
Protection of Access Pattern
Biao Gao

gaobiao@iie.ac.cn
State Key Laboratory of Information Security, Institute of

Information Engineering, CAS
School of Cyber Security, University of Chinese Academy

of Sciences
Beijing, China

Shijie Jia∗
jiashijie@iie.ac.cn

State Key Laboratory of Information Security, Institute of
Information Engineering, CAS

School of Cyber Security, University of Chinese Academy
of Sciences

Beijing, China

Peng Yin
yinpeng@iie.ac.cn

Defence Industry Secrecy Examination and Certification
Center

School of Cyber Security, University of Chinese Academy
of Sciences

Beijing, China

Xueying Zhang
zhangxueying@cics-cert.org.cn

China Industrial Control Systems Cyber Emergency
Response Team
Beijing, China

ABSTRACT
Encryption is insufficient to ensure the system security because
the access patterns of user will still reflect the information about
the data and serve as an indicator for adversary to infer the sen-
sitive information. We conclude the related work on the access
pattern protection to provide a thorough literature review of his-
tory independence and oblivious random access machine, which
address the issues of static and dynamic access pattern observations
respectively.

CCS CONCEPTS
• Computer systems organization → Client-server architec-
tures; • Networks → Security protocols; • Information sys-
tems → Data access methods; Information storage technolo-
gies; • Security and privacy→ Security protocols.

KEYWORDS
History independence, oblivious random access machine, secure
deletion, access pattern protection
ACM Reference Format:
Biao Gao, Shijie Jia, Peng Yin, and Xueying Zhang. 2023. Protection of
Access Pattern. In 2023 7th International Conference on Computer Science and
Artificial Intelligence (CSAI) (CSAI 2023), December 08–10, 2023, Beijing, China.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3638584.3638585

1 INTRODUCTION
In modern networks, the amount of information is increasing expo-
nentially, and people rely on various systems to store data. However,
∗This author is the corresponding author.

This work is licensed under a Creative Commons Attribution International
4.0 License.

CSAI 2023, December 08–10, 2023, Beijing, China
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0868-8/23/12.
https://doi.org/10.1145/3638584.3638585

the data usually face the challenges of being audited timely (e.g.,
data protection regulations like HIPAA [10] and GDPR [40]) or
being observed (e.g., cloud disk storage like Dropbox) by the sys-
tem. HIPAA [10], for example, requires data to be disposed of in a
timely manner once it has become obsolete. People strive to explore
different methods like secure deletion [19], encryption algorithms
to prevent the data from disclosure. Unfortunately, the methods are
insufficient to provide full-fledged protection because the access
patterns of users will still expose data to disclosure risk. For exam-
ple, Islam et al. [22] analyzed the access patterns to successfully
identify around 80% of keyword queries to an encrypted database.

The access pattern can be considered as a collection of attributes
within user access sequences, encompassing factors such as access
time points, access types, access locations, access precedence order,
and other pertinent elements. These attributes contain significant
information concerning user data. When the adversary possesses
the privilege to observe the system, these attributes can serve as a
direct indicator of program structures, data interdependencies, and
in the worst-case scenario, enable complete restoration of deleted
data or retrieval of plaintext from encrypted data [8, 22].

There are two categories of these observation behaviors: the
static and dynamic observation. The static observation means that
the adversary possesses the ability to observe the system at cer-
tain checkpoints and obtains the corresponding representations of
the memory. The dynamic observation means that the adversary
possesses the ability to observe the system during certain or en-
tire procedures, throughout which the adversary obtains physical
access behaviors.

To provide access pattern protection targeting at the static obser-
vation, traditional methods such as overwriting [5, 14, 19, 23, 45] are
not sufficient because the user access patterns will leave artifacts in
all the layout of the system, and the system states at various time
points can be regarded as dependent values obtained by historical
operations with data as the independent variable. This may reveal
the existence of deleted data, the order of operations, etc. Therefore,
the history independence (HI) was proposed to prevent informa-
tion disclosure of historical operation sequences inferred from the
current state of the data structures [20, 29, 31]. There are two lines

99

https://orcid.org/0000-0003-2883-3998
https://doi.org/10.1145/3638584.3638585
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3638584.3638585
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3638584.3638585&domain=pdf&date_stamp=2024-03-14

CSAI 2023, December 08–10, 2023, Beijing, China Gao et al.

Figure 1: Model of Access Pattern Protection on a Random
Access Machine. The program performs random accesses to the
memory according to the read-only and write-only taps. The mem-
ory shows different states at corresponding time points. The HI
focuses on the static observations of memory representation at time
points while the ORAM focuses on the dynamic observations of
memory operations in process.

of HI researches: designing history independent data structures
(HIDS) [7, 16, 17, 20, 30, 31] and applying the history independence
to protect the privacy of voters [31], the file system [4, 13], the
database [3], etc., without disclosing the order in which the data
are organized.

To provide access pattern protection targeting at the dynamic
observation, oblivious random access machine (ORAM) was pro-
posed to hide the logical access behaviors since the adversary can
directly observe the physical access behaviors. In this scenario,
although the transmitted data can be encrypted with encryption
algorithms, the adversary may perform reverse-engineering attacks
on these dynamic observations to derive the interdependencies of
sensitive data and structures. To address this issue, ORAM provides
a transparent memory access approach to an adversary. Similar to
that of HI, the researches on ORAM also consist of two lines of
work: one line is designing delicate ORAM structures and analyzing
the theoretical overhead [2, 24, 41], and another line is employing
ORAMs to various applications in practice such as in the case of
multiple clients or servers. In the progress of ORAM research, peo-
ple have applied ORAM into oblivious storage [34, 35, 43], oblivious
file system [1, 46], secure multi-party computation [42, 47], secure
processor [25, 27, 44], etc.

The key insights of HI and ORAM are both primarily to intro-
duce extra (dummy) operations to confuse the potential adversary
about which access behaviors happened or which data the user
logically tends to access. Besides, we need to emphasize that while
HI focuses on protection against static observations, the access pat-
tern protection in this scenario is pervasive throughout the entire
lifecycle of the system.

In this work, we present a thorough literature review of the
access pattern protection. According to the types of adversary ob-
servations, we divide the access pattern protection into two sce-
narios: 1) the history independence against static observations; 2)
the oblivious random access machine against dynamic observa-
tions. For both of these two scenarios, we summarize the pertinent
theoretical and applied researches.

2 BACKGROUND
2.1 The Security Definition of HI
History independence focuses on protecting user’s historical access
patterns which lead to the current abstract state of system [20].
There are two types of definition in terms of the security of history
independence, namely strong history independence (SHI) and weak
history independence (WHI), which correspond to two kinds of
adversary capabilities.

Definition 2.1. (Strong History Independence [31]).
Let 𝑆1, 𝑆2 be operation sequences with 𝑃1 = {𝑖11, 𝑖

1
2, · · · , 𝑖

1
𝑙
} and

𝑃2 = {𝑖21, 𝑖
2
2, · · · , 𝑖

2
𝑙
} as two lists of corresponding checkpoints

respectively, such that ∀𝑏 = 1, 2, ∀𝑗 ∈ {1, · · · , 𝑙}, we have that
1 ≤ 𝑖𝑏

𝑗
≤ |𝑆𝑏 | and the data structures of 𝑖𝑏

𝑗
yield the same content.

A data structure implementation is strongly history independent
if after performing any such operation sequences, the memory
representations at checkpoint 𝑖1

𝑗
and 𝑖2

𝑗
are always identical.

In other words, a system with SHI enables adversaries to have
multiple snapshots of the system without compromising security
whereas a system with WHI only allows adversaries to perform a
single observation. Both SHI and WHI ensure that no information
is disclosed beyond what is necessarily exposed by the content of
the observed data structures.

2.2 Gale-Shapley Stable Marriage Algorithm
Gale and Shapley [12] proposed an algorithm G-S SMA which was
well-known andwidely used inmany subsequentworks [4, 7, 13, 16]
to design structures and systems satisfying the security definition
of HI. The G-S SMA was to solve the problem of guaranteeing a
stable matching between two equal-sized sets of individuals. More
specifically, there assumes to be two sets 𝑀 = {𝑚𝑖 |1 ≤ 𝑖 ≤ 𝑛}
for men and𝑊 = {𝑤𝑖 |1 ≤ 𝑖 ≤ 𝑛} for women. Each man/woman
has his/her own preference order for all the elements in the other
set. The SMP aims to find out a stable matching result {(𝑚,𝑤)𝑛},
such that ∀𝑖, 𝑗 ∈ {1, · · · , 𝑛}, for any two matched pairs (𝑚𝑖 ,𝑤𝑖) and
(𝑚 𝑗 ,𝑤 𝑗),𝑤𝑖 indeed prefers𝑚𝑖 than𝑚 𝑗 whereas𝑤 𝑗 indeed prefers
𝑚 𝑗 than𝑚𝑖 . If not, they called it an unstable match.

The algorithm works in a number of iterations as follows: Firstly,
each man in𝑀 makes a proposal to their most preferred woman ac-
cording to their preference orders. Secondly, each woman considers
the proposals she has received and tentatively accepts the proposal
from her most preferred man among those who have proposed to
her so far. If a woman receives a proposal from a man while already
provisionally engaged with another man, she compares the two
proposals based on her preference order and retains the proposal
from the more preferred man. Thirdly, the rejected men update
their preference orders, removing the woman who rejected them
from their lists, and propose to their next most preferred woman
who has not yet rejected them. Fourthly, repeat the second and
third step until each woman is tentatively engaged to a single man.
This ensures that each man has proposed to every woman in his
preference order. Finally, the SMA terminates when all men are
engaged with a woman, resulting in a stable matching.

Gale and Shapley demonstrated the existence of a stable mar-
riage arrangement for an equal number of men and women. Their
algorithm ensures that the resulting pairs are always well-matched

100

Protection of Access Pattern CSAI 2023, December 08–10, 2023, Beijing, China

Figure 2: A Basic Binary-Tree Structure of ORAM.

and maintain stability. It is important to note that the algorithm
follows the principle of suitor-optimality, ensuring that each man’s
partner in the final matching will not be ranked lower than any
other potential partner in his preference list under alternative rules.

2.3 The Security Definition of ORAM
Oblivious random access machine focuses on protecting user’s
ongoing access pattern. In other words, the adversary cannot infer
the true logical access sequences of users from the physical ones
in progress. We present the definition in terms of the security of
ORAM as follow.

Definition 2.2. (Secure Oblivious Random Access Machine).
Let ®𝑦 := ((𝑜𝑝1, 𝑢1, 𝑑𝑎𝑡𝑎1), · · · , (𝑜𝑝𝑀 , 𝑢𝑀 , 𝑑𝑎𝑡𝑎𝑀)) represent a

data request sequence of length M, where for all 𝑖 ∈ {1, · · · , 𝑀},
the 𝑜𝑝𝑖 denotes a 𝑟𝑒𝑎𝑑 (𝑢𝑖) or 𝑤𝑟𝑖𝑡𝑒 (𝑢𝑖) operation, the 𝑢𝑖 denotes
the identifier of the block to be read from or written to, and 𝑑𝑎𝑡𝑎𝑖
is the corresponding data. Let 𝐴(®𝑦) represents the access sequence
performed on the storage device given the data request sequence ®𝑦.
The ORAM construction is considered to be secure if for any two
equal-length data access request sequences ®𝑦 and ®𝑧, the advantage of
distinguishing the access patterns𝐴(®𝑦) and𝐴(®𝑧) is computationally
negligible to anyone except for the data owners.

2.4 Tree-based Structure of ORAM
The seminal work of ORAM proposed two classical constructions:
square-root ORAM and hierarchical ORAM [15]. Subsequently, Shi
et al. were inspired by the hierarchical ORAM to design a tree-based
ORAM [36], which became the fundamental component of most
existing ORAMs. We present a basic binary-tree structure of ORAM
in Figure 2. Each node in the tree is called a bucket consisting of
a fixed number of blocks. A basic idea behind hiding the logical
accesses is to make the traditional read and write operations share
the indistinguishable patterns, e.g., in Figure 2, despite of whether
the user tends to read or write a block, the user always have to
follow a predetermined set of rules to request for a serial of data
blocks to hide which block is the target, and sequentially the user
reshuffles and writes all the updated (like re-encrypted) blocks back
to the tree. Conventionally, the data is firstly written to the root
bucket and then evicted along the paths from the root node to the
leaf nodes according to the ORAM scheme. The dummy and real
evictions happen synchronously to eliminate the specificity of the

data blocks to be evicted. However, we should note that most of
the existing ORAM schemes suffer from larger overhead caused
by these time-consuming operations like reshuffling, eviction, and
some complicated cryptographic primitives.

2.5 Models and assumptions
In this subsection, we specify the adversary model and assumptions
for access pattern protection in the following.

• We ignore other kinds of potential risks except for the ac-
cess pattern disclosure. In other words, the adversary has a
negligible advantage of using other methods to compromise
the secret information (e.g., the decryption key/passwords)
in both HI and ORAM schemes.

• In the case of HI, the adversary has a privilege to check the
entire layout of the system storage at all layers to capture
the snapshots at fixed checkpoints. This assumption applies
to many real-world scenarios such as the data protection
regulations like HIPAA [10].

• In the case of ORAM, the adversary has a privilege to contin-
uously observe the system to capture all the access behaviors
from users to system. This assumption applies to many real-
world scenarios such as the cloud disk storage like Dropbox.

3 HISTORY INDEPENDENCE
In this section, we will present a literature review of history in-
dependence from two perspectives: the researches on the abstract
data structures and applications of history independence.

3.1 History Independent Data Structure
Micciancio [29] firstly proposed a weak notion of history indepen-
dence and abstracted the problem of designing data structures with
property of obliviousness. Naor et al. [31] improved this notion
into two significantly important types of definition focusing on
the dictionaries: the strong history independence and the weak
history independence. For the first, the strong HI denotes a data
structure that allows multiple snapshots while only supporting
insertions and queries from a set. In this case, the operations of
insertion and queries both had amortized cost of 𝑂 (1) while the
space utilization required 𝑂 (log𝑛). For the second, the weak HI
denotes a data structure that allows only a one-time snapshot while
supporting deletions besides the insertions and queries from a set.
In this case, the amortized cost of insertion and deletion were both
𝑂 (1) while the space utilization war liner in the number of the
elements inserted in the hash scheme in their work. Additionally,
their work only performed well for the fixed-size records and left an
open problem whether it is possible to implement a low-overhead
scheme for a variable-size record.

In order to further reduce the cost and compensate for the lack
of support for deletion in the SHI scheme of [31], Blelloch et al. [7]
utilized the G-S SMA to construct a strongly history independent
hash table, supporting queries with𝑂 (1) overhead in the worst case
and insertions and deletions with𝑂 (1) overhead using𝑂 (𝑛) storage
overhead. However, the expected cost for all operations used in
their hash table implementation would increase exponentially with
the growth of rate of space utilization, i.e., it yielded𝑂 (1/(1 − 𝛼)3)
expected time where the hash table had 𝑝 slots to store 𝑛 = 𝛼𝑝

101

CSAI 2023, December 08–10, 2023, Beijing, China Gao et al.

keys. Although they proposed another variant of scheme, its rate
of space utilization was only 9%.

To improve the space utilization, Naor et al. [30] introduced a
dynamic dictionary data structure with HI property by utilizing the
cuckoo hashing method [32]. Although the cuckoo hashing does
not possess the property of HI, they ensured each set of elements in
the hash table had only one unique representation up to the process
of initial randomness. And their data structure enabled insertions
and deletions in worst-case logarithmic time complexity. When
considering only insertions and membership lookup, the space
utilization is approximately 50%. However, upon incorporating
deletion operations, this utilization decreases further to 25%.

Besides the focus on the space utilization, Goodrich et al. [16]
paid attention to the collision-time attacks which the [7] cannot
defend against. The collision-time attacks mean that the adver-
saries exploit the timing characteristics of different operations to
infer collision situations within a hash table and gain access to
certain private information. Goodrich et al. relaxed the restricted
requirement of SHI in [7] and leveraged the classic linear prob-
ing collision-handling scheme to design a hash table to withstand
collision-time attacks. Specifically, their work calculated a proba-
bility for each element based on its current position, representing
the likelihood of the element being evicted to the next position
when a data collision occurred. Using this method, their solution
transformed the temporal differences caused by hash collisions into
independent distributions related to probabilities, thereby achieving
history independence. Their scheme achieved twice the efficiency
for insertions and deletions compared to [7] when the system was
under heavy load. However, their work only ensured the property
of WHI.

3.2 History Independent Application
Compared to theoretical researches, there are only a few studies
dedicated to exploring the application of history independence,
because current system designs often contradict the requirements
of HI. For example, the data structures and disk distributions, are
inherently geared towards data recovery to some extent. Addition-
ally, various concerns, including trade-offs, disk search time, and
the latency, need to be taken into account.

Bajaj and Sion embedded HIDS into the file system layer and
constructed the first file system with SHI property, called HIFS [4].
They determined the data location based on document attributes,
making the distribution of block data on the disk independent of
any past operations. The document paths and read/write offsets
serve as the computation basis for keys in the hash table, and
the disk buckets map entries are treated as entries in the hash
table. By leveraging the G-S SMA to establish the preference lists
between keys and buckets in the hash table, the data distribution
exhibits history independence. Compared to the non-HI EXT3 file
system, [4] showed a decrease in sequential read efficiency ranging
from 0.5X to 0.7X at a 60% load, and a decrease in random read
efficiency ranging from 0.5X to 0.7X at a 90% load. However, the
write efficiency significantly decreased when the loads were above
60%.

Gao et al. [13] proposed a more practical scheme, called eHIFS,
to address the high cost of HIFS [4] in the case of large load fac-
tors. They relied on a significant observation that HIFS simply
re-organizes the entire data in a history independence manner
and many of those operations are unnecessary in the case of SHI.
Because the adversaries have had multiple snapshots and already
obtained the location information of the observed data at previous
checkpoints. Therefore, eHIFS took advantage of knowledge on
the adversaries’ observations and fixed the observed data in cor-
responding locations at a determined time interval to eliminate
those time-consuming and unnecessary operations. Their scheme
claimed to have a 33X write throughput improvement when the
file system load factor is 90%.

Besides file system, Bajaj et al. also applied HI into the database
design. They introduced a relational database supporting untrace-
able deletion, called Ficklebase [3], by identifying residual informa-
tion from deleted data and constructing a HIDS to hide historical
operations. The key idea is to proactively maintain future versions
of the database that excludes the to-be-deleted data. The Ficklebase
would uniformly perform the deletion of data tuples at certain time
intervals. However, their scheme has certain drawbacks. Firstly, it
excludes tamper-resistant information such as audit logs consid-
ering that the logs are designed to be unreadable by adversaries.
Secondly, maintaining a large number of future versions incurs
significant overhead and reduced the performance. Thirdly, their
approach requires integrating all application logic into the queries
of the database, thus not supporting user-defined trigger mecha-
nisms.

These limitations of HI application need to be carefully consid-
ered and balanced in practical applications. While they may be
beneficial in terms of protecting data privacy and achieving history
independence, it may not be suitable for scenarios that require
robust auditing capabilities, flexible trigger mechanisms, or are
sensitive to performance.

4 OBLIVIOUS RANDOM ACCESS MACHINE
The oblivious random access machine originated to prevent the
memory from reverse engineering attacks by adversaries. The mod-
els of researches on ORAM have been promoted to the client-server
model, where the client stores data on the remote untrusted server.
However, the large overheads of the communication, computation
and storage are the main obstacles for applications, because ORAM
usually employs complicated cryptographic primitives, randomness
and obfuscated access patterns within memory to ensure access
pattern security.

4.1 Traditional Client-Server ORAM
Goldreich et al. proposed the pioneering work of ORAM with two
classic constructions: the square-root ORAM and the hierarchical
ORAM [15]. The square-root ORAM is a single-layer linear struc-
ture and introduces a buffer to temporarily store accessed data
blocks. The idea behind it is to perform data read and update op-
erations regardless of whether the target data is retrieved from
the buffer or the storage space. By accessing data from the storage
space even when the buffer is used, it helps to obfuscate the actual
data access patterns and maintain the privacy of the user’s access

102

Protection of Access Pattern CSAI 2023, December 08–10, 2023, Beijing, China

behaviors. The hierarchical ORAM is a two-dimensional extension
of the square-root ORAM, where the data structure is expanded into
multiple layers, each equipped with a unique buffer. Furthermore,
they established a mechanism for merging data across layers to en-
sure that access patterns remain undisclosed during data transfers
between layers.

Based on [15], Shi et al. organized data to be stored in a binary
tree, called Tree ORAM [36]. They took the overhead in the worst
case into consideration, which previous works [15, 18, 33] mostly
did not focused on. Shi et al. thought the commonly used oper-
ations like reshuffling led the overhead to 𝑂 (𝑁). Corresponding
description about Tree ORAM has been presented in Section 2.4.
Their scheme achieved 𝑂 (log3 𝑁) amortized and worst-case over-
head using trivial bucket ORAM as the component while achiev-
ing �̃� ((log𝑁)2.5) amortized overhead and �̃� ((log𝑁)3) worst-case
overhead using square-root ORAM as the component, where �̃�
denotes 𝑝𝑜𝑙𝑦 log log.

To simplify the Tree ORAM to be more practical, Stefanov et
al. proposed Path ORAM [39]. It eliminated or optimized many
complicated operations such as oblivious sorting, time-consuming
eviction strategy, etc., reducing a low computation overhead. When
accessing a block, the system would retrieve the entire path, where
the target resided, to the local stash and then assigned new ran-
dom paths for the written back blocks. The system would select
a bucket on the corresponding path from the root node to the
common node of the block’s original read-out path and the new
randomly chosen write-back path. The block was written into such
a bucket in a greedy algorithm, i.e., as close to its leaf node as possi-
ble. This greedy algorithm saved eviction operations layer by layer.
Besides, by leveraging the recursive maps locally, the Path ORAM
reduced the client storage overhead from 𝑁 /𝜒 +𝑂 (log𝑁) · 𝜔 (1)
to 𝑂 (log2 𝑁 /log 𝜒) · 𝜔 (1). However, the bandwidth cost increased
from traditional𝑂 (log𝑁) to𝑂 (log2 𝑁 /log 𝜒), where the block size
𝐵 = 𝜒 ·log𝑁 . As a representative ORAM scheme for small client stor-
age, Path ORAM has gained widespread application and research
interest due to its relatively simple construction and implementa-
tion.

To reduce the bandwidth cost, Stefanov et al. established a novel
mechanism, namely Partition ORAM (or SSS ORAM) [38], where
they divided a bigger ORAM into smaller ORAMs and blocks were
evicted into a randomly assigned server partitions in the back-
ground to achieve a more practical performance. The motivation
behind the Partition ORAM was that the primary source of over-
head in previous ORAM works were the costly remote oblivious
sorting protocol executed between the client and the server, which
could take up to 𝑂 (𝑁) time. Each partition would be a subsystem
of the entire ORAM storage and could perform data transmission,
data reshuffling concurrently. Compared to previous works, the
client in Partition ORAM maintained a much smaller map from
the data blocks to their partitions. Besides the reduced storage
overhead, each access required retrieving the data blocks from the
partition where the target data resided, rather than transmitting
the entire dataset. This significantly reduced the communication
overhead. However, we should note that the Partition ORAM is
better suited for scenarios involving large-storage clients while
worse for small-storage ones.

The Path ORAM and Partition ORAM both provide an impor-
tant reference. They become the foundation for subsequent ORAM
research endeavors and inspire the following works on multi-client
andmulti-server ORAMs, whose focuses are lying onmore practical
scenarios. It is worth mentioning that the state-of-the-art work on
the theoretical analysis of ORAM overhead are proposed by Larsen
et al. [24] in CRYPTO ’18 and Asharov et al. [2] in J.ACM’23. They
prove that the Ω(log𝑁) overhead in memory accesses is theoreti-
cally indispensable for any online ORAM to ensure computational
security, where 𝑁 is the number of data blocks.

4.2 Multi-client or Multi-Server ORAM
Recent researchers have focused more on the multi-party ORAM
as the increase of need for more clients and servers in the current
network. However, when applying ORAM into multi-client or multi-
server scenarios, many new challenges will arise. For example, the
mutual communication between these clients/servers may leak
sensitive information about the access patterns like side channel
attacks. Moreover, the multiple parities involved in the ORAM
scheme will amplify the overhead of storage, communication and
computation naturally.

Maffei et al. proposed PIR-MCORAM [28] to achieve a mali-
ciously secure multi-client ORAM. They not only proved the server-
side computational lower bound to be Ω(𝑁), but also leveraged
the technique of Private Information Retrieval (PIR) [9], a new
accumulation technique, and an oblivious gossiping protocol to
design an 𝑂 (

√
𝑁) communication overhead multi-client ORAM.

Their scheme also incorporated the public-key cryptography and
zero-knowledge proofs for access control mechanism. However,
these techniques are significantly time-consuming and the 𝑂 (

√
𝑁)

is impractical for real-world scenarios. Similar to PIR-MCORAM,
Blass et al. [6] also presented amulti-client ORAM against malicious
adversaries. Their idea was to divide client accesses into two dis-
tinct parts, allowing for more thorough examination to uncover any
malicious behaviors. Additionally, they utilized a classical ORAM
as a foundational component to store the meta data of Path ORAM,
which was embedded in their scheme. However, the complicated
shuffling in [6] still resulted in the large 𝑂 (𝑁 log2 𝑁) computation
overhead.

Cetin et al. proposed TaoStore [35], which firstly initiated the
formal study of asynchronicity in ORAM system. They pointed out
several issues that the multi-client ORAM may be faced with. For
example, multiple paths of blocks may be requested for simultane-
ously or the data need to be updated while they are just written
back, all of which may cause the problem of synchronization. The
idea of [35] is to maintain a data structure, called request map, to
keep track of all concurrent requests for the same block, i.e., the
system will only react correctly to the first request for a block and
other subsequent requests for the same block will trigger fake reads
for a random path. Besides, TaoStore introduced a local invariant,
fresh-subtree, to synchronize the data retrieved from the server to
address the data conflict. Although TaoStore achieved 𝑂 (log𝑁)
computation and communication costs, it only considered the semi-
honest model and relied on a trusted third-party proxy to construct
the system.

103

CSAI 2023, December 08–10, 2023, Beijing, China Gao et al.

To further reduce the overhead of asynchronous multi-client
ORAM, Cheng et al. presented Tianji, which extended the original
S3ORAM [21] to a new S3ORAM+. By removing the complicated
operation such as the eviction, Tianji relied on a trusted third-party
proxy to achieve the 𝑂 (log𝑁) computation overhead. However,
we should note that the trusted third-party proxy is a stringent
requirement which is impractical in most real-world scenarios.

Based on the traditional PartitionORAM, Stefanov et al. proposed
MCOS [37], which leveraged the powerful computational capability
among the non-colluding clouds to move the reshuffling operations
from the client side to the server side. The idea of hiding the access
pattern in MCOS is to separate the observations of different clouds,
i.e., the non-requested servers, compared to the requested server,
have different knowledge on the access behaviors. Specifically, the
requested blocks will be shuffled in the selected cloud and sent to
other clouds, then these clouds will response the client with these
requested blocks. This kind of permutation ensures the security
of access pattern in the model of non-colluding clouds. Although
MCOS achieved 𝑂 (1) client-server communication overhead, the
operations of onion encryption and shuffling still consumed large
and the cloud-cloud communication resulted in the low response
performance.

To further take advantage of the non-colluding clouds model to
design ORAMs, Liu et al. proposed a NewMCOS [26], which further
divided the partitions inMCOS [37] into multiple clouds. As a result,
a original request could be separated into different smaller access
sequences targeting at corresponding clouds. Therefore, in such a
non-colluding model, there is no cloud having all the knowledge of
the entire request from the client and this ensures the obliviousness
of access pattern. Besides, NewMCOS utilized a small evict cache
to perform the eviction in a burst way, whose idea was from the
BurstORAM [11], to reduce the communication and computation
overhead. Although NewMCOS finally achieved 𝑂 (1) client-server
communication overhead, the two-layer onion encryption used in
their scheme still consumed large cost.

5 CONCLUSION
The access pattern leakage provides adversaries with more possi-
bilities to compromise the system confidentiality besides directly
attacking on encryption algorithms. In this work, we present a
thorough literature review of the access pattern protection from
two perspectives of the observations: the researches on history in-
dependence for static observations and the researches on oblivious
random access machine for dynamic observations. We hope that
this work can be further exploited and become a reference for the
subsequent works on access pattern protection to achieve more
better designs.

ACKNOWLEDGMENTS
This work was supported by National Natural Science Foundation
of China (No.62272457) and Defense Industrial Technology Devel-
opment Program (Grant JCKY2021906B002).

REFERENCES
[1] Adil Ahmad, Kyungtae Kim, Muhammad Ihsanulhaq Sarfaraz, and Byoungyoung

Lee. 2018. OBLIVIATE: A Data Oblivious Filesystem for Intel SGX. In NDSS.

[2] Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico,
and Elaine Shi. 2022. Optorama: Optimal oblivious ram. J. ACM 70, 1 (2022),
1–70.

[3] Sumeet Bajaj and Radu Sion. 2013. Ficklebase: Looking into the future to erase
the past. In Data Engineering (ICDE), 2013 IEEE 29th International Conference on.
IEEE, 86–97.

[4] Sumeet Bajaj and Radu Sion. 2013. HIFS: History independence for file systems.
In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. ACM, 1285–1296.

[5] Steven Bauer and Nissanka B Priyantha. 2001. Secure data deletion for Linux file
systems. In Proceedings of the 10th conference on USENIX Security Symposium-
Volume 10. USENIX Association, 12.

[6] Erik-Oliver Blass, Travis Mayberry, and Guevara Noubir. 2017. Multi-client
oblivious ram secure against malicious servers. In International Conference on
Applied Cryptography and Network Security. Springer, Cham, 686–707.

[7] Guy E Blelloch and Daniel Golovin. 2007. Strongly history-independent hashing
with applications. In Foundations of Computer Science, 2007. FOCS’07. 48th Annual
IEEE Symposium on. IEEE, 272–282.

[8] Bo Chen, Shijie Jia, Luning Xia, and Peng Liu. 2016. Sanitizing data is not enough!:
towards sanitizing structural artifacts in flash media. In Proceedings of the 32nd
Annual Conference on Computer Security Applications. ACM, 496–507.

[9] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. 1998. Private
information retrieval. Journal of the ACM (JACM) 45, 6 (1998), 965–981.

[10] United States Congress. 1996. Health Insurance Portability and Accountability
Act. https://www.hhs.gov/hipaa/index.html

[11] Jonathan Dautrich, Emil Stefanov, and Elaine Shi. 2014. Burst ORAM: Minimizing
ORAM Response Times for Bursty Access Patterns. In 23rd USENIX Security
Symposium (USENIX Security 14). USENIX Association, Berkley, CA, 749–764.

[12] David Gale and Lloyd S Shapley. 1962. College admissions and the stability of
marriage. The American Mathematical Monthly 69, 1 (1962), 9–15.

[13] Biao Gao, Bo Chen, Shijie Jia, and Luning Xia. 2019. eHIFS: An Efficient History
Independent File System. In Proceedings of the 2019 ACM Asia Conference on
Computer and Communications Security. 573–585.

[14] Simson L Garfinkel and Abhi Shelat. 2003. Remembrance of data passed: A study
of disk sanitization practices. IEEE Security & Privacy 99, 1 (2003), 17–27.

[15] Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation
on oblivious RAMs. Journal of the ACM (JACM) 43, 3 (1996), 431–473.

[16] Michael T Goodrich, Evgenios M Kornaropoulos, Michael Mitzenmacher, and
Roberto Tamassia. 2016. More practical and secure history-independent hash
tables. In European symposium on Research in Computer Security. Springer, 20–38.

[17] Michael T Goodrich, Evgenios M Kornaropoulos, Michael Mitzenmacher, and
Roberto Tamassia. 2017. Auditable data structures. In Security and Privacy (Eu-
roS&P), 2017 IEEE European Symposium on. IEEE, 285–300.

[18] Michael T. Goodrich andMichael Mitzenmacher. 2010.MapReduce Parallel Cuckoo
Hashing and Oblivious RAM Simulations. Technical Report. arXiv:1007.1259
http://arxiv.org/abs/1007.1259

[19] Peter Gutmann. 1996. Secure deletion of data from magnetic and solid-state
memory. In Proceedings of the Sixth USENIX Security Symposium, San Jose, CA,
Vol. 14. 77–89.

[20] Jason D Hartline, Edwin S Hong, Alexander E Mohr, William R Pentney, and
Emily C Rocke. 2005. Characterizing history independent data structures. Algo-
rithmica 42, 1 (2005), 57–74.

[21] Thang Hoang, Ceyhun D Ozkaptan, Attila A Yavuz, Jorge Guajardo, and Tam
Nguyen. 2017. S3oram: A computation-efficient and constant client bandwidth
blowup oram with shamir secret sharing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. 491–505.

[22] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access
pattern disclosure on searchable encryption: ramification, attack and mitigation..
In Ndss, Vol. 20. 12.

[23] Nikolai Joukov and Erez Zadok. 2005. Adding Secure Deletion to Your Favorite
File System (SISW ’05). IEEE Computer Society, USA, 63–70. https://doi.org/10.
1109/SISW.2005.1

[24] Kasper Green Larsen and Jesper BuusNielsen. 2018. Yes, there is an oblivious RAM
lower bound!. In Advances in Cryptology–CRYPTO 2018: 38th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19–23, 2018, Proceedings,
Part II. Springer, 523–542.

[25] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. 2015.
Oblivm: A programming framework for secure computation. In 2015 IEEE Sym-
posium on Security and Privacy. IEEE, 359–376.

[26] Zheli Liu, Bo Li, Yanyu Huang, Jin Li, Yang Xiang, and Witold Pedrycz. 2019.
NewMCOS: Towards a practical multi-cloud oblivious storage scheme. IEEE
Transactions on Knowledge and Data Engineering 32, 4 (2019), 714–727.

[27] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic,
John Kubiatowicz, and Dawn Song. 2013. Phantom: Practical oblivious computa-
tion in a secure processor. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. 311–324.

[28] Matteo Maffei, Giulio Malavolta, Manuel Reinert, and Dominique Schröder. 2017.
Maliciously secure multi-client ORAM. In International Conference on Applied
Cryptography and Network Security. Springer, Cham, 645–664.

104

https://www.hhs.gov/hipaa/index.html
https://arxiv.org/abs/1007.1259
http://arxiv.org/abs/1007.1259
https://doi.org/10.1109/SISW.2005.1
https://doi.org/10.1109/SISW.2005.1

Protection of Access Pattern CSAI 2023, December 08–10, 2023, Beijing, China

[29] Daniele Micciancio. 1997. Oblivious data structures: applications to cryptography.
In Proceedings of the twenty-ninth annual ACM symposium on Theory of computing.
ACM, 456–464.

[30] Moni Naor, Gil Segev, and UdiWieder. 2008. History-independent cuckoo hashing.
In International Colloquium on Automata, Languages, and Programming. Springer,
631–642.

[31] Moni Naor and Vanessa Teague. 2001. Anti-persistence: History independent
data structures. In Proceedings of the thirty-third annual ACM symposium on
Theory of computing. ACM, Association for Computing Machinery, New York,
NY, USA, 492–501.

[32] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing. Journal of
Algorithms 51, 2 (2004), 122–144. https://doi.org/10.1016/j.jalgor.2003.12.002

[33] Benny Pinkas and Tzachy Reinman. 2010. Oblivious RAM revisited. In Annual
cryptology conference. Springer, Springer, Berlin, Heidelberg, 502–519.

[34] Daniel S Roche, Adam Aviv, and Seung Geol Choi. 2016. A practical oblivious
map data structure with secure deletion and history independence. In 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, 178–197.

[35] Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia Lin, and Stefano Tessaro.
2016. Taostore: Overcoming asynchronicity in oblivious data storage. In 2016
IEEE Symposium on Security and Privacy (SP). IEEE, 198–217.

[36] Elaine Shi, T-H Hubert Chan, Emil Stefanov, and Mingfei Li. 2011. Oblivious
RAM with O ((logN) 3) worst-case cost. In International Conference on The Theory
and Application of Cryptology and Information Security. Springer, Springer, Berlin,
Heidelberg, 197–214.

[37] Emil Stefanov and Elaine Shi. 2013. Multi-cloud oblivious storage. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications security (CCS
’13). Association for Computing Machinery, New York, NY, USA, 247–258.

[38] Emil Stefanov, Elaine Shi, and Dawn Xiaodong Song. 2012. Towards Practical
Oblivious RAM. In 19th Annual Network and Distributed System Security Sym-
posium, NDSS 2012, San Diego, California, USA, February 5-8, 2012. The Internet
Society, Reston, VA, USA, 1–40.

[39] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. 2013. Path ORAM: An Extremely Simple

Oblivious RAM Protocol. In Proceedings of the 2013 ACM SIGSAC Conference on
Computer & Communications Security (Berlin, Germany) (CCS ’13). Association
for Computing Machinery, New York, NY, USA, 299–310.

[40] European Union. 2016. REGULATION (EU) 2016/679 OF THE EUROPEAN PAR-
LIAMENT AND OF THE COUNCIL. http://eur-lex.europa.eu/legal-content/EN/
TXT/?uri=uriserv:OJ.L_.2016.119.01.0001.01.ENG&toc=OJ:L:2016:119:TOC

[41] Xiao Wang, Hubert Chan, and Elaine Shi. 2015. Circuit oram: On tightness of
the goldreich-ostrovsky lower bound. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. 850–861.

[42] Xiao Shaun Wang, Yan Huang, TH Hubert Chan, Abhi Shelat, and Elaine Shi.
2014. SCORAM: oblivious RAM for secure computation. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security (CCS
’14). 191–202.

[43] Xiao Shaun Wang, Kartik Nayak, Chang Liu, TH Hubert Chan, Elaine Shi, Emil
Stefanov, and Yan Huang. 2014. Oblivious data structures. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security.
215–226.

[44] Yongge Wang and Qutaibah M Malluhi. 2022. Privacy Preserving Computa-
tion in Cloud Using Reusable Garbled Oblivious RAMs. In Information Security:
25th International Conference, ISC 2022, Bali, Indonesia, December 18–22, 2022,
Proceedings. Springer, 3–19.

[45] Michael Yung Chung Wei, Laura M Grupp, Frederick E Spada, and Steven Swan-
son. 2011. Reliably Erasing Data from Flash-Based Solid State Drives.. In FAST,
Vol. 11. 8–8.

[46] Peter Williams, Radu Sion, and Alin Tomescu. 2012. Privatefs: A parallel obliv-
ious file system. In Proceedings of the 2012 ACM conference on Computer and
communications security. 977–988.

[47] Samee Zahur, Xiao Wang, Mariana Raykova, Adrià Gascón, Jack Doerner, David
Evans, and Jonathan Katz. 2016. Revisiting square-root ORAM: efficient random
access in multi-party computation. In 2016 IEEE Symposium on Security and
Privacy (SP). IEEE, 218–234.

105

https://doi.org/10.1016/j.jalgor.2003.12.002
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.119.01.0001.01.ENG&toc=OJ:L:2016:119:TOC
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.L_.2016.119.01.0001.01.ENG&toc=OJ:L:2016:119:TOC

	Abstract
	1 Introduction
	2 Background
	2.1 The Security Definition of HI
	2.2 Gale-Shapley Stable Marriage Algorithm
	2.3 The Security Definition of ORAM
	2.4 Tree-based Structure of ORAM
	2.5 Models and assumptions

	3 History independence
	3.1 History Independent Data Structure
	3.2 History Independent Application

	4 Oblivious Random Access Machine
	4.1 Traditional Client-Server ORAM
	4.2 Multi-client or Multi-Server ORAM

	5 Conclusion
	Acknowledgments
	References

