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In the last years, one of the fields of artificial intelligence that has been investigated the most is nature-inspired computing. 

The research done on this specific topic showcases the interest that sparks in researchers and practitioners, who put their 

focus on this paradigm because of the adaptability and ability of nature-inspired algorithms to reach high-quality outcomes 

on a wide range of problems. In fact, this kind of methods has been successfully applied to solve real-world problems in 

heterogeneous fields such as medicine, transportation, industry, or software engineering. Our main objective with this paper 

is to describe a tool based on nature-inspired computing for solving a specific software engineering problem. The problem 

faced consists of optimizing Infrastructure as Code deployment configurations. For this reason, the name of the system is 

IaC Optimizer Platform. A prototypical version of the IOP was described in previous works, in which the functionality of this 

platform was introduced. With this paper, we take a step forward by describing the final release of the IOP, highlighting its 

main contribution regarding the current state-of-the-art, and justifying the decisions made on its implementation. Also, we 

contextualize the IOP within the complete platform in which it is embedded, describing how a user can benefit from its use. 

To do that, we also present and solve a real-world use case. 

CCS CONCEPTS • Mathematics of computing → Discrete mathematics → Combinatorics → Combinatorial 

optimization • Computing methodologies → Artificial intelligence → Search methodologies. 
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1 INTRODUCTION 

One of the fields of artificial intelligence that is being investigated the most at the moment is nature-

inspired computing [1]. In a nutshell, nature-inspired computing aims to create intelligent algorithms by 

analyzing and mimicking how different kinds of natural phenomena behave. The well-known Genetic 

Algorithm and Ant Colony Optimization are two of the main sources of inspiration for the conceptualization 

and subsequent establishment of this field.  

The abundant research done on nature-inspired computation demonstrates the interest that sparks in 

researchers and practitioners, who are drawn to this paradigm due to the ability and adaptability of such 

methods to obtain near-optimal solutions to a wide range of difficult problems. Specifically, one of the main 

benefits of nature-inspired algorithms is their capacity to effectively tackle both practical and academic 

problems. As a matter of fact, the consolidation of this field was the result of many years of fruitful research 

conducted by a thriving and highly active community, as well as a number of subsequent influential 

investigations that contributed to the establishment of a number of fundamental concepts. 

Since their conception, nature-inspired techniques have been utilized to address a wide range of real-world 

problems that have arisen in heterogeneous fields like medicine, industry, transportation, energy, and 

software engineering, among many others [2]. In this context, our main objective with this paper is to describe 

a nature-inspired based platform for addressing a specific software engineering problem. More concretely, the 

problem dealt with in this manuscript is focused on optimizing Infrastructure as Code (IaC, [3]) deployment 

configurations on the most appropriate elements that best meet a set of predefined requirements. The name 

of the detailed system is IaC Optimizer Platform (IOP). 

A prototypical version of the IOP was described in previous work [4], in which the functionality of this 

platform was introduced. With this paper, we take a step forward by describing the final release of the IOP, 

highlighting its main contribution regarding the current state-of-the-art, and justifying the decisions made on its 

implementation. Besides, we contextualize the IOP within the complete platform in which it is embedded, 

describing how a user can benefit from its use. To do that, we also present and solve a real-world use case. 

Lastly, it is worth mentioning that the IOP is part of a larger framework built under the umbrella of a Horizon 

2020 European research project. The primary objective of this project, known as PIACERE (https://piacere-

project.eu/), is to implement a system for the creation, distribution, and management of IaC operating on the 

cloud continuum. 

This manuscript is structured as follows: Section 2 offers some background on the topics dealt on this 

research. Next, Section 3 describes the IOP, highlighting how it can help users in their daily operations. In 

Section 4, we introduce a real use case, while Section 5 finishes this paper with several conclusions and 

future work. 

https://piacere-project.eu/
https://piacere-project.eu/


 

2 RELATED WORK 

For describing the related work of the research presented in this paper, we have divided this section into 

two different parts. First, in Section 2.1, we outline some interesting studies focused on a similar research 

topic. After that, in Section 2.2, we justify the use of the selected optimizing framework by highlighting its 

benefits in comparison to other state-of-the-art frameworks. 

2.1 SOTA related to PIACERE project  

The optimization problem defined in PIACERE entails having a cloud service that needs to be deployed 

and a list of infrastructural components, which are based on a list contained in a store called Infrastructural 

Elements Catalogue. The objective is to build the best configuration for deploying the service as efficiently as 

possible, choosing from the catalogue the most appropriate elements. Although that is a relatively new area of 

research, there are several studies in the literature that address related issues. 

The authors of [5] developed an optimization method inspired by the renowned Non-dominated Sorting 

Genetic Algorithm (NSGA-II, [6]) that aligns specific Big Data application's requirements with the capabilities 

provided by an infrastructure as a service (IaaS) and the platform installed inside. That work also studies the 

Pareto-optima among three different objectives: cost, reliability, and net computing capacity. In [7], authors 

proposed a similar study, with the goal of fulfilling the non-functional requirements of a concrete microservice 

while meeting the features established by the developers of this service. 

These two works are particularly encouraging for the IOP since the synergy among Cloud Computing and 

Big Data meets in IaC a practical cloud model, allowing researchers to resort to Big Data features externally 

and regardless of the service provider [8]. Thus, practitioners can purchase IaaS utilization time on demand 

based on their specific needs. This is a notion comparable to utility billing for energy or other services [9]. 

On another note, it is interesting to mention that there are few publications in the literature that discuss how 

to choose the best infrastructure components to deliver a particular service. In [10], for example, an innovative 

optimization method is proposed for multi-cloud application deployment. The system presented in that study 

works in streaming, ensuring that the application is always performing in an appropriate way. The research 

described in [11] presents a platform that optimizes cluster sizing while leveraging a variety of functionalities, 

including custom cluster resources or task scheduling characteristics. 

Also related to the topic addressed in this paper, considerable research has been conducted related to 

cloud resource management. In [12], for example, a thorough survey is provided on the specific topic of 

energy efficiency in cloud computing. Authors categorize optimization techniques based on heuristic solvers, 

as well as dynamic power management methods. Equally interesting is the work introduced in [13], in which a 

comprehensive review of different resource provisioning platforms is carried out. Regarding resource 

management strategies, the authors of that study draw attention to different categories, open research 

questions. and objective functions. 

Lastly, regarding cloud resource configuration, the authors of [14] examine how clusters are sized for 

deployment in the cloud. They provide a tool that uses a parallel simulation-optimization method to examine 

various cloud configurations in order to reduce deployment expenses while maintaining quality requirements. 

In [15], authors address the problem of assisting design-time monitoring of cloud applications for determining 

the best allocation of components onto virtual machines (VM). To do that, performance requirements and 



 

economic costs are considered. In that paper, a tool is proposed that aids users in the process of modeling 

the structure of an application and mapping each element into a virtual machine. 

With all this, and considering the background here described, the IOP developed in the context of the 

PIACERE project provides the following contributions and novelties: 

• The IOP is a flexible mono and multi-objective platform, that allows the user to select which 

objectives must be optimized from a pool of a predefined set of objectives. 

• The IOP provides the user with the possibility of choosing a set of non-functional requirements. 

Thanks to this feature, the user can define the maximum cost of the overall deployment, or the 

provider of the elements chosen, among many other constraints.  

• The IOP is a multi-algorithm approach that resorts to two well-known multi-objective algorithms 

(NSGA-II and NSGA-III) depending on the specific needs of the user and the optimization 

problem built. 

2.2 Multi-objective solving frameworks 

As mentioned in the previous subsection, the problem solved by the IOP is a multi-objective one. The 

efficient solving of this kind of problems is a recurrent task in artificial intelligence, and because of the 

popularity of this field, a wide variety of multi-objective frameworks have been proposed by the related 

community. Based on the analysis conducted in [16], we present in Table 1 a brief review of the 

characteristics of some of the most representative optimization frameworks. As part of the PIACERE project 

and the IOP design, a deep analysis has been made comparing the features of these platforms in order to 

determine which framework will be the most effective to use. For each platform represented in Table 1, we 

show the programming language employed, the objective of the framework (SOO: Single Objective 

Optimization, MOO: Multi-Objective Optimization), and its current version. 

Table 1: Main features of representative multi-objective optimization frameworks. Regarding the algorithms, in bold are the 

alternatives for which the framework was originally designed. Current versions checked in July 2023. 

Framework Language Algorithms Current Version 

ECJ Java SOO/MOO 27 

HeuristicLab C# SOO/MOO 3.3.16 

jMetal Java SOO/MOO 6.0 

jMetalPy Python SOO/MOO 1.5.7 

MOEAFramework Java SOO/MOO 3.6 

Pagmo C++ SOO/MOO 2.19.0 

Jenetics Java SOO/MOO 7.1.3 

PlatEMO MATLAB MOO 4.2 

 

In a brief analysis of Table 1, we can detect that the most commonly used programming language is Java, 

while other alternatives such as Python, C#, MATLAB, and C++ have also been used. In the context of 

PIACERE, Java language has been considered appropriate because of its computational efficiency. 

Regarding the kind of optimization problems that frameworks can deal with, we have bolded these 

alternatives for which each platform is more dedicated in case that admits both SOO and MOO. For the 



 

present research, the specialization of a library has been established as a good reason for choosing one 

platform above the rest. 

With all this in mind, and although several other alternatives could have been used for this purpose – such 

as MOEA or Jenetics – the platform we selected for implementing the IOP is jMetal [17]. These are the main 

reasons for the choice: 

• jMetal works well with both MOO and SOO. 

• jMetal offers a wide set of algorithms for working with many-objective problems. 

• Algorithms are flexible to configure and modify in jMetal. 

• PIACERE problem definition has been shown easier to perform in jMetal compared to other 

alternatives. 

3 FUNDAMENTALS OF THE IOP 

As mentioned previously in this paper, the optimization problem resolved by the IOP presents the main 

challenge of building an optimized deployment configuration of the IaC on suitable infrastructure components 

that best fits the predefined constraints. To do that, the IOP obtains all the information needed to build the 

optimization problem from an input data file formatted using a modeling language coined DOML [18].  

More specifically, the input DOML contains the objectives that the IOP needs to optimize, and also the 

non-functional requirements that it must respect. On the one hand, the final release of the IOP allows the user 

to consider three different objectives: i) minimize the cost, ii) maximize the availability of the chosen elements, 

and iii) maximize the overall performance of the configuration. On the other hand, six non-functional 

requirements can be deemed by the IOP, which regard the i) cost, ii) performance, and iii) availability of the 

whole configuration, as well as the iv) provider, v) region, and vii) memory of the elements chosen.  

Once the user defines the information related to the objectives and requirements, the IOP executes the 

matchmaking against the data available in the catalogue, with the objective of finding the most appropriate 

elements to deploy. To do that, the IOP resorts to two nature-inspired multi-objective metaheuristics: NSGA-II 

and NSGA-III [19]. The IOP success depends on whether it is able to offer to the user the most optimized 

deployment configuration of the IaC. To this end, and because of the multi-objective nature of the problem, 

several solutions are provided by the IOP, which are ranked by one of the objectives introduced by the user. 

We refer interested readers to [20] for additional information about the problem formulation and algorithmic 

design of the IOP. 

Once the fundamentals of the IOP have been delucidated, it is appropriate to explain how it works within 

the PIACERE Ecosystem as a whole. That is, what is the role of the IOP in the overall workflow of the 

platform? In this regard, the IOP is employed in two different phases: i) in the first design of the service (in the 

so-called design-time phase), and ii) in the redeployment of an already running service (in the coined run-time 

phase). So, how the IOP can contribute to both phases can be better explained as follows: 

• The IOP in the Design-time phase: in this step, the IOP is an optional feature that the user can opt 

to call in case an optimized deployment configuration is needed. For this, the user can directly 

optimize a properly formatted input DOML using the PIACERE IDE developed as part of the 

project. In this phase, the IOP offers the user a set composed of (at most) five different optimized 

solutions, ranked by the objective the user has established as priority. Among the group of 

solutions found, the IOP chooses the best as the active one. To enhance the understanding of the 



 

procedure, we show in Fig. 1 the corresponding workflow diagram. In this regard, it should be 

clarified that the input DOML is provided to the IOP as part of a compressed ZIP file. 

• The IOP in the run-time phase: when a service is deployed, the PIACERE Ecosystem analyzes 

and predicts its performance in real-time. This is done thanks to a module coined self-learning. As 

part of this process, a mechanism named as self-healing can require the execution of the IOP for 

the redeployment of the service if it has failed or if its failure has been predicted by the system. In 

this specific case, the workflow of the IOP is similar to Fig. 1, considering that the optimization is 

called by the self-healing mechanism instead of being done through the IDE.  

 

 

Figure 1: the workflow diagram of the IOP in the design-time phase. 

Finally, in order to properly understand the overall architecture in which the IOP is involved, it is worth 

describing in depth the self-learning mechanism, whose main role is to analyze the performance of the 

deployed elements. To do that, the self-learning performs a monitoring of some defined parameters (e.g., 

memory, disk, and CPU), and it is able to predict their values and to deal with some anomalous behaviors that 

can lead to the failure of the complete service (e.g., anomalies and the concept drift phenomenon). These 

specific cases would require urgent action by the PIACERE platform, which can involve the redeployment of 

the service using new infrastructural elements from the catalogue. In other words, self-learning is in charge of 

checking whether elements chosen for the first deployment are running and will run as expected in the short 

term, and whether they are not suffering from degradation. Going deeper, two different self-learning 

procedures are conducted: 

• The PerformanceSelfLearning, which is focused on incremental online learning, and which 

predicts the performance of the elements to guarantee their constant high-level performance.  

• The SecuritySelfLearning, which resorts to state-of-the-art Natural Language Processing 

mechanisms to model log streams as a language and capture their normal operating conditions. 

Anomalous behaviors can also be detected using these models.  

Therefore, when a non-desired situation is detected, the self-learning component triggers the self-healing 

mechanism, which receives the incidence or the forecast notification. Thus, based on the typology of the 



 

notification received, the self-healing component identifies a specific mitigation strategy to be applied and 

proceeds with its execution. As mentioned, one of the mitigation strategies involves the execution of the IOP 

described in this paper in order to find a new optimized IaC deployment configuration. 

4 PRACTICAL USE CASE 

In this section, a real-world based use case is described in order for the reader to have an idea of how a 

user can benefit from the use of the IOP. First, as mentioned before, a DOML file should be introduced as 

input in the IOP with the information related to the optimization properly introduced. This data must be placed 

in the optimization layer of the DOML. We depict in Fig. 2 an input example. It should be noted that the IOP 

can deal with much more complex problems. In this article, we present one of reduced complexity for the sake 

of clarity. Going deeper, in the example depicted in Fig. 2, the user asks the IOP for a deployment 

configuration composed of a single Storage element and a VM. Furthermore, the objectives to optimize are 

the three available ones: cost, performance, and availability. Lastly, four different requirements are 

introduced: i) the overall cost of the deployment must not exceed 300$, ii) the expected availability must be 

higher than 97%, iii) the provider of the elements chosen needs to be Amazon, and iv) the memory of the VM 

should not exceed 1024GB. 

 

 

Figure 2: an example of an input DOML for the IOP. 

In addition to this input, and because the IOP seeks an optimized deployment configuration of the IaC on 

the appropriate infrastructural elements, the user can directly specify in the DOML the VM to which the 

element selected by the IOP will be mapped. Also, further elements such as VM images, network information, 

and auto-scale groups can be defined. We show in Fig. 3 an excerpt of the infrastructure layer of the input 

DOML, in which all this information is introduced. 

With all this information, the IOP executes the optimization algorithm, aiming to find the best deployment 

configurations that meet the requirements introduced by the user. In this case, because three objectives 

should be optimized, the optimization algorithm chosen is the well-known NSGA-III. Regarding the outcomes, 

the IOP provides the results in two different formats. On the one hand, the optimization section of the input 

DOML is extended with general information about the solutions found. In Fig. 4, we depict one example of a 

solution returned in this format. As it can be seen in that figure, for each solution found, the IOP represents 

the value of all the objectives defined as well as the identifier of the chosen elements (in this case, t2.nano 

for the VM and StandardStorage1_Europe for the Storage). 



 

On the other hand, the IOP provides a concretization of the solutions found, which is placed in the 

concretization layer of the DOML introduced as input. In Fig. 5, where we represent the concretization of the 

solution shown in Fig. 4, we can see how the details of each chosen element are depicted, which meets the 

requirements introduced by the user. Several additional aspects should be analyzed in that figure: i) the 

selected VM (t2.nano) is correctly mapped to the OracleDB introduced in the infrastructure layer; ii) the 

network and VM images are also concretized; and iii) the auto-scale group is introduced, making reference to 

the VM found (t2.nano). 

It should be considered that the concretization of the solutions is of great importance. In fact, this is the 

information that the PIACERE Ecosystem employs to finally deploy the complete service.  

 

 

Figure 3: Excerpt of the infrastructure layer with information regarding network, VM, VM image and auto-scale group. This 

information is used by the IOP for building its solutions. 

 

Figure 4: a possible solution found by the IOP for the input DOML depicted in Fig. 2. 

 



 

 

Figure 5: Concretization of the solution represented in Fig. 4. 

5 CONCLUSIONS AND FURTHER WORK 

This paper gravitates around a nature-inspired platform for optimizing IaC deployment configurations. The 

system, named IaC Optimizer Platform (IOP), has been created as part of a European H2020 project. After 

describing the prototypical version of the tool [4], in this paper we take a step forward by describing the final 

release of the system. To do that, we have detailed the role of the IOP within the complete PIACERE, and we 

have shown an example of a real-world use case.  

Despite being the final release of the tool, some further work regarding the IOP has been planned. We 

have the intention of implementing more avant-garde optimization techniques and embedding them into the 

IOP. We also have the intention of exploring revolutionary computation paradigms, such as quantum 

computing [21]. Lastly, we have planned to extend the IOP to other application fields related to industry [22], 

economics [23], or energy [24].  
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