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The LACONIQ (Laboratory Computer Online Inquiry) Monitor 
was developed primarily to support non-numerical applications 
such as retrieval from very large files by means of a "dialogue" 
between a system user and a retrieval application. 

The monitor was designed so that it could work with a small 
computer (an IBM System 360/30) .  Therefore techniques for 
resource allocation were important. For this reason the use of 
core storage, computational facilities, and input-output were 
all scheduled. 

An unusual feature of the system is that it is event-driven 
rather than clock-driven. The program segments called into 
execution by the remote CRT consoles are invariably run to 
completion rather than "rolled-out" to be brought back at a 
later time. 

1. O v e r a l l  C o n f i g u r a t i o n  

I~TRODUCTmN. The basic requirement in the design 
of the Laboratory Computer Online Inquiry (LACONIQ) 
Monitor was that it should facilitate the programming 
and operation of online "dialogues." These dialogues typi- 
cally consist of inquiries directed to a large data file, to 
which pre-prepared programs respond in an attempt to 
help the system user find and display specific information. 
The prototype application is that of document reference 
retrieval. 

This approach led to an event-driven monitor, as op- 
posed to the usual "clock-driven" time sharing monitor in 
which application program execution is carried on during a 
fixed interval, then interrupted until the program has 
another "turn." In the LACONIQ monitor, each applica- 
tion program is processed to completion. (This is only 
practical, of course, because the programs are limited in 
their duration.) Each such program corresponds to at most 
one step in the dialogue. Long operations might require 
that a sequence of such short programs (called program 
segments in the following descriptions) be executed, and 
this is foreseen in the monitor design. The basic event that 
governs the timing of happenings in the monitor is then 
the completion of processing of a program segment. 

Volume 10 / Number 12 / December,  1967 

B. RANDELL, Editor 

This decision to set an upper limit on the amount of 
processor time each segment is allowed rather than to 
interrupt the segment ("roll it out" to a peripheral storage 
unit, and bring it back for later continuation) was based 
on a tradeoff between constraining the application program- 
mer and increasing system response time. Given the 
conversational nature of the foreseen applications, it was 
felt that limiting segment execution time would not be a 
serious constraint because very few segments would ap- 
proach this limit. (This has turned out to be the case.) The 
improvement in system response due to this doctrine 
derives not only from the smaller number of disk references 
but from the simpler mechanisms needed to handle the 
segments. 

A second major design decision was to make the monitor 
poll the remote consoles, i.e., to accept input at the sys- 
tem's convenience rather than in response to interrupts 
generated by user's consoles ("contention" mode). Polling 
is made practical by the existence of adequate local buffers 
at the remote consoles. The principal advantage of this 
mode is that remote input can be scheduled, so no dedi- 
cated input buffer areas are required. 

All the resources of the system--communication lines, 
core storage, use of the CPU, and use of the I/O channels-- 
are scheduled in one way or another. The most funda- 
mental scheduler, the work-in-progress scheduler, calls in 
both program segments and systems routines as appropri- 
ate and when needed. 

The monitor was not primarily designed to facilitate 
programming at the user console, although incremental 
assemblers or compilers can be added in the form of 
applications. The basic criterion was rather to make it 
easy for a skillful programmer to prepare an application 
with which the (usually untrained) user, at his console, 
could interact in a language natural for that application. 
This monitor might be described as a three-level system, 
with the programmer mediating between the layman-user 
and the computer, and is a step toward making the power 
of the computer more generally accessible. 

I t  is probably obvious, but perhaps worth mentioning 
that a further requirement on the monitor was that it 
should be capable not only of supporting several terminals 
processing a given application, but also several different 
simultaneous applications. 

Many of the detailed features of the monitor are directly 
related to the IBM System/360, and some even to the 
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configuration of the particular computer system at hand, 
which consists of a 32K 360/30 main-frame with two 2311 
disk drives, a 2321 data cell drive, a tape unit, and multiple 
remote CRT consoles (IBM 2260 and Sanders 720). The 
disk drives each store 7.2 million bytes with average access 
time of 85msec, the data cell stores 4.8 million bytes with a 
maximum access time of 600msec. The CRT consoles dis- 
play, respectively, 960 and 1024 alphanumeric characters 
at 120 characters per second line rate). Some hardware 
factors which have been important in their influence on 
monitor design are the small core storage, the large 
peripheral storage, and the local buffers for the console dis- 
plays. 

The first version of LACONIQ was operational in 
December 1966, supporting three IBM 2260 consoles and 
using two disk drives and a data cell. I t  has been con- 
tinually upgraded and at this writing it is being set up to 
have a high degree of compatibility with the IBM Disk 
Operating System and OS/360, The changes include 
exploiting a larger core storage (64K bytes) and introduc- 
ing a background capability. Depending on the size of the 
background partition and the application mix, it is fore- 
seen that the monitor will support between six and twelve 
CRT consoles with an (approximate) 2-see response time. 
System overhead is estimated at 25 per cent, and it is be- 
lieved that more careful measurement will show this to be 
pessimistic. 

APPLICATION PROGRAM SEGMENTS. A given application 
consists of data and directory files, and a library of pro- 
gram segments. Each segment consists of two sections, one 
of which performs the processes the programmer has 
planned and the other describes the segment and all of its 
possible successors. When a segment is selected and input, 
the executable portion is read from disk into general work- 
ing storage and the descriptive portion is read into a 
protected area dedicated to the logical console which 
called in the segment. 

Segments are not permitted to perform I/O, to preempt 
storage that has not been allocated by the monitor, or to 
directly alter any part of the protected storage where the 
monitor and the "console areas" are resident. These opera- 
tions are performed by the monitor at the request of the 
segment. Communication between the segment and 
monitor is carried on by "service calls" which generate 
interrupts and change the state of the CPU from "problem", 
to "supervisory." There are 15 such calls implemented at 
present. They permit the segment to request input from 
disk or data-cell; to output to disk, data-cell, tape, or re- 
mote console; and to alter the console-dedicated area, 
request more core storage or release storage blocks, and 
make error and normal exits. 

MONITOR FACILITIES. A capsule description of the 
monitor might be as follows: it is a set of programs which 
input an application segment, give it CPU time, supply it 
with data and storage areas on request, handle its output to 

remote terminals and to interim storage, handle input from 
terminals, using this input and the self-descriptive section 
of the segment select the next segment in sequence, and, to 
complete the cycle, input the successor so selected. To 
relate these functions to the programs, that perform them 
(see Figure 1), application segments are input by the 
peripheral I /O programs in the order indicated by the 
peripheral I /O scheduler. The principal executive routine, 
the work-in-progress scheduler, gives control of the CPU 
to the segment and interprets its reqnests for main storage, 
I /O from peripheral storage, and output to the associated 
console. These requests are passed on, respectively, to the 
storage allocation program in the executive, to the pe- 
ripheral I/O scheduler, and to the remote I /O scheduler. 
The latter schedulers queue these requests to be performed 
by the peripheral I /O programs and the console I /O pro- 
gram (called "line control"). When segment execution is 
complete, the executive releases the main storage it has oc- 
cupied and scans the self-descriptive part of the segment to 
determine whether this segment has indicated a unique 
successor and if so whether it is to be input at once or only 
after a response from the console. If there is more than 
one candidate in the table, selection of the successor will be 
performed by the input analysis routine, which compares 
the eventual user input with the criteria in the successor 
table (matching strings or matching input categories). 
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FIG. 1. Programs that make up the monitor 

To summarize, the executive acts as interface between 
the application and the rest of the monitor, and calls in 
the other system routines as required to furnish the applica- 
tion with the facilities it needs. The Remote I /O Handler 
and Line-Control programs deal with transactions with 
remote terminals. The Input Analyzer selects the next 
segment in sequence. The Peripheral I /O Scheduler and 
Peripheral I /O Program handle the local data-bases, the 
application-program segment libraries, and interim file 
storage. 

I t  should be noted that, for clarity, Figure 1 shows only 
one program segment and its descriptive part whereas 
normally sew~ral such pairs will be in core, either in 
execution or awaiting processing. 

All the boxes inside the dashed lines represent core- 
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resident system programs. System programs which are in- 
frequently used, such as diagnostics, are disk-resident. 

Some of the monitor functions are implemented by 
program segments indistinguishable in form from the 
applications segments. This teel~fique gives an ahnost un- 
limited range of potential facilities. 

2. S y s t e m  P r o g r a m s  

DEFINITIONS : 
Program Segment. The program segment is a self- 

contained logical unit of programming with two sections, 
one executable and the other used by the monitor pri- 
marily to determine what segment should succeed the one 
being processed. The executable portion of the segment 
can be at most 8 storage units in length (a storage unit is 
currently defined as 256 bytes) and actual execution time 
cannot exceed an arbitrary limit currently set at 600msee. 
There are arbitrary limits on other demands the segment 
can make of the monitor, such as on the total amount  of 
data it can input. 

Console-Dedicated Storage ("Console Area"). A 640- 
byte block of storage is dedicated to each (logical) console. 
The first 256 bytes of this area are used exclusively by  the 
monitor. The descriptive part  of the program segment 
occupies the first section of the remaining 384 bytes. The 
rest of this "segment description area" contains a seg- 
ment-to-successor-segment communication buffer and a 
buffer for input from the remote console. 

Scatter-Loading. Scatter-loading is a technique which 
permits properly prepared program segments and data to 
be input in fixed-length sections to noncontiguous blocks 
of storage. The scatter-loading unit in use is two storage 
units. Scatter-loading and the concomitant operation, 
gather-writing, are optional. 

EXECUTIVE ROUTINES. The principal executive rou- 
tines are the work-in-progress scheduler (WIPS), the 
service-call routines, the I /O  interrupt handler, and the 
input analysis routine. 

The function of the WIPS,  the basic scheduler in the 
monitor, is to find and eliminate obstacles to program 
segment execution. I t  does this by supplying appropriate 
facilities: CPU time, core storage, and I /O,  using the 
associated systems programs to do so. This system re- 
source allocation is governed by constantly updated W I P  
status words, one word for each active remote console. 

The service-call routines process requests made by 
program segments in execution. These include requests for 
data, scratch storage, output,  etc. This technique was 
developed so that  resource allocation would be controlled 
by the monitor rather than the application, to make it 
equitable and free of conflicts. 

The I /O  interrupt handler has the function of analyzing 
the source of such interrupts, calling the appropriate 
interrupt routine, and updating WIP  status on completion 
of I /O  activity. 

The input analysis routine is called when a segment just 
executed has indicated that  it expects a response from the 
corresponding remote console, and such a response has 
been received. (A program segment can indicate that  it 
does not expect a response or that  any response received is 
irrelevant to the selection of its successor. In  either of 
these eases a "unique successor" is indicated.) "Analysis" 
consists of comparing the input with a "successor table" 
read into the console area by the segment just terminated 
in an a t tempt  to match an input string Mth  a key string. 

Communication between the WIPS and other monitor 
routines is simple and standardized. The WIPS makes 
entries in the queues of the other routines (where appli- 
cable) and transfers control to them. Before they return, 
they set status bits in a communications area (the WIP  
status word). 

The Work-in-Progress Scheduler operates by examining, 
in turn, the W I P  status words stored one in each console 
area. When a set of simultaneous conditions is found to 
hold true for a given console, indicating that  the current 
program segment is ready to start  or to resume execution, 
control of the CPU is turned over to this segment. If  the 
segment is not in this ready status, one of the pending 
operations required to put  it in this status is initiated, and 
the WIPS goes on to test the status of the segment 
corresponding to the next console in sequence. When all 
consoles have been checked, the scheduler recycles to the 
start. This is a round robin scheduling as far as applica- 
tion segments are concerned, but  an on-demand schedul- 
ing of execution of system programs. 

The sequence of status tests, outcomes, and resulting 
actions can be summarized as follows: 

Is the segment successor selection waiting for input from or output 
to the remote console? 

Yes: Go to remote I/O handler. 
No: Is there an unanMyzed console input in core? 
Yes: Go to the input analysis routine. 
No: Has the next segment been selected, but not input? 
Yes: Go to the peripheral I/O scheduler. 
No: (Note that if the tests reach this point the segment to be 

processed must be in working storage.) Is the segment 
waiting for a scratch area? 

Yes: Go to the core storage allocator. 
(In storage allocator) 
Is storage immediately available? 
No: Return to the WIP scheduler. 
Yes: Allocate and continue. 

(Continuation) 
Is there any tape output pending? 

Yes: Go to remote I/O handler. 
No: Does the console have any pending requests for peripheral 

I/O? 
Yes: Return to the WIP scheduler. 
No: Set up the segment and put it in execution. 

In  the ease of the "yes" responses (resulting from the 
determination that  there is a requirement for some system 
resource or some further information before the segment 
can be input or can execute), the corresponding monitor 
activity is initiated and control is returned to the W I P  
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scheduler which then examines the status of the next 
active console. Two exceptions are pending requests for 
scratch storage and peripheral I /O which cause a direct 
return to the WIPS. 

The Service Call Routines provide the means by which 
the program segment can request I/O, storage, and 
information from the monitor. They are cMled into action 
when the segment makes a properly coded SVC (super- 
visory call). This instruction generates a program interrupt 
and transfers control to a conventional location in the 
monitor area. Most service calls can request a number of 
"items" such as data records to be input, etc. Fifteen calls 
have been implemented, and as experience with the 
requirements of diverse applications grows further services 
may be added. The current list follows. 

(1) Segment exit. This call returns control of the CPU 
to the monitor at the end of segment execution. I t  also 
initiates a monitor routine which checks for a unique 
successor, releases core storage, and resets the appropriate 
status words. 

(2) Input fl'om disk storage. One or more disk addresses 
are included in this request, either as hardware locations or 
keys to a directory file. 

(3) Input from data cell to disk. This cM1 was devised 
to permit a segment to request up to ten items (logical 
records) from data cell storage. These items are read into 
core storage and output to disk for the use of later seg- 
ments. 

(4) Input from data cell to core. This call will bring one 
item (logical record) from data cell to core storage. I t  can 
be used only when a unique successor is specified, as the 
input of the data will trigger the execution of the segment 
called in to process it. 

(5) Output to disk and exit. This call causes the output 
of a logical recordtodisk storage after which the segment is 
terminated. 

(6) Output to data cell. This call incorporates both core 
and data cell addresses and causes the SVC routine to 
make an entry in the data cell peripherM I/O queue. I t  
implies segment exit. 

(7) Output to tape. This call changes the status of a 
specified buffer to "output" status and makes an entry in 
the remote I/O queue. The call implies exit. 

(8) Output to remote console. This call causes a change 
of status of a buffer. I t  contains a parameter specifying 
whether the output is to blank the CRT screen, to output 
"normally," to output with screen line-addressing, or to 
output to the typewriter associated with the console 
rather than to the CRT display. 

(9) Store halfword in console area. This call permits the 
segment to store/Mter a halfword in the (protected) 
console-dedicated area. 

(10) Store block in console area. A block of characters 
specified by length and location is transmitted to the 
corresponding console area at a location indicated in the 
call. 

(11) Place console area address is base register. The 
register is specified in the call. Control is returned to the 
segment. 

(12) Provide scratch storage. The call specifies the 
quantity desired. The appropriate SVC routine calls in 
the storage allocation program to try to find space. If the 
request cannot be satisfied, control is returned to the WIP 
scheduler. 

(13) Release scratch storage. This call is always satisfied 
at once, and control is returned to the segment. 

(14) Output to disk and wait. This is the same routine 
as (5) (output to disk and exit) except that the segment is 
not terminated. 

(15) Error exit. This is effectively a request for 
diagnostics. A core dump (to disk) is provided, and a map 
of the section of core the segment was using when it 
detected the error will be supplied. 

Note that severM service calls can be "stacked." Even 
though one or more of them imply segment exit, all will be 
processed before the SVC routines return control to the 
WIP scheduler. 

The I/O Interrupt Handler will respond when the com- 
puter is in "problem state," that is, when application 
segments are being processed. When the monitor is in 
control, interrupts are disabled. 

The routine, IOINT, responds to the interrupt first by 
identifying the console which had a segment in execution 
at the time the interrupt occurred and storing the program- 
segment status (the general registers, Program Status 
Word, timer clock value) in the corresponding console- 
dedicated area. Next it analyzes the interrupt to deter- 
mine to which of three categories it belongs: remote I/O 
(including tape), peripheral I /O (disk or data cell), or other 
(console, printer, or card reader). In the first case, IOINT 
transfers control to the interrupt handler in the line control 
program, in the second case to the interrupt handler in the 
peripheral I /O program, and in the third case to the IBM 
8K Basic Operating System interrupt handler. 

The first two interrupt handlers are described in the 
sections on line control and peripherM I/O. Use of the 
BOS handler is restricted to I /O devices not currently 
used by the monitor. Later, when a facility for handling 
background jobs (programs executed while the CPU is 
momentarily idle) is added, interrupts from the card 
reader and the printer will be handled by the monitor. 

The Input .Analysis Routine is used to compare input 
from the user console to key strings left ill console-dedi- 
cated storage by the segment which has just been executed. 
Each key corresponds to a unique successor segment, 
which will be input as soon as possible after it is selected. 
Many segments will have only one successor indicated; if 
this is the case, a "unique successor" flag is set. 

The sequence of events in successor-selection is as 
follows. 

At the time of segment exit, the exit routine checks the 
associated console area to determine whether the segment 
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has a unique successor. If not, it sets a flag to indicate that 
remote input will be required to determine the successor 
and thus that the input analysis routine will be needed. 

The input analysis routine is called when the WIP 
scheduler checks the console in question and finds that an 
input has occurred, and finds that the "analysis needed" 
flag is on. Before it is called, the amount of input and the 
address of the first byte will have been stored in a conven- 
tional location. 

The analysis routine starts by examining a fixed loca- 
tion in the console area to determine how many bytes of 
the input string are to be used in matching the input 
against the keys left by the previous segment. 

Two comparison tables will have been left in the console 
area by the previous segment. The first contains blocks, 
each of literal character strings of a given length. The 
analysis routine selects the block of strings of length 
corresponding to the input (as modified by the length 
indicator) and compares this string character by character 
to the keys in the block. If an exact match is found, the 
segment linked to the key will be input. 

If no match is found in the first, or specific, table of 
comparands, the input string is categorized by type 
(alphabetic, numeric, special character, etc.). The second 
table of comparands identifies keys by type and a 
match in the second table has the same consequences as a 
match bl the first. 

If this second attempt fails, a segment, whose address is 
found in a fixed console area location, will be input to deal 
with the "no match" case. This might be an input analysis 
routine written by the application programmer to supple- 
ment that provided by the system. 

The input analysis routine, after identifying the succes- 
sor segment, returns the successor segment identification 
and control of the CPU to the WIP scheduler. 

Communication Areas. For each logical console, a two- 
section commmfication area (the "console area") is pro- 
vided. The sections are contiguous and storage-protected. 
The first is used for the transfer of the information between 
program segment and monitor and between successive 
segments. The other is for communication between monitor 
routines. I t  contains the work-in-progress status word, 
provides storage for the program status word and general 
registers 2 through 13 when segment execution is inter- 
rupted, contains storage maps of segment and data section 
locations, etc. All console and system status information 
(aside from that found in I/O queues) is displayed in this 
area. 

For each of the peripheral I /O devices (currently three), 
a queue of requests is loaded by an executive routine, and 
processed by the peripheral I /O scheduler described in 
the next section. An entry in one of these queues describes 
the I/O in terms of length, location on peripheral device, 
location in core (for output), request status, etc. There is 
provision for a priority ranking. Most entries in these 
queues are made in response to service calls issued by 

program segments. The queue is scanned to find requests 
which may be satisfied each time an entry is made and 
each time a peripheral I /O interrupt is detected. 

PERIPHERAL INPUT/OuTPUT. Three routines are used 
to schedule and perform information transfer between 
core and peripheral (disk and data-cell) storage. They are 
the Peripheral I/O Scheduler, the Storage Allocator, and 
the I/O Program which (using IBM Basic Operating 
System Physical IOCS) actually makes the transfer. The 
Scheduler finds requests for service in its queue, calls the 
Allocator (on a request for input) to determine whether 
the request can be satisfied and, if so, gives the needed 
parameters and control to the I/O program. 

The Peripheral I/O Scheduler (PIOS) is called each 
time an entry is made in its queues of requests for service 
and each time an I/O interrupt occurs in the selector 
channel. I t  then scans its queues in the following order: 
first data-cell, then disk 1, and finally disk 2, searching 
for a request which can be initiated at this time. 

The first test determines whether a channel is available, 
then, if so, whether the device corresponding to the queue 
being checked is available (operational and not busy). If 
it is not, the next device is tested and if no device is avail- 
able the PIOS returns control to the WIPS. 

If a device is found to be available, its queue is scanned 
to determine if there is a pending request for I /O from/to 
the cylinder on which the read/write head is currently 
positioned. 

If such an item is found, the next question is whether or 
not the request implies a new demand for core storage. If 
not, the I /O operation is initiated. If so, the allocation 
routine is called. If the latter finds sufficient storage, it is 
then allocated to this item and I/O initiated. If not, a 
request status bit is set to indicate "not enough core avail- 
able at this time" and the next request is examined. 

If no requests satisfy these criteria, the queue is scanned 
a second time to find the "best" item not on the current 
cylinder (currently "best" means "closest," but other 
factors will be considered later). A "seek" command is 
then issued, to move the read/write head to the cylinder 
contMning this item. 

If the chosen request demands no core storage, or if the 
Mlocator finds that adequate storage can be reserved at 
this time, a label is attached to the request: "no further 
storage needed." Whether or not allocation is successful, 
control then returns to the PIOS. 

The scheduler will continue to scan its queues until 
either all have been scanned (and up to three seeks initi- 
ated) or until a read/write operation is initiated. Control 
is then returned to the WIPS. 

As previously mentioned, the PIOS and executive com- 
municate by placing requests and setting status bits in the 
peripheral I /O queue. One of the status flags set by the 
scheduler informs the executive that the request for a 
given item of I /O has been satisfied and hence that 
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the corresponding slot in the queue is available for a new 
entry. 

The Storage Allocator. This discussion of the algorithm 
used for core-storage allocation requires three definitions: 

(1) Free storage is storage not currently allocated (abbre- 
viated FS). 

(2) Storage-in-waiting is storage currently assigned to 
those program segments which have already been given 
all the space they need to complete their execution. Note 
that storage-in-waiting (SIW) will eventually become 
available no matter what other storage assignments are 
made. 

(3) Usable storage is the sum of FS and SIW. 
The storage requirements of a given program segment 

are classified as immediate (that corresponding to the 
current request) and future (the total needs of the segment 
less the amount already allocated). The immediate and 
future needs of a segment requesting storage are compared 
to the free and SIW storage, respectively. If either need 
exceeds the corresponding resource, the allocator rejects 
the request. If both can be satisfied, the allocator locates 
the h'ee storage for the immediate need and tentatively 
updates the storage map. 

At this point it would be natural, if it were not so costly 
in efficiency, to subtract the future requirements from the 
SIW pool and hence reserve all the space the segment will 
need. This is inefficient because the demands on space may 
be serial rather than parallel, and may occur only toward 
the end of segment processing. This technique would be 
wasteful in that it might reserve space never used, or not 
used more than a small fraction of the time during which it 
was reserved. 

What is done is to consider the maximum momentary 
demand any one of the segments in core (or if the request 
is for the input of a segment, the requesting segment) can 
make on working storage. If this maximum will fit into 
usable storage (after the immediate need of the requesting 
segment has been satisfied), the request is granted. If not, 
a further criterion is invoked: is the requesting segment in 
core already? If not, the request is denied (the segment 
will not be input); if so, the request will be granted. In 
the latter ease, as a precaution, space for the complete 
processing of the requesting segment is then reserved. In 
either ease it will be seen that enough storage has been 
reserved so that at least one of the segments in core can 
process to completion. (For further detail, see [1].) 

The Peripheral Input~Output Program has two aspects, 
that of handling interrupts in the selector channel and that 
of executing seeks and I/O operations at times and loca- 
tions specified by the PIOS. 

Each time a seek or an I/O is complete on the selector 
chaimel, the executive transfers control to the peripheral 
interrupt handler which analyzes the input to determine 
its source, its nature, and whether an error condition is 
signaled. If the interrupt was generated by a completed 
seek, control is transferred to the PIOS. If I /O is possible 

at this time the scheduler will return control to the I/O 
program (at a different entry point) to initiate the data 
transfer. 

In the case of a completed I/O operation flagged as 
erroneous, several attempts are made to achieve correct 
transmission by repeating the operation. If these fail on 
a write operation and if it seems that the peripheral storage 
device is at fault, an alternate track assignment may be 
made. Other techniques are used to attempt to deal with 
other problems, the extreme being to inform the user that 
a file is inaccessible and that the application cannot con- 
tinue. 

If the interrupt was generated by a successful input or 
output, the nature of the operation is determined and the 
WIP status of the corresponding console updated. If a 
program segment was input, or a data input from disk or 
an output-and-wait performed, control then returns to the 
PIOS. If the interrupt was due to an input in response to a 
request to transfer information from data cell to disk, the 
pending record count is decremented and the record put 
in the peripheral I /O queue for output to disk. The other 
possibilities, both of which imply t h a t  the segment has 
exited, are input from data cell to core and output to disk 
and exit. When an operation of this type is complete as 
signaled by the I/O interrupt, the console WIP status is 
examined to determine if there are any more pending 
requests for I /O for this console. If not, the core storage 
allocation routine is called to release storage blocks held as 
output buffers. 

In all cases the PIOS attempts to initiate further I /O 
and then returns control to the WIPS. 

File Structures for Peripheral Storage. The basic organi- 
zation of the disk and data-cell storage has been kept 
simple: only two file structures are currently used. One, 
the "directory file" on disk, can be addressed by an alpha- 
numeric key ot' up to 256 characters in length. The other, 
the "data file':' on disk or data cell, is addressed by its 
hardware location. 

Physical records and directory logical records have a 
maximum length of 512 bytes. A data logical record or 
program segment may include up to four physical records. 
Input and output are in terms of logical records. 

An area on disk is dedicated to each logical console to 
provide interim storage for the application segments. I t  
is organized as a data file. 

To permit the monitor to deal with the application files, 
a table describing them is maintained in core. 

REXmTE Im'uT/OuTPUT. The second major class of 
I /O the system must support is that from/to the CRT 
consoles. These will be called "remotes" even in the ease 
in which the console controllers are directly connected to 
the multiplexor channel of the computer. This designation 
reflects the decision to deal with "local" and "remote" 
consoles in a uniform manner, as though at the end of a 
telephone line. 

The two routines involved are the remote I/O handler 
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(RIOH) and the Line Control program. The latter is called 
by the former as well as by the WIPS. 

The Remote I/O Handler is called by the WIPS when the 
dialogue at a given console cannot continue without an 
input from the console, or when the program segment 
being processed has requested that an output be made to 
the associated console. Different entry points are used in 
the two cases. 

In the case of input, two resources must be available to 
satisfy the request--a core buffer and the transmission 
line. The first act of the RIOtI is then to determine whether 
a 1-K (1024) byte block of storage is available. (This block 
size corresponds to the console buffer storage, the maxi- 
mum amount of data that can be transmitted.) If not, a 
status flag is set and control returned to the WIPS. 

If a buffer is found, a test is made to determine whether 
the transmission line to the given console is available. If 
not, a line-busy status flag is set and control returns to 
the WIFS. 

If both buffer and line are available, the RIOH calls 
the line control program, giving as parameters the console 
identification and the location of the core buffer, and set- 
ting the appropriate console status for "console being 
polled." After the line control program starts the input 
operation, it returns control to the WIPS. 

The next pertinent event is the end-of-transmission 
interrupt generated in the multiplexor channel. When it 
occurs, control is given to the interrupt-processor entry 
point in the line control program for analysis. If the latter 
finds that the interrupt flags a successful transmission, 
control is given to the RIOH. The RIOH tests to see if 
there was any input, and if not restores the console remote- 
input flag, releases the buffer storage to the allocator 
program, and returns to the WIPS. If there was an input, 
the RIOH sets the appropriate flag in the area describing 
remote input status ("awaiting input analysis") and tests 
to see if the input data is less than 33 bytes in length. If 
so, the data is transferred to the microbuffer in console- 
dedicated storage and the input buffer is released. What- 
ever its size, its length and the address of the first byte in 
the input string are stored in a conventional location in the 
console area. The RIOH then returns control to the WIPS. 

In the case of output to remotes, only one resource, the 
transmission line, is needed. When called by the WIPS, 
the RIOH tests for line availability, and, depending on the 
result, either returns to the WIPS or transfers to the line 
control program after setting appropriate status flags. 
The line control program initiates the output and returns 
to the scheduler. 

When the interrupt signaling successful output has been 
so interpreted by the line control program, control is given 
to the RIOH. The latter sets the console status for "output 
complete," releases the output buffer, and returns control 
to the WIPS. 

The Line Control Program has two major functional 

parts, the interrupt handler and the programs that actually 
initiate the I/O operations. 

The line-control interrupt handler is called by the inter- 
rupt routine in the executive when an interrupt occurs in 
the multiplexor channel due to remote I/O or output to 
tape. 

I t  first analyzes the interrupt to determine its source 
and whether transmission was successful. If not, and if 
the error arose in transmission from console to CPU, the 
console will be disabled and a call put in for engineering 
aid. If the e~Tor appears in output to the console an appli- 
cation program segment may be called (if the application 
has prepared for this possibility) as this error might be 
unimportant or recoverable. If the error was in output to 
tape it will be ignored. In all these cases, it is assumed that 
normal recovery routines (re-reads, re-writes) have been 
attempted by the line control program and, for the message 
in question, have failed before further action was taken. 

Conclus ions  

This approach works. I t  has, as intended, made it quick 
and easy to set up an online application (ten are in exist- 
ence or in development) to permit a layman to create, 
retrieve, and manipulate files with the help of a computer. 

The event-driven aspect, which simplified the design and 
cut down system overhead considerably, has not created 
any appreciable problems in applications programming. 
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