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ABSTRACT
We present a novel approach in network security using unsuper-
vised online machine learning method at the edge, through graph
learning. The proposed system takes advantage of an online learn-
ing paradigm, by collecting real network data to build a ground
truth of a network’s topology, using shallow graph neural networks
(GNNs). Our proposed solution includes an edge-based infrastruc-
ture, through K3s and Kafka, which could then scale to match the
needs of larger networks. We then perform simple cyber-attacks
and show how visual analysis can identify malicious behaviors,
without any prior labeled data. Our results against simple attacks
show promise that improved graph analytics should capture even
more complex attack vectors. We then conclude with some sug-
gestions for improved edge deployment, against larger and more
complex networks.
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• Graph Neural Networks; • Cybersecurity; • Semi-Supervised
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1 INTRODUCTION
The proliferation of Internet of Things (IoT) devices and the push
for real-time, low latency computing has heralded a shift from
centralized cloud computing to edge computing. One of the most
significant threats faced in this new landscape is the increased
exposure to cybersecurity breaches. The heterogeneity and sheer
number of devices operating at the network periphery can create
various entry points for cyber attackers. Moreover, the limited
processing capabilities of some edge devices, the dynamic nature
of edge networks, and the often less secure environments they
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operate in make traditional cybersecurity measures less effective.
Additionally, with this proliferation of devices comes the increased
vulnerabilities and attack surface related to the interconnection of
edge devices. The recent incident of the Mirai malware attacks of
2023 [1]–[3] involved the targeting of a wide array of IoT devices
and impacted devices from home appliances to industrial control
systems. The attack, which relied on the increasing attack landscape,
exploited a vulnerability in the firmware of millions of IoT devices.
For example, once hackers breached the devices, they could control
and manipulate the network control protocols and software within
the devices, causing disruptions across the globe.

This recent incident not only underscored the risks involved in
an increasing reliance on IoT devices, but also highlighted the in-
tricacies of securing dynamic, ever-evolving network information
and configuration. Since IoT networks are dynamic in nature, new
devices are continuously being added, and continuous updates are
constantly being rolled out to firmware and software. Perhaps one
of the most common methods by which attackers gain access to
networks is the process of lateral movement. Lateral movement is
a key stage of advanced persistent threats (APTs) where an attacker
tries to expand control over other machines in a network after com-
promising an endpoint, attempting to gain access to systems and
credentials necessary to carry out their mission [4], [5]. Traditional
lateral movement detection methodologies rely on tedious sifting of
audit logs as recorded means to address anomalous behavior within
networks. Government entities often require themselves, and their
contractors, to follow standards and adhere to security guidelines,
like the National Institute of Standards and Technology (NIST) doc-
umentation 800-53, with audit logs existing within its own control
family. However, these controls are limited in their approach, in-
sofar that networks are not all identical in their characteristics.
To alleviate these concerns, security analysts create, compile, and
revise audit trails as a means of consolidating applicable security
logs, further appropriating them using frameworks such as MITRE
ATT&CK [6]. Security information and event management tools
currently exist for aggregating and structuring audit log data, but
this approach is also intrinsically flawed. Most traditional anomaly
detection methods look for triage patterns of known attacks, which
means that any unexpected or undocumented control flow may go
undetected. Therefore, anomalous activity may exist, but since the
detected effect may not logically flow from the correct root cause,
the detected anomaly transforms into a false positive.
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Despite the failings of traditional based approaches, new meth-
ods have been developed to address the problem of detecting anom-
alies in cyber networks [4], [7], like detecting lateral movement.
Attacks against authentication mechanisms themselves are varied,
and the data associated with each are varied themselves. Nev-
ertheless, standard industry authentication mechanisms, such as
Kerberos and OAuth, maintain mechanisms to log authenticating
clients and history of logging within a network. Furthermore, au-
thentication log data can be enhanced through other various types
of data, such as DNS queries and Cisco NetFlow, to gain more fea-
tures and characteristics. Analyzing lateral movement through
traditional rules-based detection is costly and time-consuming, and
usually do not identify any useful results due to a lack of com-
promising indicators. Additionally, as has been stated, security
frameworks are limiting in efficacy as well.

Recognizing these challenges, researchers and industry profes-
sionals have started to deploy machine learning (ML) models at
the edge for enhanced threat detection and mitigation. ML-based
anomaly detection systems can identify deviations from standard
behaviors, thereby allowing for prompt detection and remediation
of cyber threats. However, deploying such models on the edge is
fraught with its unique set of problems, such as the lack of process-
ing power of edge devices.

The collection of new works in this area show that graphs can be
used to inform cyber-specific behaviors, and detect cyber-attacks,
while being computationally efficient. By adopting an unsuper-
vised learning model, analysts will be able to robustly estimate
parameters by which different network variables are related, with
an emphasis on establishing causal relationships in anomaly de-
tections, without need pre-existing labeled data. Graph neural
networks (GNNs) are an unsupervised learning algorithm, where
nodes are connected by some edges to other nodes. In a network
application, each node will represent some feature of the network,
with their edge weights displaying their probability of connection
[8]. Brian Powell of the Johns Hopkins Applied Physics Laboratory
[9] has developed an unsupervised approach to look for behavior-
based defense, to replace traditional rule-based frameworks. This
approach first clustered systems according to their role, and then
identified the patterns of communication between each system
from which behavior can be identified. Although the framework
itself addresses the need to adopt behavioral-based machine learn-
ing techniques, the use was restricted to enterprise networks that
may utilize enterprise devices. Similarly, the Graph Computing
Lab of the George Washington University [4, 10–12] developed an
unsupervised graph machine learning technique that uses industry
standard logging data for their models. Victor-Alexandru Dravariu,
Stephen Hailes, and Mirco Musolesi of the University of College
London have recently published multiple works [12], [13] in the
areas of unsupervised graph network searching, and its improved
performance over Reinforcement Learning (RL) models but are
missing the application with real network data collections.

This works explores the complexities associated with deploying
ML models for anomaly detection at the edge, the potential cyberse-
curity risks they can mitigate, and the new vulnerabilities they may
introduce. This work presents an unsupervised, online learning,
graphical machine learning technique to detect anomalous move-
ment and activity movement in IoT networks. Our results show

how one can utilize common network characteristics and construct
a graphical representation of the network built from live network
data, instead of expecting cleaned and transformed data captures.
We then show how the system responds to real cyber- attacks, and
present future work to build further into more complex anomaly
detection.

2 MATERIALS AND METHODS
2.1 Infrastructure
Figure 1 represents our full proposed pipeline, all the subsystems,
and their connections. The proposed infrastructure consists of a
Raspberry Pi 4 Model B+ cluster, hereafter referred to as a bramble.
The structure of the bramble design includes a principal Raspberry
Pi (head node) and five auxiliary Raspberry Pis (worker nodes).
While we limited our system to just five total worker nodes, due
to cost and power consumption, the proposed solution is scalable
towards a larger and more complex problem domain. Each of
the nodes utilizes Ubuntu 22.10 OS with the head node using the
desktop version and the worker nodes using the server version. The
cluster is instantiated by running a bash script on the head node
which searches the local area network using various, commonly
used applications such as ipcalc, nmap, and itertools. The script
looks for MAC addresses registered to Raspberry Pis on the network
and adopts the IP addresses to an embedded system once discovered.

The nodes are connected using an edge-based Kubernetes variant
cluster referred to as K3s. It is purpose- built for lightweight edge
computing and for machines with constrained resources, such as
Raspberry Pi’s. Our proposed system allows Kubernetes to oversee
an assemblage of Raspberry Pis as a singular unit. It facilitates
equitable distribution of tasks, aptly manages system failures, and
guarantees proficient resource utilization. When interconnected,
the Raspberry Pis form a robust computational network that ex-
ploits the principles of distributed computing. The compatibility
of K3s with Raspberry Pis stems from its inherent lightness. Con-
ventional Kubernetes configurations encompass a vast array of
components and services, a significant portion of which may not
be necessary for less extensive or edge deployments. K3s eschews
these superfluous elements, resulting in a binary of less than 50MB.
Despite its compact nature, K3s offers full Kubernetes conformity,
thereby ensuring seamless operations of regular Kubernetes appli-
cations and configurations. Upon configuration, the master node
regulates the worker nodes, allotting tasks as required.

Once the bramble is instantiated with K3s, Docker [14] images
and containers are used to stream data in real-time and store the
data in a non-relational database. The pipeline utilizes Apache Kafka
streaming containers [15] for real-time, online training, and Mon-
goDB as a non-relational database as these tools are well suited
to the demands of online real-time anomaly detection in cyber-
security due to their speed, scalability, and flexibility. Kafka, a
high-throughput distributed messaging system, is ideal for man-
aging streaming data and real-time analytics, which are critical
for detecting anomalies in user behavior or network traffic [7]. It
provides a fault-tolerant way to handle real-time data feeds, mak-
ing it easier to identify unusual patterns as they occur. MongoDB
complements Kafka’s capabilities by providing a flexible schema
for storing and analyzing data, which is essential given the diverse
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Figure 1: Proposed full system diagram.

range of data types and structures involved in cybersecurity. Its
document-oriented structure allows for easy horizontal scaling,
ensuring that data can be processed quickly even as the volume
increases. In combination, Kafka’s real-time data processing and
MongoDB’s flexible, scalable data storage provide a powerful in-
frastructure for identifying and responding to cybersecurity threats
as they arise.

2.2 Data
Our infrastructure collects live data from a wireless network in-
terface but is capable of additionally collecting data from other
various sources, such as ethernet and Bluetooth modalities. TCP/IP
network data is collected in the form of full packet captures, Zeek
logs, Scapy [16] packets, and Censys third-party data information
enrichment. Zeek is an open-source network security monitoring
tool. Although every node within the bramble is designed to cap-
ture full packet captures that contain all layers of OSI data, from
link layer to application layer, the intent is to allow the head node
to primarily capture information, thus delegating parsing to other
parts of the bramble. This is useful for deep traffic analysis and for
capturing network anomalies that may indicate cyber threats. Zeek
(formerly known as Bro) is a powerful network analysis framework
that is much different from the typical IDS you may know. It places
a high-level semantic layer on packet data, often simplifying the
process of network traffic analysis and the development of custom
security solutions.

Packet Capture (pcap) files represent raw data collected from the
network layer and above, which include all the frames in their en-
tirety. Information that can be gleaned from pcap files ranges from
low-level network information to high-level data. On the lower lev-
els, you can see data like source and destination IP addresses, source
and destination ports, the protocols being used (TCP, UDP, ICMP,
etc.), and MAC addresses. On the higher levels, pcap files can con-
tain payload data from the application layer protocols like HTTP,

SMTP, FTP, and others, which might include usernames, passwords,
and other sensitive information if they are not encrypted.

However, pcaps only provide raw data. To interpret this data
and make it meaningful, we need tools like Wireshark for packet
analysis [17] or Zeek for generating high-level network logs. While
focusing on network security monitoring, Zeek provides a compre-
hensive platform that allows more general traffic analysis as well.
Zeek’s powerful scripting language allows for the creation of more
sophisticated analyses. Zeek logs are generated from pcap data, but
they are much easier to read and interpret. Zeek logs are organized
into different types, each with its own set of fields that are relevant
to a particular protocol or type of network activity.

Some of the most used Zeek logs include:
conn.log: Provides a record of each connection seen on the net-
work, with details like source and destination IPs, ports, connection
duration, and amount of data transferred.
http.log: Contains details about HTTP transactions, such as the
client and server, the method (GET, POST, etc.), the status code,
user agent, etc.
dns.log: Logs all DNS requests and responses. It includes fields for
the DNS query, the response, the DNS record type (A, MX, CNAME,
etc.), and response codes.
files.log: Tracks file transfers over supported protocols (HTTP,
FTP, SMTP, etc.). It includes information like the filename, size,
source and destination, and a hash of the file.
ssl.log: Provides information about SSL/TLS connections, such
as cipher suite, certificate issuer and subject, and certificate key
length.

We also introduce Scapy collected packets as additional data
ingested into the graph sequence generator. Scapy is a Python
library for network packet manipulation and analysis. It can con-
struct or decode packets of a wide number of protocols, send them
over the wire, capture them, match requests and replies, and much
more. Scapy deals with raw packets, similar to traditional packet

72



ICNCC 2023, December 15–17, 2023, Osaka, Japan Michael Jerge et al.

capture using systems such as Pyshark and Wireshark but includes
additional information as well. This includes:
Layer information: Scapy lets you work with packets on ev-
ery OSI layer from layer 2 (data link) up to layer 7 (application).
This includes the Ethernet frame, IP header, TCP/UDP header, and
application layer data.
Payload data: Scapy can dissect the payload to read the actual
data being sent, provided it’s not encrypted.

This can be HTTP data, DNS queries, or any other protocol that
Scapy supports.
Packetmetadata: Scapy also shows the metadata about the packet,
like source and destination IP addresses and ports, protocol type,
packet length, etc.

Lastly, we incorporate public, internet wide databases from Cen-
sys. Censys is a public search engine that enables researchers to
quickly ask questions about the hosts and networks that compose
the Internet. This is particularly useful when an external IP address
is found within the pcaps, as Censys can provide rich contextual
information about the IP.

Censys maintains three datasets:
Hosts: These are Internet hosts (IPv4 and IPv6) that have had

one or more open ports when scanned. Information includes IP
address, open ports, location, Autonomous System Numbers (ASN),
operating system, services, and more.

Websites: This dataset contains websites, their location, server
software, headers, certificates, cookies, third-party requests, and
more.

Certificates: Information about all publicly observable TLS
certificates, including issuance data, issuing CA, key details, and
more.

In summary, we incorporate four types of data modalities into
our graph sequence generator. Packet Capture (pcap) files con-
stitute the raw data, capturing all the network layer and above
information in their purest form. This encompasses data from low-
level network details such as source and destination IP addresses,
source and destination ports, protocols being used, and MAC ad-
dresses, up to higher-level application layer data like HTTP, SMTP,
FTP payloads which could potentially contain sensitive information
if not encrypted. Zeek logs serve to interpret and contextualize
this raw pcap data, presenting it in a more digestible, high-level
format. Zeek organizes data into a series of different logs, each
dedicated to a particular type of network activity or protocol. This
can include logs dedicated to connection records, HTTP transac-
tions, DNS requests and responses, file transfers over supported
protocols, and SSL/TLS connections. Scapy packets delve into the
realm of network packet manipulation and analysis. Scapy data in-
cludes packet layer information, payload data, and packet metadata,
providing a fine-grained inspection of network packets. Lastly,
the Censys data adds another layer of context to the analysis by
providing a macro-level view of the internet hosts and networks
involved in the network traffic. When an external IP address is
found within the pcaps, Censys can be used to glean rich metadata
about the IP address, the domains it hosts, the network it’s a part
of, and the geographical location it’s associated with. Altogether,
this combination of Pyshark, Zeek, Scapy, and Censys data offers a
comprehensive and detailed look at network activity. This allows
for efficient network monitoring and anomaly detection, aids in

diagnosing network issues, and grants a deeper understanding of
overall network behavior.

2.3 Graph Neural Network
For online training of graph neural networks, we employ a version
of the node2vec algorithm [18]. Node2vec is a machine learning
algorithm that uses the structure of a network to generate em-
beddings for its nodes. It’s designed to balance the exploration of
local and global network structures and can be useful in a variety
of applications, including anomaly detection in cybersecurity. In
network defenses, one common task is the detection of anomalies
in network traffic or user behavior, which could be indicative of
a security threat such as a network intrusion, malware, or a mali-
cious insider. These data can be modeled as a graph, where nodes
represent entities and edges represent interactions between them.
Using node2vec, each node in the graph is mapped to a vector in
a high-dimensional space in such a way that nodes with similar
neighborhood structures in the graph are close to each other in
this space. For example, two devices that have similar patterns
of network traffic could end up with similar embeddings. These
embeddings can then be used as input to a machine learning model
that is trained to distinguish normal behavior from anomalies.

The strength of node2vec in this application comes from its ability
to capture the complex, higher-order relationships between entities
in the graph. Traditional methods might treat each interaction in
isolation, but node2vec understands that the relationships between
nodes are important and can capture patterns that other methods
might miss. For example, it can identify when a device is behaving
unusually not just because of its individual actions, but because of
the pattern of its interactions with other devices. This approach
has several advantages. One is that it can detect anomalies even
when they are subtle or complex since it understands the normal
patterns of behavior in the network at a deep level. Another is that
it can generalize from known types of threats to identify new ones.
For example, if a new type of malware causes a device to behave
similarly to known malware in the vein of network interactions,
the model can potentially identify it as an anomaly, even though
the type of malware has previously been unforeseen.

Being an unsupervised learning algorithm, node2vec doesn’t re-
quire labeled data to operate, an advantage in cybersecurity where
new threats constantly emerge and labeled data for these novel
threats is not immediately available. Instead, it learns to represent
nodes based on their network structure, independent of any specific
task, allowing it to capture normal patterns of behavior and detect
deviations from these patterns as potential anomalies. This signifi-
cantly reduces the manual effort and time required to continuously
update the model with new labeled data, making the model robust
in identifying novel threats. Additionally, node2vec is scalable. As
networks grow larger and more complex, scalable methods are
required to handle the increasing volume of data. Node2vec uses
efficient techniques for generating embeddings, making it capable
of handling large-scale networks. By reducing the complex network
structure into lower-dimensional embeddings, node2vec makes it
feasible to apply complex detection algorithms that might not be
practical to run directly on the original network data. Moreover,
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node2vec is well-suited for deployment in edge computing environ-
ments. Edge computing pushes applications, data, and computing
power away from centralized points to the logical extremes of a
network, near the source of the data. This provides benefits in terms
of latency and bandwidth usage. Due to the efficiency of node2vec,
it can be run directly on a Raspberry Pi bramble, providing real-
time anomaly detection at the edge of the network, close to where
the data is generated. This approach can improve the speed and
efficiency of anomaly detection since it reduces the need for data
to be sent back and forth across the network.

3 SEMI-SUPERVISED ONLINE LEARNING
The proposed approach harnesses dynamic directional IP graphs
to enhance online training of the GNN node2vec for real-time net-
work traffic analysis. These evolving graphs, constructed in epochs
from captured packet data, capture changing network topology and
directional flow. Edge weights, determined using the Newman EM
algorithm and Shannon entropy applied to packet data, represent
the strength of connections between IP addresses. This dynamic
adaptation ensures accurate node embeddings, facilitating prompt
anomaly detection. While challenges such as computation and
graph coherence exist, the integration shows potential for effective
network management and security.

3.1 Ground Truth and Graph Expectation
Maximization of Network Data

We define a graph representation of an information technology
network as a heterogeneous, directed graph denoted by � =

(+ , �)where V is a set of nodes (E1, E2, E3, ...E=), where n is the
number of nodes (dynamic in our case), and E is a set of edges.
Furthermore, since the graph is heterogeneous, each relationship of
type r between nodes can be represented as (vi, r, vj) where vi, vj Y
V. In our case r is observed traffic between devices on the network.
The different forms of network traffic gathered by our system give
us the ability to reconstruct network topology in real-time, even as
new devices join and exit the network. Multimodal network data
is prone to insufficient authenticity, inaccuracy, limited traffic size
and privacy security risks [19]. The ground truth of the network,
which is the real devices and systems currently on the network, are
often difficult to obtain especially in the context of small network
topologies. When determining this baseline network structure, the
true topology of the network is prone to errors when building graph
structure.

To overcome this problem, we employ a type of an expectation-
maximization (EM) algorithm, proposed by Newman, to best es-
timate the ground truth from noisy network data [20]. The EM
algorithm is a well-known statistical technique used for finding the
maximum likelihood estimates of parameters in statistical models
when the data is incomplete or has missing values [21]. Newman’s
work on network structure analysis shows how the EM algorithm
can be applied to infer hidden structures from observed data that
might be noisy or incomplete. Given observed data that represents
connections between nodes in a network, the goal is to infer the
underlying structure of the network, including hidden or latent
connections. The observed data is assumed to be noisy, containing
false positives and false negatives, and the challenge is to recover

the true network structure. We assume that there is an underlying
true network represented by a matrix A, where Aij = 1 if there is
a connection between nodes i and j, and Aij = 0 otherwise. The
observed network is represented by a matrix B, where the entries
are influenced by noise. The EM algorithm is used to iteratively
estimate the true network matrix A from the observed matrix B.
The algorithm consists of two main steps: the Expectation (E) step
and the Maximization (M) step. In the first step, the expectation
of the log-likelihood function is computed with respect to the cur-
rent estimate of the true network. This involves calculating the
probability distribution of the hidden variables given the observed
data and the current estimate of the parameters. For example, the
expectation of the connection Aij given the observed connection
Bij and the current parameter estimates is calculated as seen in
equation 1.

�
(
�8 9

���8 9 ) = ?
(
�8 9 = 1

���8 9 ;\ ) (1)

\ represents the current estimates of the model parameters. In the
second step, the parameters are updated to maximize the expected
log-likelihood calculated in the first step. This involves finding the
values of the parameters that maximize the expectation, typically
through numerical optimization techniques. The E and M steps are
iterated until convergence, resulting in the final estimates for the
true network structure. Algorithm 1 shows this process in more
detail.

Algorithm 1 EM Algorithm
# Initialize the parameters theta (e.g., probabilities related to noise)
initialize(theta)
# Initialize the estimated true network matrix A, possibly using the
observed network B initialize(A)
# Set a convergence criterion (e.g., change in log-likelihood or
parameters) convergence_criterion = 0.001
# Track changes to assess convergence change = float(’inf’)
# Iterate the EM algorithm until convergence while change >
convergence_criterion:
# E-Step: Compute the expected values of the true network A
given observed network B for each connection (i, j) in B:
E_A_ij = compute_expectation(B[i, j], theta) # E.g., p(A_{ij} = 1 |
B_{ij}; theta)
A[i, j] = E_A_ij
# M-Step: Update the parameters theta to maximize the expected
log-likelihood new_theta = maximize_log_likelihood(A, B)
# Calculate change to assess convergence (could be change in
parameters or log-likelihood) change = calculate_change(theta,
new_theta)
# Update theta for the next iteration theta = new_theta
# The final estimate of the true network is in A return A

3.2 Entropy Calculation
To further assess the ground truth of the network, we incorpo-

rate the calculation of Shannon (H =
:∑
8=1

pi ∗ log2(pi)) and byte

entropy [22] of packets being sent between IP addresses. The mea-
sured uncertainty of the packet captures can then be used to build
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a better topology of the network. The model will then penalize
abnormally high entropy connections in the final network topology.

3.3 Feature Representations
The core of the proposed approach lies in the utilization of dynamic
directional IP graphs, which are continuously updated in real time
using captured packets, Scapy packets, and Zeek logs. These dy-
namic graphs serve as the fundamental basis for generating feature
representations during the online training of the GNN node2vec
model. Unlike conventional static graphs, these dynamic graphs
capture the real-time evolution of network topology and informa-
tion flow directions. This dynamic aspect enriches the feature space
by incorporating the latest network interactions and enables more
accurate representations of IP address nodes and their contextual
roles within the network.

Algorithm 2 Combining EM and Shannon/Byte Entropy Pseu-
docode:
# Perform measurements
EM algorithm (algorithm 1)
compute Shannon Entropy
compute Byte Entropy
combined score between EM and Shannon/Byte
return combined score

3.4 Graph Sequence Generator
The process commences with the construction of directional IP
graphs based on captured network packets from Pyshark, Scapy,
and Zeek, organized into time intervals known as epochs. Each
epoch contributes to the evolving graph, with individual IP ad-
dresses acting as nodes and directional edges carrying weighted
information flow. The edge weights are computed using the New-
man EM algorithm and Shannon entropy, drawing from packet
data to gauge the strength and significance of connections between
nodes. This mechanism ensures that the graph synchronizes with
real-time network activities and encapsulates changing communi-
cation patterns. Figure 2 shows an example of an IP graph at the
end of generation.

3.5 Online Training
The dynamic nature of the directional IP graph aligns seamlessly
with the concept of online training for the GNN node2vec model.
Traditional node2vec algorithms are trained on static graphs, which
fail to capture real-time changes. However, the proposed approach
embraces these changes by continually updating the graph’s nodes
and edges with newly captured packet data from the most recent
epoch. This continuous evolution of the graph enables the GNN to
adapt to emerging patterns, detect anomalies promptly, and make
informed decisions in real time.

To generate meaningful training examples for the GNN
Node2Vec, the approach employs biased random walks. These
walks simulate how information propagates through the network.
Starting from a specific node (e.g., an IP address), the walk selects
the next node probabilistically, considering edge weights as deter-
mined by the Newman EM algorithm and Shannon entropy. The

Figure 2: Directed IP graph at the end of a training ses-
sion. Each yellow node is a real IP address on the network,
with their connections shown in black. The clustered nodes,
mostly in the center of the graph, show which captured pack-
ets best reflect the ground truth.

introduction of return (p) and in-out (q) parameters allow control
over exploration depth and local vs. distant node bias. This bal-
anced exploration technique ensures that the walk captures both
local and global network behaviors, aligning well with the GNN’s
learning needs.

In summary, the integration of biased random walks with the
proposed approach creates a synergistic framework for real-time
network traffic analysis. These walks enhance the training process
by generating representative sequences of nodes that mirror actual
network interactions, while the GNN node2vec model leverages
these sequences to understand and adapt to the evolving network
dynamics. This integrated approach holds potential for effective
network management, security, and anomaly detection.

3.6 Model Performance
The integration of dynamic directional IP graphs and online train-
ing has substantial implications for the performance of the GNN
node2vec model in real-time network traffic analysis. The adaptabil-
ity introduced by the dynamic graph enables the model to maintain
relevance in the face of evolving network behaviors. Directional
context, often neglected in traditional GNN applications, enhances
the accuracy of node embeddings, as the model can differentiate
between incoming and outgoing interactions. As a result, the model
becomesmore adept at detecting anomalies, understanding network
dynamics, and contributing to effective network management.

The latent space showed separation of device by rough use case,
encoding temporal and physical features of the network. Internal
and external IP addresses can be easily separated. Message details
like byte entropy were also encoded by the network resulting in
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Figure 3: TensorBoard IP frequency per epoch scalars for the IP addresses 192.168.4.1 and 192.168.4.45 and TensorBoard
embedding projector calculating PCA on the node2vec model embeddings of all seen IP addresses

Figure 4: A DDoS attack that attempts to make an online service unavailable by overwhelming it with traffic from multiple
sources.

distinct separations in the latent space. Clusters emerged not only
from the device’s usage but also from the inherent characteristics of
communication protocols, packet types (e.g. Scapy, Pyshark, Zeek),
and even geographic locations (e.g. Censys), without direct incor-
poration of this data during training. The latent space managed to
capture these patterns and variations solely through the input of
IP addresses and their connections. The representation allowed for
an intriguing exploration of the network’s dynamics, suggesting
that IP addresses alone carry a significant amount of information
about the network’s structure and behavior. Figure 3 shows the
performance of the model over time for two separate IP addresses.

While the approach offers considerable advantages, challenges
arise in terms of computational complexity, graph coherence dur-
ing updates, and optimization strategies for real-time calculations.
Future research could delve into refining algorithms for efficient
edge weight recalculations, ensuring the model’s stability during
graph updates, and exploring techniques to minimize disruptions.
Additionally, investigating the interplay between directionality,

node2vec parameters, and GNN architecture could lead to further
enhancements.

4 NETWORK ATTACKS
Herein we discuss our testing capabilities and the procedures that
we took in order to simulate deviations from probabilistic network
activity. Evidentiary capabilities are only as good as the tests that
they purport to disprove, and in the testing phase of our operation,
the formulated hypotheses are rigorously examined, insofar as the
null hypothesis asserts that a given observation falls within the
expected behavioral patterns of the system, whereas the alternative
hypothesis claims the contrary. The process involves applying
statistical tests to measure how the new or real-time data aligns
with the established normal behavior model. Subsequently, each
observation is assigned an anomaly score reflecting its deviation
from the norm. Higher scores typically denote greater abnormality,
so long as the range provides reference for greater or lesser degree
of deviation. These scores are used in the thresholding and alerting
phase. By setting carefully calibrated thresholds, the system can
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Figure 5: A Smurf where large amounts of ICMP ping traffic is sent to a broadcast address, causing the devices in the network
to reply to the victim’s IP address, overwhelming it with responses.

effectively balance sensitivity, which prioritizes detection of true
anomalies, against specificity, which minimizes the impact of false
alarms. To mimic true anomalous, malicious intent, we designed
scenarios that simulate traditional attack behavior in a modern
network.

4.1 Attack Testing
To demonstrate our system’s ability to detect malicious network
activity, we staged a series of cyber-attacks, including Distributed
Denial-of-Service (DDoS) [23], Smurf [24], and Man-in-the-Middle
(MITM) [25] attacks.

DDoS Attack: The essence of a DDoS attack lies in its malevolent
intent to disrupt the standard operation of a network, service, or
server through an onslaught of excessive internet traffic. This
traffic often exhibits a distributed origin, potentially emanating
from an extensive network of sources, thereby distinguishing a
DDoS attack from a more conventional denial-of-service (DoS)
attack. The methodology adopted may span a variety of avenues,
inclusive of, but not limited to, TCP/IP-based attacks (such as SYN
flood and Smurf), application layer onslaughts, and exploitation of
system-specific vulnerabilities. Figure 4 shows an example of this
attack, and Algorithm 3 shows pseudocode of the generated attack.

Smurf Attack: This constitutes a variant of the distributed
denial-of-service (DDoS) attack paradigm, capitalizing on IP spoof-
ing in combination with ICMP echo requests to oversaturate the
target network with extraneous traffic. The attacker orchestrates
a deluge of ICMP echo requests directed towards IP broadcast ad-
dresses, while the source IP is manipulated to resemble that of
the target. As an immediate response, each device interconnected
within the broadcast network generates a response, culminating in
a substantial surge of replies to the target’s network. The multiplier
effect that amplifies the impact of this attack emanates from the
number of active devices within the broadcast network. Figure 4

Algorithm 3 DDOS pseudocode:
FUNCTION launch_attack(target_ip, number_of_ips,
number_of_messages, interface, attack_type) CREATE a pool of
threads
GENERATE or SELECT the origin IP addresses FOR each origin_ip
in origin_ips
LAUNCH a thread WHILE attack is ongoing
CREATE a packet with specific characteristics based on
attack_type SEND the packet to target_ip from origin_ip
END WHILE END FOR
CALCULATE and PRINT attack statistics END FUNCTION
CALL launch_attack with necessary parameters

shows an example Smurf attack, with its corresponding pseudocode
in Algorithm 4

Algorithm 4 Smurf pseudocode:
FUNCTION launch_attack(network, spoofed ip, number of
processes, number of packets)
CREATE a pool of processes
FOR each process in the pool
CREATE a new event loop FOR number of packets
CREATE and SEND a spoofed ICMP packet to the broadcast
address
END FOR
END FOR
WAIT for all async tasks to complete
END FUNCTION
CALL launch_smurf_attack with necessary parameters
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Figure 6: MITM attack where an unauthorized party intercepts and possibly alters communications between two parties while
making it appear as if a normal conversation or data exchange is underway.

MITM Attack: This cyber threat is characterized by an attacker
surreptitiously intercepting, and potentially modifying, the commu-
nication between two unsuspecting parties under the impression of
being in a direct conversation. The attacker establishes individual
connections with each victim and facilitates message transmission
between them. This gives the victims the illusion of communicating
over a private connection, while the entire conversation is manipu-
lated by the attacker. The MITM attacks transcend the boundaries
of wired and wireless environments, making various forms of com-
munication (including but not limited to HTTP, HTTPS, SSL, TLS,
and Wi-Fi) susceptible. Figure 5 shows an example of the occur-
ring MITM attack between Alice and Bob, with its corresponding
pseudocode in Algorithm 5

Algorithm 5 MITM pseudocode:
CREATE connection WITH alice
CREATE connection WITH bob
WHILE communication is ongoing
RECEIVE message FROM alice
FORWARD message TO bob
RECEIVE message FROM bob
FORWARD message TO alice
END WHILE

4.2 Results
We demonstrate the potential of the embedding through the appli-
cation of simple algorithms applied to the latent space.

Additionally, we implemented callbacks to conduct IP ping count
detection on a per-address basis during the online training of the
node2vec GNN. This integration enhances the GNN’s adaptability
and anomaly detection capabilities by leveraging real-time IP ping
data.

The process begins by establishing a reference baseline for nor-
mal network activity, derived from analyzing the initial ’n’ epochs.
This baseline data serves as a benchmark for subsequent anomaly

detection. During the online training of the node2vec GNN, the
count of IP pings per address is continuously monitored for each
epoch.

A standard time series decomposition with seasonality, trend,
and level is used to compensate for normal variation in network
behavior. The residuals are checked against a threshold, and such
instances are flagged as anomalies, indicating potential irregulari-
ties in network activity. This anomaly detection process seamlessly
integrates with TensorBoard, allowing real-time visualization of
detected anomalies.

Figure 7 shows the output IP scalars (orange) and anomaly scalars
(blue) in TensorBoard during a Smurf attack at epoch 11. As seen
in the TensorBoard image, the thresholding of the residual data
effectively identified an instance of our Smurf attack (at epoch 11)
within the IP ping count data. This integration allows for real-time
visualization of the detected anomalies. Analysts and network
administrators can observe the anomalies as they occur, facilitating
prompt response and mitigation.

5 CONCLUDING REMARKS & CONTINUED
RESEARCH

Our results show that our algorithm can identify common cyber-
attacks in real-time, while learning the latent space of the network
for visualization. Even without the inclusion of labeled training
data, our solution can build the ground truth of a network’s topol-
ogy, by analyzing real network data. We then showed how network
attacks can be visually identified through simple monitoring. We
also developed preliminary techniques for detecting anomalous
activities by observing drifting rates in cosine similarities between
embeddings coupled with seasonal decomposition and plan to re-
port those results in future work. Although the attacks were di-
minished in capability and are commonly used to demonstrate
traditional malicious cyber activity, the fact that the algorithm was
able to identify these simple attacks lends credence that even more
complex attacks would be just as visible. Future work should look
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Figure 7: TensorBoard IP Scalars and Anomaly Scalars during a Smurf Attack.

to safely test more complex attacks, and look to follow existing
campaigns, like those identified by MITRE [6]. We also suggest
future work to focus on implementing a decentralized, peer-to-peer
mesh network for real-time feature sharing amongst the worker
nodes, as larger ground truth networks will require faster and more
frequent data collection.
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