
Po:inI. with

~'AS[IIII<() IKI,;l;I,;

5/'/I,e () ' (, si//j . / 7'.:c(s A w~gin, 7'c:ca.s

In o recent paper, Gregory and Raney described a tech-
nique for double-precision floating-point arithmetic. A similar
technique can be developed for triple-precision floating-point
arithmetic and it is the purpose of this note to describe this
technique. Only the multiptication and the division algorithms
are described, since the addition-subtraction algorithm can be
obtained by a trivial modification of the algorithm in Gregory's
and Raney's paper.

1. ln t roduct io ,~

1~ is assumed, as Gregory a~d Raney [1] did, that we
have a :machi~e with a word length of 48 bits and that each
triple-pre(:ision floating-point mtmber is in the "s tandard"
formal namely, the 12-bit sign-and-exponent (of which
the leflmost bit represents the sign of the number, the
second bit ~he sign of lhe exponent and the next 10 bits
the mag~itude of the exponent) plus a normalized 132-
bit (= 36 + 48 + 48) mantissa. We further assume that
we are using one's eomplemenl arithmetic. Hence, the
negative of each number is obtained by a bit-by-bit com-
plementing of the binary representation.

2. Mu l t i p l i e a t i on

Let A and B be triple-precision floating-point numbers.
It is desired to compute the product A B in the same for-
mat. To do this the exponent and the mantissa are com-
puted separately. Since the computation of the exponent
is trivial, we describe here the computation of the man-
tissa. Assume A > 0 and B > 0. Let the mantissa of A
and B be denoted by a and b respectively. We first extract
each of a and b in the following bit pattern.

T

(Here the ~ signifies the location of the b inary point.)

Now a and b have the following representations:

a = a~ + a~. 2 '~ + a;~. 2 '~e (1)

b = b, + b.~'2 -4~ + ha.2 -~ (2)

Work performed in t)art under the auspices of the U.S. Atomic
Energy Commission.

Volume 8 / N u m l m r 3 / March , :1965

where in the bit patterns (P l) , (1'2), (P3) respectively:

2_~ < ~(a,) < 1 - 9 -'~ (3)

0 < i < - 2--% (4)
= Lb2j =

{al~ < 1 - 9-'° (5) 0=< b = ~ .

Thus

ab = aJ)l + (alb2 + a2t)i)2 -4'G

+ (alba + a2b~ + aabl)2 -92

(approximately), where, using the above inequMities
(3), (4) and (5),

2 --2 ~ a,bl =< 1 - 2 -45 @ 2 -'92, (7)

0 =< alb2+a2bl ~ 2 - - 2 4~ + 2 - ~ , (8)

0 =< a~ba + azb~ + a~b~ =< 3 -- 2 -a'~ - 2 - ~
(9)

+ 2 -s~ + 2 - ~ ,

The relation (6) shows the method for carrying out the
computation. In fact, we propose the scheme which im-
mediately follows.

Step 1. Compute (atba + a~b~ + aabO'2-%
Compute first a~ba, a~b~ and aabz in double length using the

fixed-point operations. Retain only the upper 46 significant bits
of each product and arrange them in the pat tern:

atba , a~b, , aab, : I 0 t 0 t 46 significant bi ts] (P4)

T

Add them bi t-by-bi t using fixed-point addition. The inequali ty
(9) and the fact that our fixed-point addit ion is modulo 24s - I
shows that overflow never occurs in the last addition. We obtain
the sum a~ba + a~b~ + aab, in the form

a~ba + a~bz + aab, : [c~ lee I 46 significant bits I

where

?

are possible carry bits to tim left of the b inary point. Separate the
carry bits from tile fra~ction part of the sum in the following form
and store them in the memory.

Cl ~ carry : 46 zeros i ci I e2] (P5)
{

/71 ~ fraction: 0 I 0 l 46 significant bits I (P6)
?

Step 2. Compute (alb~ -4- aeb~)2 -~6 -4- (alba + a2b2 + aabl)2-o%
The second term (i.e., C~ and F1 in (I'5) and (P6) above) has

been computed and stored in the memory. Compute a~b~ and a2b~
in double length using fixed-point multiplication and arrange them
in the following form.

upper lower

I I I uitsl ~ : bit~]
T

C o m m u n i c a t i o n s of t he AC$I 175

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363791.363824&domain=pdf&date_stamp=1965-03-01

i; ~'̧ ~

~ d d to Ft the lower halves of atb~ and a2b, . IIere again we have
~ no overflow for the same reason given in step 1. Just as in step 1,

separate the two carry bits from the fraction part of the above
sum in the form (P5) and (P6). Add to these carry bits the upper
halves of atb~ and a~bt, and the carry C~ from the last step. We
have now (a~b~ + a~b~)2 --~ -I- (atb~ + a262 + a~bt)2 -~2 in the form

[0 1 0 I 4~ least significant bits l (P8) [& I d~ I 46 most signifie~mt bits I

where

T
are the carry bits. As before the two carry bits are stored sepa-
rately and we introduce two zeros at the location of the carry bits.
Consequently, we store the above quanti ty in the form which
follows in (P9).

cant bits cant bits (P9)
T T

(~ C~) (~ ~'~) (~ X~)

Step 3. Compute
a~b~ 4- (atb2 + a2b~)2 "-~" + (atb~ -4- a~b~ + a~bt)2 ~ = ab.

The sum of the second and the third terms has been computed
and stored in the memory. Repeat step 2 with C~, F2 in place of
C~ , F~ and with atb~ in place of atb~ and a.~b~ . Then we shall have
the desired product (ab) from step 2 in the form

nific~mt Mrs , nificant bits niIicant bits
T $ 7

(P10)

where the carry bits et and e~ are actually both 0. (This is known
a priori frmn the expression (6) and from the fact that 0 < a < 1
and 0 < b < 1.) The three 46-bit significant parts in the above
constitute the unnormalized fraction part of the product A B . If
this is less than ½., we need a normalization (left shift) to remove
a zero immediately following the binary point. (If this is the case,
the corresponding adjustment in the exponent is necessary.) Now
we retain only the first 132 significant bits as the true mantissa of
the product A B .

3. D i v i s i o n

LenA = 2~.a and B = 2~.b be given triple-precision
t loating-poia~ numbers. I{~ is desired to compute A/B in
the same form. We assume A > 0 and B > 0. Write A
and B in the form

A = 2"+~.2-2.a = 2 "~ . (a~ + 2 -~ .a2 + 2 -~ .a~) (10)

B = 2Z.b = 2~.(bl -4- 2-~7"b~ + 2-O~'ba) (11)

where

~- =< a~ =< I - 2 -~,

0 =< a2 ~ i - - 2 -47 ,

0 =< a~ =< 1 - - 2 -~°,

{ < bl < 1 - - 2 -47

0=<b~=< 1 - - 2 -~,

0=<b~-<_ 1 - 2 -~s,

(12)

a t a2 a t

~-~o: Iolo 10 I~ I ~ ~i~s] I _ 0 ~ - 1 1 0 1 4 0 bits 17 zeros I (Pll)

bt b~ b~
b: [0 I 1 146 bits 1 1 0 ~ b ~ : J I 0 I 38 bit, s 19 sJ (P12)

176 C o m m u n i c a t i o n s o f t h e ACM

Using (10) and (11),

A -- = 2~+2.4~ al @ 2 -47 a2 @ 2 TM a~

B bt ÷ 2 -47 b~ -}- 2 9~ b~

÷ (2._~v b~ 2 -~ b ~ ~

= l I a ~ + 2-~ ~ + "z °~ ~ , ~ F +

- - 2 47. at b2 @ 2--~(atbt b~ + a,~ b~)]

-~ 2~4.b~ (U - V)

where

(13)

-~7 2-9~ (~1 522)
U = a l + 2 a 2 + \ bl 2 + a3 , (14)

V = 2 -tT.al b2 + 2-47(al b3 + a2 b~) (15)
bl

We have chosen U >__ 0 and V ~ 0 to avoid subtractions
in their formation. Since the computation of the exponent
a -t- 2 - ~ is trivial, we describe here a method for com-
puting (1/bl)(U--V). The relations (14) and (15)
show that we need to compute U in triple-precision and
2 ~7. V in double-precision.

Step i . Compute U.
First compute (atb2:/b?) + a3 in single length. Tile inequalities

(12) show that 0 N alb~2/bl 2 < 1 and 0 =< a~ < 1. Thus, we can
proceed as follows.

al --~ alb2 ~ a~b2/bl -~ alb~2/bl -~ alb2Vb? --~ alb~2/bl 2 + a~,

where each multiplication or division is done using fixed-point
operations. (We assume tha t fixed-point (fractional) multiplica-
tion forms a double-length product from single-length operands
and that fixed-point (fractional) division forms a single-length
quotient and a remainder from a double-length dividend and a
single-length divisor.) The last quant i ty has the form:

(alb2~/bl 2) -l- a3: [c I 47 significant bits] (P13)

where c is the carry bit. Now the quant i ty U is obtained
by straightforward fixed-point additions. (In fact, we need only
to add the carry c to the last bit of a2 and then add the carry
yielded in this addition to the last bi t of a~.) Final ly we have g
in the form

v: /o lo ls ls l :, is] D s l s l Fs~ I~]s ls l ~ (P14)
I" 1" T

where f Signifies any significant bit (0 or 1) and the leftmost f in
the leftmost cell could be 1. Store U in this form.

Step 2. Compute V.
First we need to compute the dividend, alb2 + 2 -47 (a,b3 + a~b~),

in double length. To do this we secure atb2 in double length and
alb3, a2b2, both in single length, using fixed-point operations.

V o l u m e 8 / N m n b e r 3 / March, 1965

Then simple addition yields the above-mentioned dividend in the
forn-t

<~=~._.-. e ,,:<<.~, ÷ ~>.~>: ~q)9..{-_'!_[.<' I .=.:.: = '._s<.! (Plat
g

where 9 signifies any significant hit and the leftmost g in the left
cell could be 1. Note that the inequalities (12) show

axb~ + 2-'*V(alba I? aebe) < 2 *.
Now we divide this result by b> Since we must have a double-lentO*
quotient and since each fixed-point division which we are to use
~ow gives a single-length quotient and a single-length remainder,
we first divide the double-length dividend by the single-length
divisor b b and obtain the single-length quotient ql and a single-
length remainder. We then augment this remainder with a single-
length zero (thus obtaining the double.-length number) and
divide this double-length number by bl to obtain the single-
length quotient 92 • The q: :rod qz constitute the desired double-
length quotient (alb2 .q- 2-47(alba q- aebc))/bt. Thus we now
have V in the form

qi (l 2

? T T

Step 3, Compute U - V .
To compute U - V by adding the complemented V to U,

namely, U - V U ÷ (-V) , we proceed as follows. First, suit-
t r a c t 1 from the rightmost bit of the leftmost word of U (borrow)
arid add 1 to the rightmost bit of the rightmost word of U (end-
a.round carry). Call the result U'.

Next complement each hit g of V in (1)16). Call the result V'.

~"= ° ':~r"~l]010101 i,01i [0 1 0 / 0 1 !0] (P17)
? ? i

where ~ means the complemented 9. Add U' ((P14)) and V' bit-
by -b i t using fixed-point operations, where arty carry bit that might
be t~rodueed froin the addition of the lower twn words must be
p rope r ly added to the next upper wet(1. WE again arrange the
resu l t (= U - V) in the form

¢ , - [o,oi l,.i H,-] [1/1 1 I , l ~lsL.,2j_=.:.._:_:=!./_l (plat
t t 'r

S tep 4. Compute U - V/hi = Aiils.

%Ve mtist now divide the triple-length nunlber U - P by the
single-length number bt to obtain the triple-length quotient. We
accomplish this by three successive fixed-point divisions, each
t ime obt~dning a single-length quotient and a siligle-length re-
mainder . Hence it is vital to obtain the correct remainder at least

from the first two divisions. To obtain this we regard the dividend
U - V and the divisor b~ as integers and use the integer divide
operation. (The fractional divide operation may not retain the last
big of the remainder. I t is then necessary to rearrange U - V of
(P18) in the form

u - r: ~i0101flsl [~1 l / If! ~] [i l f l if101(p19)
T ? ? T

an extra zero

(We do not have to rearrange bt+) Now the proposed division
tU - V)/bt can be easily performed by three successive single
precision fixed point divisions, thus obtaining the triple-length
quotient. The interpretation of the result and the a(liustment of
the binary point are easy.

4. R e m a r k s

Fotu' t r iple-precision (132-bit) f loat ing-point a r i thmet ic
subrout ines (addi t ion, subtract ion, mul t ip l iea t ion and
division subrout ines) have ac tua l ly beet, coded for the
Control D a t a 1604 computer using the described algo-
r i thm and they are now working a t the Univers i ty of
Texas C o m p u t a t i o n Center. The Control D a t a 3600 com-
pu te r version of the above subrout ines are also working a t
Argonne Na t iona l Labora tory .

A cknowle@ments . This work was suppor ted in par t by
the Na t iona l Science Foundat ion under G r a n t GP-217 and
by the U.S. Army l/~eseareh Office (Durham) under Gran t
I)A-ARO(D)-31-124-G388. The technique explained in
this note was first developed at the Appl ied Ma thema t i c s
Division, Argonne Nat iona l Labora to ry , Argonne, Ill i-
nois, dur ing the summer of 1963 while I was working there
as a Resident S tude n t Associate. M a n y thanks are due to
Dr. Rober t T. Gregory of the Univers i ty of Texas for
reading the rough draf t of this note . I a m ve ry much in-
deb ted to Dr . R icha rd F. King of Argonne Na t iona l
L a b o r a t o r y for his many const ruct ive suggestions.

R E C E I V E D S E P T E M B E R , 1964

REFt!; RENCI!]

1. GREGORY, R . T . , AND RANEY, J . L . Floating-point arithmetic
with 84-bit numbers. Comm. ACM 7, 1 (Jan. 1964), 10-13.

Method in Randomness
M A rr rkx (~ ~r:~:~-B r:RGEt~

~l f a s sachuse t t s Ins t i tu te oJ' Technology, Cambridge, Mass .

Certain nonrandom properties of a commonly used random
number generator are described and analyzed.

I n t r o d u c t i o n

A l m o s t all prescribers of r a n d o m number genera tors
l a b e l t he i r concoct ions with a v i r t ua l skull and crossbones
t h a t w a r n s the user agains t ind isc r imina te appl ica t ion .
T h e l a b e l usua l ly consists of a qualifier for random, l ike
p.vv~.do or quasi , plus a few general words of caution.

There is more to this than a simple hedging. Mos t
generators in use are of the eongruent ia l type, wherein
each number of t he generated series is ca lcula ted solely
f rom its predecessor and some fixed parameters . A typica l
generator , for example, has the fo rm

x/+l ~- hx~ + c (mod2 '>) (1)

where ac~+l is the nmnber being generated, x~ is i ts pred-
ecessor, h and c are fixed pa ramete r s of the generator ,
and 2 x' is the modulus.

On first glance, i t is no t clear how a s imple rule like (1)
can produce numbe r s t h a t are r a n d o m even in pretense;
t h a t is, p seudo- random. Obviously, i t canno t p roduce
t rue randonmess . There is b l a t a n t l inkage between x~ and

X ~ + I .

V o l u m e 8 / Number 3 / March, 1965 Comlnunications of the ACM 177

