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ABSTRACT
Training large-scalemachine learningmodels typically requires sup-
port from High-performance Computers (HPCs) or cloud servers.
One strategy to reduce the computational burden and alleviate the
communication bottleneck of servers or HPCs is to move a subset
of training computation to the edge or end-user devices. Federated
learning is a distributed training approach that aims to protect the
privacy of end-user data. However, most federated learning sys-
tems utilize centralized server architecture, which slows down the
model training and limits the system’s scalability. Many machine
learning trainings require high performance while maintaining
end-user data security. The state-of-the-art serverless approaches
have performance limitations and can be further improved. This
paper proposes Serverless-DFS, a serverless federated learning with
a dynamic forest strategy, to improve the performance and scal-
ability of federated learning while keeping its privacy protection
capability. From the experimental results, our Serverless-DFS ap-
proach is observed to have a 63.9X speedup compared to the default
server-client method in a large-scale system with 256 clients.
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1 INTRODUCTION AND RELATEDWORK
Federated learning [1–3] is a distributed Artificial Intelligence (AI)
training technology that does not require clients to share their pri-
vate data. The AI model that needs training will be forwarded to all
participating clients, and clients can compute their own versions
of gradients locally by using the exclusive data. Each client only
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provides its own version of gradients to the server or another client
for gathering, and it is unnecessary to share other data. Besides the
security and privacy benefits, applying federated learning to edge
or mobile systemsmay also reduce the computational burden on the
server side by fully utilizing clients’ processing resources. A typical
network topology for federated learning on edge or mobile systems
is one-to-many server-client architecture. Each client computes a
mini-batch of inputs and forwards updates to the server for accumu-
lation. Later, the server broadcasts the overall updates to all clients.
This operation that includes an accumulation and a broadcast is
called all-reduce and is considered the current bottleneck of parallel
machine learning training. The one-to-many server-client architec-
ture strategy is straightforward and good for small-scale systems.
The server is a centralized component in this architecture, which
will become a bottleneck if the number of clients grows. So, the
scalability of one-to-many server-client architecture is problematic.

𝜆-FL [6] is a serverless method for the update aggregation of
federated learning. However, 𝜆-FL is not a systematic solution for
alleviating the entire all-reduce bottleneck, which consists of a
gather operation followed by a broadcast. Moreover, 𝜆-FL utilizes
a queue to track and schedule the aggregation process, which is
similar to a single tree topology that has constraints, including
low network utilization and high communication latency. FedLess
[7] is another serverless federated learning methodology that is
based on FaaS (function-as-a-Service) platforms. Similar to 𝜆-FL,
FedLess mainly pays attention to aggregation instead of the entire
all-reduce bottleneck. Multitree [4] is a parallel training method
for gradient all-reduce operations with high performance and ex-
cellent network load balance. Multitree is designed based on data
parallelism, where each processing node computes a mini-batch of
inputs within a particular timeframe. However, Multitree is a static
strategy where all nodes and data links are always available. In the
mobile or edge systems that support federated learning, clients usu-
ally dynamically leave the wireless network. Moreover, Multitree
requires each router to be connected to one private node within the
system, and all connected routers must have functional component
augments (e.g., Lookup Table, counter, comparator, etc.). So, we
must explore a new methodology for serverless federated learning
that can dynamically adjust the forest topology.

1) The main contributions of this paper are summarized below:
We explore a methodology on how to effectively construct a

forest topology for all-reduce operations in the edge or mobile
network.

2) We propose a Serverless Dynamic Forest Strategy (Serverless-
DFS) for all-reduce operations of federated learning. This DFS does
not require the server’s participation, thus alleviating the potential
congestion and ensuring network load balance, leading to better
system performance and scalability.
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Figure 1: The Server-Client One-to-Many Architecture for Federated Learning

3) Perform empirical experiments to demonstrate the benefits of
this Serverless-DFS approach.

The remaining sections of this paper are organized as follows:
Section 2 will briefly introduce the federated learning background.
Section 3 will discuss the design and implementation details of
Serverless-DFS. Our experimental results are demonstrated in Sec-
tion 4, and finally, we will conclude in Section 5.

2 FEDERATED LEARNING BACKGROUND
The primary motivation of federated learning is to provide a par-
allel training solution for a distributed system that does not re-
quire clients to provide their private data. The strategy is to move
the machine learning model close to the data side and collect the
gradients after completing the input batch computation. Figure 1
demonstrates the Sever-Client one-to-many architecture of feder-
ated learning. Each client has private data that is unwilling to share
but is critical for the specific machine learning model training. The
federated learning process is typically summarized as the following
steps: (1) The server forwards the original version of the model to
all participating clients. (2) After receiving the model, every client
can start training using its private data set and obtain a version of
the gradients. From the client’s perspective, the gradients gener-
ated from the training process are not considered raw private data
and can be shared with others via network communications. (3)
Each active client sends its version of gradients to the server for
gathering. One general gathering methodology is to sum up all the
newly received versions and compute their average to update the
model. (4) The server broadcasts the updated model to all clients.
(5) Repeat Step (1) to Step (4) until the model convergence. The
combination of one gathering and one broadcast is also known as
the all-reduce operation.

The clients of edge or mobile systems may leave for various
reasons. E.g., the client runs out of power. Essentially, this scenario
will not block the training process because other clients will con-
tinuously forward the gradients and receive the updated model.
However, an important problem of conventional server-client fed-
erate learning is that the server may become a bottleneck if the
client number grows, thus lacking good scalability.

3 SERVERLESS FEDERATED LEARNING WITH
DYNAMIC FOREST STRATEGY

This section will introduce our serverless federated learning with
dynamic forest strategy (Serverless-DFS). We aim to remove the cen-
tralized bottleneck server from the federated learning framework
to ensure better scalability while lowering the gradient gather-
ing latency. According to Section 2, federated learning consists
of multiple rounds of all-reduce operations until the model con-
vergence. Ring-all-reduce [5] is a prevalent method for gathering
and broadcasting gradients from parallel machine learning training.
The benefits of ring-all-reduce include better scalability from its
decentralized topology and ensure fairness. However, the commu-
nication latency of both gathering and broadcast is O(N), where N
is the total number of participating clients. One solution to reduce
the communication delay is to change the ring topology into a tree
topology, where the latency may be lower from O(N) to O(log N).
Unfortunately, the single tree strategy has serious load imbalance
problems, potentially leading to congestion and long waiting delays
if the size of the gradients is enormous.

We explore the solutions to utilize dynamic forest topology in
federated learning to achieve lower latency, better scalability, and
load balance. The ’dynamic’ indicates that one or more clients may
leave the system for various reasons, but the training process must
continually move forward.

3.1 Forest Construction Algorithm
Before starting the all-reduce operations of federated learning, the
first step is to construct the forest topology with N binary trees,
where N is the number of participating clients within the edge or
mobile system. Every client will be the root node of one particular
tree. All trees are constructed in parallel. But for simplicity, 2 only
demonstrates the messages of a single tree (Root Node: C0; Client
0) construction and assumes that this system only has four clients.
In 2(a), the root client C0 broadcasts the RT0_T_L1_Req messages
to all other clients. The RT0_T_L1_Req indicates this is a request
to construct Layer-1 of the Root-0-Tree (Client 0 is the tree root).
Once a client receives the RT0_T_L1_Req, it will check if it has been
joined to the Root-0-Tree. If not, it will reply with an RT0_T_L1_Avail
message to the sender to notify the join intention. Otherwise, the
client already joined the Root-0-Tree just ignores the RT0_T_L1_Req
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Figure 2: An example of the forest construction algorithm in a four-client edge network. For simplicity, we only illustrate the
messages for Root-0-Tree construction. The messages of the remaining tree constructions are ignored, but all trees in the forest
are structured in parallel.

Figure 3: An example of the final forest with four trees.

message. In 2(b), because all other clients have not joined the Root-
0-Tree, they reply RT0_T_L1_Avail to Client 0 (C0) to express the
intention to join Layer-1 of Root-0-Tree. Because we will construct
a binary tree to ensure the O(log N) latency, the senders of the
first two RT0_T_L1_Avail messages will be selected as the nodes
of Layer-1 of Root-0-Tree. In this example, we assume C1 and C2
are selected, and C0 will ignore the last RT0_T_L1_Avail message
from C3. 2(c) shows that C0 sends the RT0_T_L1_Sel messages to C1
and C2 to notify them that they have been selected for Layer-1 of
Root-0-Tree. The status of the Root-0-Tree is illustrated on the right
of 2(c), where C1 and C2 are the two children of the root C0. In 2(d),
the newly joined clients C1 and C2 broadcast the RT0_T_L2_Req.
Because C0, C1, and C2 are already within the Root-0-Tree, they
directly ignore all Root-0-Tree joining requests. C3 does still not
join the Root-0-Tree, so it will reply RT0_T_L2_Avail to the sender
of the first RT0_T_L2_Req message it received. In 2 (e), we assume

the first RT0_T_L2_Req received by C3 is from C1. So, in 2(f), C1
replies RT0_T_L2_Sel to C3 to notify that C3 has been selected to
join the Layer-2 of Root-0-Tree. The final Root-0-Tree is shown on
the right of 2(f)

Every tree construction is independent, so all trees within the
forest are created in parallel. 3 demonstrates an example of four
trees generated via our forest construction algorithm. Because the
order of receiving request and response messages is uncertain, we
may create many different versions of forests. We are only required
to execute this Forest Construction Algorithm once right before
the first all-reduce operation of parallel training.

3.2 Serverless Federated Learning with Logical
Forest Topology

After completing the static forest construction for all participating
clients, we can start the federated learning process. The training
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Figure 4: The process of an all-reduce operation in a four-client system via a logical forest topology.

consists of multiple rounds of all-reduce operations. Each all-reduce
is a gather operation followed by a broadcast operation. To support
all-reduce operations via the forest topology from 3, the same as the
Multitree method [4], we flip the entire forest to get the topology
for gathering. The broadcast step can be directly supported by the
forest generated in Section 3.1 (3). The main reason to utilize a
forest instead of a single tree is that it can improve the bandwidth
utilization rate and further eliminate potential bottlenecks. Because
all clients train the same model, the size of total gradients from all
clients should be the same. So, we can divide the gradients into
N subsets, and each subset of gradients would transmit via one
tree (with its flipped tree) within the forest. According to 4, the
all-reduce is divided into four stages in this four-client example,
where the first two stages are gathering via the flipped forest, and
the last two stages are broadcasting via the default forest. The
number of stages equals two times the tree height: 2log(N). After
an all-reduce operation is complete, a new round of mini-batch
computation is continuous until the model convergence. So, this
Serverless-DFS scheme can effectively complete multiple rounds of
all-reduce operations for federated learning without the server’s
participation.

3.3 All-reduce Routing Lookup Table in Clients
During the all-reduce process, once a client receives a subset of
gradients, this client should know where it should forward this
gradient to or if it is the gather/broadcast end node of this gradient
subset. So, each client should have its private Lookup Tabel (LUT)
for this routing information. The routing table is similar to that
of Multitree [1], but our routing tables need to include parent and
children information about the client loss problem, which will be
further discussed in Section 3.4. Moreover, the LUT of the Multitree
method is stored in each client’s directly connected router, where
each router within the network only has one corresponding client.
The relationship between the client and router in the edge or mobile

systems typically is not bijective. Considering the heterogeneity of
the client devices and enhancing the practicality of Serverless-DFS,
we store a routing LUT in the RAM of each client. The routing LUT
in each client should be different because they are only required to
save the routing information related to themselves.

5 shows the all-reduce routing LUTs in all four clients. Each
client has a private LUT, which has six columns: Tree ID, Parent ID,
Child ID 1,Height 1, Child ID 2 and Height 2. The Tree ID is to identify
the current subset of gradients using which tree for all-reduce. The
Parent ID and two Child IDs are determined by default forest (4).
All the trees in the forest are balanced binary trees, and we require
two columns for child IDs and two columns for subtree heights
in each LUT. When a subset of gradients traverses a specific tree
and its flipped tree, this subset of gradients should also include a
1-bit value to specify whether it is in gather or broadcast operation.
Besides this 1-bit operation value, the subset of gradients should
also include the Tree ID value, which requires O(log N) bits. E.g., in
the Gather part of Tree 0 (4), C1 receives a subset of gradients from
C3. Now, the C1 should check its LUT to find out what actions it
should take and where this subset of gradients should be forwarded.
Because this subset of gradients contains the Tree ID (Tree 0) and
the 1-bit operation value (Gather), C1 can use these two values to
determine the next step destination. In Client 1’s LUT, the row with
Tree ID ’0’ has been selected via the Tree ID value. The ’Gather’
value indicates that the next destination should be its Parent, where
we can get the value 0. This means Client 1 should forward this
subset of gradients to Client 0 to continue the Gather operation.

3.4 Dynamic Forest Adjustment for Client Loss
For federated learning in the edge or mobile systems, the client
may quit the training group for various reasons, such as running
out of power or moving outside the valid range. To improve the
robustness of Serverless-DFS, we should explore the mechanism to
dynamically prune the forest when the client leaves. This section
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Figure 5: All-reduce Routing Lookup Tables (LUTs) of the four-client example; The LUT in every client is different from others
and only stores the routing information related to itself.

Figure 6: Updates of all-reduce routing LUTs when Client 2 quits. The updates in Step (2) are marked in red, and those in Step
(3) are marked in green.

continues to use the four-client system as an example. Without
loss of generality, we assume Client 2 now leaves the group for
parallel training. The procedure to update the forest information is
summarized as three steps: (1) Fetch the Client 2 routing LUT from
a backup storage. (2) Combining the information from Client 2 LUT,
every client scans its private LUT and modifies all cells related to
Client 2. (3) Unbalanced binary tree detection and adjustment.

6 demonstrates how to dynamically update the LUTs to refresh
the forest topology. Once the leave of Client 2 has been detected, all
other clients should fetch the Client 2 LUT (blue background) from
the backup storage to support the updates of LUTs in other clients.
Then, in Step (2), each client scans all its LUT entries and modifies
the cells that are associated with Client 2. The updates from Step (2)
are marked as red text in 6. The forest status after Step (2) is shown
on the left part of 7. To maintain the O(log N) traverse latency, we
require an extra step (Step 3) to detect the unbalanced binary trees
and make the corresponding adjustments. From the left side of 7,

we know that Tree 0 is unbalanced after Step (2), which could be
detected by computing the difference between Height 1 and Height
2 values in the same LUT row. The updates of LUT from Step (3) are
marked as green text in 6. Finally, all binary trees in the all-reduce
routing forest are balanced and shown on the right side of Figure 7.

4 EVALUATIONS
We systematically model three federated learning frameworks: one-
to-many Server-Client topology, Single Tree serverless topology,
and dynamic Forest serverless topology (Serverless-DFS). This sec-
tion aims to evaluate the speedup and scalability of our Serverless-
DFS for federated learning.
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Figure 7: Adjust the unbalanced binary tree(s) to balanced binary tree(s).

Figure 8: Speedup Comparisons for Client-Server, Single Tree, and Forest Topologies with Numbers of Clients Scaling

4.1 Speedup Comparisons with Different Client
Numbers

Currently, over 15 billion IoT (Internet of Things) devices are con-
nected worldwide, and the number is expected to double by 2030 [8].
So, we should evaluate the performance scalability of our Serverless-
DFS approach by gradually increasing the client number in the
system. 8 exhibits the speedup of three approaches with client
numbers from 4 to 256. The speedup of one-to-many Server-Client
topology is normalized as 1. The benefits of Serverless-DFS become
more significant if the client number grows. For example, in a
system with 256 clients, our Serverless-DFS demonstrates a 63.9X
speedup compared to the default Server-Client topology, where the
Single Tree approach’s speedup is 18.3X. The main reason for obser-
vation is the forest method optimizes the load balance of the entire
network, which is critical for alleviating congestion in large-scale
systems.

4.2 Speedup Comparisons with Different Client
Capabilities

The capabilities of IoT or edge devices are expected to continue
growing due to the development of semiconductor technology. The

devices may have more processing elements and memory resources.
For example, the NVIDIA Jetson AGX Orin contains a 12-core CPU
and a GPU with 2048 CUDA cores and 64 Tensor Cores [9]. So, the
edge or IoT devices are expected to have more parallel capability,
and their Instructions Per Cycle (IPC) should gradually increase. 9
shows the speedup comparisons of three all-reduce topologies with
the clients’ IPC from 0.1 to 10. The experimental results demonstrate
that Serverless-DFS (forest) gets better speedup if the clients’ IPC is
higher, indicating that Serverless-DFS should have more significant
potential for future powerful edge devices. For example, if the IPC
of edge devices is 10, the Forest approach gets 25X, and the Single
Tree only obtains 4X. Similar to Section 4.1, the speedup of the
Server-Client approach is normalized as 1. The main reason for this
observation is that the devices with higher IPC would reduce the
computational time, and the communication delay would dominate
the overall latency. Serverless-DFS is a forest approach to lower the
communication delay and ensure network load balance, so we can
see the huge speedup of the forest method with high client IPC.
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Figure 9: Speedup Comparisons for Client-Server, Single Tree, and Forest topologies with different computing capabilities (IPC:
Instructions Per Cycle) of Clients

5 CONCLUSION
This paper introduces the implementation details of the Serverless-
DFS approach, which aims to improve the performance and scalabil-
ity of federated learning while maintaining end-user data security.
Compared to the default Server-Client topology, Serverless-DFS gets
63.9X speedup in a large-scale system with 256 clients, whereas
the Single Tree method is only observed 18.3X. In a 32-client sys-
tem where each client IPC is 10, Serverless-DFS gets 25X speedup
compared to Server-Client method, and the Single Tree approach
only gets 4X in speedup. Data privacy is the primary concern of
the federated learning framework. The future work of this paper
will focus on identifying potential security issues of Serverless-DFS
and propose corresponding protections.
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