
A System Organization for
Resource Allocation

D. M. DAItMM*, F. H. GERBSTADT, AND ~X/[. ~/~. PACELLI
General Electric Company, Phoenix, Arizona

This paper introduces a system for resource management
using the concepts of "process," "facility," and "event."
Except for the processor no attempt has been made to give
serious suggestions for the policy to be followed for resource
allocation. However, a basic framework is provided in which a
system analyst can express solutions to resource management
problems.

The paper is divided into a tutorial presentation, a descrip-
tion of the system primitives, and a small collection of examples
of the use of the primitives.

I n t r o d u c t i o n

Modern day operating systems are concerned with the
management of resources, i.e., basic units such as proces-
sors, I / 0 channels, peripheral units and memory. The
management of resources normally includes the allocation
of resources to processes and the releasing of resources
by processes. Additionally, resource management may
employ a request queuing mechanism to handle peak
load periods in which mean t ime between requests is less
than mean service time.
• In this paper a system for resource management is in-
troduced tha t uses the concepts of "process," "facili ty,"
and "event ." Except for the processor, we do not a t t empt
to give serious suggestions for the policy to be followed for
resource allocation. However, we feel tha t we provide a
basic framework in which a system analyst can express
solutions to resource management problems.

The paper is divided into a tutorial presentation, a
description of the system primitives, and a small collec-
tion of examples of the use of the primitives. The tutorial
presentation is intended to elucidate and provide motiva-
tion for the second part.

Some of the ideas presented here were suggested by
SOL [4, 5].

focus our at tention upon the idea of a single line of control.
We call this line ,of control a "process." The basic intuitive
idea is the same as the intuitive notion of process given in
[1]. A process is, of course, a set of states and executing a
sequence of instructions for a process is a rule describing
the changing of states. See, for example, [2].

Characteristically, a processor will execute a sequence
of several instructions for a process until its at tention is
diverted (by an interrupt or a fault, for example). At
some later t ime the processor will return and continue
executing instructions for tha t process. During the t ime
tha t the at tention of the processor was diverted from the
process the processor may have been executing instruc-
tions for another process.

A process may specify an action to be performed upon
the occurrence of some event, e.g., by using the ON
statement of P L / I . While the action is being performed,
the "main program" must be suspended; tha t is to say,
we want no parMlelism between the "main program"
and the action. If any case exists where parallelism is de-
sirable, then we regard the action as a separate process.

An example of the behavior in t ime of a processor in a
multiuser system is shownin Figure 1. For t < t~ the proces-
sor is executing process A, for tx < t < t2 the processor
is executing process B, and for t2 < t the processor is exe-
cuting process A again. At t = t~ the system has had to
cause a change of control from A to B. Similarly, at t = t~
the system has changed control from B back to A.

process B

process A

time

t 1

Fro. 1

1. T u t o r i a l P r e s e n t a t i o n

1.1 INTUITIVE NOTION OF A PROCESS
In a multiuser environment, we think of the computa-

tion ordinarily associated with a user as being a line of
control, or a sequence of instructions executed for the user.
We regard this sequence to be synchronous, tha t is to say,
nonparallel. Of course, more than one line of control may
be associated with a particular user; however, we wish to

* Private Consultant.

In general, to change from a process A to a process B
we must first save the state of A and then load the state
of B into the processor. In the following we designate the
change from any process to a process A by CHANGE TO
A. This operation is similar to the operation of linkage
between coroutines described in [3].

The reader will notice tha t no distinction has been
made between code writ ten by a user and code writ ten
by system programnmrs. This is deliberate. In fact, most
processes will consist of some code by a user and some

772 Communicat ions of the ACM Volume 10 / Number 12 / December, 1967

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363848.363860&domain=pdf&date_stamp=1967-12-01

code by system programmers. In addition we wish to
have all code a par t of some process.

1.2 EVENTS
When a process is running it may decide that it cannot

continue until some condition is met; for example, it may
"need to wait until an I / O operation is completed before

continuing. In order to be reinstated when the condition
is met, the process will make provisions with some other
process. To implement these ideas we define an enti ty
called an event. The event is associated in some way with
a condition.

An event, E, consists of a two-state variable, S, and a
list, L, where the two states are h a p p e n e d and n o t h a p -
pened , and where L is a list of processes waiting for the
occurrence of the event. By occurrence of the event we
mean that the event variable changes from n o t h a p p e n e d
to h a p p e n e d . A process may cause an event to happen.
When this occurs, all the processes waiting for the event
now become candidates for reinstatement. Processes may
initialize event variables to n o t h a p p e n e d . Since some
of the conditions in which a process is interested may be
local to the process, the process must be able to create
events local to itself.

I t should be pointed out that an event is purely a soft-
ware construct and does not have a necessary connection
with hardware signals, although there will usually exist
an event for any signal.

].2.1 Event Primitives. The foregoing suggests the
following six primitives for dealing with the interaction
of events and processes: W A I T , CAUSE, RESET,
H A P P E N E D , C R E A T E E V E N T , and DESTROY
E V E N T . Each of these primitives has as a parameter the
name of the event to which it applies.

1.2.1.1 W A I T (E). I f S is in the state n o t h a p -
pened , makes an entry in L for the process which invoked
W A I T and then suspends that process; when the process
is reinstated, it resumes at the suspension point. For dis-
cussion of suspension, see Section 1.4.1.

1.2.1.2 CAUSE (E). Sets S to the state h a p p e n e d
and queues each entry in the event-list in a queue of proc-
esses waiting to be reinstated on a processor. For dis-
cussion of queueing, see Section 1.4.1.

1.2.1.3 R E S E T (E). Sets S to the state n o t h a p -
pened .

1.2.1.4 H A P P E N E D (E). A Boolean function with
the value t r u e if E is in the state h a p p e n e d , and fa l se
otherwise.

1.2.1.5 C R E A T E E V E N T (E). Creates an event
with the name E for the process which invokes CREATE.

1.2.1.6 DESTROY E V E N T (E). Destroys the event
with the name E.

1.2.2 A More Complex Form for W A I T . Sometimes
it is important that a process be able to wait for the occur-
rence of any one of a number of events. For example, we
may wish to wait for the completion of either a read or a
write operation if we are copying a file from one media to

Volume 10 / Number 12 / December, 1967

another. This is difficult to express with the primitives
introduced so far. Consequently, we need a primitive,
W A I T (E 1 , E2 , . . . , E~), which will suspend processing
until at least one of the events, E l , occurs. I t is fairly clear
what changes must be made in our proposal to implement
this. We will not give any further discussion of this primi-
tive in this paper.

We will return to the discussion of events and the primi-
tives W A I T and CA USE after introducing the notion of a
facility.

1.3 FACILITIES
In order to complete its computational task, a process

requires the use of the various resources of the system,
such as memory, I / O channels, and peripheral units. In a
multiuser environment, processes compete for the use of
resources. The management of these resources must then
include mechanisms for the requesting and releasing of
resources.

Moreover, the allocation of resources may take account
of the relative importance of processes, i.e., the most im-
por tant process should have control of a resource before a
less important process. This relationship is established by
assigning a priority, 7r, to each process. We realize tha t
the priority may change during the course of computation.
However, this is a policy mat te r which we will not discuss
here.

Whenever a resource is free, i.e., the resource is not in
use by any process, or if by priority or perhaps from hard-
ware or software considerations the resource is inter-
ruptable, a request for the facility can be granted. How-
ever, when a resource is busy with higher priority work or
is not interruptable, a requestor must be entered in a queue
to await his turn. When a process no longer has use of a
resource it may release the resource.

1.3.1 Definition of Facility. To implement the idea
of requesting and releasing resources we will associate to
each resource an enti ty which we call a facility. A facility
may be composed of one or more homogeneous parts;
tha t is, more than one process may use the facility simul-
taneously.

A process which is using a facility is called a controller
of the facility. For example, we will consider a set of cross-
barred I / O channels to be one mult ipart facility. We call
the number of parts of a facility the parallelism of the facil-
ity. We say the facility is busy if all parts are in use; other-
wise it is free.

When a process, A, is a controller of a facility, F, the
process A holds the facility with some control strength.
By this we mean that if another process, B, requests F
with a control strength greater than the control strength
with which A holds F, then B takes F from A.

Associated with a facility is a queue. When a process, A,
requests a facility which is busy and all of whose control-
lers have control strength greater than or equal to the
control strength with which A requests the facility, then A
must be entered into the queue. Also, when one process

C o m m u n i c a t i o n s o f the ACM 773

takes a facility from another process, then the latter proc-
ess must be entered into the queue for the facility.

The queue is ordered according to the following hier-
archy of values:

(1) control strength;
(2) queueing state, where queueing state is 1 if the facility

has been taken from the process, and otherwise 0;
(3) priority, and
(4) arrival time.
The difference between control strength and priority is

that control strength is used for defining interrupt classes
(an interrupt class is the set of all requests with the same
control strength), while priority is used for ordering re-
quests within the same interrupt class. Control strength
varies from request to request while priority is a property
of the process and will tend to be relatively invariant in
time. The reason for ordering according to queueing state
is tha t we wish to maintain the order among requests of
the same interrupt class regardless of requests of higher
control strength. If the queueing state is not used, then it
may happen that after some period of time the initiM
order between two requests of the same control strength
will change. In some cases this is not desirable.

We note that a more general scheme would allow queue-
ing according to an arbitrary function and interruption
according to another arbitrary function. Each facility
would have its own characteristic functions. This would
~llow more sophisticated allocation algorithms. However,
the simple scheme presented is adequate for allocation of
the resources we discuss here. Consequently, we will not
introduce this additional complexity.

A process may release a facility. This means that the
process is no longer a controller of the facility and if the
facility queue is not empty, then the first process in the
queue (according to the given order) becomes a controller
of the facility.

For each facility there exist three procedures which we
call ALLOCATE-, INTERRUPT, and UNALLOCATE.
When a process becomes the controller of a facility, the
procedure ALLOCA TE for that facility is invoked, when a
process releases a facility the procedure UNALLOCATE
is invoked, and when a facility is taken from a process the
procedure INTERRUPT is invoked. We emphasize tha t
the procedures will vary from one facility to another.
Any of these procedures may be null for some facility,
e.g., a null INTERRUPT procedure means tha t if the
facility is to be taken from a process, there is no special
work to perform other than the normal queue manipula-
tions.

In summary, a facility consists of the following:
(1) a queue of processes which have requested the facil-

ity,
(2) a vector of controllers of length equal to the paral-

lelism of the facility, and
(3) a set of three procedures, ALLOCATE, UNALLO-

CA TE, and INTERRUPT.

At this poim it is clear tha t facilities are a software
construct and may have a correspondence with either
hardware or software resources.

1.3.2 Facili~',y Primitives. The primitives used in
dealing with facilities are: REQUEST, RELEASE,
CREATE FACILITY, DESTROY FACILITY, and
FREE.

1.3.2.1 CREATE FACILITY (F, N, Pa, Pu, Pi).
Establishes a facility F with parallelism N, with the asso-
ciated set of procedures Pa for ALLOCATE, Pu for UN-
ALLOCATE, and Pi for INTERRUPT.

1.3.2.2 DESTROY F A C I L I T Y (F). Destroys the
facility F.

1.3.2.3 REQUEST (F, ~-, NM, CS, INFO). Re-
quests the facility F for the process named NM with a
control strength, CS and priority 7r. The process name is
included as a parameter so that a process may request a
facility on the behalf of another process (refer to Figure
2). INFO is used to pass parameters to the procedures of
the facility.

1.3.2.4 RELEASE (F, m). Releases the part of F
identified by the ordinal m (refer to Figure 3).

1.3.2.5 FREE (F, m). A function yielding the result
fa lse when F is busy; otherwise the result is t r u e and the
value of m is the ordinal number representing one of the
free parts.

1.4 USE OF ~'RIMITIVES
Given this model as a basis, tile task of the analyst is

to define processes, facilities and events involved in his
system. The policy for the management of each particular
resource is embodied in the three procedures ALLOCATE,
UNALLOCA TE, and INTERRUPT. Housekeeping func-
ions such as logging can be inserted in these procedures
as desired by the system analyst.

Frequently there are events associated with a particular
facility, usually the event that the facility has been allo-
cated to a given process and the event tha t the faclity has
been unallocated for a given process.

The creation of such events by a process establishes a
means of communication between the process itself and
any other process which will cause these events.

1.4.1 Processor Facility. In order to define more
precisely the W A I T and CAUSE mechanism, we now
introduce a facility associated with the processor resource.
This association seems natural since we need a queue of
processes which are ready to run. Moreover there is at
any moment a controller of the processor which may be
interrupted by another process. In this ease the inter-
rupted process has to be reentered into the queue of proc-
esses which are ready to run and a new process will take
control of the processor. The mechanism for switching
from one process to another is described by the statement
CHANGE.

If a running process decides that it cannot proceed
further until some condition is satisfied, the process must

774 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 10 / Number 12 / December, 1967

release the processor. At this moment a new process will
become the controller of processor, namely, one of the
processes in the processor queue.

From the point of view of queueing, it appears clear tha t
a processor and a facility have a similar behavior.

In the case of a one-processor system we can define a
corresponding facility, PROCESSOR, in the following way:

N, the parallelism, is 1;
the procedure ALLOCATE is defined to be: CHANGE

to the process tha t has now become the controller;
the procedure INTERRUPT is null;
the procedure UNALLOCA TE is null.

6
FALSE

REOUEST(F,NM.CS. INFO)

FALSE

CS of TOP-Q cs o_Z vim])

TRUE

Pi(m)
QS of Vim] : = l
QUEUE UP(F,Y[m])

ASSIGN(F,m)

FIG. 2

Referring now to the description of W A I T and CA USE
in Sections 1.2.1.1 and 1.2.1.2, we can define the suspen-
sion and the reinstatement of a process. When a process
has to suspend itself, the process has to execute RELEASE
(PROCESSOR, 1). When a process B wants to reinstate
another process A, as in CA USE, the process B has to
execute REQUEST (PROCESSOR, ~-, A, CS, INFO).

To assure tha t the processor queue is never empty,
we assume the existence of a process which is always ready
to run. This is called the spin process. I t has a priority lower
than tha t of M1 other processes in the system. The reader
should refer to Figures 4 and 5, which give flowcharts for
W A I T and CAUSE. The list associated with an event
may be ordered according to priority so tha t control will
be given to waiting processes in priority order.

1.5 THE PRIMITIVE W H E N
Let us now explain how a process can specify tha t an

action, named AN, is to be performed on the occurrence

TRUE

w o_i ~NFO o~ VpRUCESS~ : ~ ~i) [
WHEN(E,R,A,CS of VpROCESSR

RELEASE(PROCESSOR, 1)

Fio. 4

RELEASE(Fpm)

L
Pu(N) I

SVof[m] = free

EMPTY(F))

FIG. 3

TRUE

6

S
I SE : = happened [
~for all elements, (NM,AN,PR, rT), [
--~ BE do
[REQUEST(PRUCESSNM,~,NM, PR, (AN, O)) I

FIG. 5

Volume 10 / Number 12 / December, 1967 C o m m u n i c a t i o n s o f the ACM 775

of some event, E. A natural notation might be WHEN E
DO AN. Consider the case in which a process specifies
both WHEN Et DO AN~, and WHEN E2 DO AN2.
If Et occurs, and then E2 occurs while ANt is being per-
formed, should we suspend AN~ to do AN~ or should we
do AN2 only upon the completion of AN~ ? I t is easy to
convince oneself that for some events the answer is the
former and for others the answer is the latter. Hence we
will add another parameter to WHEN to specify the
preference between actions. We will write WHEN (E,
NM, AN, PR) where E is the event, NM is a process
name, AN is the name of the action, and PR is an integer
giving the preference.

In some process NM, let us regard the "main program"
as an action, MP, with preference 0. The meaning of
WHEN (E, NM, AN, PR) where PR > 0 is that if E
occurs then the action MP is no longer eligible for process-
ing until the action A N is completed.

In general, let ANx be an action belonging to process
NM which is eligible for processing with preference PRt.
The execution of the statement WHEN (E, NM, AN2,
PR2) implies that if at any later time the state of E is
h a p p e n e d then the following occurs:

(1) I f PR2 > PR~ then AN~ cannot be eligible for
processing until the action AN2 is completed.

(2) If PR2 ~ PR~ then ANt remains eligible for
processing and AN2 cannot be eligible until
after the completion of AN~.

The presence of the WHEN primitive in a process
imposes a nested structure upon that process. This struc-
ture has all the characteristics of a facility if we identify
the control strength with the preference for the actions.

~TRUE (SE = happened)

EQUEST(PROCESSNM, ~nm, NM, PR, (AN ,0)) I

FA LS Eip

I enter (NM, AN, PR,~NM)
into L E I

t,

F I G . 6

We will not develop this idea further here. In Section 2 we
describe in detail how it is possible to define a facility for
each process to order the actions specified by the WHEN
primitives. Naturally the CAUSE primitive will be in-
fluenced by the introduction of the WHEN primitive.
We also have chosen in the next part to specify the W A I T
primitive in terms of WHEN. A flowchart is given in
Figure 6.

2. S y s t e m D e s c r i p t i o n

2.1 PROCESSES IN TIlE SYSTEM

A computing system may be regarded as a process. The
set of all possible states which may be assumed is the set
Z. For a state of a E Z, S(a) is the set of possible suc-
cessor states. In general, S(c~) is a set and not an element
since a system may be influenced by external signals. An
action is a rule which selects a particular state from S(a).
The special action, processor, is the rule which defines
how the system proceeds in the absence of external sig-
nals or interrupts.

In the following sections we consider such a process.
We will call the process, the system. Such a system could
be organized so that it appears to be a collection of sub-
processes. We will then give a partial description of such
an organization, using the term processes for subprocesses.

This description takes the form of a set of primitives or
procedures tha t a collection of subprocesses may use to
organize a process. These primitives will be given in a com-
bination of English and a stylized ALGOL. The primitives
assume a data, structure that includes variables, lists,
arrays, and queues.

In the following sections we will want to refer to proc-
esses, actions, and states by name. Consequently, we as-
sume that each process, each action, and each state has a
unique name.

We will assume that for each process A, there is an in-
teger ~rA eMled the priority of A.

2.2 FACILITIES
A facility element, e, is defined to be the ordered 5-tuple

(NM, CS, QS, ~, INFO) where:
N M is a process name;
CS is an integer called the control strength of the

element;
QS is a Boolean variable called the queueing state

of the element;
7r is an integer called the priority of the process;
INFO is additional information defined for each par-

ticular facility element.
A facility, F, is defined by the triple (V, Q, P) where:
(1) V is a vector of N elements. N is the parallelism of

the facility. Each element of V has two parts, a facility
element and a variable, SV, with two states, f ree and
busy . If SV == f ree the corresponding facility element is
empty.

(2) Q is a queue of indefinite length, comprised of facil-
ity elements, ordered according to the following hierarchy
of values:

(a) CS
(b) QS
(c)

(3)

where

P is a set of three procedures:
(a) Pa(m) ALLOCATE procedure,
(b) Pu(m) UNALLOCATE procedure,
(c) Pi(m) INTERRUPT procedure,
m is the ordinal number of a facility element in V.

776 Communicat ions of the ACM Volume 10 / Number 12 / December, 1967

We denote the ruth element of V by V[m] and the first
element of Q by TOP-Q.

A process, B, is called a controller of F if NM of Vim] =
B for some m.

The facility F is said to be free if SV of V[m] = free
for some m; otherwise the facility is busy .

Where necessary, the constituents of a facility will be
subscripted with their facility name, e.g., Vv, Qr, etc.,
to distinguish them from the corresponding components
of other facilities.

2.2.1 Facility Primitives. A process can request and
release facilities. In order to describe these procedures we
introduce the following primitives.

2.2.1.1 QUEUE UP(F, e). Places the facility element
e into Q, using CS, QS, ~- and arrival t ime for the ordering
rule.

2.2.1.2 ASSIGN(F, m). Removes the facility element
TOP-Q and assigns it to V[m] and sets SV of Vim] to
busy . Then it invokes Pa(m).

2.2.1.3 FREE(F, m). A Boolean function yielding
the value of fa lse if there does not exist an m such tha t
SY of Vim] is free. Otherwise the value is t r u e and m
is set to the ordinal value such tha t SV of Vim] is free.

2.2.1.4 LEAST(F, m). Sets m := j where j is such
tha t CS of V[j] _< CS of V[n] for any n.

2.2.1.5 EMPTY(F). A Boolean procedure with the
value t r u e if Q is empty , otherwise false.

2.2.1.6 CREATE FACILITY(F, N, Pa, Pu, Pi).
Creates a facility named F with parallelism N and the
procedures Pa, Pu, Pi.

2.2.1.7 DESTROY FACILITY(F). Destroys the fa-
cility F.

2.2.1.8 REQUEST(F, ~-, NM, CS, INFO).

b e g i n
Q U E U E UP(F,(NM,CS,O,~-,INFO));
i f FREE(F,m) t h e n ASSIGN(F,m)

e lse b e g i n
L E A S T (F , m) ;
i f CS o f TOP = Q > CS o f V[m] t h e n
b e g i n

Pi(m);
QS o f V[m] := 1;
Q U E U E UP(F,V[m]);
A S S I G N (F,m)

e n d end e n d ;

2.2.1.9 RELEASE(F, m).

b e g i n
P u (m) ;
S V o f Vim] : = free;
i f -1 E M P T Y (F) t h e n

A S S I G N (F,m) ;
end ;

2.3 EVENTS
An event E is defined to be the ordered pair (S, L)

where:
(1) S is a variable which has two values, h a p p e n e d

and n o t h a p p e n e d ;
(2) L is a list of elements, each element being an or-

dered 4-tuple (NM, AN, PR, ~-), where
(i) NM is a process name;

(ii) A N is an action name;
(iii) PR is an integer called the preference of the ele-

ment; and
(iv) 7r is an integer which is the priority of the process.

The list L is ordered by priority.
Where necessary S and L will be subscripted, e.g., SE

and L~ , to distinguish them from the variables and lists
of other events.

In order to define how events influence the behavior of
processes we introduce several facilities and primitives for
manipulat ing events and these facilities.

2.3.1 Processor Facility. To each process, NM, we
associate an element of a vector named STATE; thus
STA TE[NM] has as a value the last stored state of NM.
We also assume the global variables ¢, NAME, and SUC-
CESSOR whose values are system states, process names,
and action names, respectively. For the PROCESSOR
facility and the following PROCESS facility, INFO will
consist of the pair (AN, w), where the values of A N are
action names and the values of w are either 0 or 1.

The facility, PROCESSOR, is created by:

C R E A T E F A C I L I T Y (PROCESSOR, 1, Pa, Pu, Pi)

where

Pa ~ SUCCESSOR := A N o f INFO o f VpROfESSOR[1];
A N o f INFO o f VpROCESSOR[I] := P;
A N o f INFO o f VpROCESSNM[1] := P;
S T A T E [N A M E] := a;

:= SUCCESSOR (STA TE[NM]) ;
P u ~- N A M E := N M o f VPROCESSOR[1];
P i ~ Pu.

The procedure Pa, which corresponds to CHANGE
of Section l , assigns the action in INFO to be the SUC-
CESSOR flmction for the process NM, sets the actions
of INFO to P, the action, processor, defined in 2.1, stores
the state, ~r, of the current process and determines the next
state of NM by applying SUCCESSOR to the current
state of NM. The procedure Pu saves the name of the cur-
rent process for subsequent use in Pa.

I t is necessary tha t QPROC~SSOR never be empty. There-
fore we introduce a process, SPIN, which has the proper-
ties that :

(1) rspi~v is less than ~r~vM for any other process NM,
and

(2) S P I N never executes RELEASE(PROCESSOR, 1).
2.3.2 Process Facilities. For each process, A, we

create a facility called PROCESS A by:

C R E A T E F A C I L I T Y (PROCESS A, 1, Pa, Pu, Pi) ,

where
Pa ~ i f w o f INFO o f VpROC~SS[1] = 0 t h e n

REQUEST(PROCESSOR, r, A , ~', (A N o f INFO o f
VpRocEsS All, 0));
i f N M o f VpROCESSOn[1] = A t h e n
R E L E A S E (P R O C E S S O R , 1) ;

Pu -~ de le te all f a c i l i t y e l e m e n t s w i t h ArM = A f r o m

QPnocEssoR ;
Pi ~ Pu.

V o l u m e 10 / N u m b e r 12 / D e c e m b e r , 1967 C o m m u n i c a t i o n s o f t h e ACM 777

To illustrate how Pa, Pu, and Pi work, consider the
following situations.

(1) In process A an action AN1 which controls PROC-
ESS A releases PROCESS A whenQpRocE,s A is nonempty.
By virtue of AN~ executing a statement, AN~ must be
controller of the processor. Note that it is possible tha t
the action AN2 associated with the element in TOP-Q
may be waiting for some event, which implies that the
processor cannot be requested for ANs. If AN2 is not
waiting, signified by w = 0, then the processor must be
requested for ANs. Furthermore, the request processor
for AND of A must be issued using the same or less
CSPRocBs~oR as that of AN1 ; if a higher CS is used the
PROCESSOR facility would be interrupted which would
requeue AN~ which contradicts the release by A N , .

(2) If an action AN~ of process A requests PROCESS A
for an action AN2 with a sufficiently high CSpRoeEss a ,
we find that AN~ must request the processor for AN~
with the same or less CSeROC~SSOR than that of AN1 by
an argument similar to the reasons in example (1) above.
This relationship between the control strengths of ANt
and AN~ allows AN1 to release the processor so that AN2
may eventually become controller of the processor.

(3) Suppose some action of a process B requests PROC-
ESS A, similar to example (2) above. Before B requests
the processor for A it is necessary to eliminate the possi-
bility of having more than one element in QpeocEssoR
for A by removing any element in Q~Roe~sso~ belonging
to A. Depending on the relative values of CSeRoc~ssoR
of A and B the request processor issued by B will either
cause B to be requeued in QPRocgzSOR and A to take con-
trol of the processor, or simply enter A in Qe~oeEssos
and leave B in control of the processor.

We have chosen the policy of using 7rA for the CS of M1
processor requests for A; i.e., the processor is to be allo-
cated first to processes with highest priority. To allocate
the processor on another basis, another expression for
CS in the request processor in Pa may be employed pro-
vided that the CS of the request is always the same or less
than the CS of the controller of the processor.

2.3.3 WHEN(E, NM, AN, PR). The primitive
W H E N is defined by:

i f S~ ---- h a p p e n e d t h e n
REQUEST(PROCESS NM, ~r~rM , NM, PR, (AN, 0))

e l s e enter (NM, AN, PR, ~'NM) into Lg.

Thus if the event E has happened, W H E N requests the
processor for action A N of process N M with control
strength PR; otherwise, the parameters are saved in Lg
and the request is deferred until a CA USE(E) is executed.

2.3.4 W A I T (E) . The primitive W A I T is defined by:

i f S z = h a p p e n e d t h e n
b e g i n

~v of INFO of VPROC~SSOR NM[~] .*'~ 1 ;
WHEN(E, NM, AN*, CS of Ve~ocess ,VM[1]"~i);
RELEASE(PROCESSOR, 1)

en d ;

where N M = N M of Vpaoe~SSOR[1] and AN* is an action
which is defined by:

find the first element e in Qe~ocEss NM such that CS = CS o f
VpRoc~ss NM[1]-- 1 ;

W o f INFO o f e := 0;
RELEASE (PROCESS NM, 1) ;

Thus if the event, E, has not happened, W A I T indicates
tha t the process N M is waiting for an event by setting
w = 1, provides an action AN* to reset w (AN* wil
run when E happens), and releases the processor.

2.3.5 CAUSE(E). The primitive CAUSE is de-
fined by:

Sg := h a p p e n e d
for all elements, (NM, AN, PR, ~), in LB do
REQUEST (P~OCESS NM, ~, NM, PR, (AN, 0));

CAUSE sets the event, E, to h a p p e n e d and requests
the processor for every element in L~ for action A N of
process N M with control strength PR.

3 . E x a m p l e s

In Section 2.3, a PROCESSOR facility and a set of
PROCESS facilities were introduced in order to explain
the influence of events upon processes. Now some other
facilities are introduced, which are of importance in an
operating system.

3.1 INTERLOCKS

When many processes are running concurrently, it is
sometimes necessary that one process inhibit the use of
set of data by other processes, e.g., linked lists are gener-
ally not readable while the links are being altered. We can
create a facility, T, for such a set of data in the following
way:

CREATE FACILITY(T, 1, Pa, Pu, Pi)

where

Pa = CAUSE(DATA-ACCESSIBLE)
Pu = null
Pi = null

where DATA-ACCESSIBLE is an event local to the se-
quence LOCK described below.

A process A, may use this data after executing the
following sequence:

LOCK:
RESET(DA TA-A CCESSIBLE);
REQUEST(T, ~-, A, O, DATA-ACCESSIBLE);
WAIT(DA TA-ACCESSIBLE).

After using the data, to allow access to the dat~ by another
process, A may execute the following statement:

UNLOCK: RELEASE(T, 1).

Clearly, i l processes must use the conventions for LOCK
and UNLOCK to insure the integrity of the data asso-
ciated with T. In particular, all requests for T must have
the same control strength, say 0, so that T will not be in-
terrupted.

7 7 8 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 10 / N u m b e r 12 / D e c e m b e r , 1967

This scheme forces a process to wait, i.e., give up control
of the processor, if the process wants access to data which
is in use by some other process. Notice that if processor
control is actually lost, control will be regained through
the eventual execution of Pa: C A U S E (D A T A - A C C E S -
S IBLE) . A scheme can be devised using W H E N in place
of W A I T such that the processor need not be released.

3.2 INPUT-OUTPUT
To describe a typical input-output mechanism in terms

of facilities, assume that we have lc tape units connected
to j input-output channels in a cross-bar fashion; i.e.,
information may be transmitted between any tape unit
and any channel. We postulate that a channel C[m]

(i) operates in parallel with the processor and inde-
pendently of other channels;

(ii) can execute an input-output command, initiated by
the processor, only if C[m] is not busy; and

(iii) executes CA U S E (T R A N S M I S S I O N - C O M P L E T E
[m]), where T R A N S M I S S I O N - C O M P L E T E is a
j-element array of events, to notify the processor
that C[m] is not busy.

Postulate (i) allows a process to use the input-output re-
sources and processor simultaneously; (ii) forces a par-
ticular discipline in issuing input-output commands, and
(iii) furnishes an event to signify that a channel has
become free.

We define two facilities:
(1) a C H A N N E L facility defined by:

CREATE FACILITY (CHANNEL, j, Pa, Pu, Pi),

where

Pa ~ RESET(TRANSMISSION-COMPLETE[m]) ;
WHEN(TRANSMISSION-COMPLETE[m], ' NM, IO-
COMPLETE, CS+I) ;
do hardware instructions to initiate IO-COMMAND;

Pu ~ nu.ll
Pi ~ null

where I O - C O M M A N D is a part of INFO of Ve/~Azcx~L[m],
N M = N M of VCS~AN~L[m], and
CS = CS of V~.oc,~ss arM[l].

(2) a tape unit facility, T, defined by:

CREATE FACILITY (T, 1, Pa, Pu, Pi)

where

P a ~ i f Q S of VT[1] = 0 t h e n
REQUEST (CHANNEL, ~r, NM, O, (UNIT-FREE, IO-
COMMAND))
Pu ~ CAUSE (UNIT-FREE)
Pi ~ null.

Associated with each tape unit is a facility defined anal-
ogously to T.

If a process, N M , wishes to perform an I /O on the tape
unit associated with T, the following sequence is executed
by NM:

RESET(UNIT-FREE);
REQUEST(T, ~r, NM, O, (UNIT-FREE, IO-COMMAND));

WAIT(UNIT);

Tha t is, the process N M initializes all event, U N I T -
FREE, to n o t h a p p e n e d and requests the facility T
passing the input-output command, I O - C O M M A N D and
U N I T - F R E E as parameters in INFO. The process may
continue using the processor, perhaps requesting facility
T. When the process requires that the input-output com-
mand, IO-COMMAND, be finished, the process may exe-
cute the W A I T shown above.

When the transmission of data is completed, the W H E N
statement in Pa of the C H A N N E L facility and the
CA USE executed by the channel cause the execution of
the following action, called IO-COMPLETE:

RELEASE(CHANNEL, m);
i f TRANSMISSION-UNSUCCESSF UL t h e n [O-ERROR;
RELEASE(T, 1);

The release C H A N N E L causes the queue for C H A N -
N E L to be served, i.e., the next input-output command is
initiated. The input-output transmission is checked for
the occurrence of a malfunction; if so, the recovery proce-
dure IO-ERROR is invoked. To remedy some malfunc-
tions, IO-ERROR may need to request T for special input-
output comm~nds which must be performed before any
normal commands already queued in Qr . To insure
proper ordering of commands, a CS = CS of VT[1] "t- 1
is used when requesting T for these special commands.
Finally, whether IO-ERROR is invoked or not, T is re-
leased so that the queue for T may be served, i.e., the next
request C H A N N E L issued.

4. C o n c l u d i n g R e m a r k s

In conclusion, several observations are in order.
The overall scheme is able to accommodate a large class

of queueing problems that arise in implementation of oper-
ating systems. One of the advantages of this kind of
approach is that one has a uniform structure for all the
queues in the system.

In an actual implementation various optimizations are
possible; however, we feel that in any case the uniformity
of queue structure should not be violated.

If the operating system will reside in a multiprocessor
system, the processor facility could be a multipart facility.
This somewhat complicates Pa, Pu, and Pi for both
PROCESSOR and PROCESS facilities.

RECEIVED DECEMBER, 1966; REVISED AUGUST, 1967

REFERENCES

1. VYSSOTSKY, V. A., CORB&TS, F. J., AND GRAHAM, R. 1V/~. Struc-
ture of the multics supervisor. Proc. AFIPS 1965 Fall Joint
Comput. Conf., Vol. 27, 1965, 203-212.

2. CoswiY, M. E. A multiprocessor system design. Proc.
AFIPS Fall Joint Comput. Conf., Vol. 24, 1963, 139--146.

3. CONWAY, M. E. Design of a separable transition-diagram
compiler. Comm. ACM 6, 7 (July 1963), 396-408.

4. KNUTH, D. E., AND MCNELY, J.L. SOL--A symbolic language
for general purpose systems simulation. IEEE Trans. EC
13 (Aug. 1964), 401-408.

5. KNUTH, D. E., AND McNELY, J. L. A formal definition of
SOL. IEEE Trans. EC 18 (Aug. 1964), 409-414.

Volume 10 / Number 12 / December, 1967 C o m m u n i c a t i o n s o f the ACM 779

