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This paper introduces a system for resource management 
using the concepts of "process," "facility," and "event." 
Except for the processor no attempt has been made to give 
serious suggestions for the policy to be followed for resource 
allocation. However, a basic framework is provided in which a 
system analyst can express solutions to resource management 
problems. 

The paper is divided into a tutorial presentation, a descrip- 
tion of the system primitives, and a small collection of examples 
of the use of the primitives. 

I n t r o d u c t i o n  

Modern day operating systems are concerned with the 
management  of resources, i.e., basic units such as proces- 
sors, I / 0  channels, peripheral units and memory.  The 
management  of resources normally includes the allocation 
of resources to processes and the releasing of resources 
by processes. Additionally, resource management  may  
employ a request queuing mechanism to handle peak 
load periods in which mean t ime between requests is less 
than  mean service time. 
• In  this paper  a system for resource management  is in- 
troduced tha t  uses the concepts of "process," "facili ty," 
and "event ."  Except  for the processor, we do not a t t empt  
to give serious suggestions for the policy to be followed for 
resource allocation. However, we feel tha t  we provide a 
basic framework in which a system analyst can express 
solutions to resource management  problems. 

The paper  is divided into a tutorial presentation, a 
description of the system primitives, and a small collec- 
tion of examples of the use of the primitives. The tutorial  
presentation is intended to elucidate and provide motiva-  
tion for the second part.  

Some of the ideas presented here were suggested by 
SOL [4, 5]. 

focus our at tention upon the idea of a single line of control. 
We call this line ,of control a "process." The  basic intuitive 
idea is the same as the intuitive notion of process given in 
[1]. A process is, of course, a set of states and executing a 
sequence of instructions for a process is a rule describing 
the changing of states. See, for example, [2]. 

Characteristically, a processor will execute a sequence 
of several instructions for a process until its at tention is 
diverted (by an interrupt  or a fault, for example). At  
some later t ime the processor will return and continue 
executing instructions for tha t  process. During the t ime 
tha t  the at tention of the processor was diverted from the 
process the processor may  have been executing instruc- 
tions for another  process. 

A process may  specify an action to be performed upon 
the occurrence of some event, e.g., by  using the ON 
statement  of P L / I .  While the action is being performed, 
the "main  program" must  be suspended; tha t  is to say, 
we want  no parMlelism between the "main  program" 
and the action. If  any case exists where parallelism is de- 
sirable, then we regard the action as a separate process. 

An example of the behavior in t ime of a processor in a 
multiuser system is shownin Figure 1. For  t < t~ the proces- 
sor is executing process A, for tx < t < t2 the processor 
is executing process B, and for t2 < t the processor is exe- 
cuting process A again. At  t = t~ the system has had to 
cause a change of control from A to B. Similarly, at t = t~ 
the system has changed control from B back to A. 

process B 

process A 

time 

t 1 

Fro. 1 

1. T u t o r i a l  P r e s e n t a t i o n  

1.1 INTUITIVE NOTION OF A PROCESS 
In  a multiuser environment,  we think of the computa-  

tion ordinarily associated with a user as being a line of 
control, or a sequence of instructions executed for the user. 
We regard this sequence to be synchronous, tha t  is to say, 
nonparallel. Of course, more than one line of control may  
be associated with a particular user; however, we wish to 

* Private Consultant. 

In  general, to change from a process A to a process B 
we must  first save the state of A and then load the state 
of B into the processor. In  the following we designate the 
change from any process to a process A by  CHANGE TO 
A. This operation is similar to the operation of linkage 
between coroutines described in [3]. 

The reader will notice tha t  no distinction has been 
made between code writ ten by a user and code writ ten 
by  system programnmrs. This is deliberate. In  fact, most  
processes will consist of some code by  a user and some 
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code by system programmers.  In  addition we wish to 
have all code a par t  of some process. 

1.2 EVENTS 
When a process is running it may  decide that  it cannot 

continue until some condition is met;  for example, it may  
"need to wait until an I / O  operation is completed before 

continuing. In  order to be reinstated when the condition 
is met, the process will make provisions with some other 
process. To implement these ideas we define an enti ty 
called an event. The event is associated in some way with 
a condition. 

An event, E, consists of a two-state variable, S, and a 
list, L, where the two states are h a p p e n e d  and n o t  h a p -  
pened ,  and where L is a list of processes waiting for the 
occurrence of the event. By occurrence of the event we 
mean that  the event variable changes from n o t  h a p p e n e d  
to h a p p e n e d .  A process may  cause an event to happen. 
When this occurs, all the processes waiting for the event 
now become candidates for reinstatement. Processes may  
initialize event variables to n o t  h a p p e n e d .  Since some 
of the conditions in which a process is interested may  be 
local to the process, the process must  be able to create 
events local to itself. 

I t  should be pointed out that  an event is purely a soft- 
ware construct and does not have a necessary connection 
with hardware signals, although there will usually exist 
an event for any signal. 

].2.1 Event Primitives. The foregoing suggests the 
following six primitives for dealing with the interaction 
of events and processes: W A I T ,  CAUSE,  RESET,  
H A P P E N E D ,  C R E A T E  E V E N T ,  and DESTROY 
E V E N T .  Each of these primitives has as a parameter  the 
name of the event to which it applies. 

1.2.1.1 W A I T  (E). I f  S is in the state n o t  h a p -  
pened ,  makes an entry in L for the process which invoked 
W A I T  and then suspends that  process; when the process 
is reinstated, it resumes at the suspension point. For  dis- 
cussion of suspension, see Section 1.4.1. 

1.2.1.2 CAUSE (E). Sets S to the state h a p p e n e d  
and queues each entry in the event-list in a queue of proc- 
esses waiting to be reinstated on a processor. For dis- 
cussion of queueing, see Section 1.4.1. 

1.2.1.3 R E S E T  (E). Sets S to the state n o t  h a p -  
pened .  

1.2.1.4 H A P P E N E D  (E). A Boolean function with 
the value t r u e  if E is in the state h a p p e n e d ,  and fa l se  
otherwise. 

1.2.1.5 C R E A T E  E V E N T  (E). Creates an event 
with the name E for the process which invokes CREATE.  

1.2.1.6 DESTROY E V E N T  (E). Destroys the event 
with the name E. 

1.2.2 A More Complex Form for W A I T .  Sometimes 
it is important  that  a process be able to wait for the occur- 
rence of any one of a number  of events. For example, we 
may wish to wait for the completion of either a read or a 
write operation if we are copying a file from one media to 
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another. This is difficult to express with the primitives 
introduced so far. Consequently, we need a primitive, 
W A I T ( E 1 ,  E2 , . . . , E~), which will suspend processing 
until at  least one of the events, E l ,  occurs. I t  is fairly clear 
what changes must  be made in our proposal to implement 
this. We will not give any further discussion of this primi- 
tive in this paper. 

We will return to the discussion of events and the primi- 
tives W A I T  and CA USE after introducing the notion of a 
facility. 

1.3 FACILITIES 
In  order to complete its computational  task, a process 

requires the use of the various resources of the system, 
such as memory,  I / O  channels, and peripheral units. In  a 
multiuser environment,  processes compete for the use of 
resources. The management  of these resources must  then 
include mechanisms for the requesting and releasing of 
resources. 

Moreover, the allocation of resources may  take account 
of the relative importance of processes, i.e., the most im- 
por tant  process should have control of a resource before a 
less important  process. This relationship is established by 
assigning a priority, 7r, to each process. We realize tha t  
the priority may  change during the course of computation. 
However,  this is a policy mat te r  which we will not discuss 
here. 

Whenever a resource is free, i.e., the resource is not in 
use by  any process, or if by priority or perhaps from hard- 
ware or software considerations the resource is inter- 
ruptable, a request for the facility can be granted. How- 
ever, when a resource is busy with higher priority work or 
is not interruptable, a requestor must  be entered in a queue 
to await his turn. When a process no longer has use of a 
resource it may  release the resource. 

1.3.1 Definition of Facility. To implement the idea 
of requesting and releasing resources we will associate to 
each resource an enti ty which we call a facility. A facility 
may  be composed of one or more homogeneous parts;  
tha t  is, more than one process may  use the facility simul- 
taneously. 

A process which is using a facility is called a controller 
of the facility. For example, we will consider a set of cross- 
barred I / O  channels to be one mult ipart  facility. We call 
the number  of parts of a facility the parallelism of the facil- 
ity. We say the facility is busy if all parts are in use; other- 
wise it is free. 

When a process, A, is a controller of a facility, F, the 
process A holds the facility with some control strength. 
By this we mean that  if another process, B, requests F 
with a control strength greater than the control strength 
with which A holds F, then B takes F from A. 

Associated with a facility is a queue. When a process, A,  
requests a facility which is busy and all of whose control- 
lers have control strength greater than or equal to the 
control strength with which A requests the facility, then A 
must  be entered into the queue. Also, when one process 
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takes a facility from another process, then the latter proc- 
ess must be entered into the queue for the facility. 

The queue is ordered according to the following hier- 
archy of values: 

(1) control strength; 
(2) queueing state, where queueing state is 1 if the facility 

has been taken from the process, and otherwise 0; 
(3) priority, and 
(4) arrival time. 
The difference between control strength and priority is 

that control strength is used for defining interrupt classes 
(an interrupt class is the set of all requests with the same 
control strength), while priority is used for ordering re- 
quests within the same interrupt class. Control strength 
varies from request to request while priority is a property 
of the process and will tend to be relatively invariant in 
time. The reason for ordering according to queueing state 
is tha t  we wish to maintain the order among requests of 
the same interrupt class regardless of requests of higher 
control strength. If  the queueing state is not used, then it 
may  happen that  after some period of time the initiM 
order between two requests of the same control strength 
will change. In  some cases this is not desirable. 

We note that  a more general scheme would allow queue- 
ing according to an arbitrary function and interruption 
according to another arbitrary function. Each facility 
would have its own characteristic functions. This would 
~llow more sophisticated allocation algorithms. However, 
the simple scheme presented is adequate for allocation of 
the resources we discuss here. Consequently, we will not 
introduce this additional complexity. 

A process may release a facility. This means that  the 
process is no longer a controller of the facility and if the 
facility queue is not empty, then the first process in the 
queue (according to the given order) becomes a controller 
of the facility. 

For each facility there exist three procedures which we 
call ALLOCATE-, INTERRUPT,  and UNALLOCATE. 
When a process becomes the controller of a facility, the 
procedure ALLOCA TE for that  facility is invoked, when a 
process releases a facility the procedure UNALLOCATE 
is invoked, and when a facility is taken from a process the 
procedure INTERRUPT is invoked. We emphasize tha t  
the procedures will vary  from one facility to another. 
Any of these procedures may be null for some facility, 
e.g., a null INTERRUPT procedure means tha t  if the 
facility is to be taken from a process, there is no special 
work to perform other than the normal queue manipula- 
tions. 

In  summary, a facility consists of the following: 
(1) a queue of processes which have requested the facil- 

ity, 
(2) a vector of controllers of length equal to the paral- 

lelism of the facility, and 
(3) a set of three procedures, ALLOCATE, UNALLO- 

CA TE, and INTERRUPT.  

At this poim it is clear tha t  facilities are a software 
construct and may have a correspondence with either 
hardware or software resources. 

1.3.2 Facili~',y Primitives. The primitives used in 
dealing with facilities are: REQUEST, RELEASE, 
CREATE FACILITY,  DESTROY FACILITY,  and 
FREE. 

1.3.2.1 CREATE FACILITY  (F, N, Pa, Pu, Pi). 
Establishes a facility F with parallelism N, with the asso- 
ciated set of procedures Pa for ALLOCATE, Pu for UN- 
ALLOCATE, and Pi for INTERRUPT.  

1.3.2.2 DESTROY F A C I L I T Y  (F). Destroys the 
facility F. 

1.3.2.3 REQUEST (F, ~-, NM, CS, INFO). Re- 
quests the facility F for the process named NM with a 
control strength, CS and priority 7r. The process name is 
included as a parameter so that  a process may request a 
facility on the behalf of another process (refer to Figure 
2). INFO is used to pass parameters to the procedures of 
the facility. 

1.3.2.4 RELEASE (F, m). Releases the part  of F 
identified by the ordinal m (refer to Figure 3). 

1.3.2.5 FREE (F, m). A function yielding the result 
fa lse  when F is busy; otherwise the result is t r u e  and the 
value of m is the ordinal number representing one of the 
free parts. 

1.4 USE OF ~'RIMITIVES 
Given this model as a basis, tile task of the analyst is 

to define processes, facilities and events involved in his 
system. The policy for the management of each particular 
resource is embodied in the three procedures ALLOCATE, 
UNALLOCA TE, and INTERRUPT.  Housekeeping func- 
ions such as logging can be inserted in these procedures 
as desired by the system analyst. 

Frequently there are events associated with a particular 
facility, usually the event that  the facility has been allo- 
cated to a given process and the event tha t  the faclity has 
been unallocated for a given process. 

The creation of such events by a process establishes a 
means of communication between the process itself and 
any other process which will cause these events. 

1.4.1 Processor Facility. In order to define more 
precisely the W A I T  and CAUSE mechanism, we now 
introduce a facility associated with the processor resource. 
This association seems natural since we need a queue of 
processes which are ready to run. Moreover there is at 
any moment a controller of the processor which may be 
interrupted by another process. In  this ease the inter- 
rupted process has to be reentered into the queue of proc- 
esses which are ready to run and a new process will take 
control of the processor. The  mechanism for switching 
from one process to another is described by the statement 
CHANGE. 

If  a running process decides that  it cannot proceed 
further until some condition is satisfied, the process must 
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release the processor. At  this moment  a new process will 
become the controller of processor, namely, one of the 
processes in the processor queue. 

From the point of view of queueing, it appears clear tha t  
a processor and a facility have a similar behavior. 

In  the case of a one-processor system we can define a 
corresponding facility, PROCESSOR, in the following way: 

N, the parallelism, is 1; 
the procedure ALLOCATE is defined to be: CHANGE 

to the process tha t  has now become the controller; 
the procedure INTERRUPT is null; 
the procedure UNALLOCA TE is null. 

6 
FALSE 

REOUEST(F,NM.CS. INFO) 

FALSE 

CS of TOP-Q cs o_Z vim]) 

TRUE 

Pi(m) 
QS of Vim] : = l 
QUEUE UP(F,Y[m]) 

ASSIGN(F,m) 

FIG. 2 

Referring now to the description of W A I T  and CA USE 
in Sections 1.2.1.1 and 1.2.1.2, we can define the suspen- 
sion and the reinstatement of a process. When a process 
has to suspend itself, the process has to execute RELEASE 
(PROCESSOR, 1). When a process B wants to reinstate 
another  process A, as in CA USE, the process B has to 
execute REQUEST (PROCESSOR, ~-, A, CS, INFO). 

To assure tha t  the processor queue is never empty,  
we assume the existence of a process which is always ready 
to run. This is called the spin process. I t  has a priority lower 
than  tha t  of M1 other processes in the system. The  reader 
should refer to Figures 4 and 5, which give flowcharts for 
W A I T  and CAUSE. The list associated with an event 
may  be ordered according to priority so tha t  control will 
be given to waiting processes in priority order. 

1.5  THE PRIMITIVE W H E N  
Let  us now explain how a process can specify tha t  an 

action, named AN, is to be performed on the occurrence 

TRUE 

w o_i ~NFO o~ VpRUCESS~ : ~ ~i) [ 
WHEN(E,R,A,CS of VpROCESSR 

RELEASE(PROCESSOR, 1) 

Fio. 4 

RELEASE(Fpm) 

L 
Pu(N) I 

SVof[m] = free 

EMPTY(F) ) 

FIG. 3 

TRUE 

6 

S 
I SE : = happened [ 
~for all elements, (NM,AN,PR, rT), [ 
--~ BE do 
[REQUEST( PRUCESSNM,~,NM, PR, (AN, O) ) I 

FIG. 5 
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of some event, E. A natural notation might be WHEN E 
DO AN. Consider the case in which a process specifies 
both WHEN Et DO AN~, and WHEN E2 DO AN2. 
If  Et  occurs, and then E2 occurs while ANt is being per- 
formed, should we suspend AN~ to do AN~ or should we 
do AN2 only upon the completion of AN~ ? I t  is easy to 
convince oneself that  for some events the answer is the 
former and for others the answer is the latter. Hence we 
will add another parameter to WHEN to specify the 
preference between actions. We will write WHEN (E, 
NM, AN, PR) where E is the event, NM is a process 
name, AN is the name of the action, and PR is an integer 
giving the preference. 

In  some process NM, let us regard the "main program" 
as an action, MP, with preference 0. The meaning of 
WHEN (E, NM, AN, PR) where PR > 0 is that  if E 
occurs then the action MP is no longer eligible for process- 
ing until the action A N  is completed. 

In  general, let ANx be an action belonging to process 
NM which is eligible for processing with preference PRt. 
The  execution of the statement WHEN (E, NM, AN2, 
PR2) implies that  if at any later time the state of E is 
h a p p e n e d  then the following occurs: 

(1) I f  PR2 > PR~ then AN~ cannot be eligible for 
processing until the action AN2 is completed. 

(2) If  PR2 ~ PR~ then ANt remains eligible for 
processing and AN2 cannot be eligible until 
after the completion of AN~. 

The presence of the WHEN primitive in a process 
imposes a nested structure upon that  process. This struc- 
ture has all the characteristics of a facility if we identify 
the control strength with the preference for the actions. 

~TRUE ( SE = happened ) 

EQUEST(PROCESSNM, ~nm, NM, PR, (AN ,0) ) I 

FA LS Eip 

I enter (NM, AN, PR,~NM) 
into L E I 

t, 

F I G .  6 

We will not develop this idea further here. In Section 2 we 
describe in detail how it is possible to define a facility for 
each process to order the actions specified by the WHEN 
primitives. Naturally the CAUSE primitive will be in- 
fluenced by the introduction of the WHEN primitive. 
We also have chosen in the next part  to specify the W A I T  
primitive in terms of WHEN. A flowchart is given in 
Figure 6. 

2. S y s t e m  D e s c r i p t i o n  

2.1 PROCESSES IN TIlE SYSTEM 

A computing system may be regarded as a process. The 
set of all possible states which may be assumed is the set 
Z. For  a state of a E Z, S(a) is the set of possible suc- 
cessor states. In general, S(c~) is a set and not an element 
since a system may be influenced by external signals. An 
action is a rule which selects a particular state from S(a). 
The special action, processor, is the rule which defines 
how the system proceeds in the absence of external sig- 
nals or interrupts. 

In  the following sections we consider such a process. 
We will call the process, the system. Such a system could 
be organized so that  it appears to be a collection of sub- 
processes. We will then give a partial description of such 
an organization, using the term processes for subprocesses. 

This description takes the form of a set of primitives or 
procedures tha t  a collection of subprocesses may use to 
organize a process. These primitives will be given in a com- 
bination of English and a stylized ALGOL. The primitives 
assume a data, structure that  includes variables, lists, 
arrays, and queues. 

In  the following sections we will want to refer to proc- 
esses, actions, and states by name. Consequently, we as- 
sume that  each process, each action, and each state has a 
unique name. 

We will assume that  for each process A, there is an in- 
teger ~rA eMled the priority of A. 

2.2 FACILITIES 
A facility element, e, is defined to be the ordered 5-tuple 

(NM, CS, QS, ~, INFO) where: 
N M  is a process name; 
CS is an integer called the control strength of the 

element; 
QS is a Boolean variable called the queueing state 

of the element; 
7r is an integer called the priority of the process; 
INFO is additional information defined for each par- 

ticular facility element. 
A facility, F, is defined by the triple (V, Q, P)  where: 
(1) V is a vector of N elements. N is the parallelism of 

the facility. Each element of V has two parts, a facility 
element and a variable, SV, with two states, f ree  and 
busy .  If  SV == f ree  the corresponding facility element is 
empty. 

(2) Q is a queue of indefinite length, comprised of facil- 
ity elements, ordered according to the following hierarchy 
of values: 

(a) CS 
(b) QS 
(c) 

(3) 

where 

P is a set of three procedures: 
(a) Pa(m) ALLOCATE procedure, 
(b) Pu(m) UNALLOCATE procedure, 
(c) Pi(m) INTERRUPT procedure, 
m is the ordinal number of a facility element in V. 
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We denote the ruth element of V by V[m] and the first 
element of Q by TOP-Q. 

A process, B, is called a controller of F if NM of  Vim] = 
B for some m. 

The facility F is said to be free  if SV of  V[m] = free  
for some m; otherwise the facility is busy .  

Where necessary, the constituents of a facility will be 
subscripted with their facility name, e.g., Vv, Qr, etc., 
to distinguish them from the corresponding components 
of other facilities. 

2.2.1 Facility Primitives. A process can request and 
release facilities. In  order to describe these procedures we 
introduce the following primitives. 

2.2.1.1 QUEUE UP(F, e). Places the facility element 
e into Q, using CS, QS, ~- and arrival t ime for the ordering 
rule. 

2.2.1.2 ASSIGN(F, m). Removes the facility element 
TOP-Q and assigns it to V[m] and sets SV of  Vim] to 
busy .  Then it invokes Pa(m). 

2.2.1.3 FREE(F, m). A Boolean function yielding 
the value of fa lse  if there does not exist an m such tha t  
SY of  Vim] is free.  Otherwise the value is t r u e  and m 
is set to the ordinal value such tha t  SV of  Vim] is free.  

2.2.1.4 LEAST(F, m). Sets m := j where j is such 
tha t  CS of  V[j] _< CS of V[n] for any n. 

2.2.1.5 EMPTY(F).  A Boolean procedure with the 
value t r u e  if Q is empty ,  otherwise false.  

2.2.1.6 CREATE FACILITY(F,  N, Pa, Pu, Pi). 
Creates a facility named F with parallelism N and the 
procedures Pa, Pu, Pi. 

2.2.1.7 DESTROY FACILITY(F).  Destroys the fa- 
cility F. 

2.2.1.8 REQUEST(F, ~-, NM, CS, INFO). 

b e g i n  
Q U E U E  UP(F,(NM,CS,O,~-,INFO)); 
i f  FREE(F,m)  t h e n  ASSIGN(F,m)  

e lse  b e g i n  
L E A S T ( F , m )  ; 
i f  CS o f  TOP = Q > CS o f  V[m] t h e n  
b e g i n  

Pi(m);  
QS o f  V[m] := 1; 
Q U E U E  UP(F,V[m]);  
A S S I G N  (F,m) 

e n d  end  e n d ;  

2.2.1.9 RELEASE(F, m). 

b e g i n  
P u  (m) ; 
S V  o f  Vim] : =  free; 
i f  -1 E M P T Y ( F )  t h e n  

A S S I G N  (F,m) ; 
end  ; 

2.3 EVENTS 
An event E is defined to be the ordered pair (S, L) 

where: 
(1) S is a variable which has two values, h a p p e n e d  

and n o t  h a p p e n e d ;  
(2) L is a list of elements, each element being an or- 

dered 4-tuple (NM, AN, PR, ~-), where 
(i) NM is a process name; 

(ii) A N  is an action name;  
(iii) PR is an integer called the preference of the ele- 

ment;  and 
(iv) 7r is an integer which is the priority of the process. 

The list L is ordered by priority. 
Where necessary S and L will be subscripted, e.g., SE 

and L~ ,  to distinguish them from the variables and lists 
of other events. 

In  order to define how events influence the behavior of 
processes we introduce several facilities and primitives for 
manipulat ing events and these facilities. 

2.3.1 Processor Facility. To each process, NM, we 
associate an element of a vector named STATE;  thus 
STA TE[NM] has as a value the last stored state of NM. 
We also assume the global variables ¢, NAME,  and SUC- 
CESSOR whose values are system states, process names, 
and action names, respectively. For  the PROCESSOR 
facility and the following PROCESS facility, INFO will 
consist of the pair (AN, w), where the values of A N  are 
action names and the values of w are either 0 or 1. 

The facility, PROCESSOR, is created by: 

C R E A T E  F A C I L I T Y  (PROCESSOR,  1, Pa, Pu,  Pi)  

where 

Pa ~ SUCCESSOR :=  A N  o f  INFO o f  VpROfESSOR[1]; 
A N  o f  INFO o f  VpROCESSOR[I ] := P; 
A N  o f  INFO o f  VpROCESSNM[1] := P; 
S T A T E [ N A M E ]  := a; 

:= SUCCESSOR (STA TE[NM]) ; 
P u  ~- N A M E  := N M  o f  VPROCESSOR[1]; 
P i  ~ Pu.  

The procedure Pa, which corresponds to CHANGE 
of Section l ,  assigns the action in INFO to be the SUC- 
CESSOR flmction for the process NM, sets the actions 
of INFO to P,  the action, processor, defined in 2.1, stores 
the state, ~r, of the current process and determines the next 
state of NM by applying SUCCESSOR to the current 
state of NM. The procedure Pu saves the name of the cur- 
rent process for subsequent use in Pa. 

I t  is necessary tha t  QPROC~SSOR never be empty.  There- 
fore we introduce a process, SPIN,  which has the proper- 
ties that :  

(1) rspi~v is less than ~r~vM for any other process NM, 
and 

(2) S P I N  never executes RELEASE(PROCESSOR, 1). 
2.3.2 Process Facilities. For each process, A, we 

create a facility called PROCESS A by: 

C R E A T E  F A C I L I T Y  (PROCESS A,  1, Pa, Pu,  Pi ) ,  

where 
Pa ~ i f  w o f  INFO o f  VpROC~SS[1] = 0 t h e n  

REQUEST(PROCESSOR,  r,  A ,  ~', ( A N  o f  INFO o f  
VpRocEsS All, 0)); 
i f  N M  o f  VpROCESSOn[1] = A t h e n  
R E L E A S E ( P R O C E S S O R ,  1) ; 

Pu  -~ de le te  all f a c i l i t y  e l e m e n t s  w i t h  ArM = A f r o m  

QPnocEssoR ; 
Pi ~ Pu. 
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To illustrate how Pa, Pu, and Pi work, consider the 
following situations. 

(1) In  process A an action AN1 which controls PROC- 
ESS A releases PROCESS A whenQpRocE,s A is nonempty. 
By virtue of AN~ executing a statement, AN~ must be 
controller of the processor. Note that  it is possible tha t  
the action AN2 associated with the element in TOP-Q 
may be waiting for some event, which implies that  the 
processor cannot be requested for ANs.  If  AN2 is not 
waiting, signified by w = 0, then the processor must be 
requested for ANs.  Furthermore, the request processor 
for AND of A must be issued using the same or less 
CSPRocBs~oR as that  of AN1 ; if a higher CS is used the 
PROCESSOR facility would be interrupted which would 
requeue AN~ which contradicts the release by  A N , .  

(2) If  an action AN~ of process A requests PROCESS A 
for an action AN2 with a sufficiently high CSpRoeEss a , 
we find that  AN~ must request the processor for AN~ 
with the same or less CSeROC~SSOR than that  of AN1 by 
an argument similar to the reasons in example (1) above. 
This relationship between the control strengths of ANt  
and AN~ allows AN1 to release the processor so that  AN2 
may eventually become controller of the processor. 

(3) Suppose some action of a process B requests PROC- 
ESS A, similar to example (2) above. Before B requests 
the processor for A it is necessary to eliminate the possi- 
bility of having more than one element in QpeocEssoR 
for A by removing any element in Q~Roe~sso~ belonging 
to A. Depending on the relative values of CSeRoc~ssoR 
of A and B the request processor issued by B will either 
cause B to be requeued in QPRocgzSOR and A to take con- 
trol of the processor, or simply enter A in Qe~oeEssos 
and leave B in control of the processor. 

We have chosen the policy of using 7rA for the CS of M1 
processor requests for A; i.e., the processor is to be allo- 
cated first to processes with highest priority. To allocate 
the processor on another basis, another expression for 
CS in the request processor in Pa may be employed pro- 
vided that  the CS of the request is always the same or less 
than the CS of the controller of the processor. 

2.3.3 WHEN(E,  NM,  AN,  PR). The primitive 
W H E N  is defined by: 

i f  S~ ---- h a p p e n e d  t h e n  
REQUEST(PROCESS NM, ~r~rM , NM, PR, (AN, 0)) 

e l s e  enter (NM, AN, PR, ~'NM) into Lg. 

Thus if the event E has happened, W H E N  requests the 
processor for action A N  of process N M  with control 
strength PR; otherwise, the parameters are saved in Lg 
and the request is deferred until a CA USE(E) is executed. 

2.3.4 W A I T ( E ) .  The primitive W A I T  is defined by: 

i f  S z  = h a p p e n e d  t h e n  
b e g i n  

~v of INFO of VPROC~SSOR NM[~] .*'~ 1 ; 
WHEN(E, NM, AN*, CS of Ve~ocess ,VM[1]"~i); 
RELEASE(PROCESSOR, 1) 

en  d ; 

where N M  = N M  of Vpaoe~SSOR[1] and AN* is an action 
which is defined by: 

find the first element e in Qe~ocEss NM such that CS = CS o f  
VpRoc~ss NM[1]-- 1 ; 

W o f  INFO o f  e := 0; 
RELEASE (PROCESS NM, 1) ; 

Thus if the event, E, has not happened, W A I T  indicates 
tha t  the process N M  is waiting for an event by  setting 
w = 1, provides an action AN* to reset w (AN* wil 
run when E happens), and releases the processor. 

2.3.5 CAUSE(E).  The primitive CAUSE is de- 
fined by: 

Sg := h a p p e n e d  
for  all elements, (NM, AN, PR, ~), in LB do  
REQUEST (P~OCESS NM, ~, NM, PR, (AN, 0)); 

CAUSE sets the event, E, to h a p p e n e d  and requests 
the processor for every element in L~ for action A N  of 
process N M  with control strength PR. 

3 .  E x a m p l e s  

In  Section 2.3, a PROCESSOR facility and a set of 
PROCESS facilities were introduced in order to explain 
the influence of events upon processes. Now some other 
facilities are introduced, which are of importance in an 
operating system. 

3.1 INTERLOCKS 

When many processes are running concurrently, it is 
sometimes necessary that  one process inhibit the use of 
set of data by other processes, e.g., linked lists are gener- 
ally not readable while the links are being altered. We can 
create a facility, T, for such a set of data in the following 
way: 

CREATE FACILITY(T, 1, Pa, Pu, Pi) 

where 

Pa = CAUSE(DATA-ACCESSIBLE) 
Pu = null 
Pi = null 

where DATA-ACCESSIBLE  is an event local to the se- 
quence LOCK described below. 

A process A, may use this data  after executing the 
following sequence: 

LOCK: 
RESET(DA TA-A CCESSIBLE); 
REQUEST(T, ~-, A, O, DATA-ACCESSIBLE); 
WAIT(DA TA-ACCESSIBLE). 

After using the data, to allow access to the dat~ by another 
process, A may execute the following statement:  

UNLOCK: RELEASE(T, 1). 

Clearly, i l  processes must use the conventions for LOCK 
and UNLOCK to insure the integrity of the data asso- 
ciated with T. In  particular, all requests for T must  have 
the same control strength, say 0, so that  T will not be in- 
terrupted. 
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This scheme forces a process to wait, i.e., give up control 
of the processor, if the process wants access to data which 
is in use by some other process. Notice that  if processor 
control is actually lost, control will be regained through 
the eventual execution of Pa: C A U S E ( D A T A - A C C E S -  
S IBLE) .  A scheme can be devised using W H E N  in place 
of W A I T  such that  the processor need not be released. 

3.2  INPUT-OUTPUT 
To describe a typical input-output mechanism in terms 

of facilities, assume that  we have lc tape units connected 
to j input-output channels in a cross-bar fashion; i.e., 
information may be transmitted between any tape unit 
and any channel. We postulate that  a channel C[m] 

(i) operates in parallel with the processor and inde- 
pendently of other channels; 

(ii) can execute an input-output command, initiated by 
the processor, only if C[m] is not busy; and 

(iii) executes CA U S E ( T R A N S M I S S I O N - C O M P L E T E  
[m]), where T R A N S M I S S I O N - C O M P L E T E  is a 
j-element array of events, to notify the processor 
that  C[m] is not busy. 

Postulate (i) allows a process to use the input-output re- 
sources and processor simultaneously; (ii) forces a par- 
ticular discipline in issuing input-output commands, and 
(iii) furnishes an event to signify that  a channel has 
become free. 

We define two facilities: 
(1) a C H A N N E L  facility defined by: 

CREATE FACILITY (CHANNEL, j, Pa, Pu, Pi), 

where 

Pa ~ RESET(TRANSMISSION-COMPLETE[m]) ; 
WHEN(TRANSMISSION-COMPLETE[m], ' NM, IO- 
COMPLETE, CS+I) ; 
do hardware instructions to initiate IO-COMMAND; 

Pu ~ nu.ll 
Pi ~ null 

where I O - C O M M A N D  is a part  of INFO of Ve/~Azcx~L[m], 
N M  = N M  of  VCS~AN~L[m], and 
CS = CS of  V~.oc,~ss arM[l]. 

(2) a tape unit facility, T, defined by: 

CREATE FACILITY (T, 1, Pa, Pu, Pi) 

where 

P a  ~ i f  Q S  of  VT[1] = 0 t h e n  
REQUEST (CHANNEL, ~r, NM, O, (UNIT-FREE, IO- 
COMMAND)) 
Pu ~ CAUSE (UNIT-FREE) 
Pi ~ null. 

Associated with each tape unit is a facility defined anal- 
ogously to T. 

If  a process, N M ,  wishes to perform an I /O  on the tape 
unit associated with T, the following sequence is executed 
by NM:  

RESET( UNIT-FREE); 
REQUEST(T, ~r, NM, O, (UNIT-FREE, IO-COMMAND)); 

WAIT(UNIT); 

Tha t  is, the process N M  initializes all event, U N I T -  
FREE,  to n o t  h a p p e n e d  and requests the facility T 
passing the input-output command, I O - C O M M A N D  and 
U N I T - F R E E  as parameters in INFO. The process may 
continue using the processor, perhaps requesting facility 
T. When the process requires that  the input-output com- 
mand, IO-COMMAND,  be finished, the process may exe- 
cute the W A I T  shown above. 

When the transmission of data is completed, the W H E N  
statement in Pa of the C H A N N E L  facility and the 
CA USE executed by the channel cause the execution of 
the following action, called IO-COMPLETE:  

RELEASE(CHANNEL, m); 
i f  TRANSMISSION-UNSUCCESSF UL t h e n  [O-ERROR; 
RELEASE(T, 1); 

The release C H A N N E L  causes the queue for C H A N -  
N E L  to be served, i.e., the next input-output command is 
initiated. The input-output transmission is checked for 
the occurrence of a malfunction; if so, the recovery proce- 
dure IO-ERROR is invoked. To remedy some malfunc- 
tions, IO-ERROR may need to request T for special input- 
output comm~nds which must be performed before any 
normal commands already queued in Qr .  To insure 
proper ordering of commands, a CS = CS of  VT[1] "t- 1 
is used when requesting T for these special commands. 
Finally, whether IO-ERROR is invoked or not, T is re- 
leased so that  the queue for T may be served, i.e., the next 
request C H A N N E L  issued. 

4. C o n c l u d i n g  R e m a r k s  

In conclusion, several observations are in order. 
The overall scheme is able to accommodate a large class 

of queueing problems that  arise in implementation of oper- 
ating systems. One of the advantages of this kind of 
approach is that  one has a uniform structure for all the 
queues in the system. 

In an actual implementation various optimizations are 
possible; however, we feel that  in any case the uniformity 
of queue structure should not be violated. 

If  the operating system will reside in a multiprocessor 
system, the processor facility could be a multipart  facility. 
This somewhat complicates Pa, Pu, and Pi  for both 
PROCESSOR and PROCESS facilities. 
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