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Eigenvectors of a 2n x 2n Matrix
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Unaversity of Alberta, Edmonton, Alberta, Canada

It has been known that the eigenvalues of a certain 2n X
2n matrix can be obtained by use of two smaller matrices of
order n which can be easily constructed. An algorithm is given
to obtain the eigenvectors of the 2n X 2n matrix by use of
the eigenvectors of the smaller matrices.

1. Imntroduction

Let the matrix

A B
B A

’

where A and B are real square matrices of order », be de-
noted by S, and the set of 2n eigenvalues of S by A(S).
Friedman proved that A(S) = NP = 4 4+ B),
MQ = A — B)), [1, 2]. Therefore, the eigenvalues of the
2n X 2n matrix S can be obtained by solving for the eigen-
values of two n X n matrices, P and Q. The use of the
smaller matrices instead of S requires less computer storage
and a smaller number of arithmetic operations which, in
turn, results in less computer time and lower upper bound
of roundoff error. For example, suppose the number of
arithmetic operations for an n X 7 matrix is of order n’.
In this case the number of arithmetic operations in using
two n X m matrices is of order 2n* as opposed to (2n)? in
using the original 2n X 2n matrix. Therefore, the saving
in the number of airthmetic operations in using the smaller
matrices instead of the original one is about 75 %.

Examples of matrices of the form 8 can be found in the
theory of directional couplers [3] and in overlapping
polymer chains [4]. :

2. Eigenvectors

The approach of using smaller matrices can also be ex-
tended to the problem of computing eigenvectors. Let
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z = (xil, xiz), where primes denote transposes, be the
eigenvector of S belonging to an eigenvalue X\;. Thus
Sz; = N2, can be written as

Azq + Bxo = Aza (1)
Bz 4+ Azn = Nz (2)
Adding the above two equations and letting P = 4 4 B
give
Pyi=py  (1€11); (3)
where

Yi = Ta + Tiz, pe = A, (; € I1) (4)

and I1 is the set of integers (1, 2, - - -, n). Similarly, sub-
tracting (2) from (1) with @ = A — B gives

Qzi = qz: (i€ 12) (5)

where

2i = Ta — Ta, 7 = N; (1€ I2) (6)

and I2 is the set of integers (n + 1,n + 2, -+, 2n). Note
that the ¥; and 2z; above may be replaced by any nonzero
multiples.

After the complete eigenvalue problems of P and Q are
solved, it is possible to form the eigenvectors of S by in-
spection according to the following algorithm.

Avrcoritam 1. To obtain x; belonging to A\, of S, follow
the following steps:

1. Is k € I1? If not, go to step 3, otherwise proceed to
step 2.

2. Is N\ € MQ)? If not, 2’ = (i, wi). If yes, search
for the eigenvector z; of @ belonging to »; = A\.. Then
form =’ = (y. + ¢z, yi — cz;), where cis an arbitrary
constant. Stop or exit.

3. Is\e € M(P)? If not, i’ = (2, ~2'). If yes, search
for the eigenvector y; of P belonging to u; = A\;. Then
form @ = (2" + cyi’, cyi ~ 2).

Proor. Substracting (2) from (1) with \; replaced by
us for the case when 7 € I1 gives

Qri = pis (7)
where
Ti = Ty — i (z € I1). (8)
Now we observe that
1) m e ND=1Q—nd|#0=r, =02y —2p =
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0 = x4 = za. Therefore, from the first part of (4),
Ty = T yi/2. The factor 1 need not be used because
eigenvectors are obtained only up to a constant multiplier.

() p€MQ) = pi = n, JEI2), =1 = ez =
Zia — T, where ¢ is an arbitrary constant. Therefore,
cz; = Tq — Tpand ¥; = Ta + T give xa = (ys + cz;)/2
and z» = (y; — c2;)/2. Again the constant factor need not
be used.

I

A proof for the case ¢ € I2 can be similarly constructed.

3. A Numerical Example

As an illustration of the use of Algorithm 1 we consider a
y >< .4 matrix

025 325 —125 —125
| -125 075 —175 325 %
=125 —125 025 325
—175 325 —125 075
From (9) we have
-1 2
P=A4+B-= ,
-3 4
(10)

[1.5 4.5}

Q=4 —B = .

05 -—25

Solving for the eigenvalues and eigenvectors of P and Q

gives M(P) = (M, M) = (, ) = (1, 2); INQ) =

(xg, M) = (ym) = (2, =3), 5" = (1, 1), 5 = (341),
= (9,1),and 2z, = (—1, 1).

By use of Algorithm 1 the eigenvector of S belonging to
A1 = 1 can be formed by noting that Ay ¢ A(Q). Therefore,
@' = (y', ') = (1,1, 1, 1). Similarly, to form z, belong-
ingtoX; = 2we note that >\2 € M@Q). In particular hs = Az
Therefore, 2’ = (12’ + cz5, ys — czd) = (249, 1+ c,
%2 — 9¢, 1 — ¢), where c is an arbitrary constant.

Acknowledgment. The preparation of this paper was

supported by the National Research Council of Canada
Grant No. A-3135.

Recervep DECEMBER, 1966; REVISED May, 1967

REFERENCES

1. FrieomMan, B, Eigenvalues of compound matrices. Research
Rept. No. TW-16, Math. Res. Group. New York U., New
York, 1951,

2. Marcus, M. Basic Theorems in Matriz Theory. Appl. Math.
Ser. 57, Nat. Bur. Standards, 1960, p. 17, Govt. Printing
Office, Washington, D.C., p. 17

3. MonTGOMERY, C. G. BT L. Principles of Microwave Circuits.
Boston Technical Publishers, Inc., Lexington, Mass. 1964,
pp. 437-452,

4. MonTrOLL, E. W. Markoff chains and excluded volume effect
in polymer chains. J. Chem. Phys. 18 (1950), 734-743.

Volume 10 / Number 12 / December, 1967

J. G. HERRIOT, Editor

ALGORITHM 318

CHEBYSCHEV CURVE-FIT (REVISED) [E2]
J. Booraroyp (Recd. 15 May 1967)

University of Tasmania, Hobart, Tas., Australia

procedure chebfit(x, y, n, a, m);
array z, ¥, a; integer n, m;

comment evaluates, in a[0] through a[m] of e[0:m+1], the co-
efficients of an mth order polynomial P(z) = a0 4+ a1z + - - - amz™
such that the maximum error abs(P(z;) —y:)) is a minimum over
the n(n>m-+1) sample points z, y[l:n]. The z[¢] must form a
strictly monotonic sequence.

This procedure is an extensive revision of Algorithm 91 (Albert
Newhouse, Chebyshev Curve-Fit, Comm. ACM 6 (May 1961),
281). The polynomial P(x) is a best-fit polynomial in the Cheby-
shev sense as described by Stiefel (Numerical Methods of T'cheby-
cheff Approzimation), in Langer (Epn.), On Numerical Approxi-
mation, U. of Wisconsin Press, 1959, pp. 217-232. Stiefel (p. 221)
shows that the procedure must terminate after a finite number
of steps. This is not always so with imperfect arithmetic, where
roundoff errors may cause cycling of the chosen reference sets.
This condition is detected by checking that the reference devia-
tion is always raised monotonically. At exit the absolute value
of a[m+-1] yields the final reference deviation. Negative a[m+1]
indicates that the procedure has been terminated following the
detection of cycling;

begin

integer t, 7, kymplusl, ri, 11, tmaz, 73, j1;

real d, h, ail, rhil, denom, ai, vhi, xj, hmax, himaz, 21, hi, abshi,
nexthi, prevh;

integer array r[0:m-4-1}; array rz, rh[0:m41];

mplusl := m + 1; prevh :=

comment index vector for initial reference set;

r[0] := 1; rlmplusl] :=
= (n—1)/mplusl; h := d;

value n, m;

for ¢ := 1 step 1 until m do
begin r[i] := h 4+ 1; h := h + d end;
start: h := —1.0;

comment select m 4+ 2 reference pairs and set alternating
deviation vector;
for ¢ := 0 step 1 until mplusl do

begln
ri = r[i];
rx[z r= xg[r ] alt] := y[ri];
rhi] := h := —h

end 7;

comment compute m + 1 leading divided differences;

for j := 0 step 1 until m do
begin
il 1= mplusl; ail := a[l];

rhil := rh[il];
for ¢ := m step —1 until j do

begin
denom := rx[il] — rx[i—jl;
at = altl; rhi = rA[];
alil] := (ail—az)/denom;

(Continued on page 803)
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