
• 

! D. TEICHROEW, Editor 

A SIMSCRIPT-FORTRAN 
Case Study 

ARLA E. WEINERT $ 
Research Analysis Corporation, McLean , Virginia 

Two programs for a vehicle dispatching model, one written 
in 7040  SIMSCRIPT and the other in 7040  FORTRAN IV are 
compared. The comparison is made in terms of basic program 
design decisions, storage requirements, computer time used, and 
the ease of making changes. 

In the SIMSCRIPT program, the primary design considerations 
center around the choice of model variables, model changing 
events, and model testing. In the FORTRAN program, basic 
design problems relate to the representation of the passage 
of time, the allocation of storage, and the organization of input 
data. 

The comparison of these differently designed programs shows 
that the SIMSCRIPT program uses more computer storage and 
mole computer time, but requires fewer program changes to 
introduce model revisions. 

Comparisons have been made of the features provided 
in different systems designed to handle digital simulation 
problems [1-4]. There is also a comparison of two matched 
codes done in different simulation systems [5]. These com- 
parisons offer insight into the characteristics of simulation 
problems that have received special attention. For a prac- 
tical problem, however, the choice of a computer language 
may depend on what is available on the computer to be 
used and who knows how to use it. 

The person with a simulation problem may find that 
the computer most readily available has no simulation 
language. Or he may find that the people working on the 
problem are familiar only with the general algebraic lan- 
guage used on the available computer. To provide an 
indication of the factors that should be considered in 
making a decision in such a situation this paper examines 
both a SIMSCRIPT and a FORTRAN program that implement 
the same vehicle-dispatching model on the IBM 7040 
computer. After an initial examination of the difference 
in approach to the problem afforded by the two languages, 

* Present address: Naval Command Systems Support Activity, 
Washington Navy Yard, Washington, D.C. 20390. 

784 C o m m u n i c a t i o n s  o f  t h e  ACM 

three quantitative comparisons of the programs are made. 
These comparisons are of computer storage, computer 
time, and number of code changes needed to introduce 
model changes. Finally, these comparisons are discussed 
in terms of their implications for digital simulation prob- 
lems in general. 

The  Model  S i m u l a t e d  

The vehicle-dispatching model represented by the 
SIMSCRIPT and FORTRAN programs that are compared 
provides for the arrival of requests for missions to be per- 
formed by vehicles at arbitrary times during a simulated 
day. All vehicles in the fleet are of the same type. If a 
vehicle is available, it is assigned to each request when it 
arrives. Once a vehicle is assigned to a request, the mission 
is assumed to be successfully completed. On its return 
from a mission a vehicle may receive unscheduled and/or 
scheduled maintenance. At the completion of the mission 
and any attendant maintenance, a vehicle is available for 
assignment to a new request. 

If a request arrives and no vehicle is available to meet 
it, the request waits until a vehicle becomes available. 
Requests that are delayed have vehicles assigned to them 
in the order the requests arrived. At ~he end of each simu- 
lated day all unmet requests are cancelled. 

The user is given two mutually exclusive options for 
specifying request arrivals. He may treat them as exog- 
enous events that happen outside the model simulated or 
he may let the model generate them as endogenous events. 
Treating the arrival of a mission request as an exogenous 
event means the user specifies the arrival time of each 
request and the type of mission requested. If desired, this 
makes it possible to put into the model an actual history of 
individual requests taken from field data. When the model 
is used to generate the mission requests, it assumes a 
Poisson distribution of arrival time for which the user 
supplies the parameters. The arrival times for individual 
requests are drawn at random from this distribution. The 
type of mission requested is then drawn at random from 
a user supplied probability distribution of expected mission 
types. 

Two optional printouts are provided. In one the user 
can ask for a printout of the initial data used to start the 
operation of the model. The other can be obtained at the 
end of each simulated day. I t  shows the state of each 
individual vehicle and gives summary data on mission 
requests received, delayed, and completed. In addition 

V o l u m e  10 / Number  12 [ December, 1967 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363848.363862&domain=pdf&date_stamp=1967-12-01


to these two optional printouts, summary information 
on vehicle-operating time; maintenance time; delays 
encountered by requests; and the number of requests 
received, delayed, and met, are automatically printed out 
at the end of the number of simulated days specified as 
part of the input data. The purpose of this output data 
is to provide a basis for the comparison of different types 
of vehicles when meeting different mixes of mission re- 
quests. 

The vehicle-dispatching model can be thought of as a 
typical pilot study. The model is not trivial. On the other 
hand, it is not so large that it will obviously tax the mem- 
ory capacity of current large scale computers. If its initial 
use provides useful insights into the functioning of an 
actual operating system, the model will be enlarged and 
revised to better portray some actual operating situation. 
This tendency of the model to grow is also typical of simu- 
lation problems. 

B a s i c  P r o g r a m  D e c i s i o n s  

On the IBM 7040, S1MSCmPT is implemented as a 
FORTRAN pretranslator. I t  provides all the features of 
FORTRAN plus features particularly useful for digital simu- 
lation problems. One feature provided is a timing routine 
that keeps track of simulated time to 8 significant digits. 
This timing routine is used in conjunction with a scheme 
for scheduling events. These events are the means by which 
changes in the condition of the model simulated are effec- 
tuated. The state of the simulated model is described by 
the values of variables called "attributes." These vari- 
ables describe the permanent or temporary "entities" 
that make up the simulated model. The permanent "en- 
tities" are parts of the model that exist as long as the 
simulated model exists. Temporary "entities" come and 
go as simulated time progresses and events produce 
changes in the simulated model. The events by which 
changes in the model are effectuated are a special kind of 
temporary entity that can be scheduled from within or 
outside the simulated model. Once the event takes place it 
no longer is a part of the simulated model. 

SIMSCmPT provides for identifying as members of a 
"set" entities that have specified common attributes. 
Entities may be filed in or removed from sets by specified 
rules. Sets may also be searched for entities meeting speci- 
fied conditions. In addition to set manipulation, SI~SCR~PT 
also has statements that extend the logical capability of 
FORTRAN SO that the user may apply arithmetic state- 
ments, logical conditions and search requests to all entities 
of a given kind. In addition, simple data gathering and 
statistic computing statements are provided. 

Storage allocation is removed from initial programming 
considerations. I t  is deferred until the simulation is to be 
run: At that time the actual number of each kind of perma- 
nent entity to be used is specified. Provision is also made 
for storing only those temporary entities that are currently 
active in the simulated system. In case of a shortage of 

storage space, provision is made for packing up to four 
integer attributes in a computer word. 

SIMSCRIPT alSO supplies a "Report Generator" that 
allows the user to layout output in the form he expects 
to see it. This is done by placing titles and headings on a 
form with 132-character lines as they are to appear on the 
report. This avoids the need for first doing the layout and 
then counting characters to translate the layout into 
suitable computer instructions. 

There are other facilities available in SI~SCRIPT such as 
statements for the generation of random variables, the 
conversion of simulated time from one unit to another, 
and individual input or output statements some of which 
convert time variables automatically. All of these are 
desirable and convenient. The basic power of the language 
comes from the more general concepts discussed above. 
I t  is the implementation of these concepts in SI~SCRIPT 
that makes it possible to approach simulations in terms 
of problem content and, when necessary, to introduce 
changes relatively easily. 

With these SIMSCRIPT facilities the basic questions con- 
sidered in program development are of three kinds. First, 
what are the significant parts (i.e., "entities") of the 
simulated model and what variables (i.e., "attributes") 
describe them? Second, under what conditions do sig- 
nificant changes take place in the values of the variables 
that describe the simulated model? Third, what tests 
should be made to see that the computer program devel- 
oped, accurately represents the model postulated? 

The first two questions seem obviously related to speci- 
fic SIMSCRIPT features. The first in effect concentrates on 
judicious selection of permanent and temporary entities 
and attributes to describe them. The second set of ques- 
tions concentrates on the selection of simulated events 
and describing what happens in each event. The relation 
of SIMSCRIPT to the third set of initial considerations that 
deals essentially with program acceptance tests is not so 
obvious. I t  arises from the extensive SIMSeRIPT use of 
subprograms. Once an error-free SIMSCRIPT translation 
has been obtained, all these subprograms have a high 
probability of receiving legal input vMues. This means 
there is a high probability of successful program execution. 
Reliance on program hang-up to reveal mistakes becomes 
risky under these conditions. I t  is much better to build 
into the program, features that will make it easy to show 
how the programmed model actually works. 

In the SIMSCrtlPT program for the vehicle-dispatching 
model the first two kinds of basic program choices are 
simple. SIMSCRIPT features are well matched to the require- 
ments of the vehicle~dispatching model. The entities are 
obviously vehicles (permanent) mission requests (tem- 
porary) and delayed request sets. A choice exists as to 
whether summary information to be accumulated should 
be kept separately by type of request and/or type of 
vehicle. In the vehicle-dispatching model it was decided 
to keep this information separate by type. This facilitates 
comparisons among vehicle types and types of mission 

Volume 10 / Number 12 / December, 1967 Communicat ions  of  the  ACM 7785 



requests. The choice of organization for the delayed mis- 
sion requests was between a first-in-first-out queue for 
each vehicle type and a single queue that can be searched 
on vehicle type, mission type, and arrival time. In the 
vehicle-dispatching model the latter was chosen. This 
choice was made on the basis of coding convenience even 
though it would mean longer execution times for model 
runs. 

The events that are significant in the vehicle-dispatching 
model are also readily identified. There are the two kinds 
of mission request arrival events that have already been 
described. There is also an event that occurs when a mis- 
sion is completed and a vehicle becomes available for 
assignment to a new request. The cancellation of unmet 
requests at the end of each simulated day is another model 
event. Two artificial events, one to start the model run 
and one to end it are also needed to control the operation 
of the model. 

The choice of desirable program testing aids to build 
into the program is less obvious. The SIMSCRIPT program 
was supplied with what might be called a selective, time- 
dependent, optional model trace. This trace was dependent 
upon building into each event program an identifying 
code for the event and for each unique result the event 
could produce. Three printouts were also provided. One 
of these printouts was of the current random number as 
an octal number, a decimal integer, and as a SI~scI~IPT 
random floating point number. For all events a printout 
showing simulated time, the event code, and the event 
result code was supplied. For events that reflect changes 
in the condition of vehicles or mission requests, a printout 
is supplied that shows all attribute values at the end of 
the event for the affected vehicle, mission request, vehicle 
type and mission type as well as the delayed mission queue. 
All of these printouts are made optional on the basis of 
simulated time. The printouts needed for this can be 
produced easily with the SIMSCmPT Report Generator. 
This scheme produces decimal printouts that anyone 
familiar with the model can examine to determine if the 
program behaves according to model specifications. The 
effectiveness of the scheme depends on the judgment used 
in placing the program switches that control the printouts. 
These switches allow the user to get the information he 
wants, and still not be inundated with printouts. 

On the 7040, FO~WRAN contains the familiar DO state- 
ments for controlling loops, logical IF statements with 
relational operators such as EQ for equal, LE for less than 
or equal, etc., input and output statements described by 
the usual FORMAT statements, and DIMENSION state- 
ments for reserving computer storage for one-, two-, and 
three-dimensional arrays. 7040 FORTRAN is similar to other 
versions of FORTRAN available on other computers. Its 
use on the vehicle-dispatching model can be considered 
representative of the use of an algebraic computer lan- 
guage on a digital simulation problem. 

When using a general algebraic computer language 
without features specifically designed for simulation prob- 

lems, the bas![c programming questions dealt with are 
different than those met when using SIMSeRIPT. One ques- 
tion that always arises is "How shall the passage of simu- 
lated time be represented?" Another question is "How 
shall compute:: storage be allocated to the various kinds 
of data used by the model?" A question that is very 
likely to arise is "How shall the input data be organized?" 

If it is feasible to represent simulated time as a succes- 
sion of time periods of equal length, a simple integer 
counter and tile loop statements of an algebraic language 
can be adequate time keeping tools. In this kind of time 
keeping scheme, the computer program checks for all 
possible kinds of model activity and cycles through 
currently active phases of the model. The time period used 
should be long enough to prevent the program from cycling 
through many time periods with little or no model activity. 
I t  should also be short enough so that no significant model 
activity is lost. For the FORTRAN program for the vehicle- 
dispatching model, it was decided that the use of a 10- 
minute time period would adequately represent model 
activity. 

Once a particular problem is stated, the organization 
and allocation of storage can often be tailored to fit the 
problem. One effect of this tailoring can be a sharp reduc- 
tion in the amount of storage required. The organization 
of storage can also be used to help keep track of simulated 
time. This is done in the FORTRAN program for the vehicle- 
dispatching model. First, it was determined that antici- 
pated use of the model would be confined to case with 
no more than 1000 vehicles, and 20 mission types. Com- 
parisons would be made of up to 3 types of vehicles, but 
only one vehicle type would be active in the model at a 
time. It  was also determined that no more than 36 mission 
requests would arrive in a 10-minute time period. With 
this information, a compact two-dimensional table of 144 
rows and 36 columns was designed to represent the arrival 
of mission requests during a simulated day. In this table 
the 144 rows represent the 10-minute time periods. The 
36 columns represent the order in which requests arrive 
during the 10-minute time period, and the value of the 
table entries represent the type of mission requested. 
When this table is supplemented by a row pointer and a 
column pointer that locate the last mission request to 
which a vehicle was assigned, this becomes a clever way to 
organize storage. This table design saves storage space. 
I t  also helps to keep track of simulated time, schedules 
the arrival of mission requests, and when the row pointer 
that helps to locate the last mission request serviced lags 
behind the current time period it serves as the basis for 
recognizing dielayed mission requests. The remainder of 
the data for the model is stored in simple arrays or 
straight-forward two-dimensional tables. This kind of 
storage organization assigns all data to fixed computer 
storage locations. I t  is feasible for a competent programmer 
to use computer storage dumps to determine what has 
gone wrong in case the program fails to run. Otherwise the 
printouts required by the model of the input data, vehicle 

786 C o m m u n i c a t i o n s  o f  t h e  ACM V o l u m e  10 / Number  12 / December,  1967 



TABLE I. 7040 STORAO~ UTILIZATION IN THE VEHICLE- 
DISPATCHING PROGRAMS 

Core storage words used 

Storage use 

SIMSCRIPT program FORTRAN program 

Program storage 
Hand written 9,725 5,072 
SIMSCRIPT generated ~ 3,152 • .. 
SIMSCRIPT supplied b 4,710 ... 
FORTRAN supplied l, 566 1,478 
IBSYS Library 152 122 
IBSYS Nucleus 5,376 5,376 

Total program storage 24,681 12,048 
Input-output buffers 867 659 
Data storage 9,707 ¢ 20,061 

~Subprograms generated from the definition cards and the 
Events List. 
b Subprograms for the clock, read-in of initial conditions, manage- 
ment of temporary storage, etc. 
Includes 2487 words that are reused. 

states, etc., at  the end of each simulated day, and the end 
of the run were considered adequate for testing the pro- 
gram. 

In  the vehicle-dispatching model a number  of initial 
values need to be read in to start  a simulation run. For  
each variable the number  of values to be read in for each 
run can vary.  The different kinds of variables used means 
variations in kinds of numbers and number  ranges. I f  
maintenance and cost data  as well as run parameters  are 
ignored, it is possible to use up to 3000 vehicles in a run 
and up to 5000 mission requests in a simulated day. With  
this kind of variation and quanti ty,  it is desirable to devise 
a quick and easy way to get the information into the com- 
puter. In  the vehicle-dispatching model the first thing tha t  
was done was to determine tha t  for anticipated uses of 
the model, the mission requests to be read into the model 
would be the same for each simulated day of the run. This 
reduced the maximum number  of mission requests for 
which it might  be necessary to read in data from 5000 per 
simulated day to 5000 per run. The mission request infor- 
mation was also organized so it could be read from 144 
cards. The planning for this par t  of the program also 
included devising a method for using a variable number  to 
identify the kind of information to read and an end of 
variable signal to terminate its reading. 

Comparison of  Storage Used 

Table I shows a comparison of the number  of words of 
7040 core storage used by the SIMSCRIPT and the FORTRAN 
program fo2 the vehicle-dispatching model. I t  is 
immediately evident from this table tha t  the SIMSCmPT 
program takes up about twice as much storage space as 
the FORTRAN program.  The storage requirements for the 
I B S ¥ S  Nucleus 1 are the same for the two programs. I a  

all other program categories the SIiMSCRIPT program 
requires more computer storage. 

There are several explanations for the SIMSCRIPT storage 
requirements. One explanation is that the program is made 
up of many subprograms. The SIMSCRIPT program contains 
the equivalent of 21 handwritten subprograms (i.e., the 
SIMSC~IPT Definition Cards and Events List are each 
counted as a subprogram) compared with 12 handwritten 
subprograms in the FORTRAN program. These figures do 
not tell the whole story. As the programs read into the 
computer, there are about 200 subprograms in the 
SIMSCRIPT program and about 30 in the FORTRAN program. 
With the standard subprogram setup required by the 
IBSYS operating system, 15 words of storage in each 
subprogram are used to enter and leave each subprogram, 
and a minimum of 3 words of storage are needed to call 
for the execution of the subprogram. If each of the 
SIMSCRIPT subprograms is called for from only one point 
in the program, well over 3,000 words of storage can be 
used in subprogram linkage. In many instances SI~SCRIPT 
reduces to 6 the number of words in a subprogram that 
are required to enter or leave it. Even with this reduction 
the Si~scmPT program still contains a sizeable block of 
storage tha t  does nothing but  provide operating system 
compatibility. 

A second explanation for the SIMSCRIPT program's  use 
of storage can be found in the inclusion of the program 
test faclities in the SI~SCRIrT program. Six of the hand- 
writ ten S~MSCRIPT subprograms are devoted to this. Most  
of these are SIMSCmPT reports. The FORTRAN subprograms 
produced for reports by the SI~SCmPT Repor t  Generator  
tend to be long. As a result about  1,800 words of storage 
in the SIMSCRIPT program are used for program testing. 
In  the FORTRAN program no formal checkout facilities are 
provided. 

Another  explanation of the use of storage by  the 
SI~SCRIPT program is the length of the subprograms gener- 
ated from the handwrit ten subprograms. The  FORTRAN 
program contains 931 cards. (This excludes comment  
cards used to explain what  is being done in the program.) 
These cards produce subprograms requiring about  5,000 
words of computer  storage. In  the SIMscmPT program 836 
noncomment  cards produce subprograms requiring almost 
10,000 words of storage. I n  par t  this comes about, because 
some SIMSCmPT statements represent a whole FORTRAN 
loop and in some instances represent data  scanning tha t  
requires a loop imbedded in the decision structure of the 
scan. In  addition in some cases the SI~SCRIPT Transla tor  
writes FO:RTRAN programs tha t  require more storage than  
comparable handwrit ten FORTRAN programs. 

The last reason for the amount  of storage used by  the 
SIMSCmPT program lies in the way computer  input and 

1 The IBSYS Nucleus [6] is the part of the IBSYS operating sys- 
tem that stays in core storage while a user's program is being 
executed. I t  takes care of the detailed setup necessary for input 
and output units and calls in the parts of the operating system 
needed by the next user's job. 

Volume 10 / Number 12 / December, 1967 Communications of the AClVl 787 



output devices are handled. SIMSCRIPT allows the user to 
specify any FORTRAN input or output unit he wishes. This 
means that  SIMSCRIPT itself ahvays refers to these units 
with a variable name to which a value is assigned at execu- 
tion time. This causes FORTRAN to define and supply input /  
output  buffers for all hardware units available. Possible 

T A B L E  I I .  UNPACKED DATA-STORAGE REQUIREMENTS 
FOR THE SIMSCRIPT VEHICLE-DISPATCHING PROGRAM 

Kind of data Minimum number of words of 
core storage used 

119 
41 
4 

10 
4 + (4 × NIVT) ~ 

2 + (2 × NIVT)" 

1 + (NIVT) a 

1 + (NIVT) ~ 

Initial Conditions 
Constants 
For each vehicle type 
For each mission request type 
For each vehicle 
For each combination of vehicle and 

mission request type 
For each consecutive combination of 

vehicle type and scheduled mainte- 
nance step b 

For each consecutive combination of 
unscheduled maintenance distribu- 
tion interval and vehicle type D 

For each combination of simulated 
day and vehicle type 

Temporary data 
For each active mission request 8 
For each vehicle-available event 3 
notice 
For other event notices 4 

NIVT is number of vehicle types. 
b This is a two-way table in which the entries in each row are con- 
secutive, but the number of entries in a row need not be the same 
for every row. 

TABLE III.  7040 EXECUTION TIMES a FOR SELECTED EXECUTIONS 
OF THE VEHICLE-DISPATCHING MODEL 

7040 time, minutes 

Run 

Requests 
]vehicle type 

Vehicles /simulated 
day (approxi- 

mately) 

Simu- 
lated 
days 

FOX'Ibm" SI~SCRn, T program, vehicle types 
program, 

vehicle 
typesl-3 1-3 I 1 1 2 I 3 

Mission Requests Generated 

A 10 10 5 1.5 ... 2.4 2.4 2.5 
B 25 100 5 1.6 ..- 3.0 2.9 3.0 
C 25 100 15 2.6 .-. 4.0 4.0 4.1 
D 75 100 15 • .. 8.7 . . . . . . . . .  
E 100 1000 5 5.2 ... 9.1 8.2 7.8 
F 200 1600 15 14.0 . . . . . . . . . . . .  
G 6 0 0  1 6 0 0  1 5  . . . . . .  s . . . . . . . . .  

Mission Requests Read in 

H 25 100 15 1.9 • .. 
I 75 100 15 ..- 10.2 . . .  

All times are for programs in relocatable MAP form with both 
program and data read from the system input tape. IBSYS 
version 7.1,2 on tape was used for all runs. 
s The program exceeded its core-storage capacity after processing 
1.3 simulated days in 9.2 min. 

ways of elim/[nating this in SIMSCRIPT programs are 
discussed by Weinert and Bossenga [7]. In  the two pro- 
grams being considered, all storage comparisons and timing 
comparisons are for reading both programs and data from 
the system input tape and writing output on the system 
output tape. In  Table I the figure for the FORTRAN pro- 
gram shown under input /output  buffers includes both the 
buffers and the file control blocks used by FORTRAN to 
define the system input unit and the system output unit. 
F I L E  cards provided by IBSYS have been used in the 
SIMSCRIPT program to eliminate the buffers for input /  
output units that  are not used. The different amounts of 
storage used reflect the different amounts of storage needed 
for file control blocks to define two units in the FORTRAN 
program and 13 units in the SIMSCRIPT program. 

Table I shows that  the amount of computer storage 
available for data in the SI~SCRIPT program is less than 
half that  available in the FORTRAN program. The amount 
actually used by the FORTRAN program is about 16,000 
words. Data  storage limitations on 7040 SIMSCRIPT pro- 
grams are severe. Ways to deal with the problem both in 
terms of SIMSCRIPT features and by using machine lan- 
guage programming are discussed by Weinert and 
Bossenga [7]. In  the vehicle-dispatching program no 
at tempt has been made to reduce the storage requirements 
of the SIMSCmPT program except for the elimination of 
unnecessary input /output  buffers. 

As indicated previously, SIMSCRIPT data storage is 
divided into two kinds; that  used for permanent data and 
that  used for temporary data. The minimum storage 
requirements for the various types of data in the SI~SCRIPT 
vehicle-dispatching program are shown in Table II .  Assure- 
ing that  the model is to be executed for three vehicle types, 
10 mission-request types, and 30 simulated days, the 
figures in Table I I  suggest that,  without taking into 
account the size of the vehicle fleet to be used, about 600 
words of computer storage are needed for permanent data. 
The storage space available for permanent data is that  
part  of the data storage that  is not reused. In  the vehicle- 
dispatching program this is a maximum of 7,220 words 
of storage. Assuming that  a fleet of 500 vehicles is to be 
used, 5,600 words of data storage will be used for perma- 
nent data. This will leave about 4,000 words for temporary 
data. The m~zdmum amount of storage for event notices 
is required when M1 vehicles have a vehicle avMlable event 
scheduled. In this case about 1,500 words of temporary 
storage will be used for event notices. This does not leave 
much room for unmet requests at the end of each simulated 
day;  during the day the number of incoming requests must 
be such that  the 500 vehicles available are not swamped. 

Now assume that  the fleet is to have 1,000 vehicles 
instead of 5(}0 vehicles. The 10,000 words required for 
vehicle-data storage alone is more than is available for all 
the initial conditions. SIMSCmPT provides for using the 
Definition Cards that  specify model variables to specify 
data packing. The use of packed data in a SIMSCmPT 
program lengthens the subprograms generated by 
SIMSCmPT from the Definition Cards ~nd also lengthens 

788 Communications of the ACM Volume 10 / Number 12 / December, 1967 



the execution time of the program. Packed data should 
therefore be avoided until needed. This is feasible in 
SIMSCmPT programs because it can be accomplished by 
rewriting and retranslating the Definition Cards for the 
variables that  are to be packed. No other program changes 
are necessary. In the vehicle-dispatching program, if it is 
assumed that  no vehicle will be dispatched on a mission 
or sent to scheduled or unscheduled maintenance more 
than 4,095 times, then the vehicle information can be stored 
in 6 rather than 10 words per vehicle. This will allow the 
program and the initial conditions for a 1,000 vehicle 
fleet to read in, but  it does not allow for much tempo- 
rary data storage. At the same time it would be advis- 
able to pack the mission request records into 4 com- 
puter words. This cuts the length of each mission re- 
quest record in half. I t  should then be possible to use a 
1,000 vehicle fleet, if the distribution of the arrival times 
for incoming requests and the duration of the missions 
requested are such that  when combined with the required 
maintenance, there is no pile up of unmet requests. 

Comparison of Computer Time Used 

Many kinds of computer times may be of interest to a 
computer user. This comparison is limited to two types of 
7040 time. One is the 7040 time necessary to obtain from 
the program as written by the programmer a relocatable 
deck of cards suitable for reading into the 7040 to make a 
model run. This will be called program-processing time. 
The second type of 7040 time to be considered is selected 
execution times for the model. 

The processing time for the SIMSCmPT program is 16.7 
minutes of 7040 time. This is about 2.7 times as long as 
the 6.2 minutes required for the FORTRAN program. Since 
7040 SIMscmP~ is a FORTRAN pretranslator this time 
difference is in the expected direction. The amount of the 
difference may be greater than expected. About one minute 
of the 16.7 minutes of SlrrSCRmT processing time is used to 
generate relocatable machine language code from the 
SIMSCRIPT Definition Cards and Events List. This is usually 
done only once or at the most only a few times during the 
development of a program. In addition the F O R T R A N  
code written by the S I M S C R I P T  Report  Generator tends 
to be longer than that  generated for events or subpro- 
grams. This lengthens processing time. During program 
check out SIMSCRIPT processing is done only on the parts 
of the program being revised. In S1MSCRIPT programs it 
is the events and subprograms not the reports that  seem 
to need the most revision. In  actual use, over the entire 
span of program development because SIMSCmFT is fastest 
on the parts that  need the most revision, the amount 
of the difference given by these figures can be considered 
a maximum. 

Table I I I  shows some 7040 model execution times using 
both the F O R T R A N  program and the SIMSeRIPT pro- 
gram. Each of these runs uses a uniform distribution of 
10 mission-request types. Three vehicle types representing 
relatively short, medium, and long operating and main- 
tenance times are also used in all runs. All runs are also 

made with only the end-of-run print-out. The selected 
runs are distinguished by varying the vehicle fleet size, 
the number of requests to be serviced, the number of days 
simulated, and the method by which the mission requests 
are introduced into the model. The variation in vehicle- 
fleet size and number of requests to be serviced is intended 
to approximate order-of-magnitude changes in the size 
of the vehicle-dispatching system represented by the run 
of the model. 

In  runs A, B, C, and E the model is operated with only 
one type of vehicle in the fleet at a time. In  all these runs 
the mission requests are generated by the program. In 
the FORTRAN program the three vehicle types are processed 
successively after one read-in of the program and data. 
In  the SIMSCalPT program, when mission requests are 
generated the type of vehicle to be used on each request is 
determined by a random drawing from a distribution of 
vehicle types. If only one type of vehicle is to be allowed 
at a time, this means this distribution must be changed 
for each vehicle type processed. This distribution is read 
in as part  of the SIMSCRIPT initial conditions by SIMSCRIPT 
routines that  are later written over by being added to the 
SIMSCRIPT temporary data storage. This means it is difficult 
to change these distributions without reading the program 
back in with a new set of initial conditions. This is what 
was done in runs A, B, C, and E. The total time necessary 
to get answers comparable to those produced from the 
FORTRAN program is the sum of the times shown for each 
of the three vehicle types. 

Perhaps the most significant thing shown by runs A, B, 
and C is that  until the model runs for 15 simulated days 
with a fleet of 25 vehicles servicing 100 requests per day, 
relatively little computer time appears to be used for 
processing requests. The lack of a significant increase in 
time between runs A and B indicates that,  even when 
small vehicle fleets are increased by a factor of 2.5 and 
the number of requests is increased by a factor of 10, most 
of the computer time is taken up with reading in the pro- 
grams and data and writing out results. 

Run E was originally made with the expectation that  a 
pileup of unmet requests would cause the SIMSCRIeT pro- 
gram to run out of core storage. This does not happen 
until the even larger vehicle fleet and more dispropor- 
tionate number of requests shown in runs F and G are 
used. I f  the fleet size is such that  all the initial conditions 
can be read in, it is the relations among the model vari- 
ables for this particular run of the model that  determine 
whether requests are met and also whether the SIMSCRIPT 
program runs out of storage. In  run E, as the model is 
run with the same fleet size and the same number of re- 
quests to be met, the execution time of the SIMSCRIPT 
program decreases as vehicle-operating and maintenance 
time, and hence number of unmet requests increases. In 
other words, so long as the SIMSeRIPT program does not 
run out of storage and in effect cause execution time to 
become infinite, it takes less time to recognize that  a 
request cannot be met than to do the data scanning and 
record keeping that  is required to meet it. 

Volume 10 / Number 12 / December, 1967 Communications of the ACM 789 



T A B L E  IV. NUMBER OF PROGRAM STATEMENTS CHANGED TO 
INTRODUCE MODEL CHANGES 

Number of statements changed 
Model change 

SIMSCRI~T FORTRAN 

Daily variations of exogenous mis- None 69 
sion requests 

Multitype vehicle fleet None • 12.q 
Incomplete missions 44 103 

This change was included in the original SIMSCRIPT program. 

In runs H and I the mission requests are read in rather 
than generated. The pattern of requests read in is the same 
as that generated by the FORTRAN program for the first 
day of run C. This same pattern of requests is used on each 
simulated day of the run by each vehicle type. The differ- 
ence in time between runs C and H indicates that for 
almost identical runs the use of generated missions in the 
FORTRAN program increases program-execution time by 
about one-third. This happens because all mission requests 
are read into the FORTRAN program on a maximum of 144 
cards. This set of mission requests is reused for each simu- 
lated day with no need to read in additional data. When 
generated missions are used, a new pattern of requests is 
generated at the beginning of each simulated day. Runs 
D and I show that with the SI~SCRIPT program the differ- 
ence in execution times runs in the opposite direction. 
When requests are read in the computer, execution time 
is about one-fifth longer than when they are generated. 
In the SIMSCRIPT program both generated and read-in 
requests are assumed to be different each day. In SIMSCRIPT 
each request read-in is an Exogenous Event that is read-in 
on a separate card. This means that in run I the SIMSCRIPT 
program read 4,860 request cards. No advantage was 
gained from the fact that these cards represented 44 repe- 
titions of the pattern of requests for the first day with 
variations in day and vehicle type. The same execution 
time would result if the pattern of daily requests required 
different mission types, vehicle types, and arrival times 
each day so long as the total number of missions requested 
and met remained the same. 

Introduct ion  of  Model Changes  

This comparison will be made on the basis of the number 
of program statements tha t  need to be changed to incor- 
porate three model changes into both the S~MSCmPT and 
the FORTRAN programs for the vehicle-dispatching model. 
This method of comparison is chosen to make the com- 
parison quantitative. The changes necessary were deter- 
mined by a programmer reviewing each program and 
writing out the revisions necessary to incorporate each 
model change. Since evolutionary model changes often 
come one at a time, each change is considered inde- 
pendently of the others. Each time the original code was 
revised to make one change. No computer checkout was 
made of the revisions. The three model changes considered 
are (1) the use of arbitrary exogenous mission requests 

790 Communications of the ACM 

that  are different each simulated day, (2) the use of a 
multi type vehicle fleet, and (3) the introduction of incom- 
plete missions. The results of this comparison are sum- 
marized in Table IV. 

SIMSCRIPT CHANGES. In the S I M S C R I P T  program 
the changes require an extension of the basic program 
design decisions. The SI~SCRIPT timing program and the 
scheduling of external events is set up for models where 
time is kept track of to 8 significant digits. SI~SCmPT 
allows the scheduling of external events at any time. In 
the vehicle-dispatching model the daily repetition of the 
pat tern of exogenous mission requests was provided by 
data setup. No special programming was required. As a 
result the change to completely arbitrary scheduling of 
external mission requests requires no program change. 

In  the SIMSC:alPT program once it was decided to accum- 
ulate summary information separately by both vehicle 
and mission-request type the use of a mult i type vehicle 
fleet was an obvious extension of the model. To accomplish 
this model extension, each mission request whether gener- 
ated or read in needs to carry with it the type of vehicle 
to be used. When a vehicle is available to meet a request 
it is necessary to determine if it is the type needed. This 
changes the kind of delayed mission search used. I t  re- 
quires the removal of the request for the available type of 
vehicle. This meant  changes in 18 program statements. This 
was easy; so it was included in the original SIMSCRIPT 
program. 

The introduction of incomplete missions requires the 
addition of some new variables. New random variables 
are needed to represent the amount of each mission that  
is completed and the effect of incomplete missions on un- 
scheduled maintenance. Another variable is needed to 
indicate how :much of a mission needs to be completed 
before it need not be rescheduled. A new incomplete mis- 
sion event tha t  takes place when activity on the incom- 
plete mission ceases must be added to the Events  List, and 
event notices, and the event must be coded. Cumulative 
attributes need to be adjusted for the occurrence of the 
incomplete mission. These changes are additions to the 
program. They  are added at the appropriate points to the 
existing program structure without changing that  struc- 
ture. 

FORTRAN CHANGES. In the FORTRAN program each of 
these changes requires a review of the basic program design 
decisions. For  arbitrary daily patterns of exogenous mission 
requests it is the reading of initial input data tha t  needs 
to be reconsidered. Data  must now be read in both at the 
beginning of a run and sometime during each simulated 
day. The revision worked out removed the mission requests 
from the initial run data, but  retained the variable number 
for identifying the data and the end-of-variable signal. 
The revised program reads in external mission requests at 
the beginning of each simulated day. This means that  if 
three vehicle types are being used the mission requests for 
the whole run will be repeated three times. This approach 
simplified the coding changes and meant the addition of 

Volume 10 / Number 12 / December, 1967 



not more than 288 cards per simulated day for each vehicle 
type. 

The introduction of a mixed vehicle fleet into the 
FORTRAN program resulted in a review of the mission 
request table. The revision decided on changed the mean- 
ing of entries in this table. The values entered were recoded 
to represent the combination of mission type and vehicle 
type requested. To minimize the coding changes required, 
the amount of storage allocated to keeping mission type 
and vehicle type information was left unchanged. This 
means that  the maximum number of different kinds of 
missions to which a vehicle can be assigned is reduced 
from 20 to 6. The maxinmm number of vehicles in the 
fleet is still 1,000. For  a run the maximum number of 
vehicles of one type is 334. 

The inclusion of incomplete missions in the FORTRAN 
program required another review of the setup of the mis- 
sion-request table. Since these changes were made inde- 
pendently, it was decided to leave the table set-up as 
originally designed in order to retain the fast execution 
times that  come from reading in a minimum amount of 
data. This meant it was necessary to introduce a separate 
table of incomplete missions containing the mission type 
and the time period in which it is to be rescheduled. When 
this table is set up, a reasonable amount of storage can be 
allocated to it, but it is wise to have the code check to see 
if the table capacity is exceeded and if necessary provide 
for terminating program execution. The introduction of 
this table also requires changes in scanning the mission 
request table to include scanning the incomplete mission 
table. At the end of each simulated day the incomplete 
mission table needs to be included in the tally of missions 
not completed and the remaining missions cancelled. 

Implications 
The use of SIMSCRIPT and FORTP~N on the vehicle- 

dispatching model illustrates situations that  can recur on 
many smM1 to medium sized simulation problems. First, 
let's assume that  there is someone available to work on 
the problem who understands SIMSCRIPT and sees no 
problem features that  are obviously troublesome to handle. 
Then the use of SXMSCRIPT allows the computer program 
preparation to take place from the point of view of the 
model being simulated. In contrast, the use of an algebraic 
language causes the problem to be approached from the 
point of view of the computer. Things like coding ease and 
computer storage allocation that  are extraneous to the 
model design dominate the program choices. With an 
algebraic language programming time is spent providing 
for this problem in particular facilities that  are already 
available in S~MSCnIPT in a generalized form. In the vehicle- 
dispatching model this is true for representing the passage 
of simulated time, for allocating computer storage, and 
for providing initial data read in. The need for these facil- 
ities is typical of simulation problems so the use of an 
algebraic language on simulation problems means that  
there will be many particular schemes devised to provide 
these facilities. I f  competent programmers devise these 

schemes, the advantages of fast execution times and 
parsimonious use of storage as illustrated by the vehicle- 
dispatching model can result. 

The introduction of model changes into the vehicle- 
dispatching model programs also illustrates a recurring 
condition in simulation problems. The development of a 
simulation model is often an evolutionary process. Some- 
times it is only after a model has been used that  desirable 
model features are recognized. In  simulation problems it 
also happens that  a new model slightly different from a 
previous model is needed. In  both cases it can be a material 
advantage to be able to put  model changes into a simula- 
tion program easily. SIMSCRIPT features tend to be gener- 
alized versions of what is needed in many different simula- 
tion models. These generalized features have been provided 
by a series of open ended program structures built up of 
many short subprograms. This kind of program structure 
usually makes the introduction of model changes relatively 
easy. As an indication of this in the vehicle-dispatching 
model it takes almost 7 times as many changes in the 
FORTRAN program to provide the model changes considered 
as it does in the SIMSCRIPT program. 

Now let's assume there is no one available who knows 
how to use SIMSCRIPT. At the present time there are many 
more programmers who know how to use an algebraic 
computer language such as FORTRAN than know how to 
use SIMSCRIPT. In  order to take advantage of SIMSCRIPT 
features, how much time must be spent learning it? The 
speed with which SIMSCm•T is learned is like many other 
learning tasks-- i t  is subject to wide individual differences. 
I t  is possible for an experienced programmer to learn 
SIMSCmPT with no formal instruction. There is enough 
written material available tha t  it is even possible to do 
this when it is necessary to set up the SIlYISCRIPT Translator 
and the SIMSCRIPT System Routines before using them. A 
better feel for expected performance may be obtained by 
examining the results of two similarly conducted SI~SCaIPT 
classes. Both  classes provided three-hour class sessions on 
five consecutive days. In  each case the instruction was 
organized around a class problem. Each member of the 
class was assigned at least one SIMSCRIPT event, report, or 
subprogram. An error-free SIMSCRIPT translation of this 
assignment was considered evidence of successful com- 
pletion of the course. In  one class [8] 19 people at tended 
one or more class sessions. Ten of these people at tended 
all the class sessions and eight of them produced error-free 
SIMSCRIPT translations in not more than four computer 
runs. In  this same class one experienced COBOL pro- 
grammer dropped out because he couldn't understand 
SIMSCRIPT. At the same time one successful member of the 
class had only a limited amount  of assembly language 
experience on a different kind of computer. With minor 
assistance he checked out the entire program and used it 
to make the desired simulation runs. In  the second class 
there were 17 people. Eight of these attended all sessions, 
but only three were successful. The  interest that  arises 
when people recognize SIMSCRIPT features that  make it 
easy to describe their problems probably makes learning 

Volume 10 / Number 12 / December, 1967 Communications of the ACM 791 



easier. This kind of difference in motivation as well as 
differences in ability and experience could account for 
wide variability in learning speed. 

The amount of computer time used by the two vehicle- 
dispatching model programs wiI1 not be the same for other 
problems, but longer SIMSCRIPT times can be expected 
because they illustrate the effect of certain language imple- 
mentation decisions. 7040 SIMSCRIFT like the original 7090 
SIMSCl~IPT is in part a FOI~TRAN pretranslator. This means 
that SIMSCnlPT processing times will be longer because 
they will include FORTr~AN processing time. As the vehicle- 
dispatching problem illustrates this time can be almost 3 
times as long. The pretranslator aspect of SIMSCalPT also 
contributes to its longer execution times. This same pre- 
translator structure, however, has advantages. I t  together 
with the existence of 7090 SI~SCRIpT meant that only 
8 man-months of effort were necessary to construct 7040 
SIMSCRIPT. Since 7040 SIMSCl~IPT is a FOrTRaN pretrans- 
lator, SIMsc~IP~ deficiencies can be overcome by using 
FOaTRA~ for parts of the program. Without the pretrans- 
lator structure the language deficiencies can be alleviated 
by writing part of the program in assembly language code. 
This may be quite satisfactory for a full time programmer, 
but is a stumbling block for the researcher with a simula- 
tion problem who is using a simulation language to make 
the computer more responsive to his needs. There 
have been suggestions [9] for making the simulation lan- 
guage more responsive by giving the user the ability to add 
his own language features. Tiffs in turn means a more 
difficult language construction job and a more sophis- 
ticated user. Whether the computer time used by a simu- 
lation language [5, 10], is a desirable investment in any 
particular problem depends upon the resources available 
for the problem, and the trade-offs that can be made 
among them. 

The increased storage requirements of SIMSCRIPT illus- 
trated by the vehicle-dispatching model are substantial. 
This characteristic of simulation languages intensifies the 
storage shortage found in many simulation problems. The 
storage shortage can be acute. Take for example a problem 
that uses particle velocities at over 350,000 points as one 
variable. Without considering any other data or any pro- 
gram storage requirements, the values of this variable 
would have to be packed more than 10 to a word to fit into 
the core storage of a 36-bit word computer with 32K words 
of core storage. SIMSC~IPT attempts to deal with this prob- 
lem by providing reuse of temporary entity storage and 
postponing storage decisions until execution time to take 
advantage of specific run trade offs. In some problems 
this is satisfactory, but inadequate storage is a continuing 
problem for simulation language, operating system, and 
computer designers. 7040 SI~SCRIPT illustrates how lan- 
guage and operating system design decisions both 
contribute to the storage shortage. SIMSCRIPT achieves its 
run time data storage allocation by using short subp~v- 
grams with entry points for getting and storing attribute 
values. This produces a program with many subprograms 

that will be referred to by other subprograms. The 7040 
IBSYS operating system was designed with a minimum 
18-word standard subprogram linkage. I t  was also designed 
with a program loader that limited the number of inter- 
subprogram references. Both of these operating system 
design features :limit SIMSCRIPT potentialities. In the early 
distributed versions of IBS¥S the inter-subprogram ref- 
erence limit was so low that it was impossible to load a 
nontrivial SIMSCRIPT probIem. In a program with many 
subprograms the lengthy IBSYS subprogram linkage uses 
valuable data storage that can be only partially compen- 
sated for by the program chaining facilities provided. 

This comparison of a S~MSCRIPT program and an 
algebraic computer language program for a vehicle-dis- 
patching mode] has illustrated the effect of SIMSCRIPT on 
program design decisions and resulting program charac- 
teristics. The algebraic language can provide a program 
that is more parsimonious in its use of computer storage 
and time. SIMSCRIPT provides program design tied to model 
characteristics and produces a program into which it is 
easy to introduce model changes. To use SIMSCt~Ip~ it may 
be necessary to train someone in its use, and provide more 
computer time and storage. For small or moderate size 
simulation problems these requirements appear to be 
manageable. For large simulation problems storage require- 
ments will need the continued attention of simulation 
language, operating system, and computer designers. 

I~.ECEIVND DECEr~tBER 1966; nEVISEn AUGUST, 1967 

REFERENCES 
1. TEICHROEW~ D., AND LUBIN, J. F. Computer simulation-- 

discussion of the technique and comparison of languages. 
Comm. ACM 9, I0 (Oct. 1966), 723-741. 

2. TOCHER, 1~. D. Review of simulation languages. Oper. Res. 
Quart. 16, '2 (June 1965), 189-217. 

3. KRASNOW, H]. S., AND MERIKALLIO, R . A .  The past, present 
and future of general simulation languages. TM 17-7004, 
IBM Advanced Sys. Develop. Div., Aug. 1963. 

4. YouNg, K. A user's experience with three simulation lan- 
guages (GPSS, SIMSCRIPT & SIMPAC). TM-1755/000/00, 
System Development Corp., Santa Monica, Calif., Feb. 
1964. 

5. EDWARDS, P. G., AND MURI~HY, J . G .  A comparison of the  use 
of the GPSS and SIMSCgIPT simulation languages in de- 
signing communications networks. TM-03969, Mitre Corp., 
Bedford, Mass., Mar. 1964. 

6. IBM 7040/7044 operating system (16/32K) programmer's 
guide, Form C28-6318-4, IBM Corp., Oct. 1964. 

7. WEINER'P, n .  E.,  ANn BOSgENGA, J. R. 7040 S I M S C R I P T :  a 
case study. RAC-TP-196, Research Analysis Corp., McLean, 
Va., Feb. 1966. 

8. WEINER% A. E. Learning a simulation language. Proceed- 
ings of the AgO-Working Group on Computers, ARO-D 
Report 65-.1, U.S. Army Research Office--Durham, Durham, 
N.C., Feb. 1965, pp. %0-365. 

9. KIVlAT, P . J .  Introduction to SIMSCRIPT II  programming 
language. P-3314, RAND Corp., Santa Monica, Calif., 
Feb. 1966. 

10. ROSEN, S. B., McCABE, J. P., NEVANS, E. S., WALDEN, 1~., 
FALVEY, J. ,  AND ~ACCHIOLI, A. S imula t ion  and analysis of 
473L system. Vol. II. SIMCOM and SIMSCRIPT simula- 
tion techniques; a comparison. ESD-TDR-64-656, General 
Electric Co., Washington, D.C., Dec. 1964. 

792 C o m m u n i c a t i o n s  of  the  ACM Volume I0 / Number  12 / December, 1967 


