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ABSTRACT
With all their differences, the two problems under consideration,
namely the traveling salesman problem and the problem of restor-
ing the DNA chain distance matrix, have a lot in common. This
generality primarily consists in the following. For real problems
and for standard methods of solving them, such as gradient descent,
these problems can be formally solved, but in fact they are described
by systems of equations with several dozen variables, and some-
times hundreds. In this regard, to solve them, we use sequential
algorithms (step-by-step) for filling matrices, sometimes also using
backtracking for the variables already considered. We show that
such heuristics in the situations we are considering give acceptable
anytime algorithms.

CCS CONCEPTS
• Theory of computation → Design and analysis of algo-
rithms; • Mathematics of computing→ Statistical software; •
Computer systems organization→ Real-time systems.
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1 INTRODUCTION
This paper is a continuation of our previous works [1–3]. We con-
tinue the consideration of the application multiheuristic approach
to discrete optimization. In it, we add several auxiliary heuristic
algorithms to the “usual” variants of the branch-and-bound algo-
rithm, which are almost equally implemented in different subject
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areas. It is important to note that the greatest effect of these auxil-
iary heuristics is usually given by their simultaneous application,
i.e. in the complex.

There is often necessary to calculate the distances between se-
quences of different nature. Similar algorithms are used in bioin-
formatics to compare sequenced genetic chains. Due to the large
dimension of such chains, it is necessary to use heuristic algorithms
that give approximate results.

There are various such algorithms for genomes, but the obvious
disadvantage in calculating the distance between the same pair
of DNA strings is obtaining different results when using different
algorithms. Therefore, there is a problem of assessing the quality of
the used metrics (distances), the results of which can be concluded
about the applicability of the algorithm to various studies.

The other problem considered in biocybernetics is the recov-
ering the matrix of distances between DNA sequences, when not
all elements of the considered matrix are known at the input of
the algorithm. We consider the possibility of using the developed
and studied by us earlier method of comparative evaluation of al-
gorithms for calculating distances between a pair of DNA strings
to restore the partially filled matrix of distances. Matrix recovery
occurs as a result of several computational passes. Estimation of
unknown matrix elements are averaged in a special way.

Continuing to improve the algorithms, we consider the use of
the branch and bound method in it. To do this, for some known
sequence of unfilled elements, we apply the algorithms we consid-
ered before, but now we choose the special sequences of elements.
In our interpretation of the branch and bound method, all possi-
ble sequences of unknown elements of the upper triangular part
of the matrix are taken as the set of admissible solutions. In each
current subtask, any of the blank elements of the matrix is taken as
the separating element, and the sum of the badness values for all
triangles that have already been formed by the time this subtask is
considered is taken as the bound. Thus, the definition of elements
of an incompletely filled matrix occurs in such a sequence that
the final badness value for all triangles is selected using greedy
heuristics that fits completely into the framework of the classical
variants of the description of the branch and bound method.

As a result of applying such an algorithm, we get the lowest
possible badness (in the case of a completed version of the branch
and bound method), or close to optimal ones. In our computational
experiments, the running time of the algorithm practically coincides
with the time of the algorithm considered before (it exceeds it by no
more than 10%), and the badness value usually decreases by 20-40%
from the initial value. Thus, we are able to quickly and efficiently
restore the DNA matrix, often even if it is filled less than 40%.
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Here is a brief description of the content of those subsections that
we consider the most important; we shall consider the following
questions:

• the mathematical justification of the correctness of the con-
structions being made (Subsection 2.3);

• a brief statistical study of the problem of DNA matrix recon-
struction of small dimensions (Subsection 3.1);

• the consideration of the application example of the method
of the branch-and-bound algorithm in the problem of recon-
structing a DNA template (Subsection 3.4).

2 SOME HEURISTICS
FOR THE TRAVELING SALESMAN PROBLEM

The traveling salesman problem (TSP) is a well-known optimization
problemwhere the goal is to find the shortest possible route that vis-
its a given set of cities and returns to the origin city. Mathematically,
it can be represented as follows:

min
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1, 𝑗≠𝑖

𝑑𝑖 𝑗𝑥𝑖 𝑗

subject to
𝑛∑︁

𝑖=1,𝑖≠𝑗
𝑥𝑖 𝑗 = 1, 𝑗 = 1, ..., 𝑛

𝑛∑︁
𝑗=1, 𝑗≠𝑖

𝑥𝑖 𝑗 = 1, 𝑖 = 1, ..., 𝑛

𝑢𝑖 − 𝑢 𝑗 + 𝑛𝑥𝑖 𝑗 ≤ 𝑛 − 1, 2 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛

where 𝑑𝑖 𝑗 is the distance between city 𝑖 and city 𝑗 , 𝑥𝑖 𝑗 is a binary
variable that equals 1 if the path goes from city 𝑖 to city 𝑗 and 0
otherwise, and 𝑢𝑖 are auxiliary variables to prevent sub-tours.

The following two subsections include the possibility of applying
in our case (that is, in the case of the pseudo-geometric traveling
salesman problem) standard algorithms commonly used for the
geometric case

2.1 Nearest neighbor algorithm
The nearest neighbor algorithm is a greedy heuristic that selects
the nearest city to the current city at each step. The steps of the
algorithm are as follows:

(1) Select a random city as the starting point.
(2) Find the nearest city to the current city that has not been

visited yet.
(3) Move to the nearest city and mark it as visited.
(4) Repeat step 2 until all cities have been visited.
(5) Return to the starting city to complete the tour.
The objective function of this algorithm can be expressed as:

𝐶NN =

𝑛∑︁
𝑖=1

𝑑 (𝑥𝑖 , 𝑥𝑖+1) + 𝑑 (𝑥𝑛, 𝑥1)

where 𝐶NN is the total distance of the tour, 𝑥𝑖 is the 𝑖-th city in the
tour, and 𝑑 (𝑥𝑖 , 𝑥𝑖+1) is the distance between city 𝑥𝑖 and city 𝑥𝑖+1.

2.2 Simulated annealing
Simulated annealing is a probabilistic technique that allows for the
possibility of accepting suboptimal solutions in the early stages of
the search to escape local minima. The algorithm can be outlined
as follows:

(1) Choose an initial solution and set the initial temperature 𝑇 .
(2) Perform a small perturbation on the current solution to get

a new solution.
(3) If the new solution is better, accept it. If it is worse, accept

it with a probability exp
(
−Δ𝐸
𝑇

)
, where Δ𝐸 is the increase in

the objective function value.
(4) Decrease the temperature according to a cooling schedule

and go to step 2.
(5) Repeat steps 2-4 until the stopping criteria are met.
The objective function can be written similarly to the one in the

nearest neighbor section, but the acceptance criterion involves the
Metropolis criterion given by:

𝑃 (Δ𝐸) = exp
(
−Δ𝐸
𝑇

)
where 𝑃 (Δ𝐸) is the probability of accepting a solution with an
increase in energy Δ𝐸, and 𝑇 is the temperature parameter that
decreases over time according to a cooling schedule.

2.3 The mathematical justification
of the correctness
of the constructions being made

As we said above, we use heuristics previously used to solve the
traveling salesman problem. The possibility of their use is due to the
fact that for a certain point of the distance matrix, which represents
the distance between two species, we consider a triangle that is
three distances between three species, and denote the remaining
two sides of this triangle as two segments of the traveling salesman
problem.

For each such pair of points (𝑥𝑠𝑖 , 𝑦𝑠𝑖 ) and (𝑥𝑠𝑖+1 , 𝑦𝑠𝑖+1 ), we can
define two cubic functions

𝑋𝑖 (𝑡) and 𝑌𝑖 (𝑡) for 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1] ≡ Ω𝑖

in the following way.

𝑋𝑖 (𝑡) = 𝑎𝑥,𝑖 + 𝑏𝑥,𝑖 (𝑡 − 𝑡𝑖 ) + 𝑐𝑥,𝑖 (𝑡 − 𝑡𝑖 )2 + 𝑑𝑥,𝑖 (𝑡 − 𝑡𝑖 )3,
𝑌𝑖 (𝑡) = 𝑎𝑦,𝑖 + 𝑏𝑦,𝑖 (𝑡 − 𝑡𝑖 ) + 𝑐𝑦,𝑖 (𝑡 − 𝑡𝑖 )2 + 𝑑𝑦,𝑖 (𝑡 − 𝑡𝑖 )3 .

The coefficients 𝑎𝑥,𝑖 , 𝑏𝑥,𝑖 , 𝑐𝑥,𝑖 , 𝑑𝑥,𝑖 , 𝑎𝑦,𝑖 , 𝑏𝑦,𝑖 , 𝑐𝑦,𝑖 , and 𝑑𝑦,𝑖 can be
determined by imposing the following conditions.

(1) The cubic functions pass through the points:
𝑋𝑖 (𝑡𝑖 ) = 𝑥𝑠𝑖 ,

𝑋𝑖 (𝑡𝑖+1) = 𝑥𝑠𝑖+1 ,

𝑌𝑖 (𝑡𝑖 ) = 𝑦𝑠𝑖 ,

𝑌𝑖 (𝑡𝑖+1) = 𝑦𝑠𝑖+1 .

(2) The first and second derivatives are continuous at the junc-
tions:

𝑋 ′
𝑖 (𝑡𝑖+1) = 𝑋 ′

𝑖+1 (𝑡𝑖+1),
𝑋 ′′
𝑖 (𝑡𝑖+1) = 𝑋 ′′

𝑖+1 (𝑡𝑖+1),
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𝑌 ′
𝑖 (𝑡𝑖+1) = 𝑌 ′

𝑖+1 (𝑡𝑖+1),
𝑌 ′′
𝑖 (𝑡𝑖+1) = 𝑌 ′′

𝑖+1 (𝑡𝑖+1) .
We denote the sets of piece-wise functions as:

𝑋 (𝑡) =


𝑋1 (𝑡), for 𝑡 ∈ [𝑡1, 𝑡2],
𝑋2 (𝑡), for 𝑡 ∈ [𝑡2, 𝑡3],
. . . ,

𝑋𝑁 (𝑡), for 𝑡 ∈ [𝑡𝑁 , 𝑡𝑁+1] .
and

𝑌 (𝑡) =


𝑌1 (𝑡), for 𝑡 ∈ [𝑡1, 𝑡2],
𝑌2 (𝑡), for 𝑡 ∈ [𝑡2, 𝑡3],
. . . ,

𝑌𝑁 (𝑡), for 𝑡 ∈ [𝑡𝑁 , 𝑡𝑁+1] .
Then we define the functional Φ[𝑋,𝑌 ] as follows:

Φ[𝑋,𝑌 ] ≡ 1
𝑁

·
𝑁∑︁
𝑖=1

( (
𝑥𝛿𝑠𝑖 − 𝑋 (𝑡𝑖 )

)2 + (
𝑦𝛿𝑠𝑖 − 𝑌 (𝑡𝑖 )

)2)
+ 𝛼 ·

(��𝑋 ′′ (𝑡)
��2
𝐿2 (Ω) +

��𝑌 ′′ (𝑡)
��2
𝐿2 (Ω) ,

)
; (1)

here, the domain Ω is the union of all the segments’ domains, i.e.,

Ω =
𝑁
∪
𝑖=1

Ω𝑖 .

Let 𝛼 be such that the minimizing elements 𝑋𝛼 (𝑡) and 𝑌𝛼 (𝑡) of
Φ[𝑋,𝑌 ] satisfy:

1
𝑁

·
𝑁∑︁
𝑖=1

( (
𝑥𝛿𝑠𝑖 − 𝑋𝛼 (𝑡𝑖 )

)2 + (
𝑦𝛿𝑠𝑖 − 𝑌𝛼 (𝑡𝑖 )

)2)
= 𝛿2 .

We find the minimizing elements 𝑋𝛼 (𝑡) and 𝑌𝛼 (𝑡) of Φ[𝑋,𝑌 ]:
(𝑋𝛼 (𝑡), 𝑌𝛼 (𝑡)) = argmin

𝑋,𝑌
Φ[𝑋,𝑌 ] . (2)

These minimizing cubic spline functions 𝑋𝛼 (𝑡) and 𝑌𝛼 (𝑡) will pro-
vide the best approximation of the true path, given the noisy data
and the chosen smoothness parameter 𝛼 .

2.4 Geometric approach
to the pseudo-geometric problem:
optimal and pseudo-optimal
placement of the points

In this subsection, we delve deeper into the methodology developed
for resolving the pseudo-geometric Travelling Salesman Problem
(TSP). This method includes state-of-the-art techniques for classi-
fying input data and establishing a pseudo-optimal placement of
points which may have significant applications in various fields
including logistics and network design.

The task of pseudo-recovering the original coordinates of a set
of points bears a greater complexity than merely classifying them
(i.e., determining their class based on the known cost matrix in the
context of the TSP).

Our proposed algorithm addresses this by simplifying the prob-
lem to restoring the location of points in a geometric rendition of
the TSP using a distance matrix defined by the function

𝑐 : 𝐸 → N0 . (3)

This problem can be tackled effectively using the following strat-
egy:

• Select two arbitrary points 𝑣1 and 𝑣2 from the vertex set 𝑉 .
• Position 𝑣1 at the origin, and 𝑣2 at the point (0, 𝑐 (𝑣1, 𝑣2)).
• Determine the coordinates of each subsequent point (denoted
as 𝑢 with coordinates (𝑥,𝑦)), select two points (𝑣 and𝑤 ) that
have already been positioned, and solve the equation set:{

(𝑥 − 𝑥𝑣)2 + (𝑦 − 𝑦𝑣)2 = (𝑐 (𝑢, 𝑣))2

(𝑥 − 𝑥𝑤)2 + (𝑦 − 𝑦𝑤)2 = (𝑐 (𝑢,𝑤))2 .
(4)

It should be noted that applying this algorithm to the distance
matrix described in equation (3) in the pseudo-geometric TSP con-
text does not generally recover the original points’ locations in the
geometric TSP scenario. Furthermore, the potential violation of the
triangle inequality in the provided distance matrix may render the
algorithm inapplicable.

In this research, our main focus and forthcoming work envision a
refined algorithm conceived by us to address a specific TSP instance
which employs the aforementioned algorithm for retrieving points’
positions in a geometric TSP context. Moreover, this algorithm is
versatile enough to be utilized in any TSP variant, although its
application may not be recommended in most "random" or non
pseudo-geometric special TSP cases.

Therefore, notwithstanding the general infeasibility of apply-
ing similar algorithms to the pseudo-geometric TSP variant, we
endeavor to employ the same algorithms to address the city posi-
tioning problem, essentially tackling the minimization problem for
a specially computed discrepancy or "badness" metric, defined as√√√

2
𝑛 · (𝑛 − 1) ·

𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

(
𝑐 (𝑢𝑖 , 𝑢 𝑗 ) − 𝑐 (𝑢𝑖 , 𝑢 𝑗 )

)2
, (5)

where:

• 𝑢𝑖 (𝑖 = 1, . . . , 𝑛) are the points, with the coordinates of the
𝑖-th point represented by (𝑥𝑖 , 𝑦𝑖 ).

• 𝑐 (𝑢𝑖 , 𝑢 𝑗 ) denotes the (𝑖, 𝑗)-th element of the given cost ma-
trix.

• 𝑐 (𝑢𝑖 , 𝑢 𝑗 ) signifies the (𝑖, 𝑗)-th element of the obtained cost
matrix.

In a degenerate case (i.e., when 𝜎 = 0) and considering an ideal
solution, a "badness" value of 0 should be achieved.

As a heuristic solution to this issue, we propose the following
algorithm. Essentially, we are addressing the same minimization
problem, albeit disregarding the geometric positioning of the points.

Algorithm for pseudo-optimal placement of points.
Input. Matrix 𝑐 : 𝐸 → N0 (the matrix of weights of edges of a
complete weighted graph with vertices 𝑉 = 𝑢1, . . . , 𝑢𝑛); the value
𝑁 ∈ N.
The parameter 𝑁 represents the number of selectable pairs from the
already allocated points. These pairs are selected to accommodate
each new point, starting with the fourth one.
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3 HEURISTICS IN THE PROBLEM
OF RECONSTRUCTING
THE DNA CHAIN DISTANCE MATRIX

The reconstruction of the DNA chain distance matrix is a critical
problem in computational biology, which has implications in phy-
logenetics, molecular evolution, and other fields. In general, the
problem entails determining the evolutionary distances between
different DNA sequences.

A DNA molecule is a double helix consisting of four types of
nucleotides: adenine (A), cytosine (C), guanine (G), and thymine
(T). The sequential arrangement of these nucleotides forms a DNA
sequence, which can be represented as a string of characters, e.g.,

𝑆 = ACGTGACGTGGTAC. . .
A distance matrix is a matrix that contains the distances between

all pairs of sequences in a set. If we have 𝑛 sequences, the distance
matrix 𝐷 will be an 𝑛 ×𝑛 matrix, where 𝐷𝑖 𝑗 represents the distance
between sequence 𝑖 and sequence 𝑗 .

𝐷 =


0 𝐷12 𝐷13 . . . 𝐷1𝑛

𝐷21 0 𝐷23 . . . 𝐷2𝑛
.
.
.

.

.

.
.
.
.

. . .
.
.
.

𝐷𝑛1 𝐷𝑛2 𝐷𝑛3 . . . 0


A common approach to computing the distances between se-

quences is to perform pairwise sequence alignments, using methods
such as the Needleman-Wunsch algorithm.

The Needleman-Wunsch (NW) algorithm is a foundational global
alignment method in bioinformatics, formulated by Saul B. Needle-
man and Christian D. Wunsch in 1970. This dynamic programming
algorithm is primarily used to find the optimal alignment between
two sequences, which includes identifying the similarities between
them over their entire length. The mathematical formulation of the
algorithm is as follows:

Given two sequences 𝑆1 and 𝑆2 of lengths𝑚 and 𝑛 respectively,
the NW algorithm constructs an (𝑚 + 1) × (𝑛 + 1) scoring matrix
𝐹 where the entry 𝐹 (𝑖, 𝑗) represents the optimal score for aligning
the prefixes 𝑆1 [1 . . . 𝑖] and 𝑆2 [1 . . . 𝑗]. The recursive definition of
the scoring matrix is given by:

𝐹 (𝑖, 𝑗) = max


𝐹 (𝑖 − 1, 𝑗 − 1) + 𝑠 (𝑆1 [𝑖], 𝑆2 [ 𝑗]),
𝐹 (𝑖 − 1, 𝑗) + 𝑑,
𝐹 (𝑖, 𝑗 − 1) + 𝑑

where:
• 𝑠 (𝑎, 𝑏) is the score of aligning character 𝑎 with 𝑏, often ob-
tained from a substitution matrix.

• 𝑑 is the gap penalty, representing the cost of inserting a gap
in the alignment.

The matrix 𝐹 is initialized as follows:

𝐹 (0, 0) = 0,
𝐹 (𝑖, 0) = 𝑖 · 𝑑, 𝑖 = 1, 2, . . . ,𝑚,

𝐹 (0, 𝑗) = 𝑗 · 𝑑, 𝑗 = 1, 2, . . . , 𝑛.

After computing the entire matrix 𝐹 , the optimal alignment is
obtained by backtracking from 𝐹 (𝑚,𝑛) to 𝐹 (0, 0), constructing the

alignment by either matching or inserting gaps as dictated by the
values in the matrix.

This global alignment algorithm ensures that the best alignment
across the entire length of the sequences is found, providing a
holistic view of the similarities and differences between them.

The time complexity of the Needleman-Wunsch algorithm is
𝑂 (𝑚𝑛), and the space complexity is also𝑂 (𝑚𝑛), which may become
a bottleneck for very long sequences.

3.1 A brief statistical study of the problem
of DNA matrix reconstruction
of small dimensions

In this section, we consider a problem of reconstruction of the
matrix of distances between DNA sequences. This problem belongs
to the field of biocybernetics was previously described by the first
author in [4, 5]. The task is to restore the elements of the distance
matrix between DNA sequences. As a rule, about 50% of the matrix
elements are known. To solve this problem, it is advisable to use
the so-called anytime-algorithm [6], which would allow to track
the gradual recovery of the elements of the matrix of distances.
The paper [7] investigates algorithms for solving the problem of
restoring a low-rank matrix with an arbitrarily damaged fraction of
its elements. This problem can be considered as a reliable version of
the classical principal component analysis [8] and occurs in a number
of applications, including image processing, web data ranking and
bioinformatics’ data analysis. The text of your paper should be
formatted as follows.

The distance matrix reconstruction algorithm is based on the
analysis of all possible triangles in the distance matrix. For each
triangle, the value of badness is calculated, the tracking of which is
part of the heuristic approach (see [4] for details). However, if you
pass through the elements of the matrix “left to right” and “top to
bottom” you can get unwanted results with a significant increase
in badness for previously studied triangles. One approach to work
around this problem is to form a sequence of subtasks by modifying
the branch-and-bound algorithm [5]. In this case, the badnessmatrix
value will act as the boundary value in the classical branch-and-
bound algorithm [9, 10]. Our goal is to consider various statistical
indicators arising from the reconstruction of matrices described
in [5] by the modified branch-and-bound algorithm. Below are
the results of our statistical study of the DNA matrix of small
dimensions for the problem of reconstruction. The results of our
computational experiments are given in the following table (see
below). As in the case of the previous problem (TSP), we answered
only one question: how often at least 1 pair of similar matrices
occurs when applying the first few steps of the “classical” branch-
and-bound algorithm. However, in comparison with the TSP and
the previous section, we have replaced the word “identical” with the
word “similar”: in this case we consider similar matrices in which
the sets of empty elements coincide. It is easy to make sure (also,
for example, by computational experiments) that the further work
of the branch-and-bound algorithm with two similar matrices in
the vast majority of cases occur with the same order of selection of
not yet filled matrix elements.

Generation of input data was carried out based on the matrix
obtained working with matrices obtained by applying the algorithm
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Table 1: The number of cases (out of 1000 considered),
for which at least one pair was obtained

30 40 50 60 70

5 142/143 121/128 87/100
10 196/401 173/363 166/334
15 294/592 210/456 334/356

of the Needleman – Wunsch [11]. We applied this algorithm to the
MDNA chains of different animals taken from the NCBI data Bank
[16], and sequenced mDNA chains were taken for one representa-
tive of each of the 28 mammalian orders (mammalian classification
is chosen according to [15], other classification options were not
considered). For this matrix, we randomly, applying a uniform dis-
tribution, chose the desired number of its rows / columns (5, 10 or
15), obtained a matrix of smaller dimension, which left the desired
percentage of elements (from 30% to 70%). For each pair consisting
of the dimension and the percentage of deleted items, we have
done 1000 of these generations. Next, we ran the method of the
branch-and-bound algorithm, but, in contrast to the consideration
of the TSP in the previous section, the last parameter was not the
number of steps of the branch-and-bound algorithm, and the num-
ber of resulting subproblems: when you receive 10 (or 30) of the
subproblems, we calculate the stop. Also, of course, we stopped the
calculations and when you get two similar matrices, and it is the
number of such options (out of 1000 possible) and is reflected in
Tab. 1. In that table:

• the lines specify dimension;
• the columns indicate the percentage of deleted items (for
example, if the size is news 10, we have only 45 items located
above the main diagonal; removing 40% means removing 18
items from them);

• in each of the filled cells-the results of calculations for this
case: the number of cases (out of 1000 considered) for which
at least one pair was obtained;

• in this case, the first value in the cell is given for calculations
that stopped after receiving 10 subtasks, and the second -–
after receiving 30 subtasks.

3.2 Minimization technique
In the study of the matrix𝑀 =

(
𝑚𝑖, 𝑗

)
and its constituent elements

𝑚𝑖, 𝑗 , it is conventionally assumed that

𝑖, 𝑗, 𝑘 ∈ 1, 2, . . . , 𝑛 (6)

with the exception of diagonal elements. In this context, diagonal
elements are the elements denoted by𝑚𝑖,𝑖 , and any arithmetical
expressions containing these elements are excluded from formulaic
considerations. This presupposition aids in focusing on the pivotal
elements contributing to the total error denoted by 𝜎 . The formal
definition of 𝜎 is expressed as:

𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝜎𝑖, 𝑗 , (7)

where different approaches exist for its calculation, one of which
involves the sequential application of the following formulas:

• 𝑟 (1)𝑖, 𝑗, 𝑘 = max
(
𝑚𝑖, 𝑗,𝑚𝑘,𝑗 ,𝑚𝑘,𝑖

)
,

• 𝑟 (2)𝑖, 𝑗, 𝑘 = min
(
𝑚𝑖, 𝑗,𝑚𝑘,𝑗 ,𝑚𝑘,𝑖

)
,

• and the definition of 𝜎𝑖, 𝑗 is:

max
1⩽𝑘⩽𝑛 𝑘≠𝑖,𝑘≠𝑗

2𝑟 (1)
𝑖, 𝑗,𝑘

+ 𝑟 (2)
𝑖, 𝑗,𝑘

−𝑚𝑖, 𝑗 −𝑚𝑘,𝑖 −𝑚𝑘,𝑗

𝑟
(2)
𝑖, 𝑗,𝑘

. (8)

Moving forward, we can rephrase the primary problem as an
optimization task aiming to minimize the error value 𝜎 , a metric pre-
viously referred to as "badness" in earlier research. The procedure
necessitates a sequential, stepwise insertion of missing elements,
thereby streamlining the implementation of the corresponding al-
gorithm.

By employing this approach, we generate a matrix populated
with noisy data, denoted as𝑢𝛿

𝑖,𝑗
. Subsequently, we reconstruct the𝑢𝜀

function through the resolution of previous equation. It is crucial to
note that the noise level 𝛿 , whichmanifests during the restoration of
missing values, can be quantitatively assessed through a meticulous
analysis of the aberrations from the "isosceles triangle" principle,
as detailed in [12].

Ultimately, this methodical strategy of sequentially populating
missing matrix elements assures a progressive enhancement of the
resultant solution. Theoretically, this rationalizes the forsaking of
the more time-consuming branch and boundary method in favor of
the greedy algorithm for discerning the value of individual elements,
thereby expediting the overall computational process.

3.3 Quality assessment criteria
for numerical solutions

Previously, we discussed the imperative of determining an effective
method to gauge the quality of the solutions generated by our re-
covery algorithms. It remains clear that the existing computational
model does not fully address the concerns pertaining to the quality
assessment of matrix restoration. Consequently, a straightforward
quality criterion could be the comparison, based on an appropri-
ate metric, of the restored matrix with the actual derived distance
matrix. This comparison could potentially be executed for small-
scale examples, albeit restricted to a finite number of iterations,
preferably during the preliminary phases of algorithm testing.

To this end, we introduce two plausible criteria for evaluating
the numerical solutions to such restoration problems:

(1) The first criterion involves contrasting the matrix recon-
structed by the current simplified algorithm with the matrix
developed through the application of a comprehensive algo-
rithm during the formation of each element, as documented
in [13, 14]. This criterion value will be denoted by 𝜎 .

(2) The second criterion scrutinizes the discrepancy using a dis-
tinctive method, leveraging the same algorithms that func-
tion as supportive entities within the general recovery algo-
rithm explored in this study. The criterion value in this case
will be symbolized by 𝛿 (or 𝑑 in some previous publications).

In both instances, the overarching aim remains to diminish the
values deduced by the applied criteria.

We delineate the specific formulas as stated below:
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(1) For 𝜎 , the typical formulation is

𝜎 =

√√√
2

𝑛 · (𝑛−1) ·
𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

(𝑚𝑖, 𝑗 −𝑚𝑖, 𝑗)2, (9)

where all the elements𝑚𝑖, 𝑗 are retrieved via the implementation of
the original algorithm (like the well-cited Needleman–Wunsch algo-
rithm), excluding any element restoration. It is pertinent to mention
that this method is seldom utilized, especially for extensive matrices
generated through certain distance determination algorithms, high-
lighting the more universal application of the subsequent criterion,
𝛿 .

(2) Typically, 𝛿 is defined as

𝛿 =

𝑛−2∑︁
𝑖=1

𝑛−1∑︁
𝑗=𝑖+1

𝑛∑︁
𝑘=𝑗+1

𝛿𝑖, 𝑗,𝑘 , (10)

with a clear emphasis on not utilizing 𝑚𝑖, 𝑗 values. Each 𝛿𝑖, 𝑗, 𝑘 ,
where 1 ⩽ 𝑖, 𝑗, 𝑘 ⩽ 𝑛, and 𝑖 ≠ 𝑗 , 𝑖 ≠ 𝑘 , 𝑗 ≠ 𝑘 represents the
“badness” of the respective triangle, typically calculated as follows:

(2a) Initially, we reassign the values of𝑚𝑖, 𝑗 ,𝑚𝑖,𝑘 , and𝑚 𝑗,𝑘 to 𝑎,
𝑏, and 𝑐 , satisfying 𝑎 ⩾ 𝑏 ⩾ 𝑐 .

(2b) In instances where 𝑎 ⩾ 𝑏 + 𝑐 , indicating a violation of the
triangle inequality, a pre-determined constant 𝜔 (commonly, 𝜔 = 2)
is employed to establish

𝛿𝑖, 𝑗,𝑘 = max
( 𝑎

𝑏 + 𝑐 , 𝜔
)
. (11)

(2c) Conversely, for regular triangles, we calculate its angles,
denoted as 𝛼 , 𝛽 , and 𝛾 , where 𝛼 ⩾ 𝛽 ⩾ 𝛾 .

(2d) Subsequently, we define

𝛿𝑖, 𝑗,𝑘 =
𝛼 − 𝛽

𝛾
. (12)

It is critical to acknowledge that 𝛿 can be computed swiftly,
despite the necessity to analyze approximately 𝑛3 triangles. Fur-
thermore, we observe a correlation between these criteria and the
task at hand: for instance, random matrices yield notably poorer
results according to the 𝛿 criterion, even for minor dimensions.
As evidence, a 13x13 random matrix recorded 𝛿 values within the
0.4 to 0.5 range, substantially exceeding the corresponding val-
ues for correct matrices of size 28x28 with a lower initial fullness
percentage.

3.4 The consideration
of the application example
of the branch-and-bound algorithm

Each matrix has a number of characteristics that affect the outcome
of the branch and bound method. One of these characteristics in-
cluded in this list is the percentage of deleted items. On Fig. 1, there
is a selection of the results of the method for the problem discussed
in the previous sections, for 5×5 matrices with the removal of 40%,
50% and 60% of the elements of the original matrix.

The following graph (Fig. 2) shows the average percentage of
successful recoveries based on the percentage of deleted items.

The results of similar numerical experiments for 10×10 matrices
are given on Fig. 3.

Figure 1: The selection of the results, 5x5.

Figure 2: The average percentage of successful recoveries,
5x5.

Figure 3: The results of numerical experiments for 10×10
matrices.

We also present a graph of the average number of successful
recoveries, Fig. 4.
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Figure 4: The average percentage of successful recoveries,
10x10.

Compared to the previous results for 5×5matrices, it is noticeable
that the percentage of successful recoveries has increased signifi-
cantly. This seems to be due to the fact that there is more room for
triangle selection and element recovery during the computational
process. With a further increase in the dimension of the matrices,
we observe the tendency of the percentage of successful recoveries
to 100 with the specified percentage of deleted elements (40%, 50%,
60%), Fig. 5.

Figure 5: The tendency of the percentage of successful recov-
eries.

The next interesting characteristic is the height of the decision
tree (i.e. the maximum path length from the tree root to the leaf).
In the presented graphs it is clearly seen that the average value of
the height of the decision tree for the matrix 5×5 is not too varies
with the percentage of deleted elements.

It also makes sense to look at the change in the height of the
decision tree depending on the dimension of the matrix with a fixed
number of deleted elements. The two diagrams below illustrate this
comparison, Fig. 6 and Fig. 7.

We can see that the increase in the height of the decision treewith
the growth of the dimension of the matrix occurs at a high speed.
Also, with increasing the dimension of the matrix significantly

Figure 6: The height of the decision tree, 40% of deleted ele-
ments.

Figure 7: The height of the decision tree, 60% of deleted ele-
ments.

increases the number of subtasks of the same level, and therefore
the search for problems takes much longer.

4 CONCLUSION
The statistical regularities obtained by us in this article are actually
the probability of a successful situation-which makes it possible
not to calculate the separating element once again. (According
to our calculations, obtained also in the course of computational
experiments, the choice of the separating element in some variants
of the branch-and-bound algorithm is spent more than 99% of the
time of the program.) Therefore, the results provide a rationale
for the application of clustering situations in the development of
algorithms for solving discrete optimization problems using the
branch and bound method. This application gives easily observed
improvements of the algorithm; it is this variant, from our point
of view, reflects the representativeness of the data in many real
problems.
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