
The LACONIQ Monitor: Time
Sharing for Online Dialogues
DANIEL L. DREW
Lockheed Research Laboratory,
Palo Alto, California

The LACONIQ (Laboratory Computer Online Inquiry) Monitor
was developed primarily to support non-numerical applications
such as retrieval from very large files by means of a "dialogue"
between a system user and a retrieval application.

The monitor was designed so that it could work with a small
computer (an IBM System 360/30) . Therefore techniques for
resource allocation were important. For this reason the use of
core storage, computational facilities, and input-output were
all scheduled.

An unusual feature of the system is that it is event-driven
rather than clock-driven. The program segments called into
execution by the remote CRT consoles are invariably run to
completion rather than "rolled-out" to be brought back at a
later time.

1. O v e r a l l C o n f i g u r a t i o n

I~TRODUCTmN. The basic requirement in the design
of the Laboratory Computer Online Inquiry (LACONIQ)
Monitor was that it should facilitate the programming
and operation of online "dialogues." These dialogues typi-
cally consist of inquiries directed to a large data file, to
which pre-prepared programs respond in an attempt to
help the system user find and display specific information.
The prototype application is that of document reference
retrieval.

This approach led to an event-driven monitor, as op-
posed to the usual "clock-driven" time sharing monitor in
which application program execution is carried on during a
fixed interval, then interrupted until the program has
another "turn." In the LACONIQ monitor, each applica-
tion program is processed to completion. (This is only
practical, of course, because the programs are limited in
their duration.) Each such program corresponds to at most
one step in the dialogue. Long operations might require
that a sequence of such short programs (called program
segments in the following descriptions) be executed, and
this is foreseen in the monitor design. The basic event that
governs the timing of happenings in the monitor is then
the completion of processing of a program segment.

Volume 10 / Number 12 / December, 1967

B. RANDELL, Editor

This decision to set an upper limit on the amount of
processor time each segment is allowed rather than to
interrupt the segment ("roll it out" to a peripheral storage
unit, and bring it back for later continuation) was based
on a tradeoff between constraining the application program-
mer and increasing system response time. Given the
conversational nature of the foreseen applications, it was
felt that limiting segment execution time would not be a
serious constraint because very few segments would ap-
proach this limit. (This has turned out to be the case.) The
improvement in system response due to this doctrine
derives not only from the smaller number of disk references
but from the simpler mechanisms needed to handle the
segments.

A second major design decision was to make the monitor
poll the remote consoles, i.e., to accept input at the sys-
tem's convenience rather than in response to interrupts
generated by user's consoles ("contention" mode). Polling
is made practical by the existence of adequate local buffers
at the remote consoles. The principal advantage of this
mode is that remote input can be scheduled, so no dedi-
cated input buffer areas are required.

All the resources of the system--communication lines,
core storage, use of the CPU, and use of the I/O channels--
are scheduled in one way or another. The most funda-
mental scheduler, the work-in-progress scheduler, calls in
both program segments and systems routines as appropri-
ate and when needed.

The monitor was not primarily designed to facilitate
programming at the user console, although incremental
assemblers or compilers can be added in the form of
applications. The basic criterion was rather to make it
easy for a skillful programmer to prepare an application
with which the (usually untrained) user, at his console,
could interact in a language natural for that application.
This monitor might be described as a three-level system,
with the programmer mediating between the layman-user
and the computer, and is a step toward making the power
of the computer more generally accessible.

I t is probably obvious, but perhaps worth mentioning
that a further requirement on the monitor was that it
should be capable not only of supporting several terminals
processing a given application, but also several different
simultaneous applications.

Many of the detailed features of the monitor are directly
related to the IBM System/360, and some even to the

Communicat ions of the ACM 765

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363848.363858&domain=pdf&date_stamp=1967-12-01

configuration of the particular computer system at hand,
which consists of a 32K 360/30 main-frame with two 2311
disk drives, a 2321 data cell drive, a tape unit, and multiple
remote CRT consoles (IBM 2260 and Sanders 720). The
disk drives each store 7.2 million bytes with average access
time of 85msec, the data cell stores 4.8 million bytes with a
maximum access time of 600msec. The CRT consoles dis-
play, respectively, 960 and 1024 alphanumeric characters
at 120 characters per second line rate). Some hardware
factors which have been important in their influence on
monitor design are the small core storage, the large
peripheral storage, and the local buffers for the console dis-
plays.

The first version of LACONIQ was operational in
December 1966, supporting three IBM 2260 consoles and
using two disk drives and a data cell. I t has been con-
tinually upgraded and at this writing it is being set up to
have a high degree of compatibility with the IBM Disk
Operating System and OS/360, The changes include
exploiting a larger core storage (64K bytes) and introduc-
ing a background capability. Depending on the size of the
background partition and the application mix, it is fore-
seen that the monitor will support between six and twelve
CRT consoles with an (approximate) 2-see response time.
System overhead is estimated at 25 per cent, and it is be-
lieved that more careful measurement will show this to be
pessimistic.

APPLICATION PROGRAM SEGMENTS. A given application
consists of data and directory files, and a library of pro-
gram segments. Each segment consists of two sections, one
of which performs the processes the programmer has
planned and the other describes the segment and all of its
possible successors. When a segment is selected and input,
the executable portion is read from disk into general work-
ing storage and the descriptive portion is read into a
protected area dedicated to the logical console which
called in the segment.

Segments are not permitted to perform I/O, to preempt
storage that has not been allocated by the monitor, or to
directly alter any part of the protected storage where the
monitor and the "console areas" are resident. These opera-
tions are performed by the monitor at the request of the
segment. Communication between the segment and
monitor is carried on by "service calls" which generate
interrupts and change the state of the CPU from "problem",
to "supervisory." There are 15 such calls implemented at
present. They permit the segment to request input from
disk or data-cell; to output to disk, data-cell, tape, or re-
mote console; and to alter the console-dedicated area,
request more core storage or release storage blocks, and
make error and normal exits.

MONITOR FACILITIES. A capsule description of the
monitor might be as follows: it is a set of programs which
input an application segment, give it CPU time, supply it
with data and storage areas on request, handle its output to

remote terminals and to interim storage, handle input from
terminals, using this input and the self-descriptive section
of the segment select the next segment in sequence, and, to
complete the cycle, input the successor so selected. To
relate these functions to the programs, that perform them
(see Figure 1), application segments are input by the
peripheral I /O programs in the order indicated by the
peripheral I /O scheduler. The principal executive routine,
the work-in-progress scheduler, gives control of the CPU
to the segment and interprets its reqnests for main storage,
I /O from peripheral storage, and output to the associated
console. These requests are passed on, respectively, to the
storage allocation program in the executive, to the pe-
ripheral I/O scheduler, and to the remote I /O scheduler.
The latter schedulers queue these requests to be performed
by the peripheral I /O programs and the console I /O pro-
gram (called "line control"). When segment execution is
complete, the executive releases the main storage it has oc-
cupied and scans the self-descriptive part of the segment to
determine whether this segment has indicated a unique
successor and if so whether it is to be input at once or only
after a response from the console. If there is more than
one candidate in the table, selection of the successor will be
performed by the input analysis routine, which compares
the eventual user input with the criteria in the successor
table (matching strings or matching input categories).

'I------F---- _ _ I iI v--- J

I I
[: [~ 1

FIG. 1. Programs that make up the monitor

To summarize, the executive acts as interface between
the application and the rest of the monitor, and calls in
the other system routines as required to furnish the applica-
tion with the facilities it needs. The Remote I /O Handler
and Line-Control programs deal with transactions with
remote terminals. The Input Analyzer selects the next
segment in sequence. The Peripheral I /O Scheduler and
Peripheral I /O Program handle the local data-bases, the
application-program segment libraries, and interim file
storage.

I t should be noted that, for clarity, Figure 1 shows only
one program segment and its descriptive part whereas
normally sew~ral such pairs will be in core, either in
execution or awaiting processing.

All the boxes inside the dashed lines represent core-

766 Communications of the ACM Volume 10 / Number 12 / December, 1967

resident system programs. System programs which are in-
frequently used, such as diagnostics, are disk-resident.

Some of the monitor functions are implemented by
program segments indistinguishable in form from the
applications segments. This teel~fique gives an ahnost un-
limited range of potential facilities.

2. S y s t e m P r o g r a m s

DEFINITIONS :
Program Segment. The program segment is a self-

contained logical unit of programming with two sections,
one executable and the other used by the monitor pri-
marily to determine what segment should succeed the one
being processed. The executable portion of the segment
can be at most 8 storage units in length (a storage unit is
currently defined as 256 bytes) and actual execution time
cannot exceed an arbitrary limit currently set at 600msee.
There are arbitrary limits on other demands the segment
can make of the monitor, such as on the total amount of
data it can input.

Console-Dedicated Storage ("Console Area"). A 640-
byte block of storage is dedicated to each (logical) console.
The first 256 bytes of this area are used exclusively by the
monitor. The descriptive part of the program segment
occupies the first section of the remaining 384 bytes. The
rest of this "segment description area" contains a seg-
ment-to-successor-segment communication buffer and a
buffer for input from the remote console.

Scatter-Loading. Scatter-loading is a technique which
permits properly prepared program segments and data to
be input in fixed-length sections to noncontiguous blocks
of storage. The scatter-loading unit in use is two storage
units. Scatter-loading and the concomitant operation,
gather-writing, are optional.

EXECUTIVE ROUTINES. The principal executive rou-
tines are the work-in-progress scheduler (WIPS), the
service-call routines, the I /O interrupt handler, and the
input analysis routine.

The function of the WIPS, the basic scheduler in the
monitor, is to find and eliminate obstacles to program
segment execution. I t does this by supplying appropriate
facilities: CPU time, core storage, and I /O, using the
associated systems programs to do so. This system re-
source allocation is governed by constantly updated W I P
status words, one word for each active remote console.

The service-call routines process requests made by
program segments in execution. These include requests for
data, scratch storage, output, etc. This technique was
developed so that resource allocation would be controlled
by the monitor rather than the application, to make it
equitable and free of conflicts.

The I /O interrupt handler has the function of analyzing
the source of such interrupts, calling the appropriate
interrupt routine, and updating WIP status on completion
of I /O activity.

The input analysis routine is called when a segment just
executed has indicated that it expects a response from the
corresponding remote console, and such a response has
been received. (A program segment can indicate that it
does not expect a response or that any response received is
irrelevant to the selection of its successor. In either of
these eases a "unique successor" is indicated.) "Analysis"
consists of comparing the input with a "successor table"
read into the console area by the segment just terminated
in an a t tempt to match an input string Mth a key string.

Communication between the WIPS and other monitor
routines is simple and standardized. The WIPS makes
entries in the queues of the other routines (where appli-
cable) and transfers control to them. Before they return,
they set status bits in a communications area (the WIP
status word).

The Work-in-Progress Scheduler operates by examining,
in turn, the W I P status words stored one in each console
area. When a set of simultaneous conditions is found to
hold true for a given console, indicating that the current
program segment is ready to start or to resume execution,
control of the CPU is turned over to this segment. If the
segment is not in this ready status, one of the pending
operations required to put it in this status is initiated, and
the WIPS goes on to test the status of the segment
corresponding to the next console in sequence. When all
consoles have been checked, the scheduler recycles to the
start. This is a round robin scheduling as far as applica-
tion segments are concerned, but an on-demand schedul-
ing of execution of system programs.

The sequence of status tests, outcomes, and resulting
actions can be summarized as follows:

Is the segment successor selection waiting for input from or output
to the remote console?

Yes: Go to remote I/O handler.
No: Is there an unanMyzed console input in core?
Yes: Go to the input analysis routine.
No: Has the next segment been selected, but not input?
Yes: Go to the peripheral I/O scheduler.
No: (Note that if the tests reach this point the segment to be

processed must be in working storage.) Is the segment
waiting for a scratch area?

Yes: Go to the core storage allocator.
(In storage allocator)
Is storage immediately available?
No: Return to the WIP scheduler.
Yes: Allocate and continue.

(Continuation)
Is there any tape output pending?

Yes: Go to remote I/O handler.
No: Does the console have any pending requests for peripheral

I/O?
Yes: Return to the WIP scheduler.
No: Set up the segment and put it in execution.

In the ease of the "yes" responses (resulting from the
determination that there is a requirement for some system
resource or some further information before the segment
can be input or can execute), the corresponding monitor
activity is initiated and control is returned to the W I P

Volume 10 / Number 12 / December, 1967 Communica t ions of the ACM 767

scheduler which then examines the status of the next
active console. Two exceptions are pending requests for
scratch storage and peripheral I /O which cause a direct
return to the WIPS.

The Service Call Routines provide the means by which
the program segment can request I/O, storage, and
information from the monitor. They are cMled into action
when the segment makes a properly coded SVC (super-
visory call). This instruction generates a program interrupt
and transfers control to a conventional location in the
monitor area. Most service calls can request a number of
"items" such as data records to be input, etc. Fifteen calls
have been implemented, and as experience with the
requirements of diverse applications grows further services
may be added. The current list follows.

(1) Segment exit. This call returns control of the CPU
to the monitor at the end of segment execution. I t also
initiates a monitor routine which checks for a unique
successor, releases core storage, and resets the appropriate
status words.

(2) Input fl'om disk storage. One or more disk addresses
are included in this request, either as hardware locations or
keys to a directory file.

(3) Input from data cell to disk. This cM1 was devised
to permit a segment to request up to ten items (logical
records) from data cell storage. These items are read into
core storage and output to disk for the use of later seg-
ments.

(4) Input from data cell to core. This call will bring one
item (logical record) from data cell to core storage. I t can
be used only when a unique successor is specified, as the
input of the data will trigger the execution of the segment
called in to process it.

(5) Output to disk and exit. This call causes the output
of a logical recordtodisk storage after which the segment is
terminated.

(6) Output to data cell. This call incorporates both core
and data cell addresses and causes the SVC routine to
make an entry in the data cell peripherM I/O queue. I t
implies segment exit.

(7) Output to tape. This call changes the status of a
specified buffer to "output" status and makes an entry in
the remote I/O queue. The call implies exit.

(8) Output to remote console. This call causes a change
of status of a buffer. I t contains a parameter specifying
whether the output is to blank the CRT screen, to output
"normally," to output with screen line-addressing, or to
output to the typewriter associated with the console
rather than to the CRT display.

(9) Store halfword in console area. This call permits the
segment to store/Mter a halfword in the (protected)
console-dedicated area.

(10) Store block in console area. A block of characters
specified by length and location is transmitted to the
corresponding console area at a location indicated in the
call.

(11) Place console area address is base register. The
register is specified in the call. Control is returned to the
segment.

(12) Provide scratch storage. The call specifies the
quantity desired. The appropriate SVC routine calls in
the storage allocation program to try to find space. If the
request cannot be satisfied, control is returned to the WIP
scheduler.

(13) Release scratch storage. This call is always satisfied
at once, and control is returned to the segment.

(14) Output to disk and wait. This is the same routine
as (5) (output to disk and exit) except that the segment is
not terminated.

(15) Error exit. This is effectively a request for
diagnostics. A core dump (to disk) is provided, and a map
of the section of core the segment was using when it
detected the error will be supplied.

Note that severM service calls can be "stacked." Even
though one or more of them imply segment exit, all will be
processed before the SVC routines return control to the
WIP scheduler.

The I/O Interrupt Handler will respond when the com-
puter is in "problem state," that is, when application
segments are being processed. When the monitor is in
control, interrupts are disabled.

The routine, IOINT, responds to the interrupt first by
identifying the console which had a segment in execution
at the time the interrupt occurred and storing the program-
segment status (the general registers, Program Status
Word, timer clock value) in the corresponding console-
dedicated area. Next it analyzes the interrupt to deter-
mine to which of three categories it belongs: remote I/O
(including tape), peripheral I /O (disk or data cell), or other
(console, printer, or card reader). In the first case, IOINT
transfers control to the interrupt handler in the line control
program, in the second case to the interrupt handler in the
peripheral I /O program, and in the third case to the IBM
8K Basic Operating System interrupt handler.

The first two interrupt handlers are described in the
sections on line control and peripherM I/O. Use of the
BOS handler is restricted to I /O devices not currently
used by the monitor. Later, when a facility for handling
background jobs (programs executed while the CPU is
momentarily idle) is added, interrupts from the card
reader and the printer will be handled by the monitor.

The Input .Analysis Routine is used to compare input
from the user console to key strings left ill console-dedi-
cated storage by the segment which has just been executed.
Each key corresponds to a unique successor segment,
which will be input as soon as possible after it is selected.
Many segments will have only one successor indicated; if
this is the case, a "unique successor" flag is set.

The sequence of events in successor-selection is as
follows.

At the time of segment exit, the exit routine checks the
associated console area to determine whether the segment

768 C o m m u n i c a t i o n s of the ACM Volume 10 / Number 12 / December, 1967

has a unique successor. If not, it sets a flag to indicate that
remote input will be required to determine the successor
and thus that the input analysis routine will be needed.

The input analysis routine is called when the WIP
scheduler checks the console in question and finds that an
input has occurred, and finds that the "analysis needed"
flag is on. Before it is called, the amount of input and the
address of the first byte will have been stored in a conven-
tional location.

The analysis routine starts by examining a fixed loca-
tion in the console area to determine how many bytes of
the input string are to be used in matching the input
against the keys left by the previous segment.

Two comparison tables will have been left in the console
area by the previous segment. The first contains blocks,
each of literal character strings of a given length. The
analysis routine selects the block of strings of length
corresponding to the input (as modified by the length
indicator) and compares this string character by character
to the keys in the block. If an exact match is found, the
segment linked to the key will be input.

If no match is found in the first, or specific, table of
comparands, the input string is categorized by type
(alphabetic, numeric, special character, etc.). The second
table of comparands identifies keys by type and a
match in the second table has the same consequences as a
match bl the first.

If this second attempt fails, a segment, whose address is
found in a fixed console area location, will be input to deal
with the "no match" case. This might be an input analysis
routine written by the application programmer to supple-
ment that provided by the system.

The input analysis routine, after identifying the succes-
sor segment, returns the successor segment identification
and control of the CPU to the WIP scheduler.

Communication Areas. For each logical console, a two-
section commmfication area (the "console area") is pro-
vided. The sections are contiguous and storage-protected.
The first is used for the transfer of the information between
program segment and monitor and between successive
segments. The other is for communication between monitor
routines. I t contains the work-in-progress status word,
provides storage for the program status word and general
registers 2 through 13 when segment execution is inter-
rupted, contains storage maps of segment and data section
locations, etc. All console and system status information
(aside from that found in I/O queues) is displayed in this
area.

For each of the peripheral I /O devices (currently three),
a queue of requests is loaded by an executive routine, and
processed by the peripheral I /O scheduler described in
the next section. An entry in one of these queues describes
the I/O in terms of length, location on peripheral device,
location in core (for output), request status, etc. There is
provision for a priority ranking. Most entries in these
queues are made in response to service calls issued by

program segments. The queue is scanned to find requests
which may be satisfied each time an entry is made and
each time a peripheral I /O interrupt is detected.

PERIPHERAL INPUT/OuTPUT. Three routines are used
to schedule and perform information transfer between
core and peripheral (disk and data-cell) storage. They are
the Peripheral I/O Scheduler, the Storage Allocator, and
the I/O Program which (using IBM Basic Operating
System Physical IOCS) actually makes the transfer. The
Scheduler finds requests for service in its queue, calls the
Allocator (on a request for input) to determine whether
the request can be satisfied and, if so, gives the needed
parameters and control to the I/O program.

The Peripheral I/O Scheduler (PIOS) is called each
time an entry is made in its queues of requests for service
and each time an I/O interrupt occurs in the selector
channel. I t then scans its queues in the following order:
first data-cell, then disk 1, and finally disk 2, searching
for a request which can be initiated at this time.

The first test determines whether a channel is available,
then, if so, whether the device corresponding to the queue
being checked is available (operational and not busy). If
it is not, the next device is tested and if no device is avail-
able the PIOS returns control to the WIPS.

If a device is found to be available, its queue is scanned
to determine if there is a pending request for I /O from/to
the cylinder on which the read/write head is currently
positioned.

If such an item is found, the next question is whether or
not the request implies a new demand for core storage. If
not, the I /O operation is initiated. If so, the allocation
routine is called. If the latter finds sufficient storage, it is
then allocated to this item and I/O initiated. If not, a
request status bit is set to indicate "not enough core avail-
able at this time" and the next request is examined.

If no requests satisfy these criteria, the queue is scanned
a second time to find the "best" item not on the current
cylinder (currently "best" means "closest," but other
factors will be considered later). A "seek" command is
then issued, to move the read/write head to the cylinder
contMning this item.

If the chosen request demands no core storage, or if the
Mlocator finds that adequate storage can be reserved at
this time, a label is attached to the request: "no further
storage needed." Whether or not allocation is successful,
control then returns to the PIOS.

The scheduler will continue to scan its queues until
either all have been scanned (and up to three seeks initi-
ated) or until a read/write operation is initiated. Control
is then returned to the WIPS.

As previously mentioned, the PIOS and executive com-
municate by placing requests and setting status bits in the
peripheral I /O queue. One of the status flags set by the
scheduler informs the executive that the request for a
given item of I /O has been satisfied and hence that

Volume 10 / Number 12 / December, 1967 C o m m u n i c a t i o n s o f the ACM 769

the corresponding slot in the queue is available for a new
entry.

The Storage Allocator. This discussion of the algorithm
used for core-storage allocation requires three definitions:

(1) Free storage is storage not currently allocated (abbre-
viated FS).

(2) Storage-in-waiting is storage currently assigned to
those program segments which have already been given
all the space they need to complete their execution. Note
that storage-in-waiting (SIW) will eventually become
available no matter what other storage assignments are
made.

(3) Usable storage is the sum of FS and SIW.
The storage requirements of a given program segment

are classified as immediate (that corresponding to the
current request) and future (the total needs of the segment
less the amount already allocated). The immediate and
future needs of a segment requesting storage are compared
to the free and SIW storage, respectively. If either need
exceeds the corresponding resource, the allocator rejects
the request. If both can be satisfied, the allocator locates
the h'ee storage for the immediate need and tentatively
updates the storage map.

At this point it would be natural, if it were not so costly
in efficiency, to subtract the future requirements from the
SIW pool and hence reserve all the space the segment will
need. This is inefficient because the demands on space may
be serial rather than parallel, and may occur only toward
the end of segment processing. This technique would be
wasteful in that it might reserve space never used, or not
used more than a small fraction of the time during which it
was reserved.

What is done is to consider the maximum momentary
demand any one of the segments in core (or if the request
is for the input of a segment, the requesting segment) can
make on working storage. If this maximum will fit into
usable storage (after the immediate need of the requesting
segment has been satisfied), the request is granted. If not,
a further criterion is invoked: is the requesting segment in
core already? If not, the request is denied (the segment
will not be input); if so, the request will be granted. In
the latter ease, as a precaution, space for the complete
processing of the requesting segment is then reserved. In
either ease it will be seen that enough storage has been
reserved so that at least one of the segments in core can
process to completion. (For further detail, see [1].)

The Peripheral Input~Output Program has two aspects,
that of handling interrupts in the selector channel and that
of executing seeks and I/O operations at times and loca-
tions specified by the PIOS.

Each time a seek or an I/O is complete on the selector
chaimel, the executive transfers control to the peripheral
interrupt handler which analyzes the input to determine
its source, its nature, and whether an error condition is
signaled. If the interrupt was generated by a completed
seek, control is transferred to the PIOS. If I /O is possible

at this time the scheduler will return control to the I/O
program (at a different entry point) to initiate the data
transfer.

In the case of a completed I/O operation flagged as
erroneous, several attempts are made to achieve correct
transmission by repeating the operation. If these fail on
a write operation and if it seems that the peripheral storage
device is at fault, an alternate track assignment may be
made. Other techniques are used to attempt to deal with
other problems, the extreme being to inform the user that
a file is inaccessible and that the application cannot con-
tinue.

If the interrupt was generated by a successful input or
output, the nature of the operation is determined and the
WIP status of the corresponding console updated. If a
program segment was input, or a data input from disk or
an output-and-wait performed, control then returns to the
PIOS. If the interrupt was due to an input in response to a
request to transfer information from data cell to disk, the
pending record count is decremented and the record put
in the peripheral I /O queue for output to disk. The other
possibilities, both of which imply t h a t the segment has
exited, are input from data cell to core and output to disk
and exit. When an operation of this type is complete as
signaled by the I/O interrupt, the console WIP status is
examined to determine if there are any more pending
requests for I /O for this console. If not, the core storage
allocation routine is called to release storage blocks held as
output buffers.

In all cases the PIOS attempts to initiate further I /O
and then returns control to the WIPS.

File Structures for Peripheral Storage. The basic organi-
zation of the disk and data-cell storage has been kept
simple: only two file structures are currently used. One,
the "directory file" on disk, can be addressed by an alpha-
numeric key ot' up to 256 characters in length. The other,
the "data file':' on disk or data cell, is addressed by its
hardware location.

Physical records and directory logical records have a
maximum length of 512 bytes. A data logical record or
program segment may include up to four physical records.
Input and output are in terms of logical records.

An area on disk is dedicated to each logical console to
provide interim storage for the application segments. I t
is organized as a data file.

To permit the monitor to deal with the application files,
a table describing them is maintained in core.

REXmTE Im'uT/OuTPUT. The second major class of
I /O the system must support is that from/to the CRT
consoles. These will be called "remotes" even in the ease
in which the console controllers are directly connected to
the multiplexor channel of the computer. This designation
reflects the decision to deal with "local" and "remote"
consoles in a uniform manner, as though at the end of a
telephone line.

The two routines involved are the remote I/O handler

770 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 10 / Number 12 / December, 1967

(RIOH) and the Line Control program. The latter is called
by the former as well as by the WIPS.

The Remote I/O Handler is called by the WIPS when the
dialogue at a given console cannot continue without an
input from the console, or when the program segment
being processed has requested that an output be made to
the associated console. Different entry points are used in
the two cases.

In the case of input, two resources must be available to
satisfy the request--a core buffer and the transmission
line. The first act of the RIOtI is then to determine whether
a 1-K (1024) byte block of storage is available. (This block
size corresponds to the console buffer storage, the maxi-
mum amount of data that can be transmitted.) If not, a
status flag is set and control returned to the WIPS.

If a buffer is found, a test is made to determine whether
the transmission line to the given console is available. If
not, a line-busy status flag is set and control returns to
the WIFS.

If both buffer and line are available, the RIOH calls
the line control program, giving as parameters the console
identification and the location of the core buffer, and set-
ting the appropriate console status for "console being
polled." After the line control program starts the input
operation, it returns control to the WIPS.

The next pertinent event is the end-of-transmission
interrupt generated in the multiplexor channel. When it
occurs, control is given to the interrupt-processor entry
point in the line control program for analysis. If the latter
finds that the interrupt flags a successful transmission,
control is given to the RIOH. The RIOH tests to see if
there was any input, and if not restores the console remote-
input flag, releases the buffer storage to the allocator
program, and returns to the WIPS. If there was an input,
the RIOH sets the appropriate flag in the area describing
remote input status ("awaiting input analysis") and tests
to see if the input data is less than 33 bytes in length. If
so, the data is transferred to the microbuffer in console-
dedicated storage and the input buffer is released. What-
ever its size, its length and the address of the first byte in
the input string are stored in a conventional location in the
console area. The RIOH then returns control to the WIPS.

In the case of output to remotes, only one resource, the
transmission line, is needed. When called by the WIPS,
the RIOH tests for line availability, and, depending on the
result, either returns to the WIPS or transfers to the line
control program after setting appropriate status flags.
The line control program initiates the output and returns
to the scheduler.

When the interrupt signaling successful output has been
so interpreted by the line control program, control is given
to the RIOH. The latter sets the console status for "output
complete," releases the output buffer, and returns control
to the WIPS.

The Line Control Program has two major functional

parts, the interrupt handler and the programs that actually
initiate the I/O operations.

The line-control interrupt handler is called by the inter-
rupt routine in the executive when an interrupt occurs in
the multiplexor channel due to remote I/O or output to
tape.

I t first analyzes the interrupt to determine its source
and whether transmission was successful. If not, and if
the error arose in transmission from console to CPU, the
console will be disabled and a call put in for engineering
aid. If the e~Tor appears in output to the console an appli-
cation program segment may be called (if the application
has prepared for this possibility) as this error might be
unimportant or recoverable. If the error was in output to
tape it will be ignored. In all these cases, it is assumed that
normal recovery routines (re-reads, re-writes) have been
attempted by the line control program and, for the message
in question, have failed before further action was taken.

Conclus ions

This approach works. I t has, as intended, made it quick
and easy to set up an online application (ten are in exist-
ence or in development) to permit a layman to create,
retrieve, and manipulate files with the help of a computer.

The event-driven aspect, which simplified the design and
cut down system overhead considerably, has not created
any appreciable problems in applications programming.

Acknowledgments. The design and development of this
monitor was definitely a group effort. The work-in-progress
scheduler was conceived by D. B. Jack Bridges, who
programmed all of the executive routines except for input
analysis, the work of Stephan Burr. Dr. Allen Reiter
developed the interesting algorithm and program for
storage allocation, and programmed both the peripheral
I /O scheduler and remote I/O handler. The peripheral
I /O program and file design are due to E. R. Estes, and the
remote I/O program to Sidney Shayer.

Equally important, all these gentlemen made valuable
contributions in areas aside from those in which they had
direct responsibilities.

RECEIVED MARCH, 1967; REVISED JULY, 1967

1.

REFERENCE

I:~EITER, A. A resource allocation scheme for multi-user on-
line operation of a small computer. Proc. AFIPS 1967 Spring
Joint Comput. Conf., vol. 30, pp. 1-8.

BIBLIOGRAPHIC NOTES

Programming Real Time Systems, by James Martin, Prentice
Hall, 1965, is an excellent general discussion of the problems en-
countered and dealt with in the SAGE, Project Mercury, SABRE,
PANAM, New York Stock Exchange, and other systems.

Information on the well-known Project MAC is available in
Memoranda, Technical Report, and Progress Report form from
Project MAC, MIT, Cambridge, Mass.

V o l u m e 10 / Number 12 / December, 1967 Communica t ions of the ACM 771

