (alb~ -4- aeb~)2 -~6 -4- (alba + a2b2 + aabl)2-o% 
The second term (i.e., C~ and F1 in (I'5) and (P6) above) has 

been computed and stored in the memory. Compute a~b~ and a2b~ 
in double length using fixed-point multiplication and arrange them 
in the following form. 

upper lower 

I I I uitsl ~ : bit~] 
T 
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i; ~'̧  ~ 

~ d d  to Ft the lower halves of atb~ and a2b, . IIere again we have 
~ no overflow for the same reason given in step 1. Just as in step 1, 

separate the two carry bits from the fraction part of the above 
sum in the form (P5) and (P6). Add to these carry bits the upper 
halves of atb~ and a~bt, and the carry C~ from the last step. We 
have now (a~b~ + a~b~)2 --~ -I- (atb~ + a262 + a~bt)2 -~2 in the form 

[ 0 1 0 I 4~ least significant bits l (P8) [ & I d~ I 46 most signifie~mt bits I 

where 

T 
are the carry bits. As before the two carry bits are stored sepa- 
rately and we introduce two zeros at the location of the carry bits. 
Consequently, we store the above quanti ty in the form which 
follows in (P9). 

cant bits cant bits (P9) 
T T 

(~ C~) (~ ~'~) (~ X~) 

Step 3. Compute 
a~b~ 4- (atb2 + a2b~)2 "-~" + (atb~ -4- a~b~ + a~bt)2 ~ = ab. 

The sum of the second and the third terms has been computed 
and stored in the memory. Repeat step 2 with C~, F2 in place of 
C~ , F~ and with atb~ in place of atb~ and a.~b~ . Then we shall have 
the desired product (ab) from step 2 in the form 

nific~mt Mrs , nificant bits niIicant bits 
T $ 7 

(P10) 

where the carry bits et and e~ are actually both 0. (This is known 
a priori frmn the expression (6) and from the fact that 0 < a < 1 
and 0 < b < 1.) The three 46-bit significant parts in the above 
constitute the unnormalized fraction part of the product A B .  If  
this is less than ½., we need a normalization (left shift) to remove 
a zero immediately following the binary point. (If this is the case, 
the corresponding adjustment in the exponent is necessary.) Now 
we retain only the first 132 significant bits as the true mantissa of 
the product A B .  

3. D i v i s i o n  

LenA = 2~.a and B = 2~.b be given triple-precision 
t loating-poia~ numbers. I{~ is desired to compute A/B in 
the same form. We assume A > 0 and B > 0. Write A 
and B in the form 

A = 2"+~.2-2.a = 2 "~ . (a~  + 2 -~ .a2  + 2 -~ .a~)  (10) 

B = 2Z.b = 2~.(bl -4- 2-~7"b~ + 2-O~'ba) (11) 

where 

~- =< a~ =< I -  2 -~, 

0 =< a2 ~ i - -  2 -47  , 

0 =< a~ =< 1 - -  2 -~°, 

{ < bl < 1 - -  2 -47 

0=<b~=< 1 - - 2  -~, 

0=<b~-<_ 1 - 2  -~s, 

(12) 

a t  a2 a t  

~-~o: Iolo 10 I~ I ~ ~i~s ] I _ 0 ~ - 1 1 0 1 4 0  bits 17 zeros I (Pll) 

bt b~ b~ 
b: [0 I 1 146 bits 1 1 0 ~ b ~ : J  I 0 I 38 bit, s 19 . . . .  sJ (P12) 
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Using (10) and (11), 

A -- = 2~+2.4~ al @ 2 -47 a2 @ 2 TM a~ 

B bt ÷ 2 -47 b~ -}- 2 9~ b~ 

÷ (2._~v b~ 2 -~ b ~  ~ 

= l I a  ~ + 2-~ ~ + "z °~ ~ , ~ F  + 

- -  2 47. at b2 @ 2--~(atbt b~ + a,~ b~)] 

-~ 2~4.b~ (U - V) 

where 

(13) 

-~7 2-9~ (~1 522 ) 
U =  a l +  2 a 2 +  \ bl 2 + a3 , (14) 

V = 2 -tT.al b2 + 2-47(al b3 + a2 b~) (15) 
bl 

We have chosen U >__ 0 and V ~ 0 to avoid subtractions 
in their formation. Since the computation of the exponent 
a -t- 2 - ~ is trivial, we describe here a method for com- 
puting (1/bl)(U--V). The relations (14) and (15) 
show that we need to compute U in triple-precision and 
2 ~7. V in double-precision. 

Step i .  Compute U. 
First  compute (atb2:/b?) + a3 in single length. Tile inequalities 

(12) show that  0 N alb~2/bl 2 < 1 and 0 =< a~ < 1. Thus, we can 
proceed as follows. 

al --~ alb2 ~ a~b2/bl -~  alb~2/bl -~ alb2Vb? --~ alb~2/bl 2 + a~, 

where each multiplication or division is done using fixed-point 
operations. (We assume tha t  fixed-point (fractional) multiplica- 
tion forms a double-length product from single-length operands 
and that  fixed-point (fractional) division forms a single-length 
quotient and a remainder from a double-length dividend and a 
single-length divisor.) The last quant i ty  has the form: 

(alb2~/bl 2) -l- a3: [ c I 47 significant bits ] (P13) 

where c is the carry bit. Now the quant i ty  U is obtained 
by straightforward fixed-point additions. (In fact, we need only 
to add the carry c to the last bit of a2 and then add the carry 
yielded in this addition to the last bi t  of a~.) Final ly we have g 
in the form 

v: /o lo ls ls l  ..... :, is] D s l s l  ....... Fs~ I~]s ls l  ~ (P14) 
I" 1" T 

where f Signifies any significant bit (0 or 1) and the leftmost f in 
the leftmost cell could be 1. Store U in this form. 

Step 2. Compute V. 
First  we need to compute the dividend, alb2 + 2 -47 (a,b3 + a~b~), 

in double length. To do this we secure atb2 in double length and 
alb3,  a2b2, both in single length, using fixed-point operations. 
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Then simple addition yields the above-mentioned dividend in the 
forn-t 

<~=~._.-. e ,,:<<.~, ÷ ~>.~>: ~q)9..{-_'!_[ .<' I .=.:.: = '._s<.! (Plat 
g 

where 9 signifies any significant hit and the leftmost g in the left 
cell could be 1. Note that the inequalities (12) show 

axb~ + 2-'*V(alba I? aebe) < 2 *. 
Now we divide this result by b> Since we must have a double-lentO* 
quotient and since each fixed-point division which we are to use 
~ow gives a single-length quotient and a single-length remainder, 
we first divide the double-length dividend by the single-length 
divisor b b and obtain the single-length quotient ql and a single- 
length remainder. We then augment this remainder with a single- 
length zero (thus obtaining the double.-length number) and 
divide this double-length number by bl to obtain the single- 
length quotient 92 • The q: :rod qz constitute the desired double- 
length quotient (alb2 .q- 2-47(alba q- aebc))/bt. Thus we now 
have V in the form 

qi (l 2 

? T T 

Step 3, Compute U - V .  
To compute U -  V by adding the complemented V to U, 

namely,  U - V U ÷ ( -V) ,  we proceed as follows. First,  suit- 
t r a c t  1 from the rightmost bit of the leftmost word of U (borrow) 
arid add 1 to the rightmost bit of the rightmost word of U (end- 
a.round carry). Call the result U'. 

Next complement each hit g of V in (1)16). Call the result V'. 

~"= ° ':~r"~l ]010101 ....... i,01i [ 0 1 0 / 0 1  ....... !0] (P17) 
? ? i 

where ~ means the complemented 9. Add U' ((P14)) and V' bit- 
by -b i t  using fixed-point operations, where arty carry bit that might 
be t~rodueed froin the addition of the lower twn words must be 
p rope r ly  added to the next upper wet(1. WE again arrange the 
resu l t  ( = U -  V) in the form 

¢ , -  [o,oi l,.i ...... H,-] [ 1/1 1 . . . . . . .  I , l  ~lsL.,2j_=.:.._:_:=!./_l (plat 
t t 'r 

S tep  4. Compute U - V/hi = Aiils.  

%Ve mtist now divide the triple-length nunlber U - P by the 
single-length number bt to obtain the triple-length quotient. We 
accomplish this by three successive fixed-point divisions, each 
t ime  obt~dning a single-length quotient and a siligle-length re- 
mainder .  Hence it is vital to obtain the correct remainder at least 

from the first two divisions. To obtain this we regard the dividend 
U - V and the divisor b~ as integers and use the integer divide 
operation. (The fractional divide operation may not retain the last 
big of the remainder. I t  is then necessary to rearrange U - V of 
(P18) in the form 

u -  r: ~i0101flsl  . . . . . .  [~1 l / If!  ....... ~] [ i l f l  ....... if101(p19) 
T ? ? T 

an extra zero 

(We do not have to rearrange bt+) Now the proposed division 
tU - V)/bt can be easily performed by three successive single 
precision fixed point divisions, thus obtaining the triple-length 
quotient. The interpretation of the result and the a(liustment of 
the binary point are easy. 

4. R e m a r k s  

Fotu'  t r iple-precision (132-bit) f loat ing-point  a r i thmet ic  
subrout ines  (addi t ion,  subtract ion,  mul t ip l iea t ion  and 
division subrout ines)  have ac tua l ly  beet, coded for the  
Control  D a t a  1604 computer  using the described algo- 
r i thm and they  are  now working a t  the  Univers i ty  of 
Texas  C o m p u t a t i o n  Center.  The Control  D a t a  3600 com- 
pu te r  version of the  above subrout ines  are also working a t  
Argonne Na t iona l  Labora tory .  
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Method in Randomness 
M A  rr rkx  (~ ~r:~:~-B r:RGEt~ 

~l f a s sachuse t t s  Ins t i tu te  oJ' Technology, Cambridge, Mass .  

Certain nonrandom properties of a commonly used random 
number generator are described and analyzed. 

I n t r o d u c t i o n  

A l m o s t  all  prescribers of r a n d o m  number  genera tors  
l a b e l  t he i r  concoct ions  with a v i r t ua l  skull and  crossbones 
t h a t  w a r n s  the  user  agains t  ind isc r imina te  appl ica t ion .  
T h e  l a b e l  usua l ly  consists of a qualifier for random,  l ike 
p.vv~.do or quasi ,  plus  a few general words of caution.  

There  is more to this than  a simple hedging. Mos t  
generators  in use are of the  eongruent ia l  type,  wherein 
each number  of t he  generated series is ca lcula ted  solely 
f rom its predecessor  and some fixed parameters .  A typica l  
generator ,  for example,  has the fo rm 

x/+l ~- hx~ + c (mod2 '>)  (1)  

where  ac~+l is the nmnber  being generated,  x~ is i ts pred-  
ecessor, h and  c are fixed pa ramete r s  of the  generator ,  
and  2 x' is the  modulus.  

On first glance, i t  is no t  clear how a s imple rule like ( 1 ) 
can produce  numbe r s  t h a t  are r a n d o m  even in pretense;  
t h a t  is, p seudo- random.  Obviously,  i t  canno t  p roduce  
t rue  randonmess .  There  is b l a t a n t  l inkage between x~ and  

X ~ + I .  
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