

Optimizing IaC Configurations: a Case Study Using Nature-inspired

Computing

ENEKO OSABA*

TECNALIA, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain

GORKA BENGURIA

TECNALIA, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain

JESUS L. LOBO

TECNALIA, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain

JOSU DIAZ-DE-ARCAYA

TECNALIA, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain

JUNCAL ALONSO

TECNALIA, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain

IÑAKI ETXANIZ

TECNALIA, Basque Research and Technology Alliance (BRTA), 48160 Derio, Bizkaia, Spain

In the last years, one of the fields of artificial intelligence that has been investigated the most is nature-inspired computing.

The research done on this specific topic showcases the interest that sparks in researchers and practitioners, who put their

focus on this paradigm because of the adaptability and ability of nature-inspired algorithms to reach high-quality outcomes

on a wide range of problems. In fact, this kind of methods has been successfully applied to solve real-world problems in

heterogeneous fields such as medicine, transportation, industry, or software engineering. Our main objective with this paper

is to describe a tool based on nature-inspired computing for solving a specific software engineering problem. The problem

faced consists of optimizing Infrastructure as Code deployment configurations. For this reason, the name of the system is

IaC Optimizer Platform. A prototypical version of the IOP was described in previous works, in which the functionality of this

platform was introduced. With this paper, we take a step forward by describing the final release of the IOP, highlighting its

main contribution regarding the current state-of-the-art, and justifying the decisions made on its implementation. Also, we

contextualize the IOP within the complete platform in which it is embedded, describing how a user can benefit from its use.

To do that, we also present and solve a real-world use case.

CCS CONCEPTS • Mathematics of computing → Discrete mathematics → Combinatorics → Combinatorial

optimization • Computing methodologies → Artificial intelligence → Search methodologies.

* Corresponding author: eneko.osaba@tecnalia.com.

Additional Keywords and Phrases: Nature-inspired Computing, Combinatorial Optimization, PIACERE,

Multi-objective Optimization

ACM Reference Format:

Eneko Osaba, Gorka Benguria, Jesus L. Lobo, Josu Diaz-de-Arcaya, Juncal Alonso and Iñaki Etxaniz. 2023. Optimizing

IaC Configurations: a Case Study Using Nature-inspired Computing. In CIIS ’23: The 6th International Conference on

Computational Intelligence and Intelligent Systems, November 25-27, 2023, Tokyo, Japan. ACM, New York, NY, USA, 10

pages.

1 INTRODUCTION

One of the fields of artificial intelligence that is being investigated the most at the moment is nature-

inspired computing [1]. In a nutshell, nature-inspired computing aims to create intelligent algorithms by

analyzing and mimicking how different kinds of natural phenomena behave. The well-known Genetic

Algorithm and Ant Colony Optimization are two of the main sources of inspiration for the conceptualization

and subsequent establishment of this field.

The abundant research done on nature-inspired computation demonstrates the interest that sparks in

researchers and practitioners, who are drawn to this paradigm due to the ability and adaptability of such

methods to obtain near-optimal solutions to a wide range of difficult problems. Specifically, one of the main

benefits of nature-inspired algorithms is their capacity to effectively tackle both practical and academic

problems. As a matter of fact, the consolidation of this field was the result of many years of fruitful research

conducted by a thriving and highly active community, as well as a number of subsequent influential

investigations that contributed to the establishment of a number of fundamental concepts.

Since their conception, nature-inspired techniques have been utilized to address a wide range of real-world

problems that have arisen in heterogeneous fields like medicine, industry, transportation, energy, and

software engineering, among many others [2]. In this context, our main objective with this paper is to describe

a nature-inspired based platform for addressing a specific software engineering problem. More concretely, the

problem dealt with in this manuscript is focused on optimizing Infrastructure as Code (IaC, [3]) deployment

configurations on the most appropriate elements that best meet a set of predefined requirements. The name

of the detailed system is IaC Optimizer Platform (IOP).

A prototypical version of the IOP was described in previous work [4], in which the functionality of this

platform was introduced. With this paper, we take a step forward by describing the final release of the IOP,

highlighting its main contribution regarding the current state-of-the-art, and justifying the decisions made on its

implementation. Besides, we contextualize the IOP within the complete platform in which it is embedded,

describing how a user can benefit from its use. To do that, we also present and solve a real-world use case.

Lastly, it is worth mentioning that the IOP is part of a larger framework built under the umbrella of a Horizon

2020 European research project. The primary objective of this project, known as PIACERE (https://piacere-

project.eu/), is to implement a system for the creation, distribution, and management of IaC operating on the

cloud continuum.

This manuscript is structured as follows: Section 2 offers some background on the topics dealt on this

research. Next, Section 3 describes the IOP, highlighting how it can help users in their daily operations. In

Section 4, we introduce a real use case, while Section 5 finishes this paper with several conclusions and

future work.

https://piacere-project.eu/
https://piacere-project.eu/

2 RELATED WORK

For describing the related work of the research presented in this paper, we have divided this section into

two different parts. First, in Section 2.1, we outline some interesting studies focused on a similar research

topic. After that, in Section 2.2, we justify the use of the selected optimizing framework by highlighting its

benefits in comparison to other state-of-the-art frameworks.

2.1 SOTA related to PIACERE project

The optimization problem defined in PIACERE entails having a cloud service that needs to be deployed

and a list of infrastructural components, which are based on a list contained in a store called Infrastructural

Elements Catalogue. The objective is to build the best configuration for deploying the service as efficiently as

possible, choosing from the catalogue the most appropriate elements. Although that is a relatively new area of

research, there are several studies in the literature that address related issues.

The authors of [5] developed an optimization method inspired by the renowned Non-dominated Sorting

Genetic Algorithm (NSGA-II, [6]) that aligns specific Big Data application's requirements with the capabilities

provided by an infrastructure as a service (IaaS) and the platform installed inside. That work also studies the

Pareto-optima among three different objectives: cost, reliability, and net computing capacity. In [7], authors

proposed a similar study, with the goal of fulfilling the non-functional requirements of a concrete microservice

while meeting the features established by the developers of this service.

These two works are particularly encouraging for the IOP since the synergy among Cloud Computing and

Big Data meets in IaC a practical cloud model, allowing researchers to resort to Big Data features externally

and regardless of the service provider [8]. Thus, practitioners can purchase IaaS utilization time on demand

based on their specific needs. This is a notion comparable to utility billing for energy or other services [9].

On another note, it is interesting to mention that there are few publications in the literature that discuss how

to choose the best infrastructure components to deliver a particular service. In [10], for example, an innovative

optimization method is proposed for multi-cloud application deployment. The system presented in that study

works in streaming, ensuring that the application is always performing in an appropriate way. The research

described in [11] presents a platform that optimizes cluster sizing while leveraging a variety of functionalities,

including custom cluster resources or task scheduling characteristics.

Also related to the topic addressed in this paper, considerable research has been conducted related to

cloud resource management. In [12], for example, a thorough survey is provided on the specific topic of

energy efficiency in cloud computing. Authors categorize optimization techniques based on heuristic solvers,

as well as dynamic power management methods. Equally interesting is the work introduced in [13], in which a

comprehensive review of different resource provisioning platforms is carried out. Regarding resource

management strategies, the authors of that study draw attention to different categories, open research

questions. and objective functions.

Lastly, regarding cloud resource configuration, the authors of [14] examine how clusters are sized for

deployment in the cloud. They provide a tool that uses a parallel simulation-optimization method to examine

various cloud configurations in order to reduce deployment expenses while maintaining quality requirements.

In [15], authors address the problem of assisting design-time monitoring of cloud applications for determining

the best allocation of components onto virtual machines (VM). To do that, performance requirements and

economic costs are considered. In that paper, a tool is proposed that aids users in the process of modeling

the structure of an application and mapping each element into a virtual machine.

With all this, and considering the background here described, the IOP developed in the context of the

PIACERE project provides the following contributions and novelties:

• The IOP is a flexible mono and multi-objective platform, that allows the user to select which

objectives must be optimized from a pool of a predefined set of objectives.

• The IOP provides the user with the possibility of choosing a set of non-functional requirements.

Thanks to this feature, the user can define the maximum cost of the overall deployment, or the

provider of the elements chosen, among many other constraints.

• The IOP is a multi-algorithm approach that resorts to two well-known multi-objective algorithms

(NSGA-II and NSGA-III) depending on the specific needs of the user and the optimization

problem built.

2.2 Multi-objective solving frameworks

As mentioned in the previous subsection, the problem solved by the IOP is a multi-objective one. The

efficient solving of this kind of problems is a recurrent task in artificial intelligence, and because of the

popularity of this field, a wide variety of multi-objective frameworks have been proposed by the related

community. Based on the analysis conducted in [16], we present in Table 1 a brief review of the

characteristics of some of the most representative optimization frameworks. As part of the PIACERE project

and the IOP design, a deep analysis has been made comparing the features of these platforms in order to

determine which framework will be the most effective to use. For each platform represented in Table 1, we

show the programming language employed, the objective of the framework (SOO: Single Objective

Optimization, MOO: Multi-Objective Optimization), and its current version.

Table 1: Main features of representative multi-objective optimization frameworks. Regarding the algorithms, in bold are the

alternatives for which the framework was originally designed. Current versions checked in July 2023.

Framework Language Algorithms Current Version

ECJ Java SOO/MOO 27

HeuristicLab C# SOO/MOO 3.3.16

jMetal Java SOO/MOO 6.0

jMetalPy Python SOO/MOO 1.5.7

MOEAFramework Java SOO/MOO 3.6

Pagmo C++ SOO/MOO 2.19.0

Jenetics Java SOO/MOO 7.1.3

PlatEMO MATLAB MOO 4.2

In a brief analysis of Table 1, we can detect that the most commonly used programming language is Java,

while other alternatives such as Python, C#, MATLAB, and C++ have also been used. In the context of

PIACERE, Java language has been considered appropriate because of its computational efficiency.

Regarding the kind of optimization problems that frameworks can deal with, we have bolded these

alternatives for which each platform is more dedicated in case that admits both SOO and MOO. For the

present research, the specialization of a library has been established as a good reason for choosing one

platform above the rest.

With all this in mind, and although several other alternatives could have been used for this purpose – such

as MOEA or Jenetics – the platform we selected for implementing the IOP is jMetal [17]. These are the main

reasons for the choice:

• jMetal works well with both MOO and SOO.

• jMetal offers a wide set of algorithms for working with many-objective problems.

• Algorithms are flexible to configure and modify in jMetal.

• PIACERE problem definition has been shown easier to perform in jMetal compared to other

alternatives.

3 FUNDAMENTALS OF THE IOP

As mentioned previously in this paper, the optimization problem resolved by the IOP presents the main

challenge of building an optimized deployment configuration of the IaC on suitable infrastructure components

that best fits the predefined constraints. To do that, the IOP obtains all the information needed to build the

optimization problem from an input data file formatted using a modeling language coined DOML [18].

More specifically, the input DOML contains the objectives that the IOP needs to optimize, and also the

non-functional requirements that it must respect. On the one hand, the final release of the IOP allows the user

to consider three different objectives: i) minimize the cost, ii) maximize the availability of the chosen elements,

and iii) maximize the overall performance of the configuration. On the other hand, six non-functional

requirements can be deemed by the IOP, which regard the i) cost, ii) performance, and iii) availability of the

whole configuration, as well as the iv) provider, v) region, and vii) memory of the elements chosen.

Once the user defines the information related to the objectives and requirements, the IOP executes the

matchmaking against the data available in the catalogue, with the objective of finding the most appropriate

elements to deploy. To do that, the IOP resorts to two nature-inspired multi-objective metaheuristics: NSGA-II

and NSGA-III [19]. The IOP success depends on whether it is able to offer to the user the most optimized

deployment configuration of the IaC. To this end, and because of the multi-objective nature of the problem,

several solutions are provided by the IOP, which are ranked by one of the objectives introduced by the user.

We refer interested readers to [20] for additional information about the problem formulation and algorithmic

design of the IOP.

Once the fundamentals of the IOP have been delucidated, it is appropriate to explain how it works within

the PIACERE Ecosystem as a whole. That is, what is the role of the IOP in the overall workflow of the

platform? In this regard, the IOP is employed in two different phases: i) in the first design of the service (in the

so-called design-time phase), and ii) in the redeployment of an already running service (in the coined run-time

phase). So, how the IOP can contribute to both phases can be better explained as follows:

• The IOP in the Design-time phase: in this step, the IOP is an optional feature that the user can opt

to call in case an optimized deployment configuration is needed. For this, the user can directly

optimize a properly formatted input DOML using the PIACERE IDE developed as part of the

project. In this phase, the IOP offers the user a set composed of (at most) five different optimized

solutions, ranked by the objective the user has established as priority. Among the group of

solutions found, the IOP chooses the best as the active one. To enhance the understanding of the

procedure, we show in Fig. 1 the corresponding workflow diagram. In this regard, it should be

clarified that the input DOML is provided to the IOP as part of a compressed ZIP file.

• The IOP in the run-time phase: when a service is deployed, the PIACERE Ecosystem analyzes

and predicts its performance in real-time. This is done thanks to a module coined self-learning. As

part of this process, a mechanism named as self-healing can require the execution of the IOP for

the redeployment of the service if it has failed or if its failure has been predicted by the system. In

this specific case, the workflow of the IOP is similar to Fig. 1, considering that the optimization is

called by the self-healing mechanism instead of being done through the IDE.

Figure 1: the workflow diagram of the IOP in the design-time phase.

Finally, in order to properly understand the overall architecture in which the IOP is involved, it is worth

describing in depth the self-learning mechanism, whose main role is to analyze the performance of the

deployed elements. To do that, the self-learning performs a monitoring of some defined parameters (e.g.,

memory, disk, and CPU), and it is able to predict their values and to deal with some anomalous behaviors that

can lead to the failure of the complete service (e.g., anomalies and the concept drift phenomenon). These

specific cases would require urgent action by the PIACERE platform, which can involve the redeployment of

the service using new infrastructural elements from the catalogue. In other words, self-learning is in charge of

checking whether elements chosen for the first deployment are running and will run as expected in the short

term, and whether they are not suffering from degradation. Going deeper, two different self-learning

procedures are conducted:

• The PerformanceSelfLearning, which is focused on incremental online learning, and which

predicts the performance of the elements to guarantee their constant high-level performance.

• The SecuritySelfLearning, which resorts to state-of-the-art Natural Language Processing

mechanisms to model log streams as a language and capture their normal operating conditions.

Anomalous behaviors can also be detected using these models.

Therefore, when a non-desired situation is detected, the self-learning component triggers the self-healing

mechanism, which receives the incidence or the forecast notification. Thus, based on the typology of the

notification received, the self-healing component identifies a specific mitigation strategy to be applied and

proceeds with its execution. As mentioned, one of the mitigation strategies involves the execution of the IOP

described in this paper in order to find a new optimized IaC deployment configuration.

4 PRACTICAL USE CASE

In this section, a real-world based use case is described in order for the reader to have an idea of how a

user can benefit from the use of the IOP. First, as mentioned before, a DOML file should be introduced as

input in the IOP with the information related to the optimization properly introduced. This data must be placed

in the optimization layer of the DOML. We depict in Fig. 2 an input example. It should be noted that the IOP

can deal with much more complex problems. In this article, we present one of reduced complexity for the sake

of clarity. Going deeper, in the example depicted in Fig. 2, the user asks the IOP for a deployment

configuration composed of a single Storage element and a VM. Furthermore, the objectives to optimize are

the three available ones: cost, performance, and availability. Lastly, four different requirements are

introduced: i) the overall cost of the deployment must not exceed 300$, ii) the expected availability must be

higher than 97%, iii) the provider of the elements chosen needs to be Amazon, and iv) the memory of the VM

should not exceed 1024GB.

Figure 2: an example of an input DOML for the IOP.

In addition to this input, and because the IOP seeks an optimized deployment configuration of the IaC on

the appropriate infrastructural elements, the user can directly specify in the DOML the VM to which the

element selected by the IOP will be mapped. Also, further elements such as VM images, network information,

and auto-scale groups can be defined. We show in Fig. 3 an excerpt of the infrastructure layer of the input

DOML, in which all this information is introduced.

With all this information, the IOP executes the optimization algorithm, aiming to find the best deployment

configurations that meet the requirements introduced by the user. In this case, because three objectives

should be optimized, the optimization algorithm chosen is the well-known NSGA-III. Regarding the outcomes,

the IOP provides the results in two different formats. On the one hand, the optimization section of the input

DOML is extended with general information about the solutions found. In Fig. 4, we depict one example of a

solution returned in this format. As it can be seen in that figure, for each solution found, the IOP represents

the value of all the objectives defined as well as the identifier of the chosen elements (in this case, t2.nano

for the VM and StandardStorage1_Europe for the Storage).

On the other hand, the IOP provides a concretization of the solutions found, which is placed in the

concretization layer of the DOML introduced as input. In Fig. 5, where we represent the concretization of the

solution shown in Fig. 4, we can see how the details of each chosen element are depicted, which meets the

requirements introduced by the user. Several additional aspects should be analyzed in that figure: i) the

selected VM (t2.nano) is correctly mapped to the OracleDB introduced in the infrastructure layer; ii) the

network and VM images are also concretized; and iii) the auto-scale group is introduced, making reference to

the VM found (t2.nano).

It should be considered that the concretization of the solutions is of great importance. In fact, this is the

information that the PIACERE Ecosystem employs to finally deploy the complete service.

Figure 3: Excerpt of the infrastructure layer with information regarding network, VM, VM image and auto-scale group. This

information is used by the IOP for building its solutions.

Figure 4: a possible solution found by the IOP for the input DOML depicted in Fig. 2.

Figure 5: Concretization of the solution represented in Fig. 4.

5 CONCLUSIONS AND FURTHER WORK

This paper gravitates around a nature-inspired platform for optimizing IaC deployment configurations. The

system, named IaC Optimizer Platform (IOP), has been created as part of a European H2020 project. After

describing the prototypical version of the tool [4], in this paper we take a step forward by describing the final

release of the system. To do that, we have detailed the role of the IOP within the complete PIACERE, and we

have shown an example of a real-world use case.

Despite being the final release of the tool, some further work regarding the IOP has been planned. We

have the intention of implementing more avant-garde optimization techniques and embedding them into the

IOP. We also have the intention of exploring revolutionary computation paradigms, such as quantum

computing [21]. Lastly, we have planned to extend the IOP to other application fields related to industry [22],

economics [23], or energy [24].

ACKNOWLEDGMENTS

This research has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No: 101000162 (PIACERE project).

REFERENCES

[1] Liu, J., & Tsui, K. C. (2006). Toward nature-inspired computing. Communications of the ACM, 49(10), 59-64.

[2] Dey, N., Ashour, A. S., & Bhattacharyya, S. (Eds.). (2020). Applied nature-inspired computing: algorithms and case studies. Springer

Singapore.

[3] Rahman, A., Mahdavi-Hezaveh, R., & Williams, L. (2019). A systematic mapping study of infrastructure as code research. Information

and Software Technology, 108, 65-77.

[4] Osaba, E., Diaz-de-Arcaya, J., Orue-Echevarria, L., Alonso, J., Lobo, J. L., Benguria, G., & Etxaniz, I. (2022, July). PIACERE project:

description and prototype for optimizing infrastructure as code deployment configurations. In Proceedings of the Genetic and

Evolutionary Computation Conference Companion (pp. 71-72).

[5] Alonso, J., Stefanidis, K., Orue-Echevarria, L., Blasi, L., Walker, M., Escalante, M., ... & Dutkowski, S. (2019, August). DECIDE: an

extended devops framework for multi-cloud applications. In Proceedings of the 2019 3rd international conference on cloud and big data

computing (pp. 43-48).

[6] Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE

transactions on evolutionary computation, 6(2), 182-197.

[7] Arostegi, M., Torre‐Bastida, A., Bilbao, M. N., & Del Ser, J. (2018). A heuristic approach to the multicriteria design of IaaS cloud

infrastructures for Big Data applications. Expert Systems, 35(5), e12259.

[8] Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S. U. (2015). The rise of “big data” on cloud computing:

Review and open research issues. Information systems, 47, 98-115.

[9] Rappa, M. A. (2004). The utility business model and the future of computing services. IBM systems journal, 43(1), 32-42.

[10] Horn, G., & Skrzypek, P. (2018, May). MELODIC: utility based cross cloud deployment optimisation. In 2018 32nd International

Conference on Advanced Information Networking and Applications Workshops (WAINA) (pp. 360-367). IEEE.

[11] Herodotou, H., Dong, F., & Babu, S. (2011, October). No one (cluster) size fits all: automatic cluster sizing for data-intensive analytics.

In Proceedings of the 2nd ACM Symposium on Cloud Computing (pp. 1-14).

[12] Dewangan, B. K., Agarwal, A., Choudhury, T., Pasricha, A., & Chandra Satapathy, S. (2021). Extensive review of cloud resource

management techniques in industry 4.0: Issue and challenges. Software: Practice and Experience, 51(12), 2373-2392.

[13] Khattar, N., Sidhu, J., & Singh, J. (2019). Toward energy-efficient cloud computing: a survey of dynamic power management and

heuristics-based optimization techniques. The Journal of Supercomputing, 75, 4750-4810.

[14] Gianniti, E., Ciavotta, M., & Ardagna, D. (2018). Optimizing quality-aware big data applications in the cloud. IEEE Transactions on

Cloud Computing, 9(2), 737-752.

[15] Ciavotta, M., Gibilisco, G. P., Ardagna, D., Di Nitto, E., Lattuada, M., & da Silva, M. A. A. (2020). Architectural design of cloud

applications: A performance-aware cost minimization approach. IEEE Transactions on Cloud Computing, 10(3), 1571-1591.

[16] Osaba, E., Villar-Rodriguez, E., Del Ser, J., Nebro, A. J., Molina, D., LaTorre, A., ... & Herrera, F. (2021). A tutorial on the design,

experimentation, and application of metaheuristic algorithms to real-world optimization problems. Swarm and Evolutionary Computation,

64, 100888.

[17] Durillo, J. J., & Nebro, A. J. (2011). jMetal: A Java framework for multi-objective optimization. Advances in Engineering Software, 42(10),

760-771.

[18] Chiari, M., Nitto, E. D., Mucientes, A. N., & Xiang, B. (2023, January). Developing a New DevOps Modelling Language to Support the

Creation of Infrastructure as Code. In Advances in Service-Oriented and Cloud Computing: International Workshops of ESOCC 2022,

Wittenberg, Germany, March 22–24, 2022, Revised Selected Papers (pp. 88-93). Cham: Springer Nature Switzerland.

[19] Deb, K., & Jain, H. (2013). An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting

approach, part I: solving problems with box constraints. IEEE transactions on evolutionary computation, 18(4), 577-601.

[20] Osaba, E., Diaz-de-Arcaya, J., Orue-Echevarria, L., Alonso, J., Lobo, J. L., Benguria, G., & Etxaniz, I. (2023). An Evolutionary

Computation-Based Platform for Optimizing Infrastructure-as-Code Deployment Configurations. Proceedings of Eighth International

Congress on Information and Communication Technology.

[21] Osaba, E., Villar-Rodriguez, E., & Oregi, I. (2022). A Systematic Literature Review of Quantum Computing for Routing Problems. IEEE

Access.

[22] Applegate, D., & Cook, W. (1991). A computational study of the job-shop scheduling problem. ORSA Journal on computing, 3(2), 149-

156.

[23] Cornuejols, G., & Tütüncü, R. (2006). Optimization methods in finance (Vol. 5). Cambridge University Press.

[24] Szedlak-Stinean, A. I., Precup, R. E., Petriu, E. M., Roman, R. C., Hedrea, E. L., & Bojan-Dragos, C. A. (2022). Extended Kalman filter

and Takagi-Sugeno fuzzy observer for a strip winding system. Expert Systems with Applications, 208, 118215.

