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Figure 1: An artistic impression of the generalisation of a NN-classifier that is discussed in this paper.

ABSTRACT
The usual way to quantify the performance of a novel algorithm
in the field of classification, especially in time series anomaly de-
tection, is to compare its performance against selected baseline
competitors on selected data sets. There is a common sense in the
community which data sets and baselines should be considered
when evaluating the algorithm’s performance. Nevertheless, on
which basis data sets and baselines should be selected is frequently
discussed.
In this paper, we propose an index for univariate time series data in
anomaly detection based on information theory. The index shows
an association with the AUC-score of an anomaly detection algo-
rithm that is trained on the data, meaning that, the index can be
used as a proxy for the “difficulty” for the classification task, this
data set holds.
A workflow to quantify this association using an interpretable clas-
sifier that relies on the index and a derived performance baseline
is developed. The classifier performs within the margin of error
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of this performance baseline, meaning that we were not able to
clearly mathematically show the association between index and
AUC-score.
We believe that our work, which unites mathematical concepts
from information theory, physics, and computer science, is inno-
vative and generally points in a promising direction that is worth
investigating.
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1 INTRODUCTION
Time series anomaly detection is the task of finding points or groups
of points in a time series that significantly differ from the distribu-
tion of the majority of the points.

Defining this “difference” between the normal and the abnormal
state in a strict mathematical sense is, if it is even possible, very
difficult. An anomaly could be something like a single value, that is
numerically different from the rest of the values in the time series.
It could also be something like a break in a reoccuring pattern or a
difference in the way two dimension of a time series relate to each
other (e.g. a time series containing two signals which are periodic
and in phase, that in rare occasion go out of phase).[8]

Since no general definition of an anomaly is known, it is also not
feasable to write a classical algorithm for general purpose anomaly
detection. Machine learning algorithms however, overcome this
requirement of an explicit definition.
In the machine learning context, the information what is normal
and what is abnormal is implicitly characterized by the training
data. So the data implicitely defines the classification problem at
hand.

There are different methods for time series anomaly detection
[12]. In this paper, we focus on reconstruction based approaches
are reconstruction based approaches. Here, the anomaly detector
is based around two core components. One is a machine learning
model, the other is a discriminator.

The model is trained to reconstruct normal samples from the
data. There are diffrent aproaches how this model could look like
(Examples included in this work are feed forward networks, recur-
rend neural networks, convolutional neural networks and attention
based network). A common property most reconstructing models
share, is an information bottleneck that is realised in the network
structure (e. g. an autoencoder structure). This way the model is
trained to prioritise information that shall be passed to the bottle-
neck to construct a faithful recreation of the input. A good quality
reconstruction can only be archived when other properties of the
data set, that are not passed trough the bottleneck are aggregated
in the network structure.
The network “learns” how the normal state behaves.

The heuristic to detect anomalies with this reconstructing model
is as follows: The network must “know” the properties of the nor-
mal state, to reconstruct it. If an anomaly gets passed trough the
network, the reconstruction will not be as good, since the network
isn’t trained to recreate it.
The second part of the anomaly detector, the discriminator, is an
algorithm that processes the error (e.g. L1 or L2 error), the recon-
structing model makes. This could either be another machine learn-
ing algorithm or a classical algorithm like an adaptive thresholding.
This part of the algorithm labels an input, or a certain part of an
input abnormal, based on the reconstruction error1.

Time series anomaly detection is basically a binary classification
task (finding out if a value is abnormal or if it is not.). There are also
different methods to quantify the quality of a binary classification.
In this work, we settled on the AUC-score as performance indicator.

1An exception to this are some attention based approaches, that are still trained to
reconstruct the input, but to classify if the input is abnormal or not, not only the
reconstruction, but also the behaviour of the attention mechanism is evaluated.

In the field, huge effort is put into the creation of new algorithms
for specialized applications or better performance over all.
There are many different types of time series and sometimes its
hard to say what makes an algorithm perform well on one data set
and badly on another.

There is no real gold standard to evaluate the performance of
an algorithm. Usually, the algorithm is compared against others
on a variety of data sets. The choice of these data sets (and the
classification problems they hold) is up to the authors.
To assert proper testing, the benchmark data sets have to represent
the field of the intended use case of algorithm, and the baselines
have to be relevant and should represent the state of the art.
Especially for general-purpose algorithms, there is a variety of
benchmark data sets the community agrees on, and that are often
used ([19] [1] represent research where this workflow is employed.).

To formalize this methodology, some authors, e. g. Dau et al. [4]
collected a variety of data sets with the aim to cover most of the
real-world time series that might be faced in the industry.
Other authors like Lai et al. [8] explored the possibility to formally
definemathematical criteria that describe a data set. They developed
a taxonomy for different types of anomalies.

Our work follows this approach as well. The primary issue with
the taxonomy Lai et al. created is that, while it is well suited as
a foundation to develop data generators, it is hard to apply to ex-
isting data 2. In this work, this issue is addressed by using only
formalisms that require very few assumptions on the time series
data to cultivate a computational measure that is generally applica-
ble. The second requirement for this measure is that it should be
straightforward to calculate.

To fulfill these criteria, concepts from information theory are
used. Entropy and mutual information are concepts that are gener-
ally applicable since they require very few assumptions about the
system in question and are straight forward3 to compute.

This paper is structured in two parts.

First, a way to assign an index to a time series data set is pro-
posed. The computation is motivated by information theoretical
considerations.
Furthermore, this index is calculated for a variety of different data
sets. Following this step, several reconstruction-based anomaly de-
tection algorithms are trained on the sets. The relation of the index
to classifier performance is evaluated graphically.
For the classifiers at hand, it is visually notable that the index is
“weakly associated” with the classifier performance.

Second, to further investigate and quantify this “weak associa-
tion”, a nearest neighbor-based classifier that outputs an estimated
performance of the trained algorithm is developed.
The idea here is that the nearest neighbor classifier relies on the
same information visible when looking at the plots discussed ear-
lier but offers a mathematical way to discuss and further evaluate
this information. Since the classification and the uncertainty of the
classifier are only dependent on the index and the anomaly detec-
tion algorithms results, they can be used as a proxy to quantify the

2The definition of collective outliers e. g., relies on shapelet functions. If these functions
are known, like they are in a generative context, the criteria at hand are straightforward
to verify. Finding these functions for an existing time series might prove difficult.
3There are some caveats that will be addressed in section 2.
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quality of the index4. We introduce two baselines to compare the
algorithm against. One is a classifier that is just randomly guessing,
the other one is a classifier that always outputs the average of the
measured AUC-scores. The latter one is the important baseline to
surpass. Surpassing this baseline means that further information
that are not present in the average of the AUC-scores had to be
used, which are held in the index.
While the classifier outperforms the baseline of a classifier that is
just randomly guessing, it performs within the margin of error of
a classifier that always returns the average of all recorded perfor-
mance results of the algorithm.
It is further investigated how the nearest neighbor algorithm gen-
eralizes and how the uncertainty of the algorithm is distributed in
the parameter space.
Additionally, it is discussed how the distributions of the predictions
of the nearest neighbor classifier compare to the distribution mea-
sured values.
Finally, all points and variables that could be alternated to further
investigate are listed.

The main contributions and novelties of this work are:

• The concept of the FEMI-index is introduced. The FEMI-
index represents a novelty. To our knowledge, although in-
formation theoretical influences are present in the field of
time series anomaly detection, there is no work using similar
concepts to describe the properties of data sets.

• The workflow described in this paper shows how the “high
level” concept of the index containing information on the
difficulty of the anomaly detection task that comes with a
data set could be quantified: In this paper, an interpretable
classifier with uncertainty estimation is developed to serve
as a tool to quantify the influences of the index at hand.
Additionally, two essential baselines are motivated. Surpass-
ing both baselines is strong evidence that the index under
test actually contains information about the difficulty of the
anomaly detection task for a given algorithm.

• The uncertainty quantification in this work applies Gaussian
error propagation5 (introduced in section 4.1) to topics in
time series anomaly detection.

2 FOURIER ENTROPY MUTUAL
INFORMATION (FEMI)-INDEX

First, the concepts of entropy and mutual information are briefly
presented. In addition, an introduction to the intuition behind the
computation of the Fourier entropy mutual information (FEMI)-
index is given. A mathematical formulation is stated at the end of
this chapter.

4This is kind of the same as the relation between correlation and regression. A linear
regression algorithm takes the data in and delivers a linear function describing the
data. Although when doing correlation analysis, one is only interested in the goodness
of the fit as a proxy to investigate how well the data fits a linear function.
5Gaussian error propagation is a standard for quantifying uncertainty from experi-
mental physics.

2.1 Entropy and Mutual Information
The entropy6 is a measure for the expected statistical information
of a continuous distribution of values. Let 𝑥 ∈ 𝑋 be a random
variable with values in 𝑋 . Let 𝑝 (𝑥) : 𝑋 ↦→ [0, 1] be the probabil-
ity density function of 𝑥 . The (differential) entropy of 𝑥 is defined as:

ℎ𝑥 = −
∫
𝑋

𝑝 (𝑥)𝑙𝑛(𝑝 (𝑥))d𝑥 (1)

Mutual Information is a measure for the difference in statistical
information in one distribution compared to another. For two ran-
dom variables 𝑥 and 𝑦, the mutual information is defined as:

𝐼𝑥,𝑦 = ℎ𝑥 + ℎ𝑦 − ℎ𝑥,𝑦 (2)
It vanishes exactly when both distributions are independent.
In real-world scenarios, it is often not possible to obtain 𝑝 (𝑥),

instead, one is often left with samples
𝑆 := {𝑥𝑖 ∈ 𝑋, 𝑖 ∈ {1, · · · , 𝑛} ⊂ N} that are assumed to be drawn
from the distribution of 𝑥 . For this case, there are methodologies to
estimate the entropy and mutual information of 𝑥 from the samples
𝑥𝑖 . The straight forward approach for estimating the entropy from
a set of samples is to bin the samples. The ratio of the number
of samples in one bin and the bin size is an approximation to the
underlying distribution. The quality of these estimates varies with
the applied binning strategy. Best values can be expected with an
adaptive binning strategy that is based on the samples.
For one dimensional data, it is also possible to sort the samples. The
distance between one sample and it’s neighbour is inverse propor-
tional to the distribution function. With this intuition, an estimate
for the entropy can be derived. There are also generalisations of
this method relying on ranking the neighbouring points based on
some distance function.
Once the entropy is known, the mutual information can be calcu-
lated using equation 2. We refer to Kraskov et al. [7] for a deeper
insight into the calculation process.

In this work, an entropy sampler developed by Marín-Franch
et al. [10] is used. The entropy and mutual information that are
estimated from sets of samples 𝑆1 and 𝑆2 is denoted as ℎ(𝑆1),ℎ(𝑆2)
and 𝐼 (𝑆1, 𝑆2).

2.2 The Intuition behind FEMI-Index
To compute the index, a data set is needed that is split into two
subsets. One subset contains only data that is considered normal.
One contains normal data alongside abnormal data.
Note that the data itself doesn’t have to be labeled.
The goal here with the index was to find a small number of mathe-
matical properties that describe the data set. The following bullet
points introduce the parameters used and the intuition behind the
inclusion of these:

• By calculating the entropy of the subset containing only the
normal data, it is asked: “How much information is there to
be learned to quantify the normal state of the system that is
described by the data?”.

6In our work we use the differential entropy. The differential entropy formally looks
like a generalized form of the Shannon entropy for discrete distribution, which it isn’t.
It still is a meaningful statistical property of a distribution.
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• By calculating the mutual information between the subset
containing normal data and the subset that contains abnor-
mal data, it is asked: “How much information is there sepa-
rating the abnormal case from the normal case?”

However, computing these measures just straight up on the data
would implicitly ignore the time series nature of the data since the
order in which values are recorded would be ignored.
To tackle this issue, the Fourier transform is taken, and the triplets
of radius and angle of the complex amplitude and the correspond-
ing frequencies from the Fourier transformation are aggregated.
The information theoretical measures for the distribution of those
triplets is calculated.
The whole process of calculation is visualized in a flow chart, seen
in figure 2.

2.3 Formal Description
To formally describe the calculation of the FEMI-index, a definition
of time series data is introduced:
For each data set, let 𝐼 = {1, · · · , 𝑛} ⊂ N be a set of indices. For
every 𝑖 ∈ 𝐼 there is 𝑡𝑖 ∈ R and 𝑥𝑖 ∈ R. 𝑡𝑖 are called timestamps and 𝑥𝑖
are called values. In all of the data sets used in this work, the values
were recorded at equidistant points in time. Thus the timestamps 𝑡𝑖
are ignored in the further description of the formalism (They had
to be included otherwise.).

For a constant𝑚 ∈ N (the window size) and some 𝑗 ∈ (1, · · · , 𝑛−
𝑚) let (𝑥 𝑗 , 𝑥 𝑗+1, · · · , 𝑥 𝑗+𝑚) := 𝑠 𝑗 ∈ R𝑚+1 be a data set entry.

In the following paragraphs, the computation of the FEMI-Index
is introduced step by step:
To calculate the FEMI-Index, the entries are first multiplied by the
Hanning window function. This way, artifacts that would emerge
from the non periodicity of the values of time series represented by
𝑠 are prohibited. The Hanning window for an entry with 𝑛 values
is given by:

𝑤 ( 𝑗) = 1
2
(1 − 𝑐𝑜𝑠 (2𝜋 𝑗

𝑛
)) 0 ≤ 𝑗 ≤ 𝑛 (3)

After windowing, the Fourier transform of the entry 𝑠 is calcu-
lated. In this work, the following version of the discrete Fourier
transform is used. The Fourier coefficient for the frequency 𝑘 is
given as:

𝐹 (𝑠)𝑘 =

𝑚−1∑︁
𝑙=0

𝑒−2𝜋𝑖
𝑘𝑙
𝑚 𝑥𝑙 (4)

In this formula, the indices for 𝑠 𝑗 are shifted from 𝑗, · · · , 𝑗 +𝑚
to 0, · · · ,𝑚.

The complex output of the Fourier transform then has to be
transformed to the R2. This is done by either taking the radius and
angle of the complex amplitude or by taking its real and imaginary
part. Each variant leads to a different version of the FEMI-Index.
This way, each set 𝑠 𝑗 is translated to a set 𝑓𝑗 containing entries
𝑓 ′ ∈ R3. 𝑓𝑗 is a triplet, the first two values represent the complex
amplitude from the Fourier transform the third element is the cor-
responding frequency.
For each data set, two sets of entries are needed. One where the
entries contain anomalies (in a rate that is expected for the data
source that underlies the set) and one without anomalies. Formally

written: For a set size 𝑝 ∈ N, Two tuples7 𝑖𝑛, 𝑖𝑎 ∈ (1, · · · , 𝑛 −𝑚)𝑝
are needed such that two tuples of entries can be defined:

𝐷normal = (𝑠 𝑗 : 𝑗 ∈ 𝑖𝑛) 𝐷abnormal = (𝑠 𝑗 : 𝑗 ∈ 𝑖𝑎) (5)

𝐷normal contains the normal enties, 𝐷abnormal can contain ab-
normal entries.
By applying the above-mentioned procedure of multiplying the
Hanning window, Fourier transforming and converting the entries
in each tuple, new tuples are obtained:

𝐷′
normal = (𝑓𝑗 : 𝑗 ∈ 𝑖𝑛) 𝐷′

abnormal = (𝑓𝑗 : 𝑗 ∈ 𝑖𝑎) (6)

By concatenation:

𝑆normal =
⋃

𝑓 ∈𝐷 ′
normal

⋃
𝑓 ′∈ 𝑓𝑗

𝑓 ′ 𝑆abnormal =
⋃

𝑓 ∈𝐷 ′
abnormal

⋃
𝑓 ′∈ 𝑓𝑗

𝑓 ′ (7)

Two sets are obtained, each containing three-dimensional en-
tries. The FEMI-index is then obtained by computing:

(𝐸,𝑀𝐼 ) = (ℎ(𝑆normal), 𝐼 (𝑆normal, 𝑆abnormal, )) (8)

3 FEMI-INDEX CALCULATION
In this chapter the conduction of the experiments is reported. 15
models where tested on 128 datasets. As a measure of anomaly
detection performance, the AUC-score was computed. For each
dataset, the FEMI-index was computed as well, resulting in the data
points of FEMI-index and AUC-score per data set, that are used
trough out the rest of the paper. The error estimation is described
as well.

The FEMI-index was evaluated on several benchmark data sets.
The benchmark data consists of the following sets:

• synthetically generated sine-waves with anomalies, where
the anomalies manifest either in a deviation from the normal
periodicity of the sine or its Amplitude (4 data sets).

• The datasets from the UCR-archive [4] are used. Since the
UCR-Archive is a time series classification data set8, we
labeled one class as an anomaly and the others as normal
(121 data sets).

• Data from machine 1-1 from the SMD-Dataset [13] is used.
The data is converted into univariate data by looking only at
the dimensions where the anomaly manifests itself (2 data
sets9).

• Data from the ECG data set [5] is used (1 data set).
We randomly sample Examples from these data sources and

group them to obtain the sets needed for the FEMI-index calculation.
This stochastic nature of the data sources also affects the computed
FEMI-index. The indices reported are the mean of 10 calculations
7We chose tuples instead of sets to give the possibility to include indices multiple times.
We still use set notation, though.
8There is also a UCR archive for time series anomaly detection, which we did not use
in this work.
9We originally planned to use more examples from SMD but failed to do so due to an
error that emerged in the experiment code.
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Figure 2: This flowchart visualizes the process of computing the FEMI-index. Note that there are two variants of the computation,
depending on whether one chooses the component or the polar transformation of the complex amplitudes into the R2. The
variables 𝑐1 and 𝑐2 represent the complex amplitudes that correspond to the frequencies 𝑓1 and 𝑓2. The variables 𝑟1,𝑟2,𝜙1 and 𝜙2
are the radius and angle of 𝑐1 and 𝑐2.

for each data source. The errors seen in the plot are the standard
deviation for these calculations.
Taking this error into account makes the evaluation of the index
more “realistic” since sampling data from a system of interest in
multiple instances would cause a similar variation of the index.

To further evaluate the association between the index and the
anomaly detection algorithm’s performance, models are trained
on each of the data sources. As of now, we limit ourselves on re-
construction based anomaly detection methods. Simple “toy model
like” implementations are applied in this work instead of state of
the art algorithms, since most state of the art algorithms consist of
very sophisticated data augmentation strategies and loss functions
working in conjunction. By taking a simpler approach, we hoped
to find behavior that can be associated with the model structure,
which would be harder to find when comparing more complex
models.
All systems have in common that they are trained to reproduce the
input data. The reconstruction error of the input is used as a proxy
for the anomaly of the data point. For all models, the AUC-Score
on the data sets was recorded. Different models were tested and
are described in the following section. Additionally, the models
referenced in table 1 are introduced. All models are implemented
in pytorch [11].

Feed Forward Autoencoder (0-3). These models are feed-forward
autoencoders with ReLU activation function. The latent space is 𝐿
times smaller than the input and is always on the middle layer (4)
in this case. On the other layers, the number of neurons per layer is
linearly decreasing/increasing to map the input to the latent space
and the latent space to the output.

CNN Autoencoder (9-12). An autoencoder that consists of convolu-
tional layers which are connected by linear layers which mediate
the change in dimension of the information that is passed form
layer to layer. In addition to the “normal” encoder, which operates
on the time domain and processes the time series, a second encoder
can be added, either alongside the first one or instead of the first
one, that processes the Fourier transformed version of the time
series (Following an idea shown in a blog post by Ilia Zaitsev [18]).

Table 1: This table lists the different models that were tested
and their corresponding IDs. FF-AE stands for feed forward
autoencoder, CNN-AE for convolutional neural network au-
toencoder. A more in-depth description of the parameters
and a link to the implementation that was used can be found
in the test.

Model ID Model Type Comment
0 FF-AE 7 Layers, 𝐿 = 0.1
1 FF-AE 7 Layers, 𝐿 = 0.25
2 FF-AE 7 Layers, 𝐿 = 0.5
3 FF-AE 7 Layers, 𝐿 = 1
8 CNN-AE -
9 CNN-AE w. FFT
10 CNN-AE FFT only
11 CNN-AE w. FFT, no Han.
12 CNN-AE only FFT , no Han.

Before the transformation, the time series could either be windowed
with a Hanning window or transformed directly.

In addition to these models, we originally also included LSTM /
GRU based reconstruction based models (IDs 4-8) and transformer-
based approaches (IDs 13 and 14) in the testing. Unfortunately, there
were errors in the code that were discovered after the benchmarking,
rendering the benchmark results unusable. In the transformer code,
it is just simply due to a bug10. The recurrent neural networks need
an optimizer that is more specifically tailored to the task. The loss
during the training epochs indicate that there are stability issues.
We thus decided to exclude these models from the discussion. For
the curious reader, we included additional information, example
plots, and results from these models in the appendix (section A.2).

All of the models where trained for 40 epochs using the Adam-
optimizer [6] with a learning rate of 0.001. Convergence was con-
firmed by evaluating the loss functions for a portion of the models.
10A final layer for the scaling of the output is missing. Hence the output can only
reach a range between -1 and 1, which didn’t show during the testing, since testing
was done on normalized data.
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The specific implementations can be seen in our git-hub reposi-
tories11 The AUC-score has an uncertainty that covers the errors
made in the numerical integration to obtain the AUC-score. In our
computation, the ROC-curve of the anomaly detection algorithm
is sampled by equally spaced thresholds from 0 to the maximum
of the anomaly score. To obtain the AUC, a trapezoid quadrature
is used. The error for the quadrature is the difference between the
AUC estimated by an upper and lower right-hand rule. Geometri-
cally, this exactly covers the uncertainty that is introduced through
the sampling process, but it doesn’t include errors that might be
present in the values for the ROC-curve, which we assume to be
smaller than the error that occurs from sampling. The errors are
usually below 0.05 but especially the SMD set shows AUC-scores
around 0.5 and errors around 0.4, which points towards a sampling
problem. This can be assessed by using an adaptive quadrature.

For simplicity, model 3 andmodel 10 are chosen for the discussion
of the FEMI-index. Model 3 is an instance of the feed-forward
type networks, and model 10 is an instance of the convolutional
networks. The other networks of these types performed similarly.

Figure 3 shows the component and the polar FEMI-Index for
model 3 and model 10.
The entropy and mutual information reported here are negative.
This should not be possible. We suspect, that this is due to an error
in the experiment code. We still report all findings as is, since the
results are reproducible12 and the empirical relations we discuss
here still hold.
Comparing the top two images (3a, 3b) to the bottom two images
(3c , 3d) it is noticeable, that the component FEMI-index is much
wider spread in the parameter plane, whereas the polar indices are
mainly gathered around a “line shaped” region in the center.

The figures show a connection between the FEMI-index of the
data set and the AUC-Score of the algorithm in some regions of
the plots. In the top right region of the plots, no clear trend in the
archived AUC-Score is visible on those sets. AUC-Scores that range
from near 0 to near 1 are all present in that region. In contrast,
on data sets that are indexed in the bottom left of the plot, the
algorithm generally archives higher, more consistent AUC-Scores.
This holds, except for a few deviating data set in that region. This
trend is best grasped in the plot of the polar FEMI-index (figures 3c
and 3d).

For the rest of the paper, visualizations of the polar FEMI-index
are used since the phenomena that are discussed are easier to grasp
visually in those plots.

4 NEAREST NEIGHBOUR (NN)-CLASSIFIER
In this section, a nearest neighbor algorithm that gives an estima-
tion for the performance of the classifier based on the FEMI-Index
and AUC-Scores discussed in the last section is applied. This classi-
fier fulfills two purposes:
Firstly, this classifier is a way to more precisely investigate the
phenomenon that the AUC-Score, for some indices, is associated
with the FEMI-Index of the data set.

11The Experiments can be found here: https://github.com/Arn-BAuA/FEMIIndex The
Model implementations and a indepth documentation of all models can be found here:
https://github.com/Arn-BAuA/TimeSeriesAEBenchmarkSuite.
12Meaning, that the numbers we are computing also still function as a number to
identify the data.

Second, finding a good performing classifier for one algorithm
means that it would be possible to get an estimate for its perfor-
mance. This estimate for a novel data source is based on the per-
formance measured when benchmarking the algorithm on known
data sources by calculating the FEMI-Index of the data source and
query the classifier. This pre-training estimate saves computation
time and improves results when combined with e. g. an ensemble
method.

Nearest neighbor algorithms are a standard tool in machine
learning [15]. In this case, a nearest neighbor classifier was chosen
for its simplicity and interpret-ability since the performance of the
classifier has to function as a proxy to further measure the quality
of the FEMI-index.

In this section, the steps of the algorithm are presented. Due to
the importance for the next steps, a small introduction to Gaussian
error propagation is given. This chapter is concluded by a formal
description of the nearest neighbor algorithm.

The nearest neighbor algorithm presented here works as follows:
• The user inputs a point (𝐸,𝑀𝐼 ) in the FEMI-Plane.
• The user specifies a radius (it is a hyperparameter). A radius
was chosen instead of a number of nearest neighbors since
the interpretability in less populated points of the domain
seems to be easier.

• The algorithm outputs the average of the AUC-Scores of
known data points that fall into a circle of the user-specified
radius with the user-specified point at its center.

• This average is weighted with a function that accounts for
the distance of the points (points that are closer to the center
of the circle should have more influence on the output.)

• Additionally, a measure for the uncertainty is computed by
calculating the propagation of uncertainty (Gaussian error
propagation) for the AUC-Score, the entropy, and the mutual
information.

• The error obtained by propagating the uncertainty is com-
pared to the standard deviation of the AUC-scores in the
circle. The maximum of both is chosen.

• If no point is in the circle, an AUC Score of 0±0.5 is returned.
Since Gaussian error propagation is an essential part of the

uncertainty quantification of the classifier, the next section provides
a short introduction.

4.1 Gaussian Error Propagation
While Gaussian error propagation is a standard in propagating
errors in calculations done in experimental physics, it is relatively
uncommon in computer science. Hence, this section provides a
short introduction since Gaussian error propagation plays a key
role in the classification of uncertainty that is done in the next
sections.

There are many ways to derive Gaussian error propagation (e.
g. from the Taylor series). In this introduction, the formula of the
error propagation is graphically motivated.

The task of error propagation is as follows:
Given a function 𝑓 : 𝑋 ↦→ 𝑌 and a value 𝑥 ∈ 𝑋 with an associated
uncertainty Δ𝑥 ∈ 𝑋 . For a given value 𝑦 = 𝑓 (𝑥), the task of error
propagation is to estimate Δ𝑦 ∈ 𝑌 , the error of the calculated value
𝑦.
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(a) Component FEMI Index for Model 3
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(b) Component FEMI Index for Model 10
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(c) Polar FEMI Index for Model 3
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(d) Polar FEMI Index for Model 10

Figure 3: This figure shows the two components of the FEMI-Index of multiple datasets. In addition, the AUC-score that was
reached by an anomaly detection algorithm that was trained on the data is shown in the color index. The left two images (a
and b) show the component FEMI-index, and the right two images (c and d)show the polar FEMI-index. The images a and c
show the results for model 3, a feed-forward network-based model. Images b and d show the FEMI-Index for a convolutional
network-based model (model 10). An association between the position of the FEMI-index and the AUC-score can be seen,
especially in picture c. The entropy and mutual information in the plots are negative. This is due to an error in the experiment
code. The numbers reported here still function as index to identify the data sets. As the results discussed here are of empirical
nature, we continue the discussion with these values.

f(x) g(x)

A,ΔA B,ΔB C,ΔC

f(B),Δf(B)

f(A),Δf(A)

g(C),Δg(C)

x x

yy
"Geometric"- Error Gaussian - Error

Figure 4: This figure graphically shows the task of error prop-
agation. The errors of 𝑓 (𝐴) and 𝑓 (𝐵) are derived graphically
on the left-hand side. The right-hand side plot shows a graph-
ically conducted Gaussian error propagation compared to
the geometric error (dotted line).

For a one-dimensional function 𝑓 the errors can be found graph-
ically as shown in figure 4.

The left hand side of figure 4 shows geometrically how the error
of the values 𝐴 and 𝐵 effects the uncertainty of the outcomes of 𝑓 .
For a one-dimensional function, this geometric error propagation is
easy to draw, but it is not straight-forward to do analytically. Notice
how even for this rather simple function 𝑓 presented in the figure
4, the maximum value of the interval around 𝑓 (𝐴) is not explicitly
known (meaning that it is some unknown value for an 𝑥 ′ between
𝐴 and 𝐴 + Δ𝐴.).

Gaussian error propagation can be seen as an approximation to
this geometric error propagation. Instead of searching for the values
that characterize the intervals of the geometric error distribution,
one linearly approximates the function at the point where it is
evaluated, and then calculates the interval bounds of the geometric
error propagation for this linear approximation, which can be done
analytically. This is depicted on the right-hand side in figure 4.

Formally this writes out as follows: The deviation in the output
space from the value 𝑓 (𝑥) can be (in the one-dimensional case)
written as:

𝑑 =
𝜕𝑓

𝜕𝑥
(𝑥)︸ ︷︷ ︸

The linear Approximation.

· Δ𝑥︸︷︷︸
The strength of displacement.

(9)

The estimated error then is the Euclidean norm of this deviation.

Δ𝑦 =

√︂
( 𝜕𝑓
𝜕𝑥

(𝑥) · Δ𝑥)2 (10)

In a multidimensional way, where the (scalar) output 𝑦 depends
on multiple input variables 𝑥𝑖 this Gaussian error propagations
is the canonical multidimensional equivalent of this geometric
intuition. Meaning, the error 𝑥 and Δ𝑥 are multidimensional vectors.
Instead of a simple derivative, the gradient of 𝑦 is used, and instead
of the norm of the deviation, the following term is computed:

Δ𝑦 =

√︄∑︁
𝑖

( 𝜕𝑓
𝜕𝑥𝑖

(𝑥) · Δ𝑥𝑖 )2 (11)

Geometrically interpreted, this is the Euclidean length of the gra-
dient of 𝑦 at the point 𝑥 that was dimension-wise scaled by the
entries in Δ𝑥 .

4.2 Formal Description
The section is devoted to present the nearest neighbor classifier.
Let 𝐷 𝑗 = (𝐷 𝑗 normal, 𝐷 𝑗 abnormal) for 𝑗 ∈ (1, · · · , 𝑁 ) := 𝐽 be a
number of data sets. For every one of these sets, a FEMI-index
(𝐸 𝑗 , 𝐼 𝑗 ) has been calculated.

To define the output of the classifier, some functions have to be
defined:
On the plane of FEMI-index values, a distance measure
𝑑 ((𝐸1, 𝑀𝐼1), (𝐸2, 𝑀𝐼2)) : R2 ↦→ R+ is used. In this work, we chose
this distance to be the Euclidic distance.

𝑑 ((𝐸1, 𝑀𝐼1), (𝐸2, 𝑀𝐼2)) =
√︁
(𝐸1 − 𝐸2)2 + (𝑀𝐼1 −𝑀𝐼2)2 (12)

For a constant radius 𝑅 ∈ R+ the set 𝐵𝑅 (𝐸,𝑀𝐼 ):
𝐵𝑅 (𝐸,𝑀𝐼 ) := 𝑥 = (𝑥1, 𝑥2) ∈ R2 such that 𝑑 ((𝑥1, 𝑥2), (𝐸,𝑀𝐼 )) ≤ 𝑅

(13)
is defined. Its the set of points in R2 that have a distance 𝑑 that is
smaller or equal than 𝑅 from (𝐸,𝑀𝐼 ).
With these functions, for a given classifier, an AUC-score 𝐴𝑈𝐶 𝑗

for set 𝐷 𝑗 was calculated as well. The classifiers estimate for the
AUC-score at a given point (𝐸,𝑀𝐼 ) is defined as:
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𝐴𝑈𝐶𝐶 (𝐸,𝑀𝐼 ) =
∑︁

𝑗∈ 𝐽 such that:
(𝐸 𝑗 ,𝑀𝐼 𝑗 ) ∈𝐵𝑅 (𝐸,𝑀𝐼 )

𝐴𝑈𝐶 𝑗

𝑤𝑅 (𝑑 ((𝐸,𝑀𝐼 ), (𝐸 𝑗 , 𝑀𝐼 𝑗 )))
𝑊𝑅 (𝐸,𝑀𝐼 )

(14)

In this equation 𝑤𝑅 is a weight function and𝑊𝑅 is its normal-
ization. The weight functions are meant to give the possibility to
weight points in the FEMI-plane that are near the center of the
circle stronger than others. Formally we chose:

𝑤𝑅 (𝑑 ((𝐸1, 𝑀𝐼1), (𝐸2, 𝑀𝐼2))) =
√︁
𝑅2 − 𝑑 ((𝐸1, 𝑀𝐼1), (𝐸2, 𝑀𝐼2))

𝑅
(15)

The normalization can be calculated as:

𝑊𝑅 (𝐸,𝑀𝐼 ) =
∑︁

𝑗∈ 𝐽 such that:
(𝐸 𝑗 ,𝑀𝐼 𝑗 ) ∈𝐵𝑅 (𝐸,𝑀𝐼 )

𝑤𝑅 (𝑑 ((𝐸,𝑀𝐼 ), (𝐸 𝑗 , 𝑀𝐼 𝑗 ))) (16)

To obtain a measure of uncertainty for the classification, Gaussian
error propagation is used, assuming that 𝐸 𝑗 ,𝑀𝐼 𝑗 , and 𝐴𝑈𝐶 𝑗 have
an error. As discussed in section 3 there are areas in the FEMI-
parameter space where no clear association between FEMI-index
and AUC-score can be seen. To account for these areas in the uncer-
tainty quantification, themaximum of the error computed following
the error propagation and the standard deviation of the AUC-score
values in 𝐵𝑅 (𝐸,𝑀𝐼 ) is taken as final uncertainty for the prediction.

5 EVALUATION OF THE NN-CLASSIFIER
In this section, the performance of the nearest neighbor algorithm
is evaluated. The section is divided into two subsections. In the
first section 5.1, the classifier is compared to the two baselines.
This serves two purposes. For one, surpassing these baselines is a
statement of the quality of the classifier. Second, and more impor-
tant: The only way the classifier can surpass the second baseline,
which just returns the average of all benchmarked AUC-scores, is
to utilize the information that is not present in the average. Since
this information is drawn from the FEMI-index, it follows that the
index indeed carries information on the difficulty of the anomaly
detection task for that given anomaly detection algorithm.

In the second subsection, the distribution of the classifier outputs
is compared to the measured distribution (section 5.2). It is also
discussed how the classifier generalizes and estimates uncertainty
(section 5.3). Those sections are more focused on the properties of
the classifier than the FEMI-index.

Evaluation of the nearest neighbor algorithm is done by remov-
ing one point from the distribution of points and then predicting
it’s associated AUC-Score from its FEMI-index using the remaining
distribution.

This is done for every point in the distribution. Themean squared
error (MSE) of the AUC-Score values is used to assess the perfor-
mance of the classifier.

𝑀𝑆𝐸 =
∑︁
𝑗∈ 𝐽

(𝐴𝑈𝐶𝐶 (𝐸 𝑗 , 𝑀𝐼 𝑗 ) −𝐴𝑈𝐶 𝑗 )2 (17)

Table 2: This table shows the MSE of our two baseline classi-
fiers and the nearest neighbor classifier for different values
of 𝑅 for the polar (P:) and component (C:) FEMI-index for
models 3 and 10. All uncertainties are obtained by error prop-
agation.

Error/Model ID 3 10
Random C. MSE 0.208 ± 0.018 0.212 ± 0.011

Avg. C. MSE 0.055 ± 0.020 0.048 ± 0.026
NN-C. MSE P: C: P: C:

R = 1 0.091 ± 0.288 0.100 ± 0.307 0.088 ± 0.283 0.106 ± 0.316
R = 1.5 0.087 ± 0.273 0.092 ± 0.283 0.071 ± 0.248 0.083 ± 0.265
R = 2 0.063 ± 0.220 0.077 ± 0.240 0.052 ± 0.195 0.067 ± 0.225
R = 3 0.055 ± 0.179 0.070 ± 0.200 0.043 ± 0.153 0.050 ± 0.182
R = 5 0.052 ± 0.122 0.058 ± 0.150 0.042 ± 0.116 0.045 ± 0.121
R = 10 0.048 ± 0.104 0.050 ± 0.111 0.041 ± 0.095 0.042 ± 0.099
R = 100 0.055 ± 0.119 0.055 ± 0.120 0.048 ± 0.109 0.048 ± 0.109

5.1 Comparison to performance baselines
To further get a sense of the performance of the classifier, the clas-
sifier’s MSE are compared to the MSE of two baseline competitors.
The first one is a classifier that just outputs uniform distributed ran-
dom values between 0 and 1. Surpassing it means essentially that
the classifier at hand is better than random guessing. It follows that
some information on the performance of the algorithm in anomaly
detection is obtainable from the FEMI-index and the AUC-data.
Its MSE can be calculated using the expected values for the contribu-
tion to the MSE of the individual data sets, which can be calculated
as:

⟨𝑀𝑆𝐸 𝑗 random⟩ =
∫ maximal AUC

minimal AUC
𝑝 (𝐴𝑈𝐶 𝑗 random = 𝑥) (𝐴𝑈𝐶 𝑗−𝑥)2d𝑥

(18)
Since we assume uniform random distribution of predictions 𝑥 ,

𝑝 (𝐴𝑈𝐶 𝑗 random = 𝑥) evaluates to 1/(maximal AUC−minimal AUC).
The minimal and maximal values of the AUC are 0 and 1, so the
integral simplifies to:

⟨𝑀𝑆𝐸 𝑗 random⟩ =
∫ 1

0
(𝐴𝑈𝐶 𝑗 − 𝑥)2d𝑥 = 𝐴𝑈𝐶2

𝑗 −𝐴𝑈𝐶 𝑗 +
1
3

(19)

and with that, the expected value for the MSE of the random
classifier is:

⟨𝑀𝑆𝐸 random⟩ =
∑︁
𝑗∈ 𝐽

⟨𝑀𝑆𝐸 𝑗 random⟩ (20)

The other is a classifier that just outputs the mean of all measured
AUC-Score values. This classifier is an important baseline since, to
outperform it, an association between the AUC-Score and the data
based on the FEMI-index has to be utilized. Surpassing the perfor-
mance of this baseline is a strong indicator that the index contains
some relation between the difficulty of the anomaly detection task
and the data.
Its MSE can be calculated as:

𝑀𝑆𝐸average =
1
|𝐽 |

∑︁
𝑗∈ 𝐽

(𝐴𝑈𝐶average −𝐴𝑈𝐶 𝑗 )2 (21)

The results of the comparison are listed in table 3. Results for all
trained classifiers are listed in the appendix A.1. In all cases, the
MSE of the random classifier is surpassed by the nearest neighbor
classifier, regardless of the radius.

However, the classifier fails for all radii to surpass the baseline of
the average classifier. In some cases, the nearest neighbor classifier
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archives a smaller MSE than the average classifier, but only by 0.001,
which is a very small difference compared to the uncertainty. For
all that we can tell, both classifiers perform equally.

At huge radii, the nearest neighbor algorithm gives the same
output as the average classifier, which is to be expected, since the
average classifier is “the asymptotic limit” (𝑅 → ∞) of nearest
neighbor algorithm.

The absence of a measurable lower error compared to the base-
line shows that, at least in the investigated example, the classifier
could not benefit from the information that is provided by the
FEMI-index13.

Partially, the results of the classifier had lower MSE than the
average classifier baseline. However, these numerical values cannot
be interpreted since the improvement is small compared to the
errors of the values.

5.2 Comparison of AUC-distributions.
To compare the distribution of the predicted AUC-scores and the
measured AUC-scores, the box plots of the distributions are used.
They are depicted in figure 5 for model 3 ( figure 5a) and model 10
(figure 5b).
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Distribution of AUC: Measured VS. Predicted by Model 3

(a) Boxplot for model 3 on polar FEMI-
Index
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(b) Boxplot for model 10 on polar FEMI-
Index

Figure 5: This figure shows box plots of the distribution of the
AUC-score values that were measured during the benchmark
and that were predicted by the classifier using different radii.

For both boxplots, it can be seen that the bulk of the values
predicted by the classifier (median and percentiles) is at a lower
AUC-score than the original distribution of the values. That is due
to the large section depicted in the upper right of the FEMI-index
plots (figure 3), where an association between FEMI-index and
AUC-Score is not noticeable. In this region, the average calculated
by the classifier tends to be around 0.5.

The best values, MSE-wise, are archived by choosing a radius
of 5 or 10. With this radius, the classifier holds the ideal balance
between taking into account the local features of the index and
having enough points for the average calculation to compensate
values that deviate from the local trend.
In both plots, a narrowing of the distributions due to the calculation
of the average is visible, resulting in the final distribution for a
radius of 100, where every prediction is basically the average of the
distribution.

13Which does not mean that the index does not hold that information.

5.3 Generalisation
To see how the algorithm generalizes, it is evaluated across the
whole region, that can be seen in the plots shown in section (3).
The prediction, as well as the uncertainty for that prediction, are
mapped in the 2D plane of the FEMI-index. These plots can be seen
for model 3 and 10 for the polar FEMI-index and a radius of 10 in
figure 8.

As can be seen, comparing the generalized predictions for model
3 and model 10 (figure 6a and figure 6b) the generalization of the
classifier shows the local association of the AUC-Score and the
FEMI-Index.

Furthermore, some features that can be seen in the uncertainty
estimate are discussed. The areas that are discussed in the rest of
this section are marked in figure 6c (A-D).
First of all, the classifier outputs a high uncertainty in areas where
there are no data points, which is by design. However, there are
some regions (B,C) where the classifier is overconfident. Because
the smallest error here is assigned to predictions that are based
on a few values. Additionally these values are at the edge of the
space that is taken into account for prediction. Further investigation
needs to be done here. To clearly judge if this is an issue or not, the
probability that a data set actually is indexed by a FEMI-index in
that region needs to be quantified.

In the regions where there are points, the uncertainty shows the
desired behavior, that, in the region where the AUC-score is not
directly associated with the FEMI-index (D, upper right). The error
is higher than in the regions where there is an association. Even
though, for our liking, this error could be higher, maybe even as
large as 0.5.

Another feature worth mentioning is the huge influence of that
one deviating point (A) on the prediction. However, this influence
is reflected in the uncertainty.

6 CONCLUSION
In this paper, it is described how information theoretical concepts
can be used to characterize the properties of a time series data set.
An association between this measure and the AUC-Score of a model
that was trained on that data is visible for the trained models.
To investigate this association and quantify it, a nearest neighbor
classifier was created, featuring an uncertainty classification based
on Gaussian error propagation.
A classifier that always outputs the mean of the measured AUC-
scores was identified as the baseline. Surpassing the performance
of this classifier is only possible if further information from the
index is used.
The nearest neighbor classifier performed within the margin of
error of a classifier that outputs the average of the measured AUC-
scores. This means that no clear mathematical evidence for the
association that can be seen in the visualization of the index could
be shown.
To really grasp how the association between FEMI-index and clas-
sifier performance comes to be, further investigation should be
conducted. Up to this point, we just reported empirical results. A
theoretical background that explains the reported results is needed.
We personally think that the concepts discussed in this paper are
worth researching. A way to mathematically estimate the difficulty
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NN Classifier: Generalisation for Model 10, R = 10

(a) generalization for model 3
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NN Classifier: Generalisation for Model 10, R = 10

(b) generalization for model 10
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NN Classifier: Uncertainty for Model 3, R = 10

(c) uncertainty for model 3
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(d) uncertainty for model 10

Figure 6: The left two plots (a and b) show how the nearest neighbor classifier generalizes for the models 3 (a) and 10 (b). The
right two plots (c and d) show the uncertainty the classifier estimates for its prediction. Additionally in figure c, there are some
annotated areas. The annotations are used in the discussion of these plots in the text.

associated the anomaly detection task for a dataset would be a huge
benefit to the field. The workflow proposed (Build NN-classifier
based on the index, compare against the average classifiers MSE) in
this paper is a methodology to evaluate and compare mathematical
measures that are meant to classify data sets.

7 FUTUREWORK
The future work section is split into two subsections. In one sub-
section the extensions and additions to presented experiments are
pointed out. The other shows potential variations and points to
“branch off” from here.

7.1 Improvements to the existing methodology
As discussed above (section 3), there are some points to extend the
experiments done here.

• The results shown here are all empirical. A theoretical back-
ground that explains the findings is needed.

• To get a more detailed picture of the FEMI-index, more data
sets (At the moment most of the data for the tesing originates
from the UCR time series classification data set) need to be
added to the existing experiments.

• For the convolutional and the feed-forward networks, the
tendencies visible in the FEMI-index looked roughly the
same (chaos in the upper right and mostly good datasets
in the lower left). It would be interesting to compute the
FEMI-index on more different models to see if this general
behavior changes with the model type.

• During Testing, there where outiliers. Points that are in a
region, where the FEMI-Index suggests, that the anomaly
detection algorithm would perform well on them, that had
lower AUC-Score than the points surrounding them. It would
be interesting to investigate, which properties make these
points an outilier.

• As suggested by Clara Hoffmann[3], there are known trans-
formations that can be done to the data, which don’t change
the shannon entropy. It would be interesting to see how the
different data with same FEMI-index would look like.

• Christian Schlauch[2] proposed a different interpretation
for the FEMI-index: We interpreted the relation of the AUC-
values with the index as classifier dependent. Maybe this is
only partially true. It could as well be that the FEMI-index

is a theoretical upper bound for the performance of any
classifier.

7.2 Variants of the research presented here
There are some promising aspects of the FEMI-index and the oppor-
tunities that might arise when it is used as a basis for selecting data
sets for benchmarking or for pre-training performance estimation.
But, as we stated in the former sections, there still is a lot to desire.
Mainly a mathematical way of quantifying the association between
classifier performance and FEMI-index. During our investigation
on this topic, we identified some potential variants of the algorithm
that might be worth exploring.

• There might be other information theoretical measures to
explore to assign an index to a data set. E. g. Different entropy
measures. Another parameter that might be worth including
in an index is the estimates signal to noise ratio.

• The uncertainties in this paper were huge compared to the
numeric values. Maybe there is a way to find an index for
the classifier that is less prone to error.

There are other, less error-prone, more precise classifiers on
the basis of the existing FEMI-index. At the moment, we chose a
relatively simple classifier for the sake of interpret-ability.

• There are different algorithms that can be used for classifica-
tions, like e. g. forests or neural networks, that are less easy
to interpret but hopefully achieve better classification.

• There are variants for the classifier at hand. e. g. trying dif-
ferent weight functions, making the radius dependent on the
position in FEMI-parameter space, or choosing a distance
metric for creating the circle that weights mutual informa-
tion differently compared to entropy.
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A APPENDIX
A.1 MSE for the classifier for all models
The following tables show the classifier MSE archived for all models:

A.2 Example plots for the Transformer- and
RNN-Models

The following part of the appendix has more detailed information
on the models that were omitted from the discussion of the result in

the main part of this work due to technical problems. The specific
model parameters can be seen in table 4.

LSTM / GRU (4-7). These models consist of a GRU/LSTM that pro-
cesses the input. The information is encoded in the cell states by
one recurrent layer stack and then passed to another that should
rebuild the input. Additionally, there is the option to flip the cell
states before they are passed to the second layer stack and flip the
output so that the network rebuilds the input from last to first like
it’s described by Malhorta et al. [9].

Attention Based Model (13-14). This model is a wrapper for the
pytorch implementation of the “attention is all you need” trans-
former [16] (This is a different approach than what is done in the
state of the art transformer based anomaly detection algorithms,
where the anomalies are detected by evaluating the attention mech-
anism instead of the reproduction. [14][17]). The idea behind this
model is as follows: Both time series and speech can contain com-
plex context-sensitive information. So the idea arises that the at-
tention mechanism, which enables the transformer to process this
information in speech, also brings benefits when processing time
series.
In the wrapper used here, instead of word embedding, the time
series is either fed directly (piecewise) into the transformer, or a
version of the time series that is preprocessed by a feed-forward
neural network is passed. The output of the transformer is expanded
back to the dimensionality of the input by another feed-forward
network.
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Table 3: This table shows the MSE of our two baseline classifiers and the nearest neighbor classifier for different values of 𝑅 for
the polar (P:) and component (C:) FEMI-index. All uncertainties are obtained by error propagation.

Error/Model ID 0 1 2 3 4
Random C. MSE 0.212 ± 0.022 0.218 ± 0.017 0.214 ± 0.016 0.208 ± 0.018 0.144 ± 0.016

Avg. C. MSE 0.046 ± 0.031 0.052 ± 0.021 0.041 ± 0.025 0.055 ± 0.020 0.052 ± 0.013
NN-C. MSE P: C: P: C: P: C: P: C: P: C:

R = 1 0.081 ± 0.279 0.088 ± 0.297 0.097 ± 0.301 0.103 ± 0.315 0.088 ± 0.289 0.096 ± 0.305 0.091 ± 0.288 0.100 ± 0.307 0.077 ± 0.258 0.067 ± 0.236
R = 1.5 0.074 ± 0.252 0.083 ± 0.286 0.085 ± 0.268 0.090 ± 0.289 0.071 ± 0.251 0.079 ± 0.268 0.087 ± 0.273 0.092 ± 0.283 0.072 ± 0.237 0.070 ± 0.226
R = 2 0.055 ± 0.209 0.069 ± 0.236 0.062 ± 0.221 0.079 ± 0.251 0.049 ± 0.194 0.065 ± 0.231 0.063 ± 0.220 0.077 ± 0.240 0.063 ± 0.204 0.066 ± 0.188
R = 3 0.046 ± 0.165 0.060 ± 0.202 0.054 ± 0.178 0.067 ± 0.210 0.041 ± 0.150 0.052 ± 0.183 0.055 ± 0.179 0.070 ± 0.200 0.056 ± 0.159 0.068 ± 0.186
R = 5 0.044 ± 0.113 0.047 ± 0.133 0.052 ± 0.123 0.056 ± 0.146 0.039 ± 0.107 0.042 ± 0.121 0.052 ± 0.122 0.058 ± 0.150 0.056 ± 0.121 0.056 ± 0.125
R = 10 0.040 ± 0.095 0.041 ± 0.097 0.048 ± 0.104 0.049 ± 0.110 0.037 ± 0.088 0.036 ± 0.088 0.048 ± 0.104 0.050 ± 0.111 0.054 ± 0.113 0.053 ± 0.113
R = 100 0.046 ± 0.108 0.046 ± 0.108 0.053 ± 0.115 0.053 ± 0.115 0.041 ± 0.095 0.041 ± 0.095 0.055 ± 0.119 0.055 ± 0.120 0.053 ± 0.112 0.053 ± 0.112

Error/Model ID 5 6 7 8 9
Random C. MSE 0.139 ± 0.012 0.168 ± 0.015 0.176 ± 0.013 0.221 ± 0.010 0.225 ± 0.008

Avg. C. MSE 0.047 ± 0.010 0.064 ± 0.020 0.056 ± 0.017 0.048 ± 0.028 0.049 ± 0.033
NN-C. MSE P: C: P: C: P: C: P: C: P: C:

R = 1 0.068 ± 0.248 0.063 ± 0.248 0.099 ± 0.293 0.084 ± 0.275 0.093 ± 0.291 0.082 ± 0.283 0.085 ± 0.276 0.099 ± 0.308 0.090 ± 0.280 0.116 ± 0.321
R = 1.5 0.065 ± 0.224 0.060 ± 0.214 0.093 ± 0.267 0.085 ± 0.257 0.089 ± 0.270 0.083 ± 0.261 0.078 ± 0.258 0.082 ± 0.263 0.085 ± 0.265 0.098 ± 0.286
R = 2 0.058 ± 0.201 0.052 ± 0.171 0.074 ± 0.232 0.079 ± 0.223 0.065 ± 0.224 0.072 ± 0.223 0.050 ± 0.197 0.067 ± 0.217 0.054 ± 0.204 0.079 ± 0.251
R = 3 0.052 ± 0.154 0.061 ± 0.182 0.068 ± 0.187 0.074 ± 0.201 0.059 ± 0.182 0.064 ± 0.195 0.042 ± 0.160 0.052 ± 0.183 0.045 ± 0.170 0.066 ± 0.205
R = 5 0.052 ± 0.123 0.052 ± 0.116 0.071 ± 0.154 0.070 ± 0.153 0.060 ± 0.128 0.061 ± 0.147 0.044 ± 0.113 0.045 ± 0.129 0.046 ± 0.116 0.050 ± 0.133
R = 10 0.047 ± 0.102 0.046 ± 0.100 0.067 ± 0.136 0.067 ± 0.139 0.055 ± 0.113 0.055 ± 0.117 0.044 ± 0.099 0.042 ± 0.096 0.045 ± 0.100 0.045 ± 0.106
R = 100 0.048 ± 0.100 0.048 ± 0.100 0.065 ± 0.138 0.065 ± 0.138 0.057 ± 0.120 0.057 ± 0.120 0.049 ± 0.107 0.049 ± 0.108 0.049 ± 0.112 0.049 ± 0.113

Error/Model ID 10 11 12 13 14
Random C. MSE 0.212 ± 0.011 0.224 ± 0.008 0.214 ± 0.011 0.181 ± 0.009 0.185 ± 0.011

Avg. C. MSE 0.048 ± 0.026 0.054 ± 0.031 0.050 ± 0.034 0.062 ± 0.018 0.060 ± 0.019
NN-C. MSE P: C: P: C: P: C: P: C: P: C:

R = 1 0.088 ± 0.283 0.106 ± 0.316 0.100 ± 0.296 0.123 ± 0.328 0.098 ± 0.295 0.113 ± 0.317 0.096 ± 0.301 0.101 ± 0.301 0.096 ± 0.304 0.103 ± 0.307
R = 1.5 0.071 ± 0.248 0.083 ± 0.265 0.096 ± 0.276 0.108 ± 0.294 0.087 ± 0.267 0.092 ± 0.272 0.093 ± 0.271 0.101 ± 0.271 0.093 ± 0.279 0.104 ± 0.277
R = 2 0.052 ± 0.195 0.067 ± 0.225 0.062 ± 0.216 0.090 ± 0.255 0.056 ± 0.208 0.073 ± 0.233 0.075 ± 0.241 0.098 ± 0.251 0.075 ± 0.247 0.098 ± 0.247
R = 3 0.043 ± 0.153 0.050 ± 0.182 0.053 ± 0.180 0.072 ± 0.197 0.048 ± 0.168 0.067 ± 0.197 0.065 ± 0.198 0.081 ± 0.217 0.064 ± 0.202 0.077 ± 0.220
R = 5 0.042 ± 0.116 0.045 ± 0.121 0.053 ± 0.128 0.059 ± 0.145 0.047 ± 0.115 0.052 ± 0.138 0.064 ± 0.152 0.068 ± 0.157 0.061 ± 0.141 0.065 ± 0.151
R = 10 0.041 ± 0.095 0.042 ± 0.099 0.052 ± 0.112 0.051 ± 0.114 0.044 ± 0.095 0.045 ± 0.101 0.063 ± 0.134 0.060 ± 0.133 0.060 ± 0.127 0.059 ± 0.132
R = 100 0.048 ± 0.109 0.048 ± 0.109 0.055 ± 0.121 0.055 ± 0.122 0.050 ± 0.115 0.050 ± 0.115 0.063 ± 0.131 0.063 ± 0.131 0.061 ± 0.126 0.061 ± 0.126

Table 4: This table lists the details of the models which were excluded from the discussion of the results due to errors in the
implementation (transformer) and stability problems while training (LSTM / GRU).

Model ID Model Type Comment
4 LSTM performes latent flip
5 GRU performes latent flip
6 LSTM no latent flip
7 GRU no latent flip
13 Attention-based Model Feed-forward Autoencoder for embedding
14 Attention-based Model no embedding
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(a) FEMI-index for model 4.
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(b) Box plot for model 4.
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(c) Generalisation of the NN-Classifier for model 4 (R
= 10).
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(d) Uncertainty for model 4 (R = 10).

Figure 7: These figures show the results discussed for the not properly trained model 4.
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(a) FEMI-index for model 14.
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(b) Box plot for model 14.
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(c) Generalisation of the NN-Classifier for model 14
(R = 10).
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(d) Uncertainty for model 14 (R = 10).

Figure 8: These figures show the results discussed for the malfunctioning model 14.
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