Check for
Updates

Note on ri"‘ri'phwi’r{z(:isi(m 1‘*"i,{);1‘tii,‘n,g~
Point Arithmetic with
132-Bit Numbers

VASUHTRG LR
7'}?,(3 l,,’n (’Z‘(’,-_\‘[l{y (‘./;' f/v(,‘.l'(lv\‘? [,41””\‘/’[;”/7 ’/Y(f(l‘CLS

In a recent paper, Gregory and Raney described a tech-
nigue for double-precision floating-point arithmetic. A similar
technique can be developed for triple-precision floating-point
arithmetic and it is the purpose of this note to describe this
technique. Only the multiplication and the division algorithms
are described, since the addition-subtraction algorithm can be
obtained by o trivial modification of the algorithm in Gregory’s
and Raney's paper.

1. Introduction

It is assumed, as Gregory and Raney (1] did, that we
have a machine with a word length of 48 bits and that cach
triple-precision floating-point number is in the “standard”
format, namely, the 12-bit sign-and-exponent (of which
the leftmost bit represents the sign of the number, the
second bit the sign of the exponent and the next 10 bits
the magnitude of the exponent) plus a normalized 132-
bit (=36 -+ 48 -+ 48) mantissa. We further assume that
we are using one’s complemen(arithmetic. Hence, the
negative of each number is obtained by a bit-by-bit com-
plementing of the binary representation.

2, Multiplication

Let A and B be triple-precision floating-point numbers,
It is desived to compute the product AB in the same for-
mat. To do this the exponent and the mantissa are com-
puted separately. Since the computation of the exponent
is trivial, we describe here the computation of the man-
tissa. Assume A > 0 and B > 0. Let the mantissa of A
and B be denoted by a and b respectively. We first extract
each of ¢ and b in the following bit pattern.

é 0 1 0] 46 most significant bits ‘ (rn

101 0] 46 less significant bits | (P2)

[0] 0 [40 least significant bits | 6 zeros | (P3)
! oro

(Here the 1 signifies the location of the binary point.)

Now a and b have the following representations:
e e
a =y ay 2 4 ay-2 (1)

b = by 4+ by 2 16 + by 9" (2)

Work performed in part under the auspices ol the U.S. Atomic
Energy Commission.

Volume 8 / Number 3 / Mareh, 1965

where in the bit patterns (PL1), (P2), {(P3) respectively:

27 < {‘Zj} <1-27" (3)
‘
0 < <(L2} < | -~ 2«46 (4_)
- U)z - !
0 < {Z;} <1 -2 (5)
Thus

ab = aby + (asby + agby)27"°

(6)

+ (agbs + ashy + asb)27"

(approximately), where, using the above inequalities
(3), (4) and (5),

0 S ab £1— 270 427 (7
0 < ahy + by £ 2 — 27 427 (8)
0 < aiby + sy + ashy £ 3 — 270 —27%

i , (9)
+ 2% 42
The relation (6) shows the method for carrying out the
computation. In fact, we propose the scheme which im-
mediately follows.

Step 1. Compute {(aibs + abe + ashy) 27,

Compute first aibs, ashs and ash; in double length using the
fixed-point operations. Retain only the upper 46 significant bits
of each product and arrange them in the pattern:

[0 0 46 significant bits | (P4)
T

Add them bit-by-bit using fixed-point addition. The inequality
(9) and the fact that our fixed-point addition is modulo 2% — 1
shows that overflow never occurs in the last addition. We obtain
the sum abs + awbs + asb; in the form

b s @abs f asbs

aihs + ash: + asby : E; | ¢ | 46 significant bits i

where

561162

T

are possible carry bits to the left of the binary point. Sepgrate the
carry bits from the fraction part of the sum in the following form
and store them in the memory.

46 Zem:i"'cTE (P5)
e

"0 10 46 significant bits | (P6)
i
Step 2. Compute (aib: + a:0)27% + (aibs + asbsg + ashy)Y27%2,
The second term (i.e., i and F, in (P5) and (P6) above) has
been computed and stored in the memory. Compute by and ash,
in double length using fixed-point multiplication and arrange them
in the following form.

Cy = carry

Fi = fraction:

wpper lower
abe , @by : o To m?ﬁost;z;;mant Floeto j 46 least siguiﬁcanAt (P7)
{ | bits f bits '
T
Communications of the ACM 175

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363791.363824&domain=pdf&date_stamp=1965-03-01

Add to F, the lower halves of ab: and ash; . Here again we have

no overflow for the same reason given in step 1. Just as in step 1,
separate the two carry bits from the fraction part of the above
sum in the form (P5) and (P6). Add to these carry bits the upper
halves of abs and asb; , and the carry € from the last step. We
have now (abs + ab)2746 4+ (abs + asbz + ashy)27 in the form

l di 1 da] 46 most significant bits (l 0 E 0 1 46 least significant bim (P8)
7

where

Larfa]
are the carry bits, As before the two carry bits are stored sepa-
rately and we introduce two zeros at the location of the carry bits.

Consequently, we store the above quantity in the form which
follows in (P9).

46 zeros | dy | de 0 ‘ 0 iiﬁ less signifi- 0 ‘ 0 ‘ 46 least signifi-

: cant bits T cant bits (P9)

(= X3)

(= () (== I'3)

Step 3. Compute
Wby + (ahs + @by)27 4 (a1bs + ashs 4+ ash)27® = ab.

The sum of the second and the third terms has been computed
and stored in the memory. Repeat step 2 with Cy, F» in place of
Cy, I'y and with a:b; in place of aib: and ab; . Then we shall have
the desired product (ab) from step 2 in the form

46 least sig-
nificant bits

o €:

]

ab: 46 most sig- 0 ‘ 0 } 46 less sig-
i

nificant bits nificant bits
E3
T T l

= X = X = X

T

(P10)

where the carry bits e; and e; are actually both 0. (This is known
a priori from the expression (6) and from the fact that 0 < a <1
and 0 < b < 1.) The three 46-bit significant parts in the above
constitute the unnormalized fraction part of the product 4B, If
this 1s less than %, we need a normalization (left shift) to remove
a zero immediately following the binary point. (If this is the case,
the corresponding adjustment in the exponent is necessary.) Now
we retain only the first 132 significant bits as the true mantissa of
the product AB.

3. Division

Let A = 2%q and B = 2°.b be given triple-precision
floating-point numbers. It is desired to compute A/B in
the same form. We assume 4 > 0 and B > 0. Write 4
and B in the form

A =297 = 2" (g + 27V gy + 27" @)
B =2"p =2 (b + 27 -b, + 27%.1y)

(10)
(11)

where
fsausi-27" 3=h=1-27
0Zas1-2" 0=bs1-2" (12
02a,=1-2" 02h=<1-2%
} ay s as
2%a: [0 00 1 [4bits| |0[«7bits| |0]40bits | 7zeron] (PLL)
b b by
b [0] 1] 46 bits | [0 47bits | | 0]38bits [9zeros | (P12)
176 Communications of the ACM

Using (10) and (113,
a2V a 2%

o= QatrR -
B by -+ 2797 by - 279 by
| [tk
= 9 ot B be by
14202 gul
by 1+ b + b,
1 b
= 90528 L (a1 -+ 24a + 2%g) | 1 ~ (2-47 2 o-m bs
by b by
LIPSO (13
g1 22 o2 3)
+ (bt b;) }
Dot
= QB “1~ a -+ 27 ay + 2% (lh - -+ as)
b} by
— g, a1 by - 279 (ay by - ay by)
b
1
= 2% 8. (U ~ V)
by
where

2
ay by

U= a + 2~4702 + 2—"94(be? + a3)’ (14)

o—41 1 bs + 2“47<(11 bs + ap bz)
by)

We have chosen U = 0 and V = 0 to avoid subtractions
in their formation. Since the computation of the exponent
a -+ 2 — B is trivial, we describe here a method for com-
puting (1/6))(U — V). The relations (14) and (15)
show that we need to compute U in triple-precision and
2.7 in double-precision.

V= (15)

Step 1. Compute U.

First compute (ab22/b%) -+ a; in single length. The inequalities
(12) show that 0 < aib?/b2 < 1 and 0 £ a; < 1. Thus, we can
proceed as follows,

ay —> b — albz/lh s albzz/th had albz"z/lh? s alb22/b12 + as s

where each multiplication or division is done using fixed-point
operations., (We assume that fixed-point (fractional) multiplica-
tion forms a double-length produet from single-length operands
and that fixed-point (fractional) division forms a single-length
quotient and a remainder from a double-length dividend and &
single-length divisor.) The last quantity has the form:

(@ds2/br?) + as: } ¢ | 47 significant bitiI (P13}

where ¢ is the carry bit. Now the quantity U is obtained
by straightforward fixed-point additions. (In fact, we need only
to add the carry ¢ to the last bit of ay and then add the carry
yielded in this addition to the last bit of a;.) Finally we have U
in the form

Us lolTolflfl 7] Tolsle] 71 oAl 7] @4
!

where f signifies any significant bit (0 or 1) and the leftmost f I
the leftmost cell could be 1. Store U in this form.

Step 2. Compute V.,

First we need to compute the dividend, aibs + 247 (asbs + 202,
in double length. To do this we secure a:bs in double length and
aibs , ash2, both in single length, using fixed-point operations:

Volume 8 / Number 3 / March, 1963

Then simple addition yields the above-mentioned dividend in the
form

arbs b 274 b + aiba): }10“]\ {1’4[;{/ f ‘ g o g ‘\ g \ \ g j (P15)

where ¢ signifies any significant bit and the leftmost ¢ in the left
eell could be 1. Note that the inequalities (12) show
ayby + 274 aby + ash:) < 270

Now wedivide thistesult by by. Since we must have a double-length
quotient and since each fixed-point division which we are to use
now gives asingle-length quotient and a single-length remainder,
we first divide the double-length dividend by the single-length
divisor by, and obtain the single-length quotient ¢ and a single-
lengthremainder. We then augment this remainder with a single-
length zero (thus obtaining the double-length number) and
divide this double-length number by b; to obtain the single-
length quotient g2 . The ¢ and ¢; constitute the desired double-

length quotient (abs + 2°7(ab; + awbs))/by. Thus we now
have T in the form
L qi az .
¥ L[J‘?-H?zerosl ‘O\yfg‘ . X(1{ [(]%g[g] ‘g] (P16)
T i T

Step 3. Compute U — V.

Tao compute U — V by adding the complemented V to U,
namely, U — V = U ++ (~V), we proceed as follows. First, sub-
tract 1 from the rightmost bit of the leftmost word of U (borrow)
and add 1 to the rightmost bit of the rightmost word of U (end-
around carry). Call the result U,

Next, complement each bit ¢ of ¥ in (P16). Call the result V'.

o] [olalal . 5] @D

L] d] :17zems]]0‘57 | 17‘ R

"

|

where § means the complemented ¢g. Add U’ ((P14)) and V'’ bit-
by -bit using fixed-point operations, where any carry bit that might
he produced from the addition of the lower two words must be
properly added to the next upper word. We again arrange the
result (=0 — V) in the form

ofolslsl ARCIVZVI [7] Tolslrl o [7] (P18)
1 1 T

U — ¥

H

Step 4. Compute U — V/by = Ans.

We must now divide the triple-length number U — V by the
single-length number b, to obtain the triple-length quotient. We
accomplish this by three successive fixed-point divisions, each
time obtaining a single-length quotient and a single-length re-
mainder. Hence it is vital to obtain the correct remainder at least

from the first two divisions. To obtain this we regard the dividend
U — V and the divisor b, as integers and use the integer divide
operation, (The fractional divide operation may not retain the last
bit of the remainder.) It is then necessary to rearrange U — V of
(P18) in the form

v-v: lofolo /T R iRV 7o (P19)

T 7 T !

an extra zero

(We do not have to rearrange b;.) Now the proposed division
(U — V)/by can be easily performed by three successive single-
precision fixed-point divisions, thus obtaining the triple-length
quotient, The interpretation of the result and the adjustment of
the binary point are easy.

4. Remarks

Four triple-precision (132-bit) floating-point arithmetic
subroutines {(addition, subtraction, multiplication and
division subroutines) have actually been coded for the
Control Data 1604 computer using the deseribed algo-
rithm and they are now working at the University of
Texas Computation Center. The Control Data 3600 com-
puter version of the above subroutines are also working at
Argonne National Laboratory.

Acknowledgments. This work was supported in part by
the National Science Foundation under Grant GP-217 and
by the U.S. Army Research Office (Durham) under Grant
DA-ARO(D)-31-124-G388. The technique explained in
this note was first developed at the Applied Mathematics
Division, Argonne National Laboratory, Argonne, Illi-
nois, during the summer of 1963 while I was working there
as a Resident Student Associate. Many thanks are due to
Dr. Robert T. Gregory of the University of Texas for
reading the rough draft of this note. I am very much in-
debted to Dr. Richard F. King of Argonne National
Laboratory for his many constructive suggestions,

RECEIVED SEPTEMBER, 1964
REFERENCE

1. Grecory, R. T., anp Rangy, J. L. Floating-point arithmetie
with 84-bit numbers. Comm. ACM 7, 1 (Jan. 1964), 10-13.

e R

Method in Randomness

AMaARTIN GREENBERGER
M assachusetts Institute of Technology, Cambridge, Mass.

Certain nonrandom properties of a commonly used random
number generator are described and analyzed.

Introduction

Almost all prescribers of random number generators
label their concoctions with a virtual skull and crossbones
that warns the user against indiscriminate application.
The label usually consists of a qualifier for random, like
psetedo or quast, plus a few general words of caution.

Volume 8 / Number 3 / March, 1965

There is more to this than a simple hedging. Most
generators in use are of the congruential type, wherein
each number of the generated series is calculated solely
from its predecessor and some fixed parameters. A typical
generator, for example, has the form
(mod 2°) (1)

where x:41 18 the number being generated, z; is its pred-
ecessor, A and ¢ are fixed parameters of the generator,
and 27 is the modulus.

On first glance, it is not clear how a simple rule like (1)
can produce numbers that are random even in pretense;
that is, pseudo-random, Obviously, it cannot produce
true randomness. There is blatant linkage between x; and
Tigt -

Tig = NG+ ¢

Communications of the ACM 177

