
Typed Memory Management via Static Capabilities

DAVID WALKER
Carnegie Mellon University
KARL CRARY
Carnegie Mellon University
and
GREG MORRISETT
Cornell University

Region-based memory management is an alternative to standard tracing garbage collection that
makes operations such as memory deallocation explicit but verifiably safe. In this article, we
present a new compiler intermediate language, called the Capability Language (CL), that supports
region-based memory management and enjoys a provably safe type system. Unlike previous region-
based type systems, region lifetimes need not be lexically scoped, and yet the language may be
checked for safety without complex analyses. Therefore, our type system may be deployed in
settings such as extensible operating systems where both the performance and safety of untrusted
code is important. The central novelty of the language is the use of static capabilities to specify the
permissibility of various operations, such as memory access and deallocation. In order to ensure
capabilities are relinquished properly, the type system tracks aliasing information using a form of
bounded quantification. Moreover, unlike previous work on region-based type systems, the proof
of soundness of our type system is relatively simple, employing only standard syntactic techniques.
In order to show how our language may be used in practice, we show how to translate a variant of
Tofte and Talpin’s high-level type-and-effects system for region-based memory management into
our language. When combined with known region inference algorithms, this translation provides
a way to compile source-level languages to CL.

Categories and Subject Descriptors: D.3.1 [Programming Languages]: Formal Definitions and
Theory—Semantics, Syntax; D.3.4 [Programming Languages]: Processors—Compilers; F.3.2
[Logics and Meanings of Programs]: Semantics of Programming Languages—Operational
Semantics; F.3.3 [Logics and Meanings of Programs]: Studies of Program Constructs—Type
Structure

General Terms: Languages, Theory, Verification
Additional Key Words and Phrases: Certified code, region-based memory management, type-
directed compilation, typed intermediate languages

This material is based on work supported in part by the AFOSR grant F49620-97-1-0013 and
the National Science Foundation under Grant No. EIA 97-03470. Any opinions, findings, and
conclusions or recommendations expressed in this publication are those of the authors and do not
reflect the views of these agencies. This research was performed while the first and second authors
were at Cornell University.
Authors’ addresses: David Walker, Karl Crary, Carnegie Mellon University, Computer Science
Department, 5000 Forbes Avenue, Pittsburgh, PA 15213. Greg Morrisett, Cornell University,
Computer Science Department, Upson Hall, Ithaca, NY 14853.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2000 ACM 0164-0925/00/0500-0431 $5.00

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1–71.

2 · D. Walker, K. Crary, and G. Morrisett

1. MOTIVATION AND BACKGROUND

A current trend in systems software is to allow untrusted extensions to be installed
in protected services, relying upon language technology to protect the integrity of
the service instead of hardware-based protection mechanisms [Lindholm and Yellin
1996; Wahbe et al. 1993; Bershad et al. 1995; Necula 1997; Morrisett et al. 1998;
Kozen 1998; Hawblitzel et al. 1998]. For example, the SPIN project [Bershad et al.
1995] relies upon the Modula-3 type system to protect an operating system kernel
from erroneous extensions. Similarly, Web browsers rely upon the Java Virtual
Machine byte-code verifier [Lindholm and Yellin 1996] to protect users from mali-
cious applets. In both situations, the goal is to eliminate expensive communications
or boundary crossings by allowing extensions to directly access the resources they
require.

Recently, Necula and Lee [Necula and Lee 1996; Necula 1997] have proposed
Proof-Carrying Code (PCC) and Morrisett et al. [1999; 1998] have suggested Typed
Assembly Language (TAL) as language technologies that provide the security ad-
vantages of high-level languages, but without the overheads of interpretation or
just-in-time compilation. In both systems, low-level machine code can be heavily
optimized, by hand or by compiler, and yet be automatically verified through proof-
or type-checking.

However, in all of these systems (SPIN, JVM, TAL, and Touchstone [Necula
and Lee 1998], a compiler that generates PCC), there is one aspect over which
programmers and optimizing compilers have little or no control: memory man-
agement. In particular, their soundness depends on memory being reclaimed by
a trusted garbage collector. Hence, applets or kernel extensions may not perform
their own optimized memory management. Furthermore, as garbage collectors
tend to be large, complicated pieces of unverified software, the degree of trust in
language-based protection mechanisms is diminished.

The goal of this work is to provide a high degree of control over memory man-
agement for programmers and compilers, but as in the PCC and TAL frameworks,
make verification of the safety of programs a straightforward task.

1.1 Regions

Tofte and Talpin [1994; 1997] suggest a type-and-effects system for verifying the
soundness of region-based memory management. In later work, Tofte and others
show how to infer region types and lifetimes and how to implement their the-
ory [Tofte and Birkedal 1998; Birkedal et al. 1993; Birkedal et al. 1996]. There are
several advantages to region-based memory management; from our point of view,
the two most important are:

(1) Region-based memory management can be implemented using relatively simple
constant-time routines.

(2) All memory operations are explicit in the program text, but safety is guaran-
teed.

The first advantage has several implications. If regions are used in a secure system
then the simplicity of the implementation leads to a smaller trusted computing
base. Moreover, it may be possible to formally verify that the region operations are
implemented correctly. In contrast, a formal analysis of a garbage collector would
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 3

be a much more onerous task. Second, because region operations are constant-time
and do not trace the structure of the heap, programs do not suffer from the pauses
that are associated with conventional garbage collectors. Consequently, region-
based memory management systems may be a practical alternative to real-time
garbage collectors [Baker 1978; Wilson 1992].

The second advantage gives programmers greater control over memory use. By
using a region-profiler [Birkedal et al. 1993], programmers can quickly identify the
memory regions that are causing performance problems in their applications. Next,
because allocation and deallocation operations are explicit in the program text, pro-
grammers can use the profiling data to accurately relate the run-time behavior of
programs to their static representation. In other words, given information about
the ways regions are used at run time, it is often straightforward to examine pro-
gram code, identify memory-intensive routines, and reason about the lifetimes of the
data structures allocated there. Once the trouble spots have been identified, pro-
grammers can concentrate their optimization efforts on a small portion of the code.
Most importantly, throughout the programming process, a type checker guarantees
that all memory operations are safe. More specifically, it prevents dereferencing
a pointer to an object that has been deallocated so programmers do not have to
worry about programs crashing due to memory faults. It also ensures that every
memory region that is allocated in a program is later deallocated (assuming the
program does not enter an infinite loop).

In order to ensure that regions are used safely, the Tofte-Talpin language includes
a lexically scoped expression “letregion r in e end” that delimits the lifetime
of a region r. A region is allocated when control enters the scope of the letregion
construct and is deallocated when control leaves the scope. Programs may allocate
values into live regions using the notation v at r. These values may be used until
the region is deallocated. For example,

...

Region lifetime


letregion r in % Allocate region r

let x = v at r in % Allocate value v in r
f (r,x) % Function f may access r

end % Deallocate r (and v)
...

Tofte and Talpin ensure that deallocated values are not accessed unsafely using a
type-and-effects system. Informally, whenever an expression uses a value in region
r, the type system expresses this fact using the effect access(r). However, effects
occuring within the scope of the letregion construct are masked. More specifically,
if the expression e has effects access(r) ∪ ψ (for some set of effects ψ) then the
overall effect of the expression letregion r in e end is simply ψ. Hence, if there
is no overall effect for an entire program then every region access must have occured
within the scope of the corresponding letregion construct. In other words, values
in region r are used only during the lifetime of r and not before or after. If this
condition holds, we can conclude the program is safe.

The Tofte-Talpin language makes efficient use of memory provided that the life-
times of values coincide with the lexical structure of the program. However, if

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

4 · D. Walker, K. Crary, and G. Morrisett

lifetimes deviate from program structure then this style of region-based memory
management may force programs to use considerably more memory than necessary.
Consider the following (yet to be region-annotated) program fragments.

% Scope 1: The Call Site

let x = v in
...
let y = f (x) in
...
y is dead

% Scope 2: The Function

fun f (x) =
...
x is dead
...
let y = v′ in
...
return y

The value v is an argument to the function f and must be allocated in the scope of
the function call. However, suppose that when f is executed, v dies quickly. The
value v′ exhibits the inverse behavior. It is allocated inside f but is returned as
the function result. Both v and v′ have lifetimes that span two lexical scopes, but
neither is live for very long in either scope. Consequently, vanilla region inference
does not perform well in this setting. The best it can do is wrap the function call
in a pair of letregion commands.

% Scope 1: The Call Site

letregion r in
let x = v at r in
...
letregion r′ in

let y = f (r, r′, x) in
...
y is dead

end (r′)
end (r)
...

% Scope 2: The Function

fun f (r, r′, x) =
...
x is dead
...
let y = v′ at r′ in
...
return y

Here, the regions r and r′ are live much longer than they need to be due to the
inflexibility of the letregion construct. Both regions must be allocated outside the
function call. Notice also that even though v is dead when the function call returns,
the outer region r cannot be deallocated until after the inner region r′ has been
deallocated. Lexical scoping enforces a stack-like, last-allocated/first-deallocated
memory management discipline.

In this example, a much better solution to this memory management problem
is to separate region allocation (newregion) from deallocation (freeregion). The
following program takes this approach. In principle, since the lifetimes of regions r
and r′ do not overlap, the memory for these regions could be reused.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 5

% Scope 1: The Call Site

let newregion r in
let x = v at r in
...
let r′, y = f (r, x) in
...
y is dead
let freeregion r′ in
...

% Scope 2: The Function

fun f (r, x) =
...
x is dead
let freeregion r in
...
let newregion r′ in
let y = v′ at r′ in
...
return (r′, y)

Unfortunately, we cannot write this program in the Tofte-Talpin language be-
cause it is based on the idea of lexical scoping. Another consequence of this lan-
guage design is that any program transformation that alters program structure can
affect memory management. One of the most devastating transformations for the
Tofte-Talpin type system is the continuation-passing style (CPS) transformation;
each successive computation is placed in the scope of all previous computations,
with the result that no regions can be deallocated until the entire computation has
been completed. In the following example, the CPS transformation prevents the
region r from being deallocated until after code has been executed when it could
be deallocated as soon as f has completed its computation.

letregion r in
f (r, v)

end;
code

⇒
letregion r in

f (r, v, λ.code)
end

The observation that the Tofte-Talpin type system will make poor use of mem-
ory in such cases has been made before. Birkedal et al. [1996] and Aiken et al.
[1995] have proposed optimizations that allow regions to be freed early. However,
although their optimizations are safe, there is no simple proof- or type-checker
that an untrusting client can use to check the output code. Therefore, in order to
construct a verifyably safe, efficient region-based language, we must reexamine the
fundamental question: “When can a program access a value v?”

1.2 Contributions

Our solution to the problem of provably safe yet efficient region-based memory
management takes its inspiration from operating systems such as Hydra [Wulf et al.
1981]. Hydra solves the access control problem by associating an unforgeable key
or capability with every object and requiring that the user present this capability
to gain access to the object. Furthermore, when the need arises, Hydra revokes
capabilities, thereby preventing future access to the protected objects.

We define a new strongly typed compiler intermediate language for region-based
memory management that uses a compile-time notion of capability to ensure that

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 · D. Walker, K. Crary, and G. Morrisett

region operations are performed safely. Unlike Tofte and Talpin’s language, lexical
scoping plays no part in the verification of our Capability Language (CL). Instead,
the type system threads static information in the form of capabilities along the
control-flow path of a program. In order to use a value in region r at a particular
control-flow point, the program must present the capability for that region. As
in traditional capability systems, our type system keeps track of capability copies
carefully so that it can determine when a capability has truly been revoked. Un-
like in traditional capability systems, which allow the operating system to revoke
capabilities without the cooperation of client code, programs in our language must
volontarily give up their capabilities. However, the capabilities in our language
are a purely static concept, and thus their implementation requires no run-time
overhead. This mechanism provides an efficient way to check the safety of explicit,
arbitrarily ordered region allocation and deallocation instructions.

We have a purely syntactic argument, based on Subject Reduction and Progress
lemmas in the style of Felleisen and Wright [Wright and Felleisen 1994], that the
type system of CL is sound. In contrast, Tofte and Talpin formulate the soundness
of their system using a more complicated greatest fixed point argument [Tofte and
Talpin 1997], and the soundness of Aiken et al. ’s optimizations [Aiken et al. 1995]
depends upon this argument. Part of the reason for the extra complexity is that
Tofte and Talpin simultaneously show that region inference translates lambda cal-
culus terms into operationally equivalent region calculus terms, a stronger property
than we prove. However, when system security is the main concern, soundness is
the critical property.

We also have a formal translation of a variant of the Tofte-Talpin language into
our calculus. Given a type-safe Tofte-Talpin program, the translation always pro-
duces a type-safe CL program. Therefore, when the translation is combined with a
region inference algorithm [Tofte and Birkedal 1998], it provides a way to compile
source language programs into type-safe low-level code that can be used in secure
extensible systems.

The technical sections of this article are derived from earlier work presented at
the Twenty-Sixth Symposium on the Principles of Programming Languages [Crary
et al. 1999]. Section 2 presents the syntax and semantics of CL formally and moti-
vates the design decisions that we made. At the end of this section, we present the
type soundness theorem and discuss the most interesting parts of our proof. The
complete proof may be found in Appendix A. Section 3 demonstrates that CL is at
least as expressive as the Tofte-Talpin language. We define the semantics of a vari-
ant of the latter language and give a translation into CL. The translation preserves
the type safety property, and Appendix B proves this fact. We further demon-
strate the expressiveness of CL by sketching a couple of optimizations that are not
possible in the more restrictive language. Section 4 informally explores several
other applications of capabilities. This section also explains further connections
with related work. Finally, Section 5 concludes.

2. THE CAPABILITY LANGUAGE

The central technical contribution of this article is CL, a statically typed inter-
mediate language that supports the explicit allocation, deallocation, and access of
memory regions.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 7

As mentioned in the introduction, the type system for the language propagates
static information (capabilities) along the control-flow path of a program. There-
fore, the most elegant and natural form for the language is continuation-passing
style (CPS) [Reynolds 1972]. That is, functions in CL do not return values; in-
stead, functions finish by calling a continuation function that is typically provided
as an argument. The fact that there is only one means of transferring control
between functions in CPS—rather than the two means (call and return) in direct
style—simplifies the tracking of capabilities. A direct style formulation is possible,
but the complications involved obscure the central issues. In the remainder of this
paper, we assume familiarity with CPS.

The syntax of the capability abstract machine appears in Figure 1. In the re-
mainder of this section, we explain and motivate the main constructs and typing
rules of the language one by one.

Notation. We treat terms and types that differ only in the names of bound vari-
ables as equivalent. We use the notation {x1 7→ X1, . . . , xn 7→ Xn} or the notation
{x1:X1, . . . , xn:Xn} to denote finite partial maps, which are equivalent up to re-
ordering of their elements. In the subsections that follow, we will build a more so-
phisticated notion of type equivalence on top of these standard conventions. Given
a finite partial map M , Dom(M) denotes the domain of the map. The notation
M{x 7→ X} or M{x:X} denotes a new map M ′ that maps x to X but is otherwise
identical to M whereas M\x denotes a new map M ′ that is undefined at x but is
otherwise identical to M . The notation X[Y/x] denotes standard capture-avoiding
substitution of Y for x in X.

If ∆ is a sequence of bindings of the form αi:κi or αi ≤ C (where i ranges
from 1 to n) then Dom(∆) is the sequence of constructor variables α1, . . . , αn.
Occasionally, we will use the notation [c1, . . . , cn/∆] to refer to the simultaneous
capture-avoiding substitution [c1, . . . , cn/α1, . . . , αn] where α1, . . . , αn = Dom(∆).
We use the notation ∆∆′ to indicate the constructor context formed by concate-
nating the elements of ∆′ onto ∆. This notation is only defined if Dom(∆) and
Dom(∆′) have no elements in common.

2.1 Preliminaries

We specify the operational behavior of CL using a call-by-value allocation seman-
tics [Morrisett et al. 1995; Morrisett and Harper 1997], which makes the allocation
of data in memory explicit. The semantics, which is specified in Figure 2, is given
by a deterministic rewriting system P 7−→ P ′ mapping machine states to new ma-
chine states. A machine state consists of a pair (M, e) of a memory and a term
being executed. A memory is a finite mapping of region names (ν) to regions where
a region is a block of memory that stores a collection of individual objects. Regions
are created at run time by the declaration newrgn ρ, x, which extends memory with
a new region (ν),1 binds ρ to the name of that region, and binds x to the handle
(handle(ν)) for that region. Both ρ and x are considered bound variables for the
purposes of alpha-conversion.

1A “new” region is one that does not occur anywhere in the current memory (i.e., the region’s
name does not occur in the domain of current memory, nor does it occur in any stored value) or
in the expression being executed.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

8 · D. Walker, K. Crary, and G. Morrisett

kinds κ ::= Type | Rgn | Cap
constructor vars α, ρ, ε
constructors c ::= α | τ | r | C

types τ ::= α | int | r handle | 〈τ1, . . . , τn〉 at r | ∀[∆].(C, τ1, . . . , τn)→ 0 at r
regions r ::= ρ | ν
capabilities C ::= ε | ∅ | {rϕ} | C1 ⊕ C2 | C

multiplicities ϕ ::= 1 | +

con. contexts ∆ ::= · | ∆, α:κ | ∆, ε ≤ C
value contexts Γ ::= · | Γ, x:τ
region types Υ ::= {`1:τ1, . . . , `n:τn}
memory types Ψ ::= {ν1:Υ1, . . . , νn:Υn}

word values v ::= x | i | ν.` | handle(ν) | v[c]
heap values h ::= fix f [∆](C, x1:τ1, . . . , xn:τn).e | 〈v1, . . . , vn〉
arithmetic ops p ::= + | − | ×
declarations d ::= x = v | x = v1 p v2 | x = h at v | x = πiv | newrgn ρ, x |

freergn v
terms e ::= let d in e | if0 v then e2 else e3 | v(v1, . . . , vn) | halt v

memory regions R ::= {`1 7→ h1, . . . , `n 7→ hn}
memories M ::= {ν1 7→ R1, . . . , νn 7→ Rn}
machine states P ::= (M, e)

Fig. 1. Capability abstract machine syntax.

Region names and handles are distinguished in order to maintain a phase distinc-
tion between compile-time and run-time expressions. Region names are significant
at compile time: The type-checker identifies which region an object inhabits via
a region name (see below). However, region names, like other type constructors,
have no run-time significance and may be erased from executable code. In contrast,
region handles hold the run-time data necessary to manipulate regions. In addition
to accounting for a phase distinction, the separation of region names and handles
also allows us to refine the contexts in which region handles are needed. Handles
are needed when allocating objects within a region (to increment the region’s al-
location pointer) and when freeing a region (to return region memory to the free
storage list), but are not needed when reading data from a region.

Regions are freed by the declaration freergn v, where v is the handle for the
region to be freed. Objects h large enough to require heap allocation (i.e., function
closures and tuples), called heap values, are allocated by the declaration x = h at v,
where v is the handle for the region in which h is to be allocated. Data are read
from a region in two ways: functions are read by a function call, and tuples are
read by the declaration x = πi(v), which binds x to the data residing in the ith
field of the object at address v. Each of these operations may be performed only
when the region in question has not already been freed. Enforcing this restriction
is the purpose of the capability mechanism discussed in Section 2.2.

A region maps locations (`) to heap values. An an address is given by a pair ν.`
of a region name and a location. We often abbreviate address lookup M(ν)(`) by
M(ν.`) and address update M{ν 7→M(ν){` 7→ h}} by M{ν.` 7→ h}. In the course
of execution, word-sized values (v) will be substituted for value variables and type
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 9

constructors for constructor variables, but heap values (h) are not substituted for
value variables. When executing the declaration x = h at v (where v is handle(ν),
the handle for region ν), h is allocated in region ν (say at `) and the address ν.`
is substituted for x in the following code. Hence, programs always refer to heap-
allocated values indirectly via an address.

A term in CL consists of a series of declarations ending in either a branch or
a function call (or a halt). The class of declarations includes those constructs
discussed above, plus two standard constructs, x = v for binding variables to values
and x = v1 p v2 (where p ranges over +, − and ×) for integer arithmetic.

For example, the program below allocates a region and puts a pair of integers
inside it. Next, the components of the pair are projected from the tuple, and the
region is deallocated. Finally, the program sums the two integers and terminates.

let newrgn ρ, xρ in % Allocate region ρ
let y = 〈1, 2〉 at xρ in % Allocate pair in ρ
let t1 = π1y in % Access region ρ, no handle required
let t2 = π2y in
let freergn (xρ) in % Deallocate region ρ
let z = t1 + t2 in
halt z % Terminate

Types. The types of CL include type constructor variables and int, a type of
region handles, as well as tuple and function types. If r is a region, then r handle
is the type of r’s region handle. The tuple type 〈τ1, . . . , τn〉 at r contains the usual
n field tuples, but also specifies that such tuples are allocated in region r, where r
is either a region name ν or, more frequently, a region variable ρ.

The function type (C, τ1, . . . , τn)→ 0 at r contains functions taking n arguments
(with types τ1 through τn) that may be called when capability C is satisfied (see
the next subsection). The 0 return type is intended to suggest the fact that CPS
functions invoke their continuations rather than returning as a direct-style function
does. The suffix “at r”, like the corresponding suffix for tuple types, indicates the
region in which the function is allocated.

Functions may be made polymorphic over types, regions, or capabilities by adding
a constructor context ∆ to the function type as in ∀[∆].(C, τ1, . . . , τn)→0atr.2 For
convenience, types, regions, and capabilities are combined into a single syntactic
class of “constructors” and are distinguished by kinds. Thus, a type is a constructor
with kind Type; a region is a constructor with kind Rgn; and a capability is a
constructor with kind Cap. We use the metavariable c to range over constructors,
but use the metavariables τ , r, and C when those constructors are types, regions
and capabilities, respectively. We also use the metavariables ρ and ε for constructor
variables of kind Rgn and Cap, and use the metavariable α for type variables and
generic constructor variables.

2Technically, all function types have the form ∀[∆].(C, τ1, . . . , τn)→ 0 at r. However, when ∆ is
empty, as in the type ∀[·].(C, τ1, . . . , τn)→ 0 at r, we abbreviate it by (C, τ1, . . . , τn)→ 0 at r.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10 · D. Walker, K. Crary, and G. Morrisett

If e = then P =

letx = v in e′ (M, e′[v/x])

letx = i p j in e′ (M, e′[k/x])
where k = i p j

letx = h at (handle(ν)) in e′ (M{ν.` 7→ h}, e′[ν.`/x])
and ν ∈ Dom(M) where ` 6∈ Dom(M(ν))

letx = πi(ν.`) in e′ (M, e′[vi/x])
and ν ∈ Dom(M) and ` ∈ Dom(M(ν)) where M(ν.`) = 〈v1, . . . , vn〉 (1 ≤ i ≤ n)

let newrgn ρ, x in e′ (M{ν 7→ {}}, e′[ν, handle(ν)/ρ, x])
where ν 6∈M and ν 6∈ e′

let freergn (handle(ν)) in e′ (M\ν, e′)
and ν ∈ Dom(M)

if0 0 then e2 else e3 (M, e2)

if0 i then e2 else e3 (M, e3)
and i 6= 0

ν.`[c1, . . . , cm](v1, . . . , vn) (M,S2(S1(e)))
and M(ν.`) = fix f [∆](C, x1:τ1, . . . , xn:τn).e where S1 = [c1, . . . , cm/α1, . . . , αm]
and Dom(∆) = α1, . . . , αm and S2 = [ν.`, v1, . . . , vn/f, x1, . . . , xn]

Fig. 2. Capability operational semantics: (M, e) 7−→ P .

For example, a polymorphic identity function that is allocated in region r, but
whose continuation function may be in any region, may be given type

∀[α:Type, ρ:Rgn].(C,α, (C,α)→ 0 at ρ)→ 0 at r

for some appropriate C. Let f be such a function; let v be its argument with
type τ ; and let g be its continuation with type (C, τ)→ 0 at r. Then f is called
by f [τ][r](v, g). A more detailed explanation of functions is contained in the next
subsection where we discuss the role of capabilities.

Figure 3 specifies all well-formed constructors and constructor contexts. The two
main judgments ∆ ` ∆′ and ∆ ` c : κ assume that the constructor context ∆ is
well-formed. The first judgment states that ∆′ is a well-formed constructor context,
and the second judgment states c is a well-formed constructor with kind κ.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 11

∆ ` ∆′

∆ ` ·
(ctxt-empty)

∆ ` ∆′

∆ ` ∆′, α:κ
(α 6∈ Dom(∆∆′)) (ctxt-var)

∆ ` ∆′ ∆∆′ ` C : Cap

∆ ` ∆′, ε ≤ C
(ε 6∈ Dom(∆∆′)) (ctxt-sub)

∆ ` c : κ

∆ ` α : κ
(∆(α) = κ) (type-var)

∆ ` ε : Cap
((ε ≤ C) ∈ ∆) (type-sub)

∆ ` int : Type
(type-int)

∆ ` r : Rgn
∆ ` r handle : Type

(type-handle)

∆ ` τi : Type (for 1 ≤ i ≤ n) ∆ ` r : Rgn

∆ ` 〈τ1, . . . , τn〉 at r : Type
(type-tuple)

∆ ` ∆′ ∆∆′ ` τi : Type (for 1 ≤ i ≤ n)
∆∆′ ` C : Cap ∆ ` r : Rgn

∆ ` ∀[∆′].(C, τ1, . . . , τn)→ 0 at r : Type
(type-arrow)

∆ ` ν : Rgn
(type-name)

∆ ` ∅ : Cap
(type-∅)

∆ ` r : Rgn

∆ ` {rϕ} : Cap
(type-single)

∆ ` C1 : Cap ∆ ` C2 : Cap
∆ ` C1 ⊕ C2 : Cap

(type-plus)

∆ ` C : Cap

∆ ` C : Cap
(type-bar)

Fig. 3. Capability static semantics: Type and context formation.

The typing rules also use region types (Υ), which assign a type to every location
allocated in a region, and memory types (Ψ), which assign a region type to every
region allocated in memory. However, it is not necessary to understand these
constructs in the preliminary development, and therefore we will defer discussing
them until we describe the static semantics of the abstract machine in formal detail
(see Section 2.4).

2.2 Capabilities

The central problem is how to ensure statically that no region is used after it is
freed. The typing rules enforce this with a system of capabilities that specify what

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12 · D. Walker, K. Crary, and G. Morrisett

operations are permitted. The main typing judgment is

Ψ; ∆; Γ;C ` e

which states that (when memory has type Ψ, free constructor variables have kinds
given by ∆, and free value variables have types given by Γ) it is legal to execute
the term e, provided that the capability C is held. A related typing judgment is

Ψ; ∆; Γ;C ` d⇒ ∆′; Γ′;C ′

which states that if the capability C is held, it is legal to execute the declaration
d, which results in new constructor context ∆′, new value context Γ′, and new
capability C ′.

Capabilities indicate the set of regions that are presently valid to access, that
is, those regions that have not been freed. Capabilities are formed by joining
together a collection of singleton capabilities {r} that provide access to only one
region, and capability variables ε that provide access to an unspecified set of regions.
Capability joins, written C1 ⊕ C2, are associative and commutative, but are not
always idempotent; in Section 2.3 we will define equality on capabilities formally,
and we will see examples where C⊕C is not equivalent to C. The empty capability,
which provides access to no regions, is denoted by ∅. We will often abbreviate the
capability {r1} ⊕ · · · ⊕ {rn} by {r1, . . . , rn}.

In order to read a field from a tuple in region r, it is necessary to hold the
capability to access r, as in the rule:

∆ ` C = C ′ ⊕ {r} : Cap
Ψ; ∆; Γ ` v : 〈τ1, . . . , τn〉 at r

Ψ; ∆; Γ;C ` x = πiv ⇒ ∆; Γ{x:τi};C
(x 6∈ Dom(Γ) ∧ 1 ≤ i ≤ n)

The first subgoal indicates that the capability held (C) is equivalent to some capa-
bility that includes {r}.

A similar rule is used to allocate an object in a region. Since the type of a heap
value reflects the region in which it is allocated, the heap value typing judgment
(the second subgoal below) must be provided with that region.

∆ ` C = C ′ ⊕ {r} : Cap
Ψ; ∆; Γ ` h at r : τ

Ψ; ∆; Γ ` v : r handle

Ψ; ∆; Γ;C ` x = h at v ⇒ ∆; Γ{x:τ};C
(x 6∈ Dom(Γ))

Functions. Functions are defined by the following form

fix f [∆](C, x1:τ1, . . . , xn:τn).e

where f stands for the function itself and may appear free in the body, where
∆ specifies the function’s constructor arguments, and where C is the function’s
capability precondition. When ∆ is empty and f does not appear free in the
function body we abbreviate the fix form by λ(C, x1:τ1, . . . , xn:τn).e.

In order to call a function residing in region r, it is again necessary to hold the
capability to access r, as well as to hold a capability equivalent to the function’s
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 13

capability precondition:

∆ ` C = C ′′ ⊕ {r} : Cap ∆ ` C = C ′ : Cap
Ψ; ∆; Γ ` v : (C ′, τ1, . . . , τn)→ 0 at r Ψ; ∆; Γ ` vi : τi

Ψ; ∆; Γ;C ` v(v1, . . . , vn)

The body of a function may then assume the function’s capability precondition is
satisfied, as indicated by the capability C in the premise of the rule:3

Ψ; ∆; Γ{x1:τ1, . . . , xn:τn};C ` e
Ψ; ∆; Γ ` λ(C, x1:τ1, . . . , xn:τn).e at r : τf

(xi 6∈ Dom(Γ))

As might be expected, the annotation “at r” indicates that the closure value resides
in region r. The resultant function type τf is (C, τ1, . . . , τn)→ 0 at r.

Often, we will extend the required capability for a function with a quantified
capability variable (similar to a row variable). This variable may be instantiated
with whatever capabilities are leftover after satisfying the required capability. Con-
sequently, the function may be used in a variety of contexts. For example, functions
with type

∀[ε:Cap].({r} ⊕ ε, . . .)→ 0 at r

may be called with any capability that extends {r}.
In source languages such as Standard ML [Milner et al. 1997], polymorphism is

normally restricted to second-class status—polymorphic functions cannot be stored
in data structures or passed as arguments to other functions—because these lan-
guages support type inference for unannotated programs. However, in a typed
intermediate language such as CL, it is unnecessary to place such restrictions on
polymorphic functions; explicit type annotations make type checking first-class
polymorphism straightforward. The additional expressiveness of first-class poly-
morphism is necessary whenever a function (say f) allocates a new region ρ and
returns its result in ρ along with ρ itself. In this case, f ’s continuation must be
polymorphic with respect to the returned region, leading to the following type for
f .4

∀[ε:Cap].({r} ⊕ ε, . . . , ∀[ρ:Rgn].({ρ, r} ⊕ ε, τres at ρ)→ 0 at r)→ 0 at r

This and similar scenarios were among the main motivations for choosing a
continuation-passing style language. In a direct-style calculus, we would have to
define new syntax to allow functions to return static type, region, and capability in-
formation to their calling contexts. Similarly, the context following an if statement
would require special annotations to compute the join of capability information
from both branches. Polymorphic continuations provide a uniform solution to both
these problems.

When a function or continuation is polymorphic, its type constructor arguments
may be instantiated one at a time, leading to partially applied polymorphic func-
tions with the form v[c]. As mentioned in Section 2.1, type constructors c may

3This rule specializes the full rule for fix to the case where the function is neither polymorphic
nor recursive.
4The type τres at ρ could be a pair in region ρ containing the actual function result as well as a
handle for region ρ so the continuation can deallocate ρ.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14 · D. Walker, K. Crary, and G. Morrisett

be erased before code is executed. Consequently, this partial application can be
treated as a first-class value with the following typing rule:

Ψ; ∆; Γ ` v : ∀[α:κ,∆′].(C, τ1, . . . , τn)→ 0 at r ∆ ` c : κ
Ψ; ∆; Γ ` v[c] : (∀[∆′].(C, τ1, . . . , τn)→ 0)[c/α] at r

The common case is still to apply multiple type arguments at once. We often
abbreviate multiple type applications v[c1] · · · [cn] by v[c1, . . . , cn]. As indicated in
the rule for function call, a function must be fully applied before it can be called.

Allocation and Deallocation. The most delicate issue is the typing of region allo-
cation and deallocation. Intuitively, the typing rules for the newrgn and freergn
declarations should add and remove capabilities for the appropriate region. Naive
typing rules could be:

Ψ; ∆; Γ;C ` newrgn ρ, x⇒ ∆, ρ:Rgn; Γ{x:ρ handle};C ⊕ {ρ}
(wrong)

Ψ; ∆; Γ ` v : r handle C ′ = C \ {r}
Ψ; ∆; Γ;C ` freergn v ⇒ ∆; Γ;C ′

(wrong)

We will be able to use something much like the first rule for allocation, but the
naive rule for freeing regions is fundamentally flawed. For example, consider the
following function:

fix f [ρ1:Rgn, ρ2:Rgn]({ρ1, ρ2}, x:ρ1 handle, y:〈int〉 at ρ2).
let freergnx in
let z = π1y in · · ·

This function is well-formed according to the naive typing rule: The function begins
with the capability {ρ1, ρ2}, and ρ1 is removed by the freergn declaration, leaving
{ρ2}. The tuple y is allocated in ρ2, so the projection is legal. However, this code
is operationally incorrect if ρ1 and ρ2 are instantiated by the same region r. In that
case, the first declaration frees r, and the second attempts to read from r.

This problem is a familiar one. To free a region safely it is necessary to delete all
copies of the capability. However, instantiating region variables can create aliases,
making it impossible to tell by inspection whether any copies exist.

2.3 Alias Control

We desire a system for alias control that can easily be enforced by the type system,
without expensive and complex program analyses. One possibility is a linear type
system [Girard 1987; Wadler 1990; 1993]. In a linear type system, aliasing would be
trivially controlled; any use of a region name would consume that name, ensuring
that it could not be used elsewhere. Thus, in a linear type system, the naive rules
for allocating and deallocating regions would be sound. Unfortunately, a linear type
system is too restrictive to permit many useful programs. For example, suppose f
has type

∀[ρ1:Rgn, ρ2:Rgn].({ρ1, ρ2}, 〈int〉 at ρ1, 〈int〉 at ρ2, . . .)→ 0 at r′

and suppose that v1 and v2 are integer tuples allocated in the same region r. Then
f could not be called with v1 and v2 as arguments, because that would require
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 15

instantiating ρ1 and ρ2 with the same region. More generally, one could not type
any function that takes two arguments that might or might not be allocated in the
same region.

Approaches based on syntactic control of interference [Reynolds 1978; 1989] are
more permissive than a linear type system, but are still too restrictive for our
purposes; it is still impossible to instantiate multiple arguments with the same
region.

Uniqueness. Our approach, instead of trying to prevent aliasing, is to use the type
system to track aliasing. More precisely, we track non-aliasing, that is, uniqueness.
We do this by tagging regions in capabilities with one of two multiplicities . The
first form, {r+}, is the capability to access region r as it has been understood
heretofore. The second form, {r1}, also permits accessing region r, but adds the
additional information that r is unique; that is, r represents a different region from
any other region appearing in a capability formed using {r1}. For example, the
capability {r+

1 , r
1
2} not only indicates that it is permissible to access r1 and r2, but

also indicates that r1 and r2 represent distinct regions.
Since {r1} guarantees that r does not appear anywhere else in a capability formed

using it, it is the capability, not just to access r, but also to free r. Thus we may
type region deallocation with the rule

∆; Γ ` v : r handle ∆ ` C = C ′ ⊕ {r1} : Cap
Ψ; ∆; Γ;C ` freergn v ⇒ ∆; Γ;C ′

. Allocation of a region adds the new capability as unique:

Ψ; ∆; Γ;C ` newrgn ρ, x⇒
∆, ρ:Rgn; Γ{x:ρ handle};C ⊕ {ρ1}

(ρ 6∈ Dom(∆), x 6∈ Dom(Γ))

One of the main tasks of the type system is to ensure that uniqueness information
is properly maintained; if a unique capability {r1} ever appears twice in the current
capability then the freergn rule will not have the guarantee it requires and the
system will be unsound. Immediately after initial allocation of a region, it is clear
that a unique capability for that region does not appear twice: The typing rule for
newrgn adds a single unique capability to the context. From this point forward,
careful choice of the axioms for capability equality ensure subsequent instructions
do not duplicate unique capabilities. In particular, although the capabilities {r+}
and {r+, r+} are considered equivalent, the capabilities {r1} and {r1, r1} are not.
More generally, we cannot prove the equation

∆ ` C = C ⊕ C : Cap

unless C contains no unique capabilities. Now, for example, if the current capability
C contains one copy of {r1} before checking a freergn command, then the equation

∆ ` C = C ′ ⊕ {r1} : Cap

that appears in the premise of the freergn rule cannot duplicate it. Hence, we
can be certain that C ′ contains no privileges on the deallocated region r and other
unique capabilities, say {r1

2}, {r1
3}, and {r1

4} that appear once in C, also appear
exactly once in C ′.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16 · D. Walker, K. Crary, and G. Morrisett

When C is equivalent to C⊕C, we say that C is duplicatable. Note that capability
variables are unduplicatable, since they can stand for any capability, including
unduplicatable ones. Occasionally this prevents the typing of desired programs,
so we provide a stripping operator C that replaces all 1 multiplicities in C with
+ multiplicities. For example, {r1

1, r
+
2 } = {r+

1 , r
+
2 }. For any capability C, the

capability C is duplicatable. When programs need an unknown but duplicatable
capability, they may use a stripped variable ε. As you will see in Section 3, the
stripping operator is essential in the translation of Tofte and Talpin’s region-based
language into CL.

The complete rules for equivalence of capabilities and other constructors appear
in Figure 4. Notice that the single rule eq-flag equates the duplicatable capability
{r+} with the barred capability {r1}. Consequently, the form {r+} is redundant
given the presence of the bar operator. However, the + notation is a pleasing foil
for the 1 notation, and the two flags give us a convenient way to distinguish between
regions that appear once and regions that potentially appear many times in a single
capability.

Subcapabilities. The capabilities {r1} and {r+} are not the same, but the former
should provide all the privileges of the latter. We therefore say that the former
is a subcapability of the latter and write {r1} ≤ {r+}. In the complete system,
the various rules from Section 2.2 are modified to account for subcapabilities. For
example, the function call rule becomes

∆ ` C ≤ C ′′ ⊕ {r+} ∆ ` C ≤ C ′
Ψ; ∆; Γ ` v : (C ′, τ1, . . . , τn)→ 0 at r Ψ; ∆; Γ ` vi : τi

Ψ; ∆; Γ;C ` v(v1, . . . , vn)

. Suppose f has type ∀[ρ1:Rgn, ρ2:Rgn].({ρ+
1 , ρ

+
2 }, . . .)→0atr. If we hold capability

{r+}, we may call f by instantiating ρ1 and ρ2 with r, since {r+} = {r+, r+}.
Using the subcapability relation, we may also call f when we hold {r1}, again by
instantiating ρ1 and ρ2 with r, since {r1} ≤ {r+} = {r+, r+}.

Figure 5 contains the subcapability rules. When reading these rules, remember
that ∆ ` {r1} = {r+} : Cap. We use this fact to derive the judgment ∆ ` {r1} ≤
{r+} : Cap that we discussed informally above:

∆ ` {r1} ≤ {r1} : Cap
(sub-bar)

∆ ` {r1} = {r+} : Cap
(eq-flag)

∆ ` {r1} ≤ {r+} : Cap
(sub-eq)

∆ ` {r1} ≤ {r+} : Cap
(sub-trans)

The subcapability relation accounts only for the forgetting of uniqueness informa-
tion. Intuitively there could be a second source of subcapabilities, those generated
by forgetting an entire capability. For example, {r+

1 , r
+
2 } seems to provide all the

privileges of {r+
1 }, so it is reasonable to suppose {r+

1 , r
+
2 } to be a subcapability

of {r+
1 }. Indeed, one can construct a sound CL incorporating this axiom, but we

omit it because doing so allows us to specify memory management obligations and
to prove a stronger property about space usage. Notice also, that by omitting this
axiom, we do not give up any flexibility; one may always write a function that
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 17

∆ ` ∆1 = ∆2

∆ ` · = ·
(ctxt-eq-empty)

∆ ` ∆1 = ∆2

∆ ` ∆1, α:κ = ∆2, α:κ
(α 6∈ Dom(∆∆1)) (ctxt-eq-kind)

∆ ` ∆1 = ∆2 ∆∆1 ` C1 = C2 : Cap
∆ ` ∆1, ε ≤ C1 = ∆2, ε ≤ C2

(ε 6∈ Dom(∆∆1)) (ctxt-eq-bound)

∆ ` c1 = c2 : κ

∆ ` c : κ
∆ ` c = c : κ

(eq-reflex)

∆ ` c2 = c1 : κ
∆ ` c1 = c2 : κ

(eq-symm)

∆ ` c1 = c2 : κ ∆ ` c2 = c3 : κ
∆ ` c1 = c3 : κ

(eq-trans)

∆ ` C1 = C′1 : Cap ∆ ` C2 = C′2 : Cap

∆ ` C1 ⊕ C2 = C′1 ⊕ C
′
2 : Cap

(eq-congruence-plus)

∆ ` C = C′ : Cap

∆ ` C = C′ : Cap
(eq-congruence-bar)

∆ ` C : Cap

∆ ` ∅ ⊕ C = C : Cap
(eq-∅)

∆ ` C1 : Cap ∆ ` C2 : Cap
∆ ` C1 ⊕ C2 = C2 ⊕ C1 : Cap

(eq-comm)

∆ ` Ci : Cap (for 1 ≤ i ≤ 3)

∆ ` (C1 ⊕ C2)⊕ C3 = C1 ⊕ (C2 ⊕ C3) : Cap
(eq-assoc)

∆ ` C : Cap

∆ ` C = C ⊕ C : Cap
(eq-dup)

∆ ` ∅ = ∅ : Cap
(eq-bar-∅)

∆ ` r : Rgn

∆ ` {r1} = {r+} : Cap
(eq-flag)

∆ ` C : Cap

∆ ` C = C : Cap
(eq-bar-idem)

∆ ` C1 : Cap ∆ ` C2 : Cap

∆ ` C1 ⊕ C2 = C1 ⊕ C2 : Cap
(eq-distrib)

Fig. 4. Capability static semantics: equality.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18 · D. Walker, K. Crary, and G. Morrisett

∆ ` C1 ≤ C2

∆ ` C1 = C2 : Cap
∆ ` C1 ≤ C2

(sub-eq)

∆ ` C1 ≤ C2 ∆ ` C2 ≤ C3

∆ ` C1 ≤ C3
(sub-trans)

∆ ` C1 ≤ C′1 ∆ ` C2 ≤ C′2
∆ ` C1 ⊕ C2 ≤ C′1 ⊕ C

′
2

(sub-congruence-plus)

∆ ` C ≤ C′

∆ ` C ≤ C′
(sub-congruence-bar)

∆ ` ε ≤ C
((ε ≤ C) ∈ ∆) (sub-var)

∆ ` C : Cap

∆ ` C ≤ C
(sub-bar)

Fig. 5. Capability static semantics: Equality and subcapability relations.

can be called with extra capabilities by using a capability variable, as discussed in
Section 2.2.

By omitting the axiom C1 ⊕ C2 ≤ C1, our type system may formally specify
who has responsibility for freeing a region. Failure to follow informal conventions
is a common source of bugs in languages (such as C) that use manual memory
management. Our type system rules out such bugs. For example, consider the type

∀[ρ:Rgn, ε:Cap].(ε⊕ {r+, ρ1}, ρ handle, (ε⊕ {r+})→ 0 at r)→ 0 at r

. In our system ε ⊕ {r+, ρ1} 6≤ ε ⊕ {r+}. Consequently, before any function with
this type can return (i.e., call the continuation of type (ε⊕{r+})→ 0 at r), it must
take action to satisfy the capability ε⊕ {r+}, that is, it must free ρ.

In general, our type system prevents “region leaks”: programs must deallocate all
memory regions if they terminate (Theorem 2.5). Therefore, the operating system
does not have to clean up after a program halts. The typing rule for halt states
that no capabilities may be held, and since capabilities may not be forgotten, this
means that all regions must have been freed.

Ψ; ∆; Γ ` v : int ∆ ` C = ∅ : Cap
Ψ; ∆; Γ;C ` halt v

The type system certainly does not prevent all forms of memory leaks. At times
during the course of evaluation there may be dead regions that have not yet been
deallocated or dead objects within live regions. However, the type system does pro-
vide a degree of static error checking and the possibility to encode certain memory
management protocols.

Bounded Quantification. The system presented to this point is sound, but it
is not yet sufficient for compiling real source languages. We need to be able to
recover uniqueness after a region name is duplicated. To see why, suppose we hold
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 19

the capability {r1} and f has type

∀[ρ1:Rgn, ρ2:Rgn].({ρ+
1 , ρ

+
2 }, . . . , ({ρ

+
1 , ρ

+
2 }, . . .)→ 0 at ρ1)→ 0 at r

. We would like to be able to instantiate ρ1 and ρ2 with r (which we may do, since
{r1} ≤ {r+, r+}), and then free r when f calls the continuation in its final argument.
Unfortunately, the continuation only possesses the capability {r+, r+} = {r+}, not
the capability {r1} necessary to free r. It does not help to strengthen the capability
of the continuation to (for example) {ρ1

1}, because then f may not call it.
We may recover uniqueness information by quantifying a capability variable.

Suppose we again hold capability {r1} and g has type

∀[ρ1:Rgn, ρ2:Rgn, ε:Cap].(ε, . . . , (ε, . . .)→ 0 at ρ1)→ 0 at r

. We may instantiate ε with {r1}, and then the continuation will possess that same
capability, allowing it to free r. Unfortunately, the body of function g no longer
has the capability to access ρ1 and ρ2, since its type draws no connection between
them and ε.

We solve this problem by using bounded quantification to relate ρ1, ρ2, and ε.
Suppose h has type

∀[ρ1:Rgn, ρ2:Rgn, ε ≤ {ρ+
1 , ρ

+
2 }].(ε, . . . , (ε, . . .)→ 0 at ρ1)→ 0 at r

. If we hold capability {r1}, we may call h by instantiating ρ1 and ρ2 with r and
instantiating ε with {r1}. This instantiation is permissible because {r1} ≤ {r+, r+}.
As with g, the continuation will possess the capability {r1}, allowing it to free r,
but the body of h (like that of f) will have the capability to access ρ1 and ρ2, since
ε ≤ {ρ+

1 , ρ
+
2 }.

Bounded quantification solves the problem by revealing some information about
a capability ε, while still requiring the function to be parametric over ε. Hence,
when the function calls its continuation we regain the stronger capability (to free
r), although that capability was temporarily hidden in order to duplicate r. More
generally, bounded quantification allows us to hide some privileges when calling a
function, and regain those privileges in its continuation. Thus, we support statically
checkable attenuation and amplification of capabilities.

Static Semantics So Far. Together, parametric polymorphism, bounded para-
metric polymorphism, and notions of uniqueness and aliasing provide a flexible
language for expressing the lifetimes of regions. Figures 6 and 7 formally sum-
marize the rules for type checking instructions and values that depend upon these
concepts. We have already explained the majority of these rules in previous sec-
tions, and the rules that we have not yet specified are the obvious ones (integers
are given type int, etc.). Notice, however, that the form of the judgment for heap
values h is slightly different from the judgments for instructions and small values
v. The judgment Ψ; ∆; Γ ` h at r : τ states that when memory has type Ψ, free
constructor variables have kinds (and bounds) given by ∆ and free value variables
have types given by Γ, the heap value h resides in region r and has type τ .

2.4 The Static Semantics of the Abstract Machine

We have described the type constructor language of CL and the typing rules for
the main term-level constructs. In fact, the previous section contains all of the

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

20 · D. Walker, K. Crary, and G. Morrisett

Ψ; ∆; Γ ` h at r : τ

∆ ` τf : Type
Ψ; ∆∆′; Γ{f :τf , x1:τ1, . . . , xn:τn};C ` e(

τf = ∀[∆′].(C, τ1, . . . , τn)→ 0 at r
f, x1, . . . , xn 6∈ Dom(Γ)

)
Ψ; ∆; Γ ` fix f [∆′](C, x1:τ1, . . . , xn:τn).e at r : τf

(h-fix)

Ψ; ∆; Γ ` vi : τi (for 1 ≤ i ≤ n) ∆ ` r : Rgn

Ψ; ∆; Γ ` 〈v1, . . . , vn〉 at r : 〈τ1, . . . , τn〉 at r
(h-tuple)

Ψ; ∆; Γ ` h at r : τ ′ ∆ ` τ ′ = τ : Type
Ψ; ∆; Γ ` h at r : τ

(h-eq)

Ψ; ∆; Γ ` v : τ

Ψ; ∆; Γ ` x : τ
(Γ(x) = τ) (v-var)

Ψ; ∆; Γ ` i : int
(v-int)

Ψ; ∆; Γ ` v : ∀[α:κ,∆′].(C, τ1, . . . , τn)→ 0 at r ∆ ` c : κ

Ψ; ∆; Γ ` v[c] : (∀[∆′].(C, τ1, . . . , τn)→ 0)[c/α] at r
(v-type)

Ψ; ∆; Γ ` v : ∀[ε ≤ C′′,∆′].(C′, τ1, . . . , τn)→ 0 at r ∆ ` C ≤ C′′

Ψ; ∆; Γ ` v[C] : (∀[∆′].(C′, τ1, . . . , τn)→ 0)[C/ε] at r
(v-sub)

Ψ; ∆; Γ ` v : τ ′ ∆ ` τ ′ = τ : Type
Ψ; ∆; Γ ` v : τ

(v-eq)

Fig. 6. Capability static semantics: Heap and word values.

information programmers or compilers require to write type-safe programs in CL.
However, in order to prove a type soundness result in the style of Wright and
Felleisen [Wright and Felleisen 1994], we must be able to type check programs at
every step during their evaluation. In this section, we give the static semantics of
the run-time values that are not normally manipulated by programmers, but are
nevertheless necessary to prove our soundness result.

At first, the formal definition of the semantics may appear quite complex because
we use a number of different judgment forms. However, most of these forms follow
naturally from the development of previous sections and other work on allocation
semantics by Morrisett et al. [1995; 1997; 1998]. The extra complexity in the
definition of the language will pay off when we come to prove type soundness: all
of the main invariants are expressed directly in the typing rules and therefore most
of the proof follows from straightforward inductions over these rules.

Figure 8 specifies the rules for typing memory, most of which are straightforward.
The judgments ` Ψ and ` Υ specify when memory types and region types are
well-formed. When all elements in a sequence x1, . . . , xn are different, we write
x1, . . . , xn distinct. Memory and region types (as well as regions and memory
themselves) are finite partial maps so all elements in the domain of the map are
distinct. The typing judgments for memory and region types have side conditions
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 21

Ψ; ∆; Γ;C ` d⇒ ∆′; Γ′;C′

Ψ; ∆; Γ ` v : τ
Ψ; ∆; Γ;C ` x = v ⇒ ∆; Γ{x:τ};C

(x 6∈ Dom(Γ)) (val)

Ψ; ∆; Γ ` v1 : int Ψ; ∆; Γ ` v2 : int

Ψ; ∆; Γ;C ` x = v1 p v2 ⇒ ∆; Γ{x:int};C
(x 6∈ Dom(Γ)) (prim)

Ψ; ∆; Γ ` v : r handle
Ψ; ∆; Γ ` h at r : τ ∆ ` C ≤ C′ ⊕ {r+}

Ψ; ∆; Γ;C ` x = h at v ⇒ ∆; Γ{x:τ};C
(x 6∈ Dom(Γ)) (hval)

Ψ; ∆; Γ ` v : 〈τ1, . . . , τn〉 at r ∆ ` C ≤ C′ ⊕ {r+}
Ψ; ∆; Γ;C ` x = πiv ⇒ ∆; Γ{x:τi};C

(x 6∈ Dom(Γ) ∧ 1 ≤ i ≤ n) (proj)

Ψ; ∆; Γ;C ` newrgn ρ, x⇒
∆{ρ:Rgn}; Γ{x:ρ handle};C ⊕ {ρ1}

(
ρ 6∈ Dom(∆)
x 6∈ Dom(Γ)

)
(newrgn)

Ψ; ∆; Γ ` v : r handle ∆ ` C = C′ ⊕ {r1} : Cap

Ψ; ∆; Γ;C ` freergn v ⇒ ∆; Γ;C′
(freergn)

Ψ; ∆; Γ;C ` e

Ψ; ∆; Γ;C ` d⇒ ∆′; Γ′;C′ Ψ; ∆′; Γ′;C′ ` e
Ψ; ∆; Γ;C ` let d in e

(letdec)

Ψ; ∆; Γ ` v : int
Ψ; ∆; Γ;C ` e2 Ψ; ∆; Γ;C ` e3
Ψ; ∆; Γ;C ` if0 v then e2 else e3

(if)

Ψ; ∆; Γ ` v : (C′, τ1, . . . , τn)→ 0 at r
Ψ; ∆; Γ ` vi : τi (for 1 ≤ i ≤ n)

∆ ` C ≤ C′′ ⊕ {r+} ∆ ` C ≤ C′

Ψ; ∆; Γ;C ` v(v1, . . . , vn)
(app)

Ψ; ∆; Γ ` v : int ∆ ` C = ∅ : Cap
Ψ; ∆; Γ;C ` halt v

(halt)

Fig. 7. Capability static semantics: Declarations and expressions.

to this effect.
The judgment ` M : Ψ states that memory M is described by Ψ, and the

judgment Ψ ` R at ν : Υ states that region R with name ν is described by Υ.
Informally, these judgments ensure that for addresses ν.`, Ψ(ν.`) is type τ if and
only if the memory M described by Ψ contains a value v at address ν.` that has
type τ .

The next judgment, Ψ ` C sat, is called the satisfiability judgment, and it
formalizes the connection between the static capability and the run-time state of
memory. Clearly, the current capability must not contain any regions that are not
in memory; this could lead to a runtime error. However, it is equally important
that memory not contain regions for which we have no capability, as such regions
can never be freed. Consequently, satisfiability ensures that at any time during

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

22 · D. Walker, K. Crary, and G. Morrisett

execution of the abstract machine, our capability is equal to {νϕii } where each νi
occurs exactly once and is present in the current memory. Furthermore, by virtue
of the fact that · ` {ν1} 6= {ν1, ν1} : Cap, no unique regions may appear more than
once in C. Each of these properties are essential to ensure that regions are used
safely.

Figure 9 contains rules for small values that only appear at run time (addresses
and region handles). The rules for typing an address ν.` are quite unusual, but
crucial to the type soundness proof. The first rule, v-addr, is used during the
lifetime of the region ν: if the region ν is in memory then ν will also be in the
domain of the memory type Ψ. Therefore rule v-addr applies, and ν.` will have
type Ψ(ν.`). Now consider some point in the computation after the region ν has
been deallocated. The region ν is no longer in the memory, but the addresses ν.`
may still appear embedded in tuples or closures allocated in other regions, and,
therefore, it must be given a type. If a region ν does not appear in memory type
Ψ, the type system has the flexibility to give ν.` any function type (by rule v-addr-
arrow) or tuple type (by rule v-addr-tuple).

At first glance, these rules would appear to lead to unsoundness: the address
ν.` is a dangling pointer, and it may be given a valid type. Fortunately, though,
capabilities prevent anything from going wrong. The satisfiability judgment ensures
that programs only ever possess capabilities for regions that appear in memory, and,
as we explained earlier, programs can only access the regions for which they have
capabilities. Consequently, a dangling pointer may be given a valid tuple or function
type, but capabilities prevent it from being accessed.

We now have all components necessary to define a well-formed machine state.
The state (M, e) is well-formed if the memory M can be described by a well-formed
heap type Ψ, there exists a capability C such that C satisfies the heap type Ψ, and
finally, the expression e is well-formed with respect to Ψ and C:

`M : Ψ Ψ ` C sat Ψ; ·; ·;C ` e
` (M, e)

(program)

2.5 Formal Properties

Type Soundness. The most important property of CL is Type Soundness. Type
Soundness states that a program will never enter a stuck state during execution. A
state (M, e) is stuck if there does not exist (M ′, e′) such that (M, e) 7−→ (M ′, e′)
and e is not halt i. For example, a state that tries to project a value from a tuple
that does not appear in memory is stuck.

Theorem (Type Soundness). If ` (M, e) and (M, e) 7−→∗ (M ′, e′) then (M ′, e′)
is not stuck.

In the previous sections of this article, we have explained how to type memory,
how to relate the memory typing to static capabilities, and finally, given a collection
of capabilities, how the rules for typing expressions prevent unsafe accesses to the
store. These invariants are the main elements in the formal proof of soundness.
However, there are many details to fill in. The proof is in the style of Wright
and Felleisen [Wright and Felleisen 1994] and uses the standard Type Preservation
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 23

` Υ

· ` τi (for 1 ≤ i ≤ n)

` {`1:τ1, . . . , `n:τn}
(`1, . . . , `n distinct) (region-type)

` Ψ

` Υi (for i ≤ i ≤ n)

` {ν1:Υ1, . . . , νn:Υn}
(ν1, . . . , νn distinct) (memory-type)

Ψ ` R at ν : Υ

Ψ; ·; · ` hi at ν : τi (for 1 ≤ i ≤ n)

Ψ ` {`1 7→ h1, . . . , `n 7→ hn} at ν : {`1 : τ1, . . . , `n : τn}
(`1, . . . , `n distinct) (region)

`M : Ψ

` Ψ Ψ ` Ri at νi : Υi (for 1 ≤ i ≤ n)

` {ν1 7→ R1, . . . , νn 7→ Rn} : Ψ

(
Ψ = {ν1 : Υ1, . . . , νn : Υn}
ν1, . . . , νn distinct

)
(memory)

Ψ ` C sat

· ` C = {νϕ1
1 , . . . , νϕnn } : Cap

{ν1 : Υ1, . . . , νn : Υn} ` C sat
(ν1, . . . , νn distinct) (sat)

Fig. 8. Capability static semantics: Memory.

Ψ; ∆; Γ ` v : τ

Ψ; ∆; Γ ` ν.` : τ
(Ψ(ν.`) = τ) (v-addr)

∆ ` 〈τ1, . . . , τn〉 at ν : Type

Ψ; ∆; Γ ` ν.` : 〈τ1, . . . , τn〉 at ν
(ν 6∈ Dom(Ψ)) (v-addr-tuple)

∆ ` ∀[∆′].(C, τ1, . . . , τn)→ 0 at ν : Type

Ψ; ∆; Γ ` ν.` : ∀[∆′].(C, τ1, . . . , τn)→ 0 at ν
(ν 6∈ Dom(Ψ)) (v-addr-arrow)

Ψ; ∆; Γ ` handle(ν) : ν handle
(v-handle)

Fig. 9. Capability static semantics: Run-time values.

and Progress lemmas. Progress states that well-typed states are not stuck, and
Preservation states that evaluation steps preserve well-typedness.

Lemma (Type Preservation). If ` (M, e) and (M, e) 7−→ (M ′, e′) then `
(M ′, e′)

Lemma (Progress). If ` (M, e) then either:

(1) There exists (M ′, e′) such that (M, e) 7−→ (M ′, e′) or

(2) e = halt i.

Because of the length and tedium of the proofs of these lemmas, we have moved
them, along with the proof of soundness itself, to Appendix A.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

24 · D. Walker, K. Crary, and G. Morrisett

Complete Collection. The second important property of the language is that well-
typed terminating programs return all of their memory resources to the system
before they halt. We call this property Complete Collection.

Theorem (Complete Collection). If ` (M, e) then either (M, e) diverges
or (M, e) 7−→∗ ({ }, halt i).

By Subject Reduction and Progress, terminating programs end in well-formed
machine states (M, halt i). The typing rule for the halt expression requires that
the capability C be empty. Using this fact, we can infer that the memory M
contains no regions. Appendix A also contains a formal proof of this theorem.

Decidability. A third property of interest for many typed languages is decideabil-
ity. However, while we strongly believe that CL as presented is decidable, we have
not studied this property in formal detail. We are less concerned with decidability
than we are with type soundness or the expressiveness of the language because
type checking can always be made decideable by providing additional annotations
that direct reconstruction of the full typing derivation. In a user-level program-
ming language, excessive type annotations will hinder programmer productivity,
but compilers have a much higher tolerance for handling such tedious details. In
fact, Necula and Lee [Necula 1997; Necula and Lee 1998] in their work on Proof-
Carrying Code, suggest that compilers produce full proofs of type safety encoded in
a first-order predicate logic. They argue that proof checking (as opposed to proof
inference) can be engineered to be quite fast and that the trusted computing base
for a proof-checker is somewhat smaller than for a sophisticated type reconstruction
algorithm (i.e., theorem prover).

Of course, there must be some way for the compiler to obtain the full typing
derivation if the proof-carrying code methodology is to be used. Therefore, in the
next section, we describe a translation from a variant of Tofte and Talpin’s region-
based language into CL. Our proof that the translation produces well-typed code
is constructive (the proof builds a typing derivation for the output code), and it
makes it possible to fully annotate and subsequently verify compiler output.

3. FROM REGIONS TO CAPABILITIES

The first part of this section develops a high-level type-and-effect system for regions
based on the work of Tofte and Talpin [1994; 1997]. The second part of this section
defines a formal translation from the Tofte-Talpin language into CL. By composing
the translation with Tofte and Birkedal’s region inference technology [Tofte and
Birkedal 1998], we may obtain a type-preserving compiler front-end.

3.1 A Region-Based Calculus

Preliminaries. The source language for our compiler is the region-based calculus
shown in Figure 10. This language is an explicitly typed variant of the calculus first
presented by Tofte and Talpin [1994; 1997]. Like CL, it contains integers, tuples,
and functions. However, unlike the CL, allocation and deallocation of regions is
combined in a single construct: letregion ρ, xρ in e. This construct allocates a
new region ρ and places the handle for that region in the term variable xρ. Next, it
executes the expression e, and finally, the region ρ is deallocated. As discussed in
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 25

kinds κ ::= Type | Rgn | Eff
constructor variables α, β, ρ, ε
constructor contexts ∆ ::= · | ∆, α:κ1

type schemes σ ::= τ | ∀[∆].τ1
ψ→ τ2 at r

constructors c, τ, r, ψ ::= α | int | r handle | 〈τ1, . . . , τn〉 at r | τ1
ψ→ τ2 at r |

∅ | {r} | ψ1 ∪ ψ2
term variables x, f
term contexts Γ ::= · | Γ, x:σ
terms e ::= x | i | e1 p e2 | if0 e1 then e2 else e3 |

〈e1, . . . , en〉 at en+1 | πie |
letrecf [∆](x) : σ at e1 = e2 in e3 | f [c1, . . . , cn] |
e1e2 | letregion ρ, xρ in e

Fig. 10. Region syntax.

the introduction, this lexically scoped in construct is not as flexible as the separate
newrgn and freergn constructs provided by CL. The main goal of this section is
to show how to compile letregion expressions into these lower-level primitives.

As in the original Tofte-Talpin calculus, the region language has prenex pred-
icative polymorphism. The term letrecf [∆](x) : σ at e1 = e2 in e3 allocates a
closure f of polytype σ. The closure is polymorphic over its type context ∆, which
may contain ordinary type variables as well as region variables and effect variables
(explained below). The closure is allocated in the region r if the expression e1
evaluates to a region handle for r. The expression e2 describes the body of the
function.

Unlike previous work on region-based type systems, we treat all type construc-
tors, including region constructors, as compile-time-only objects. Therefore, the
term f [c1, . . . , cn], which denotes type application, has no runtime effect. During
type checking, the type scheme for the polymorphic function f is instantiated with
the types c1, . . . , cn to obtain the resultant type for the expression, but the dynamic
semantics of the program (not shown here) do not depend upon these types. Hence,
the types may be erased before the program is run without affecting the compu-
tation. As in CL, the data structures that are required to allocate and deallocate
regions are treated as ordinary values of type handle(r).

Types and Effects. The main interest of the type constructor portion of the region
language is the presence of effects. Effects, like capabilities, are used to control a
program’s access to regions and, in particular, to prevent access to regions that
have been deallocated. Intuitively, the effect of a term is the set of regions that the
term accesses. Formally, an effect is either the empty effect (∅), an effect variable
(ε), a singleton set ({r}), or the union of two effects (ψ1 ∪ ψ2). The ∪ operator is
associative, commutative, and idempotent, and ∅ is the unit for the union operator.
We write ∆ `R ψ1 = ψ2 : Eff for equality on effects, and we use the abbreviation
∆ `R ψ1 ⊆ ψ2 when ∆ `R ψ1 ∪ ψ3 = ψ2 : Eff for some effect ψ3.

All functions have latent effects that are incurred when the function is called
and its body is executed. The effect that appears on arrow types (∀[∆].τ

ψ→ τ ′)5

5Tofte and Talpin require each arrow type be annotated with an “arrow effect,” which is con-

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

26 · D. Walker, K. Crary, and G. Morrisett

∆ `R ∆′

∆ `R ·
∆ `R ∆′

∆ `R ∆′, α:κ
(α 6∈ Dom(∆))

∆ `R σ

∆ `R τ : Type
∆ `R τ

`R ∆∆′ ∆∆′ `R τi : Type (for 1 ≤ i ≤ n+ 1)
∆∆′ `R ψ : Eff ∆ `R r : Rgn

∆ `R ∀[∆′].(τ1, . . . , τn)
ψ→ τn+1 at r

∆ `R c : κ

∆ `R α : κ
(∆(α) = κ)

∆ `R int : Type
∆ `R r : Rgn

∆ `R r handle : Type

∆ `R τi : Type (for 1 ≤ i ≤ n) ∆ `R r : Rgn

∆ `R 〈τ1, . . . , τn〉 at r : Type

∆ `R r : Rgn ∆ `R ψ : Eff
∆ `R τi : Type (for 1 ≤ i ≤ n+ 1)

∆ `R (τ1, . . . , τn)
ψ→ τn+1 at r : Type

∆ `R ∅ : Eff

∆ `R r : Rgn

∆ `R {r} : Eff
∆ `R ψ1 : Eff ∆ `R ψ2 : Eff

∆ `R ψ1 ∪ ψ2 : Eff

Fig. 11. Region type formation.

∆ `R c1 = c2 : κ

∆ `R c : κ
∆ `R c = c : κ

∆ `R c2 = c1 : κ
∆ `R c1 = c2 : κ

∆ `R c1 = c2 : κ ∆ `R c2 = c3 : κ
∆ `R c1 = c3 : κ

∆ `R ψ : Eff

∆ `R ∅ ∪ ψ = ψ : Eff
∆ `R ψ1 : Eff ∆ `R ψ2 : Eff
∆ `R ψ1 ∪ ψ2 = ψ2 ∪ ψ1 : Eff

∆ `R ψi : Eff (for 1 ≤ i ≤ 3)

∆ `R (ψ1 ∪ ψ2) ∪ ψ3 = ψ1 ∪ (ψ2 ∪ ψ3) : Eff

∆ `R ψ1 : Eff ∆ `R ψ2 : Eff

∆ `R ψ1 ∪ ψ2 = ψ1 ∪ (ψ2 ∪ ψ2) : Eff

∆ `R ψ1 ⊆ ψ2

∆ `R ψ1 ∪ ψ3 = ψ2 : Eff
∆ `R ψ1 ⊆ ψ2

Fig. 12. Effect equality and subset.

specifies the set of regions that a function of that type may access when it is invoked.
The rules for type constructor formation may be found in Figure 11. Effect

equality and subset relations are summarized formally in Figure 12. Equality on
types is syntactic up to renaming of bound variables and modulo equality of effects.

Static Semantics. The static semantics (Figure 13) for terms use a judgment of
the form ∆; Γ `R e : τ, ψ to track the effects produced by each expression. This

strained to have the form ε∪ψ. The type variable ε is used to name the effect and plays a role in
their inference system. Because we are interested in type checking rather than type inference, we
do not need to name the effects on arrows.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 27

∆; Γ `R x : τ, ∅
(Γ(x) = τ)

∆; Γ `R i : int, ∅

∆; Γ `R e1 : int, ψ1 ∆; Γ `R e2 : int, ψ2

∆; Γ `R e1 p e2 : int, ψ1 ∪ ψ2

∆; Γ `R ei : τi, ψi (for 1 ≤ i ≤ n) ∆; Γ `R en+1 : r handle, ψn+1

∆; Γ `R 〈e1, . . . , en〉 at en+1 : τ, ψ1 ∪ . . . ∪ ψn+1 ∪ {r}

∆; Γ `R e : 〈τ1, . . . , τn〉 at r, ψ

∆; Γ `R πie : τi, ψ ∪ {r}
(1 ≤ i < n)

∆; Γ `R e1 : int, ψ1 ∆; Γ `R e2 : τ, ψ2 ∆; Γ `R e3 : τ, ψ3

∆; Γ `R if0 e1 then e2 else e3 : τ, ψ1 ∪ ψ2 ∪ ψ3

∆ `R σ ∆∆′; Γ{f :σ, x:τ1} `R e2 : τ2, ψ
∆; Γ `R e1 : r handle, ψ1 ∆; Γ{f :σ} `R e3 : τ3, ψ3

∆; Γ `R letrecf [∆′](x) : σ at e1 = e2 in e3 : τ3, ψ1 ∪ ψ3 ∪ {r}

(
x, f 6∈ Dom(Γ)

σ = ∀[∆′].τ1
ψ→ τ2 at r

)
(Γ(f) = ∀[α1:κ1, . . . , αn:κn].τ1

ψ→ τ2 at r)
∆ `R ci : κi (for 1 ≤ i ≤ n)

∆; Γ `R f [c1, . . . , cn] : (τ1
ψ→ τ2)[c1, . . . , cn/α1, . . . , αn] at r, ∅

∆; Γ `R e1 : τ1
ψ→ τ2 at r, ψ1 ∆; Γ `R e2 : τ1, ψ2

∆; Γ `R e1e2 : τ2, ψ1 ∪ ψ2 ∪ ψ ∪ {r}

∆{ρ:Rgn}; Γ{xρ:ρ handle} `R e : τ, ψ

∆; Γ `R letregion ρ, xρ in e : τ, ψ\{ρ}

(
ρ 6∈ ftv(τ) ∪Dom(∆)

xρ 6∈ Dom(Γ)

)
∆; Γ `R e : τ, ψ ∆ `R τ = τ ′ : Type ∆ `R ψ ⊆ ψ′

∆; Γ `R e : τ ′, ψ′

Fig. 13. Region term static semantics.

judgment states that under the type context ∆ and the value context Γ, a term e
has type τ and produces effect ψ. For example, the rule for projection states that if
e is an expression with type 〈τ1, . . . , τn〉atr and produces effect ψ then a projection
πie produces the effect ψ ∪ {r}. The projection operation reads from the region r,
and the subexpression e may read from or write to any of the regions in ψ. Hence
the resulting effect must be the union of the two.

The rules involving functions are more complex. First, consider a function call
e1e2. Assume that e1 generates the effect ψ1 and evaluates to a closure of type
(τ)

ψ→ τ ′ at r, and that e2 produces the effect ψ2 and has type τ . After both
expressions have been evaluated, the code for the function is projected from a
closure that resides in region r. Now, because the function itself produces the
effect ψ, the overall effect of the call is the union of {r} with ψ, ψ1, and ψ2.
In contrast to the value application rule, the rule for type application produces
no effect; remember, types are erased before an expression is executed. Finally,
examine the rule for the letrec term. There are three components to the effect
produced by this expression: ψ1, the effect of evaluating the handle expression; {r},

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

28 · D. Walker, K. Crary, and G. Morrisett

letregion ρ1, xρ1 in
letregion ρ2, xρ2 in

letrec count [ρ] (xρ : ρ handle, x : 〈int〉 at ρ) at xρ1 : σcount =
let n = π1(x) in % (1)
if0 n

then ()
else count [ρ] (xρ, 〈n− 1〉 at xρ) % (2)

% end
in

count [ρ2] (xρ2 , 〈10〉 at xρ2)
% end letrec

% end region ρ2 scope and deallocate
% end region ρ1 scope and deallocate

where σcount = ∀[ρ]. (ρ handle, 〈int〉 at ρ)
{ρ1,ρ}−→ unit

Fig. 14. Count in the region calculus.

the effect of writing the closure data structure in region r; and ψ3, the effect of the
subsequent expression e3. As well as checking that types match up properly, we
must be sure that the effect produced by the body of the function is a subset of
the declared effect. Technically, the rule for functions specifies that the effect of
the body exactly equals the declared effect. However, if the body produces a lesser
effect, it is always possible to use the last rule (subsumption) to increase the effect
of the body so it equals the declared effect.

Finally, we examine the rule for the letregion construct. Here, we use the
notation ψ\{ρ} to denote the effect ψ with all occurences of {ρ} replaced by ∅.
This rule discharges the effect {r} from the effect produced by the subexpression e.
Intuitively, because the letregion construct discharges effects whereas all other
constructs pass on effect information from their subexpressions to their enclosing
expressions, any access to a region outside of the scope of a letregion will be
detected and the type checker will reject the expression as a whole.

Figure 14 shows an example program, a function count that counts down to zero.
In order to have interesting allocation behavior the integers involved in the count
are allocated in a reference cell. The count function is stored in region ρ1 and takes
two arguments, a handle for region ρ and an integer reference x allocated in region
ρ. If x is nonzero, count decrements it, storing the result again in ρ, and recurses.
The function has two effects: a read on ρ1, resulting from the recursive call, and a
read/write effect on ρ, resulting from line 1’s read and line 2’s store. Therefore, we
give the function count the effect {ρ1, ρ2}. Overall, the code in Figure 14 allocates
two regions (ρ1 and ρ2), stores the closure for count in ρ1, stores an integer reference
in ρ2, calls count, and then deallocates ρ1 and ρ2.

3.2 The Translation

In order to make a formal connection to region-based calculi and to corroborate
our claims that we can use the region inference techniques developped by Tofte
and others as a front-end for a capability-based compiler, we have defined a type-
directed and type-preserving translation from the region calculus of the previous
section to CL. Appendix B contains a proof that any well-formed source term is
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 29

K[[Type]] = Type
K[[Rgn]] = Rgn
K[[Eff]] = Cap

K[[α1:κ1, . . . , αn:κn]] = α1:K[[κ1]], . . . , αn:K[[κn]]

T [[α]] = α
T [[int]] = int

T [[〈τ1, . . . , τn〉 at r]] = 〈T [[τ1]], . . . , T [[τn]]〉 at T [[r]]

T [[τ1
ψ→ τ2 at r]] = ∀[ρ′:Rgn, ε:Cap, ε′ ≤ ε⊕ T [[ψ]]⊕ {ρ′1}].(ε′,

T [[τ1]],∀[].(ε′, T [[τ2]])→ 0 at ρ′)→ 0 at T [[r]]
T [[r handle]] = T [[r]] handle

T [[∅]] = ∅
T [[{r}]] = {T [[r]]1}

T [[ψ1 ∪ ψ2]] = T [[ψ1]]⊕ T [[ψ2]]

S[[τ]] = T [[τ]]

S[[∀[∆].τ1
ψ→ τ2 at r]] = ∀[K[[∆]]].T [[τ1

ψ→ τ2 at r]]

S[[{x1:σ1, . . . , xn:σn}]] = {x1:S[[σ1]], . . . , xn:S[[σn]]}

Fig. 15. Region-to-capability kind and type translation.

translated into a well-formed target term.

Kind and Type Translation. The translation is a continuation-passing style trans-
formation in which we simultaneously transform effects into capabilities. The kind
and type transformation is presented in Figure 15. The kind translation is trivial;
effects become capabilities, and the other kinds are unchanged. The translation of
most types is equally simple. The translation of base types is the identity, and, in
general, to translate other types we recursively translate their components and re-
combine using the corresponding capability constructor. Thus, tuples are mapped
to tuples and handles are mapped to handles, etc.

The translation of function types is more involved. Recall that in the usual CPS-
translation, an arrow type (τ1)→ τ2 is transformed so that it accepts a translated
τ1 and a τ2 continuation:

(T [[τ1]], T [[τ2]]→ 0)→ 0

The translation of region arrow types has the same structure, but there are
several complications that arise as we transform effects into capabilities. The first
complication involves finding a region for the continuation closure. We solve this
problem by allocating a new region ρ′ to hold the continuation; the translated
function abstracts this region. The second complication is that an effect for a
function may only mention a subset of the regions that are live at the call site.
Nevertheless, the resulting CL function must thread the capability describing all
the live regions from the context where the function is called through the body
of the function to the continuation. We accomplish this task by abstracting an
additional capability variable ε that makes each function context-sensitive. Using
this mechanism, we can thread any capability in the calling context through the
function to its continuation.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

30 · D. Walker, K. Crary, and G. Morrisett

The third complication is that the type translation must ensure that equal types
in the region calculus are translated to equal types in CL. For the most part,
this obligation is satisfied trivially because the equality relation for most region
types and their corresponding CL analogues is simple syntactic equality up to α-
conversion of bound variables. However, the equality relation for effects is set
equality whereas the equality relation for arbitrary capabilities is not set equality
(⊕ is not necessarily idempotent). Fortunately, equality of duplicatable capabilities
is exactly set equality. Therefore, the type translation carefully translates all arrow
effects into duplicatable capabilities.

These three insights naturally lead us to translate a region function type of the
form τ1

ψ→ τ2 at r into the CL function type

∀[ρ′:Rgn, ε:Cap, ε′ ≤ ε⊕ T [[ψ]]⊕ {ρ′1}].(ε′, T [[τ1]], τcont at ρ′)→ 0 at T [[r]]

Notice that the capability for the translated function is ε′ where ε′ is a subtype
of ε⊕ T [[ψ]]⊕ {ρ′1}. This capability gives the translated function access to all the
regions it requires: the regions in T [[ψ]] are the regions accessed by the source lan-
guage function; ρ′ is the region containing the continuation; and ε contains the
regions from the calling context that are threaded through the call to the continu-
ation. Notice also that the capability that appears in this type is duplicatable, so
we can prove that equal types are translated to equal types. Finally, as explained
in Section 2.3, the continuation type τcont at ρ′ should be

(ε′, T [[τ2]])→ 0 at ρ′.

Bounded quantification allows the continuation to recover the uniqueness informa-
tion necessary to deallocate the regions used in the function.

Given these definitions, it is straightforward to prove that the essential properties
of types (well-formedness, equality, and substitution) are preserved through the
translation. Each of the following lemmas can be proven by a simple induction on
the well-formedness or equality derivation.

Lemma (Well-Formedness Preservation).

(1) If ∆ `R ∆′ then K[[∆]] ` K[[∆′]]
(2) If ∆ `R c : κ then K[[∆]] ` T [[c]] : K[[κ]]

Lemma (Equality Preservation).

(1) If ∆ `R ψ = ψ′ : Eff then K[[∆]] ` T [[ψ]] = T [[ψ′]] : Cap
(2) If ∆ `R c = c′ : κ and κ is not Eff then K[[∆]] ` T [[c]] = T [[c′]] : Cap

Lemma (Substitution Preservation). If ∆, α:κ `R τ : Type and ∆ `R c : κ
then K[[∆]] ` T [[τ [c/α]]] = T [[τ]][T [[c]]/α].

Term Translation. The heart of the term translation is a continuation-passing
style [Fischer 1972; Plotkin 1975] transformation. There are many variations of
this transformation [Danvy and Filinski 1992; Sabry and Felleisen 1993; Harper
and Lillibridge 1993; Danvy et al. 1999], some of which produce more efficient code
than others, and some of which lead to simpler correctness proofs. We have chosen
a simple translation that is straightforward to prove type-preserving so that we
may focus on the details relevant to region-based memory management.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 31

We begin with an informal description of the basic mechanics of the CPS term
translation, ignoring all of the details relevant to regions or capabilities. There are
three main arguments to the translation:

—a type-checking context Φ,
—a source-language term e, and
—a target-language continuation k.

If the source term e is well-formed under the context Φ with type τ , and k is a
T [[τ]]-continuation, then the translation CΦ(e)k should produce a well-formed target
term.

Operationally, the target term computes e, producing a value v as a result, and
then calls the continuation k with v as its argument. Therefore, if the source term e
is already a value v, such as an integer or a variable, then the translation is simply
the function call k(v). On the other hand, assuming a left-to-right evaluation
order, if the source term e actually represents a computation, say the computation
〈e1, e2〉, the CPS translation arranges to compute e1 producing value v1, compute e2
producing value v2, allocate the pair 〈v1, v2〉, and finally pass the resulting pointer
to the continuation k. We might write such a translation as follows.

CΦ(〈eτ11 , e
τ2
2 〉)k = CΦ(e1)(λx1.

CΦ,x1:T [[τ1]](e2)(λx2.
letx = 〈x1, x2〉 in k(x)))

The translation of each subcomponent of e requires a continuation, and that
continuation contains code for all subsequent subcomponents. Finally, the primitive
operation op is applied to the resulting values, and the result is passed to k. The
compilation of arithmetic operations and the projections have this form.

There are a couple of further details to notice about the translation. First, we
have taken the liberty of annotating expressions with their types where necessary
(e.g., eτ11). Second, when the translation introduces new variables, such as x1,
we add those variables, with their translated types, to the context Φ. The latter
decision has no influence on the behavior of the translation, but it facilitates the
statement and proof of the type correctness theorem.

The translation of function application e1 e2 begins in the same way as other
operations: translate e1, passing the resulting value to a continuation that contains
the translation of e2. The continuation for e2 contains the function application
itself. Because user-defined CPS functions (unlike the primitive operations) do not
return, the continuation k is passed directly to the translated function.

CΦ(eτ1→τ21 e2)k = CΦ(e1)(λx1.
CΦ,x1:T [[τ1→τ2]](e2)(λx2.
x1(x2, k)))

Finally, expressions that declare functions must be translated so the result ex-
pects an extra continuation argument (xcont) and calls that continuation to return.

CΦ(let f : τ1→ τ2 = λx.e in e′)k =
let f : τf = λ(x, xcont).CΦ,x:T [[τ1]],xcont:τcont(e)xcont in
CΦ,f :T [[τ1→τ2]](e′)k

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

32 · D. Walker, K. Crary, and G. Morrisett

Here, the type of the function’s continuation, τcont, is (T [[τ2]])→ 0. The type τf of
the function itself is (T [[τ1]], τcont)→ 0.

This simple CPS translation provides the basic structure for the translation from
the region language into CL. However, as many previous researchers have observed,
this translation introduces unnecessary or administrative redexes. For example,
under the scheme we have presented so far, the translation of a simple pair 〈2, 3〉
with respect to a continuation k is

(λx1.(λx2.letx3 = 〈x1, x2〉 in k(x3)) (3)) (2)

instead of the much simpler term letx3 = 〈2, 3〉 in k (x3). While we are not con-
cerned with the time required to execute the extra function applications, we are
concerned about the space required by additional function closures. If we based
our region translation directly on this naive translation, we would be forced to al-
locate additional regions for each of the λ-expressions above. Previous work has
avoided these problems by defining the translation in terms of a two-level type
system and passing the translation meta level continuations instead of target-level
continuations. However, because we are only interested in the space properties of
our translation, we will use a simpler solution. Rather than allocating continuation
closures, we will use a let expression to bind the result of a computation and pass
it to a continuation. This solution avoids additional allocation and does not lead
to the complexities of a two-level type system. Hence, the translation of the pair
〈2, 3〉 with respect to continuation k will be

letx1 = 2 in
letx2 = 3 in
letx3 = 〈x1, x2〉 in
A(k, x3)

The notation A(k, x3) denotes static (i.e., translation-time rather than run-time)
application of the continuation k to the value x3. The continuation k is not rep-
resented as a target-language λ-expression, but, intuitively, this “application” is
simply k(x3). The continuation k is actually a pair 〈xk; ek〉. The variable xk is
the continuation’s parameter, and ek is its body. Given this representation, it is
natural to define A(〈xk; ek〉, v) to be letxk = v in ek. The translation of A(k, x)
occurs at compile-time.

Using this notation, we can define a CPS translation for pairs in general as
follows.

CΦ(〈eτ11 , e2〉)k = CΦ(e1)〈x1;
CΦ,x1:T [[τ1]](e2)〈x2;
letx = 〈x1, x2〉 inA(k, x)〉〉

From Region Expressions to Capability Language. With the basic CPS transfor-
mation in hand, we are ready to investigate the formal details of the translation
of the region language expressions into CL expressions. As discussed above, the
translation, C, has the following form.

CΦ(e)k
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 33

A(〈x; e〉, v) = (let x = v in e)

C∆;Γ;Θ(x)k = A(k, x)

C∆;Γ;Θ(i)k = A(k, i)

C∆;Γ;Θ(f [c1, . . . , cn])k = A(k, f [T [[c1]], . . . , T [[cn]]])

C∆;Γ;Θ(e1 p e2)k =
C∆;Γ;Θ(e1)〈x1;
C∆;Γ;Θ,x1:int(e2)〈x2;
letx = x1 p x2 in
A(k, x)〉〉

C∆;Γ;Θ(〈eτ11 , . . . , eτnn 〉 at e
τn+1
n+1)k =

C∆;Γ;Θ(e1)〈x1;
...
C∆;Γ;Θ,x1:T [[τ1]],...,xn−1:T [[τn−1]](en)〈xn;
C∆;Γ;Θ,x1:T [[τ1]],...,xn:T [[τn]](en+1)〈xn+1;
letx = 〈x1, . . . , xn〉 at xn+1 inA(k, x)
〉〉 · · ·〉

C∆;Γ;Θ(πie)k = C∆;Γ;Θ(e)〈x1; letx = πix1 inA(k, x)〉

C∆;Γ;Θ(if0 e1 then e2 else e3)k =
C∆;Γ;Θ(e1)〈x1;
if0x1 then C∆;Γ;Θ,x1:int(e2)k else C∆;Γ;Θ,x1:int(e3)k〉

C∆;Γ;Θ(letregion ρ, xρ in e)k =
let newrgn ρ, xρ in
C∆{ρ:Rgn};Γ{xρ:ρ handle};Θ′ (e)〈x′; let freergnxρ inA(k, x′)〉

where
Θ′ = 〈∆Θ; ΓΘ;CΘ ⊕ {ρ1};BΘ ⊕ {ρ1}〉

Fig. 16. Region-to-capability term translation.

The context Φ is actually ∆; Γ; Θ. The first two components are a region type
context and a region value context. The third component, Θ, is a translation
environment. This environment contains a CL type context ∆Θ, a CL value context
ΓΘ, and a pair of capabilities CΘ and BΘ. The context ∆Θ describes the kinds of
the new type variables introduced by the translation and, if they are capability type
variables, then possibly their bounds. The value context ΓΘ describes the types of
the new value variables introduced by the translation. Intuitively, the capability
CΘ represents the current capability at a given point in the translation; it contains
the uniqueness information necessary for deallocating capabilities and will often be
a single abstract capability variable ε. The capability BΘ is always a bound on CΘ.
It contains all regions accessed by the current function, and it will never be a single
abstract capability variable (see the translation of function declarations below for
the differences between BΘ and CΘ). If Θ is 〈∆Θ; ΓΘ;CΘ;BΘ〉, then we use the
notation Θ, x:τ to denote the translation environment 〈∆Θ; ΓΘ, x:τ ;CΘ;BΘ〉.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

34 · D. Walker, K. Crary, and G. Morrisett

C∆;Γ;Θ(letrecf [∆′](x) : (∀[∆′].τ1
ψf→ τ2 at r) at e1 = e2 in e3)k =

C∆;Γ;Θ(e1)〈x1;
let f = (fix f [K[[∆′]], ρ:Rgn, ε:Cap, ε′ ≤ BΘ′](ε′, x:T [[τ1]], xcont:τcont).

C∆∆′;Γ{f :σ,x:τ1};Θ′ (e2)〈x2;xcont(x2)〉) at x1
in
C

∆;Γ{f :∀[∆′].τ1
ψf
→τ2atr};Θ,x1:T [[r handle]]

(e3)k〉

where
τcont = ∀[].(ε′, T [[τ2]])→ 0 at ρ
∆Θ′ = ∆Θ, ρ:Rgn, ε:Cap, ε′ ≤ BΘ′

ΓΘ′ = ΓΘ, x1:r handle, xcont:τcont
CΘ′ = ε′

BΘ′ = ε⊕ T [[ψf]]⊕ {ρ1}
Θ′ = 〈∆Θ′ ; ΓΘ′ ;CΘ′ ;BΘ′ 〉

C∆;Γ;Θ(e
τf
1 e2)k =

C∆;Γ;Θ(e1)〈x1;
C∆;Γ;Θ,x1:T [[τf]](e2)〈x2;
let newrgn ρ, xρ in
let fcont = (fix fcont[](CΘ ⊕ {ρ1}, x:T [[τ2]]).let freergnxρ inA(k, x)) at xρ
in x1[ρ,BΘ, CΘ ⊕ {ρ1}](x2, fcont)〉〉

where

τf = τ1
ψf→ τ2 at r

Fig. 17. Region-to-capability term translation (functions).

The formal translation is presented in Figures 16 and 17. In the translation, we
make the assumption that all variables are fresh and that when we introduce a vari-
able in a term or in a continuation, it is “fresh” (i.e. it is does not conflict with any
of the other variables in the source term, type-checking context, or continuation).

The invariant guiding the transformation has three main parts:

(1) The region language term e is well-formed under the type and value contexts
∆ and Γ. Formally, ∆; Γ `R e : τ, ψ.

(2) The continuation k = 〈xk; ek〉 is well-formed in the current context. Formally,
{ };K[[∆]],∆Θ;S[[Γ]],ΓΘ, xk:T [[τ]];CΘ ` ek.

(3) Finally, the current capability CΘ is a subcapability of BΘ, and moreover, BΘ

contains a superset of the regions mentioned in the effect of e. Formally,
—K[[∆]],∆Θ ` CΘ ≤ BΘ and
—K[[∆]],∆Θ ` BΘ = BΘ ⊕ T [[ψ]].

As in the case for the simplified CPS translation, the translation of source-
language values is the simplest. For example, to translate a variable x or the
integer i, we simply apply the continuation k to x or i respectively. The type ap-
plication expression f [c1, . . . , cn] is also a value because we take the interpretation
that types are erased at run time. Therefore, we apply the continuation k directly
to f [T [[c1]], . . . , T [[cn]]].
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 35

The translation of tuples also follows our informal description closely. We trans-
late each of the computations e1, . . . , en+1 that make up the tuple in sequence and
bind the resulting values to x1, . . . , xn+1. Once we have translated all expressions,
we allocate the tuple 〈x1, . . . , xn〉 using the region handle xn+1.

In order for the tuple allocation operation to be safe, we must ensure the region
(say, ρ) that corresponds to the region handle xn+1 is still live. In other words, we
must be able to prove that the current capability CΘ contains a capability for ρ. The
invariants above provide us with the means to deduce this fact using the following
informal reasoning. Invariant 1 states that the expression 〈e1, . . . , en〉 at en+1 is
well-formed and has effect ψ. Inspection of the region language typing rule for
tuples reveals that ψ contains an effect on ρ. Now, the second part of invariant 3
states that the capability BΘ contains capabilities on all regions that appear in the
effect ψ, including, of course, ρ. Finally, using the first part of invariant 3, we know
that the current capability CΘ is a subcapability of BΘ and, therefore, that it too
contains ρ. Consequently, the tuple allocation operation is safe.

Using similar reasoning, it is straightforward to verify informally that the trans-
lation of arithmetic operations, projections, and if statements will not fail to type
check because they lack sufficient capabilities. In the translation of an if statement,
we have duplicated the continuation k inside both branches. Our main concern
here is a proof of type preservation, so we have opted for the simplicity of this
translation. In practice, such duplication can lead to considerable code growth,
and therefore, in many cases, an implementation will want to bind the continuation
to a variable before entering the if statement.

The translation of the term letregion ρ, xρ in e is not much more difficult:
letregion ρ, xρ in e is translated into a newrgn ρ, xρ declaration followed by the
translation of the inner expression e and finally a freergn declaration to deal-
locate ρ. Once again, some simple reasoning allows us to check that the stated
invariants hold throughout the transformation. In particular, the translation of the
inner expression e reflects the fact that a new region ρ has just been allocated; the
translation environment for that step contains capabilities CΘ⊕{ρ1} and BΘ⊕{ρ1}.
Since we know that CΘ is a subcapability of BΘ, we may conclude that CΘ⊕{ρ1}
is a subcapability of BΘ ⊕ {ρ1} and therefore that invariant 3, part 1 is satisfied.
Next, inspection of the typing rule for letregion reveals that if ψ′ is the effect of
e then ψ′ \{ρ} is the effect of the entire letregion expression. Since, BΘ contains
ψ′ \ {ρ}, we know that BΘ⊕{ρ1} contains capabilities for all regions in ψ′, includ-
ing, of course, ρ. Hence, we also satisfy invariant 3, part 2 during the translation of
e. Finally, recall that the region type system ensures that the region ρ can only be
used inside of e. Therefore, in the continuation for the translation of e, we safely
free the region and proceed with k. Invariant 2 specified that k only expected the
capability CΘ, and this is exactly the capability of the context after freeing the
region ρ.

The most complex part of the translation involves functions. Fortunately, the
type translation, which we have already explained, specifies the main invariants;
the translation of functions terms follows directly from this specification. More
specifically, we extend the function’s type context ∆′ with ρ, a region for the con-
tinuation’s closure, ε, a capability for hiding extra regions in the calling context,

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

36 · D. Walker, K. Crary, and G. Morrisett

and ε′, the current capability, which is bounded by ε⊕ T [[ψf]]⊕ {ρ1}. We also add
a value argument to the translated function, the continuation xcont. It is simple to
verify that the translated function has the translated function type. The body of
the function is translated under these assumptions. The continuation for this part
of the translation does nothing but invoke the function’s new argument xcont.

Finally, we examine the translation of a function application. First, the trans-
lation allocates a new region ρ for the continuation closure. Next, the translation
actually allocates the continuation in ρ. This continuation is defined to expect the
capability CΘ ⊕ {ρ1}. This is the maximum capability at this point in the compu-
tation, and it permits the continuation to deallocate the region containing its own
closure. Just as a conventional stack-based language implementation, which allo-
cates a stack frame on a function call and deallocates that stack frame on function
return, the CPS region-based implementation allocates a continuation closure on a
function call and then deallocates the continuation closure on return.

After allocating the continuation, the translation continues with the translation
of the actual function application. The translated function value, x1, will have the
type

∀[ρ′:Rgn, ε:Cap, ε′ ≤ ε⊕ T [[ψf]]⊕ {ρ′1}].(· · ·)→ 0 at r.In

Therefore, before calling the function, the code must instantiate the variables ρ′,
ε, and ε′ properly. The code naturally instantiates ρ′ with the region ρ that was
just allocated. At this point in the program, the capability CΘ ⊕ {ρ1} represents
the current capability, and BΘ ⊕ {ρ1} is its upper bound. Therefore, the code
instantiates ε with BΘ and ε′ with CΘ⊕{ρ1}, which is legal provided we can prove
that

CΘ ⊕ {ρ1} ≤ BΘ ⊕ ψf ⊕ {ρ1}.

Given invariant 3, which states that CΘ ≤ BΘ and that BΘ = BΘ ⊕ ψf , it is easy
to verify this fact. Now, we need only verify that the term arguments, x2 and the
continuation fcont, have the types expected by the translated function, and this too
can be easily checked.

Properties of the Translation. We have proven that our translation preserves
types.

Theorem (CPS Type Preservation). If ·; · ` e : int, ∅ then
{ }; ·; ·; ∅ ` C·;·;Θ(e)〈x; halt x〉 where x is fresh and Θ is the empty enviroment:
〈·; ·; ∅; ∅〉.

The proof proceeds by induction on the typing derivation of the source language
term with invariants 1, 2, and 3 forming the induction hypothesis. Appendix B
contains a formal proof of the representative cases.

We would also like to prove our translation is correct and that it preserves the
space used by the program, but we have not yet tackled these problems. Re-
cently, Minamide [1999] has proven that a standard CPS translation preserves the
maximum amount of reachable space within a constant factor. He defines a space-
profiling semantics for the simply typed lambda calculus that refines the work of
Blelloch and Greiner [1996]. If we were to augment our semantics with this sort of
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 37

space-profiling information, we may be able to prove a similar result for our trans-
lation. An informal inspection of the translation indicates that the resultant term
allocates no more data structures than the source term with the exception of the
continuation closure that we require to return from a function call, and intuitively,
this closure corresponds to the stack space that is required to save local variables
across a function call. However, a formal investigation of the space properties of
our translation is beyond the scope of this paper.

An Example. The program in Figure 18 is the translation of the count function
from the previous section. We have made several simplifications to the output of
the formal translation to improve the readability of the program. In particular,
we have optimized away many of the administrative redexes and performed a tail-
call optimization on the recursive call to the count function. Rather than writing
capabilities {ρ1

1, ρ
1}, we use the equivalent form {ρ+

1 , ρ
+}.

The program begins by allocating regions ρ1 and ρ2 using the newrgn declaration,
and puts the closure for count into ρ1. The count function requires a capability ε′ at
least as good as the capability {ρ+

1 , ρ
+, ρ+

cont} needed to access itself, its argument,
and its continuation; and it passes on that same capability ε′ to its continuation
k. As we type check the body of the count function, we verify that we possess
the capabilities necessary to make all data accesses legal. Comments in the code
indicate where these checks occur. When calling count, we pass it the continuation
cont. This continuation requires the capability {ρ1

1, ρ
1
2, ρ

1
3} in order to free the

three regions. Hence, at the application site, count’s capability, ε′, is instantiated
with the stronger capability needed by the continuation.

Another Example. In this context, the count function uses all of the regions that
are currently allocated, and the capability variable ε is redundant. When the code
instantiates ε at the call site for count, it does so with exactly the regions ρ1, ρ,
and ρcont which already appear in the bound on ε′. However, in general, ε will
hide some “left-over” capability. For example, if we had allocated a fourth region,
ρ4, we would need to instantiate ε with the capability {ρ1

4}⊕ {ρ1
1, ρ

1
2, ρ

1
3} and make

corresponding changes to the continuation. Now, ε would hide the capability on the
fourth region from count but preserve it across the call so it could be deallocated
in the continuation:

%%% count with ε hiding a left-over capability
let newrgn ρ1, xρ1 in
let newrgn ρ2, xρ2 in
let newrgn ρ3, xρ3 in
let newrgn ρ4, xρ4 in
let count = ... as before ...
% capability held is {ρ1

1, ρ
1
2, ρ

1
3, ρ

1
4}

let ten = 〈10〉 at xρ2 in
let cont =

(λ ({ρ1
1, ρ

1
2, ρ

1
3, ρ

1
4}) ...) at xρ2

in
count [ρ2, ρ3, {ρ1

4} ⊕ {ρ1
1, ρ

1
2, ρ

1
3}, {ρ1

4} ⊕ {ρ1
1, ρ

1
2, ρ

1
3}] (xρ2 , ten, cont)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

38 · D. Walker, K. Crary, and G. Morrisett

let newrgn ρ1, xρ1 in
let newrgn ρ2, xρ2 in
% capability held is {ρ1

1, ρ
1
2}

let count =
(fix count

[ρ:Rgn, ρcont :Rgn, ε:Cap, ε′ ≤ ε⊕ {ρ+
1 , ρ

+, ρ+
cont}]

(ε′, xρ:ρ handle, x:〈int〉 at ρ, k:(ε′)→ 0 at ρcont) .
% capability held is ε′ ≤ ε⊕ {ρ+

1 , ρ
+, ρ+

cont}
let n = π1(x) in % ρ ok

if0 n

then k() % ρcont ok
else

let n′ = n− 1 in
let x′ = 〈n′〉 at xρ in % ρ ok

count [ρ, ρcont , ε⊕ {ρ+
1 , ρ

+, ρ+
cont}, ε′] (xρ, x′, k) % ρ1 ok

) at xρ1 in
let newrgn ρ3, xρ3 in
% capability held is {ρ1

1, ρ
1
2, ρ

1
3}

let ten = 〈10〉 at xρ2 in
let cont =

(λ ({ρ1
1, ρ

1
2, ρ

1
3}) .

% capability held is {ρ1
1, ρ

1
2, ρ

1
3}

let freergn xρ3 in % ρ3 unique
let freergn xρ2 in % ρ2 unique
let freergn xρ1 in % ρ1 unique

halt 0
) at xρ3

in
count [ρ2, ρ3, {ρ1

1, ρ
1
2, ρ

1
3}, {ρ

1
1, ρ

1
2, ρ

1
3}] (xρ2 , ten, cont)

Fig. 18. The function count.

The power of bounded quantification comes into play when a function is called
with several regions, some of which may or may not be the same. For example,
the original code could be rewritten to have ten and cont share a region, without
changing the function count in any way:

%%% count with ten and cont sharing ρ2
let newrgn ρ1, xρ1 in
let newrgn ρ2, xρ2 in
let count = ... as before ...
% capability held is {ρ1

1, ρ
1
2}

let ten = 〈10〉 at xρ2 in
let cont =

(λ ({ρ1
1, ρ

1
2}) ...) at xρ2

in
count [ρ2, ρ2, {ρ1

1, ρ
1
2}, {ρ1

1, ρ
1
2}] (xρ2 , ten, cont)

In this example, ρcont is instantiated with ρ2 and ε′ is instantiated with {ρ1
1, ρ

1
2}

(which is again the capability required by cont). However, count proceeds exactly
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 39

let newrgn ρ1, xρ1 in
let newrgn ρ2, xρ2 in
% capability held is {ρ1

1, ρ
1
2, ρ

1
3}

let count =
(fix count

[ρ:Rgn, ρcont :Rgn, ε ≤ {ρ+
1 , ρ

+
cont}]

(ε⊕ {ρ1}, xρ:ρ handle, x:〈int〉 at ρ,
k:(ε)→ 0 at ρcont) .

% capability held is ε⊕ {ρ1}
let n = π1(x) in % ρ ok
let freergn xρ in % ρ unique

% capability held is ε
if0 n
then k() % ρcont ok
else

let n′ = n− 1 in
let newrgn ρ′, xρ′ in
% capability held is ε⊕ {ρ′1}
let x′ = 〈n′〉 at xρ′ in % ρ′ ok

count [ρ′, ρcont , ε] (xρ′ , x′, k) % ρ1 ok
) at xρ1 in

let ten = 〈10〉 at xρ2 in
let newrgn ρ3, xρ3 in
let cont =

(λ ({ρ1
1, ρ

1
3}) .

% capability held is {ρ1
1, ρ

1
3}

let freergn xρ3 in % ρ3 unique
let freergn xρ1 in % ρ1 unique

halt 0
) at xρ3

in
count [ρ2, ρ3, {ρ1

1, ρ
1
3}] (xρ2 , ten, cont)

Fig. 19. The function count with efficient memory usage.

as before because ε′ is still as good as {ρ+
1 , ρ

+, ρ+
cont} since:

{ρ1
1, ρ

1
2} ≤ {ρ+

1 , ρ
+
2 }

= {ρ+
1 , ρ

+
2 } ⊕ {ρ

+
1 , ρ

+
2 , ρ

+
2 }

= {ρ1
1, ρ

1
2} ⊕ {ρ

+
1 , ρ

+
2 , ρ

+
2 }

= (ε⊕ {ρ+
1 , ρ

+
2 , ρ

+
2 })[{ρ1

1, ρ
1
2}/ε]

An Optimization. In the examples above, even though count is tail-recursive,
we allocate a new cell each time around the loop, and we do not deallocate any
of the cells until the count is complete. However, since ρ never contains any live
values other than the current argument, it is safe to reduce the program’s space
usage by deallocating the argument’s region each time around the loop, as shown
in Figure 19. Note that this optimization is not possible when region lifetimes must
be lexically scoped.

In order to deallocate its argument, the revised count requires a unique capability
for its argument’s region ρ. Note that if the program were again rewritten so that
ten and cont shared a region (which would lead to a run-time error, since ten
is deallocated early), the program would no longer typecheck: In order to satisfy

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

40 · D. Walker, K. Crary, and G. Morrisett

the bound on count, ε must be instantiated with a capability containing cont’s
region (ρ2 in this scenario), but then count’s required capability will contain two
occurrences of ρ2, one from ε and one from the instantiation of ρ by ρ2. Since the
latter of these two capabilities is required to be unique, the union of two cannot be
satisfied by the current capability. For instance, if ε is instantiated with {ρ1

1, ρ
1
2}

then the function call does not typecheck since the current capability {ρ1
1, ρ

1
2} 6≤

{ρ1
1, ρ

1
2, ρ

1
2}.

On the other hand, the program rewritten so that count and cont share a region
does not fail at run time, and does typecheck. In this case, it is legal to instantiate
ε with {ρ1

1} and it is possible to prove that the capability held at the point of the
function call is a subcapability of the expected capability: {ρ1

1, ρ
1
2} ≤ {ρ1

1, ρ
1
2}.

4. DISCUSSION

We believe the general framework of our capability system is quite robust. There are
several ways to extend the language and a number of directions for future research.

4.1 Language Extensions

In this article, we have concentrated on using CL to implement safe region-based
memory management, but with a few changes, we believe our capability apparatus
may be used in a variety of other settings as well. One potential application in-
volves reducing the overhead of communication across the user-kernel address space
boundary in traditional operating systems. Typically, in such systems, when data
in user space are presented to the kernel, the kernel must copy that data to ensure
its integrity is preserved. However, if a user process hands off a unique capability
for a region to the kernel, the kernel does not have to copy that region’s data;
without the capability, the user can no longer read or modify the contents of that
region.

By handing off a user’s capability to the kernel, we ensure that the kernel has
exclusive access to the data governed by the capability. We can generalize this idea
and use capabilities to ensure mutually exclusive access to shared mutable data
in a multithreaded environment, by viewing locks as analogous to regions. If we
associate each piece of sensitive data with a lock, we can statically check that every
client of the data obtains the corresponding lock and its associated capability before
attempting access. When the code releases the lock, the type system would revoke
the capability on the data, just as it revokes a capability after a region is freed.
Flanagan and Abadi [1999] have investigated this idea in the context of a high-
level lexically scoped language. Just as we compiled Tofte and Talpin’s high-level
region language into CL, we conjecture we could compile Flanagan and Abadi’s
locking language into a variant of CL with locking primitives instead of allocation
primitives.

A third application of capabilities is to control and reason about aliasing on a per-
object basis rather than a per-region basis. Smith, Walker, and Morrisett [Smith
et al. 2000; Walker and Morrisett 2000] have investigated the idea of associating
a different capability with each individual object and including the type of the
object within the capability itself. When code possesses the unique capability for
an object, it may deallocate the object, or, if it chooses, it may explicitly reuse
the space for that object to store a value of a different type. This new design
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 41

may be viewed as an extension to conventional linear type systems [Girard 1987;
Lafont 1988; Wadler 1990; Abramsky 1993] as it admits aliasing and yet allows safe
deallocation of objects. Recently, these techniques have been used to extend the
Typed Assembly Language implementation [Morrisett et al. 2000] with operations
for explicit, but verifiably safe memory management.

In general, whenever a system wishes to restrict access to some data statically,
and/or to ensure a certain sequence of operations are performed, it may consider
using capabilities. In fact, Walker [2000] has shown that the combination of ca-
pabilities and a simple logic are sufficiently powerful to encode any safety prop-
erty [Alpern and Schneider 1987; Schneider 2000].

4.2 Related Work

There are many formalisms for reasoning about computational effects in program-
ming languages including type-and-effects systems [Gifford and Lucassen 1986; Lu-
cassen 1987; Jouvelot and Gifford 1991; Tofte and Talpin 1994], monads [Moggi
1991; Peyton Jones and Wadler 1993; Launchbury and Peyton Jones 1995; Filinski
1996], linear types [Girard 1987; Lafont 1988; Wadler 1990; Abramsky 1993], and
now capabilities. Many researchers are actively investigating the relationships be-
tween these different areas, but the overall picture is not yet fully understood. We
are eager to continue this line of research and explore the formal links between our
system and the others.

Our translation of Tofte and Talpin’s region calculus into CL reveals that the
relationship between effects and capabilities is quite close. A necessary prerequi-
site for the use of either system is type inference, performed by a programmer or
compiler, and much of the research into effects systems has concentrated on this
difficult task. However, because of the focus on inference, effect systems are usu-
ally formulated as a bottom-up synthesis of effects. Our work may be viewed as
producing verifiable evidence of the correctness of an inference. Hence, while effect
systems typically work bottom-up, specifying the effects that might occur, we take
a top-down approach, specifying by capabilities the effects that are permitted to
occur. Moreover, unlike Tofte and Talpin’s effect system, our capabilities are sensi-
tive to control-flow. Rather than constructing the overall effect of an expression by
taking the union of the effects of the subexpressions, and thereby losing information
about the order of evaluation, we verify that programs are safe by checking one in-
struction after another and using the capability produced by previous instructions
to verify that the instructions that follow are safe.

A connection can also be drawn between capabilities and monadic type systems.
Work relating effects to monads has viewed effectful functions as pure functions
that return state transformers. This might be called an ex post view: the effect
takes place after the function’s execution. In contrast, we take an ex ante view
in which the capability to perform the relevant effect must be satisfied before the
function’s execution. Nevertheless, there is considerable similarity between the
views; just as monads can be used to ensure that the store is single-threaded through
a computation, our typing rules thread a capability (which summarizes aspects of
the store) along the execution path of a program.

Perhaps the closest relationship occurs between linear type systems and capa-
bilities. An inspection of the axioms of capability equality reveals that they are

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

42 · D. Walker, K. Crary, and G. Morrisett

very similar to the structural rules of linear type systems. In particular, linear
assumptions, like unique capabilities, do not allow contraction and weakening rules
whereas nonlinear assumptions, like duplicatable capabilities, do allow contraction
and weakening rules.6 One essential difference between the two formalisms is that
the capability to access an object (say, {ρ1}) is separated from the type of the
object itself (say, 〈int〉 at ρ). This level of indirection makes it possible to allow
aliasing and yet verify that deallocation is still safe.

There has also been a significant amount of prior research on the more specific
topic of the theory and implementation of region-based memory management. With
respect to implementation, Birkedal et al. [1996] describe several optimizations to
the basic region-allocation scheme that are used in the ML Kit with Regions to
improve space efficiency. One of their observations is that functions can be used in
two different contexts: one context in which no live object remains in a region after
a function call and a second context in which there may be live objects remaining
in a region after a call. In order to avoid code duplication and yet ensure efficient
space usage, the call site passes information to the called function at run time.
Using this information, the function may make dynamic decisions about region
deallocation. The type system we present here is not powerful enough to encode
these storage-mode polymorphic functions. However, we believe these dynamic tests
may be viewed as a form of intensional type analysis [Harper and Morrisett 1995;
Crary et al. 1998], and, therefore, if we augment CL with a variant of Harper and
Morrisett’s typecase mechanism, we may be able to verify the results of storage-
mode optimizations as well.

Aiken et al. [1995] have also studied how to optimize the original Tofte-Talpin
region framework. As in CL, they separate region allocation from region dealloca-
tion. However, they have not presented a technique for verifying that the results of
their optimizations are safe. We conjecture, based on the soundness proof for Aiken
et al.’s analyses, that the analysis could be used to produce typing annotations and
that verification could take place using CL.

Gay and Aiken [1998] have developed extensions to C that gives programmers
complete control over region allocation and deallocation. They use reference count-
ing to prevent programmers from accidentally accessing deallocated regions. Haw-
blitzel and von Eicken [Hawblitzel and von Eicken 1999] have also used the notion
of a region in their language Passport to support sharing and revocation between
multiple protection domains. Both of these groups use run-time checking to en-
sure safety, and it would be interesting to investigate hybrid systems that combine
features of our static type system with more dynamic systems.

Tofte and Talpin [1997] have studied the soundness of region-based type systems
at length. They use a greatest fixed-point construction and a coinductive argument
to prove the correctness of their region-inference scheme. In contrast, our formula-
tion of CL allows us to use the syntactic proof techniques popularized by Wright
and Felleisen [1994]. However, despite the high-level differences between the proof

6Many formulations of linear logic admit a weakening rule that allows an assumption to be com-
pletely forgotten. As explained earlier, we do not allow complete forgetting of capabilities because
it leads to space leaks. Instead, we admit a more restrictive weakening rule that allows all but
the last capability to be forgotten.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 43

techniques, there are illuminating similarities in some of the details. Most notably,
Tofte and Talpin’s proof involves a notion of consistency that relates source and
target values in the region inference translation. Consistency is defined with respect
to the effect (ψ) of the rest of the computation. Informally, one of the consistency
conditions states that a source value is consistent with a target value in region ρ,
with respect to effect ψ, if ρ does not appear in ψ. Hence, if ρ is not in the effect,
or capability, of the rest of the computation, then we can deallocate that region be-
cause the rest of the computation cannot distinguish a dangling pointer into ρ from
a value in the source language. Therefore, within the Tofte-Talpin proof, the effect
of the rest of the computation plays a role very similar to a capability. We are able
to give a syntactic proof of soundness for our language because continuations and
their capabilities are explicit in our framework whereas Tofte and Talpin introduce
this idea as a metalevel construction in their proof.

5. CONCLUSIONS

We have presented a new strongly typed language that admits operations for ex-
plicit allocation and deallocation of data structures. Furthermore, this language is
expressive enough to serve as a target for region inference and admits a relatively
straightforward proof of soundness. We believe that the notion of capabilities that
support statically checkable attenuation, amplification, and revocation is an effec-
tive new tool for language designers.

APPENDIX

A. SOUNDNESS OF THE CAPABILITY LANGUAGE

A.1 Notation

The capability {r+} is a derived form that we used for expository purposes in the
article. It is equivalent to {r1}. For the sake of simplicity, the proof operates on
a new language that does not include capabilities of the form {r+}. The syntax of
capabilities is

C ::= ε | ∅ | {r} | C1 ⊕ C2 | C.

The form {r} is the new syntax for unique capabilities. The only way to form
a duplicatable capability is to use the bar operator as in {r}; hence multiplicity
annotations are unnecessary. The rule eq-flag is a derived rule. If the abbreviation
{r+} is replaced by its definition, it is clear the rule is simply a special case of
reflexivity, and therefore, we do not need it in our system. Where convenient, we
continue to use {r+} as an abbreviation for {r} and {r1} to emphasize the fact
that a capability is unique. We also continue to use the metavariable ϕ to range
over + or 1.

We also use the following notational conventions:

—We abbreviate (· · · ((∅ ⊕ {rϕ1
1 })⊕ {r

ϕ2
2 }) · · ·)⊕ {rϕnn } by {rϕ1

1 , . . . , rϕnn }.

—We abbreviate (· · · ((∅ ⊕ C1)⊕ C2) · · ·)⊕ Cn by C1 ⊕ · · · ⊕ Cn.

—We use the notation C ∈ C ′ to denote the fact that C is a subcomponent of C ′.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

44 · D. Walker, K. Crary, and G. Morrisett

A.2 Overview

The proof is broken down into a series of lemmas, most of which are proven by
induction on the typing derivations or by induction on the syntax of the language.
The proof culminates in a proof Type Soundness and Complete Collection. The
supporting lemmas are grouped as follows:

—Lemmas 9 to 11 describe when extensions to type contexts or exchanges of ele-
ments within a type context are permissible.

—Lemmas 12 to 14 state that constructors involved in equality and subtyping
judgements are well-formed and that all free variables of well-formed constructors
are bound by the type context.

—Definitions and Lemmas 15 to 22 describe which capabilities are equal to one
another and which capabilities are subtypes of one another. They provide a
higher level of abstraction than the rules for equality and subtyping and are used
frequently in the rest of the proof.

—Lemmas 23 and 24 are substitution lemmas for types and values respectively.
—Lemma 25 states that well-formed small values, heap values, and declarations

have well-formed types.
—Lemmas 26 to 28 are Canonical Forms lemmas. Given a type, these lemmas

describe the shape of memory or of values.
—Lemmas 29 to 31 describe the conditions under which you can add labels or

regions to the memory type and preserve typing.
—Lemma 33 states that satisfiability is preserved across equality and subtyping

(under the empty context).
—Lemma 34 states that satisfiability is preserved when a region and the correspond-

ing unique capability are removed both from memory and the current capability
simulataneously.

—Lemmas 35 and 36 are the Preservation and Progress lemmas respectively. They
are used directly in the proof of Type Soundness.

Lemma 9. If ∆ ` ∆′ then Dom(∆) ∩Dom(∆′) = ∅.

Proof. By induction on the derivation.

Lemma (Type Context Exchange). If Dom(∆1) ∩Dom(∆2) = ∅ then

(1) If ∆0∆1∆2∆3 ` ∆ then ∆0∆2∆1∆3 ` ∆
(2) If ∆0∆1∆2∆3 ` c : κ then ∆0∆2∆1∆3 ` c : κ.

Proof. By induction on the derivations. In the rule type-var

∆0∆1∆2∆3 ` α : κ
(∆0∆1∆2∆3(α) = κ)

we know ∆0∆1∆2∆3(α) = ∆0∆2∆1∆3(α) because the domains of ∆1 and ∆2 are
disjoint. Consequently, ∆0∆2∆1∆3 ` α : κ.

Lemma (Type Context Extension). If ∆ ` ∆′ then

(1) If ∆ ` ∆′′ and Dom(∆′′) ∩Dom(∆′) = ∅ then ∆∆′ ` ∆′′

(2) If ∆ ` c : κ then ∆∆′ ` c : κ
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 45

(3) If ∆ ` c1 = c2 : κ then ∆∆′ ` c1 = c2 : κ
(4) If ∆ ` c1 ≤ c2 : κ then ∆∆′ ` c1 ≤ c2 : κ.

Proof. By induction on the derivation. Almost all cases follow directly from
the inductive hypothesis. Rules ctxt-sub and type-arrow require Type Context
Exchange where ∆3 is ·.

Lemma 12. If ∆ ` c : κ then ftv(c) ⊆ Dom(∆).

Proof. By induction on the derivation.

Lemma (Equality Regularity). If ∆ ` C = C ′ : κ then ∆ ` C : κ and
∆ ` C ′ : κ.

Proof. By induction on the derivation.

Lemma (Subtyping Regularity). If · ` ∆ and ∆ ` C ≤ C ′ : κ then ∆ ` C :
κ and ∆ ` C ′ : κ.

Proof. By induction on the derivation. In the rule sub-var, we show by induc-
tion on the derivation · ` ∆ that if (ε ≤ C) ∈ ∆ then ∆ ` ∆(ε) : Cap.

Definition 15. An atomic capability, a, is a type variable ε of kind Cap, a sin-
gleton capability {r}, or a barred capability ε or {r}. The meta-variable a ranges
over atomic capabilities.

Definition 16. E (C) is the set of elements ε or {r} that appear in C (where
{|x1, . . . , xn|} is notation for the set of elements x1, . . . , xn):

E (∅) = ∅
E ({r}) = {|{r}|}

E (ε) = {|ε|}
E (C1 ⊕ C2) = E (C1) ∪ E (C2)

E (C) = E (C)

Lemma (Equality). If ∆ ` C : Cap then

(1) ∆ ` C = a1 ⊕ · · · ⊕ an : Cap for some atomic capabilities a1, . . . , an.
(2) ∆ ` a1⊕· · ·⊕ai−1⊕ai⊕ai+1⊕· · ·⊕an = a1⊕· · ·⊕ai−1⊕ai+1⊕· · ·⊕an⊕ai : Cap.
(3) ∆ ` a1 ⊕ · · · ⊕ an = a′1 ⊕ · · · ⊕ a′n : Cap where a′1, . . . , a

′
n is any permutation of

a1, . . . , an.
(4) ∆ ` a1 ⊕ · · · ⊕ an = a′1 ⊕ · · · ⊕ a′m : Cap where a′1, . . . , a

′
m is a subsequence of

a1, . . . , an with all duplicate barred elements removed.
(5) If ∆ ` C = C ′ : Cap then the sets E (C) and E (C ′) are equal.
(6) If E (C) = E (C ′) and ∆ ` C ′ : Cap then ∆ ` C = C ′ : Cap.
(7) If ∆ ` C ⊕ {r} = C ′ ⊕ {r} : Cap then ∆ ` C = C ′ : Cap.

Proof. Part 1 follows by induction on the derivation ∆ ` C : Cap. Case type-∅
is immediate. Case type-single follows from application of the equality rules eq-
symm and eq-∅. Case type-plus is more intricate. The inductive hypothesis gives
us

∆ ` C1 = a1 ⊕ · · · ⊕ an : Cap
∆ ` C2 = a′1 ⊕ · · · ⊕ a′m : Cap.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

46 · D. Walker, K. Crary, and G. Morrisett

By induction on m and using the rules eq-∅, eq-assoc, and eq-trans

∆ ` a′1 ⊕ · · · ⊕ a′m = a′1 ⊕ (a′2 ⊕ · · · ⊕ (a′m−1 ⊕ a′m) · · ·) : Cap.

By equality congruence and eq-trans,

∆ ` C1 ⊕ C2 = (a1 ⊕ · · · ⊕ an)⊕ a′1 ⊕ (a′2 ⊕ · · · ⊕ (a′m−1 ⊕ a′m) · · ·) : Cap.

By induction on m again and using eq-assoc, eq-symm, and eq-trans,

∆ ` C1 ⊕ C2 = a1 ⊕ · · · ⊕ an ⊕ a′1 ⊕ · · · ⊕ a′m : Cap.

For the case C, we have ∆ ` C = a1 ⊕ · · · ⊕ an : Cap by IH. By congruence,
∆ ` C = a1 ⊕ · · · ⊕ an : Cap. By induction on n, ∆ ` C = a1 ⊕ · · · ⊕ an : Cap.
For each ai, either ai is an atomic element or ai is already barred, and we use the
eq-bar-idem rule to show that ∆ ` ai = ai : Cap. In either case, by induction on n
again and use of the congruence rules, we are done.

Part 2 follows by induction on m − i using eq-assoc, eq-comm, as well as the
transitivity and symmetry of equality. Part 3 is a corollary of part 2. Part 4 follows
by induction on the number of barred duplicates and uses part 3, transitivity,
symmetry, and eq-dup rules. Part 5 follows by induction on the equality judgment.

Part 6 may be proven as follows:
∆ ` C = a1 ⊕ · · · ⊕ an : Cap where E (C) = E (a1 ⊕ · · · ⊕ an) by parts 1 and 5.
∆ ` C ′ = a′1 ⊕ · · · ⊕ a′m : Cap where E (C ′) = E (a′1 ⊕ · · · ⊕ a′m) by parts 1 and 5.
By parts 3 and 4 and congruence of equality: ∆ ` C = a1 ⊕ · · · ⊕ an = aj1 ⊕ ajn :
Cap
∆ ` C ′ = a′1 ⊕ · · · ⊕ a′m = a′j1 ⊕ a

′
jm

: Cap
where the aji and a′ji contain no duplicates and are ordered according to some
canonical ordering. If E (C) = E (C ′) then the aji and the a′ji are the same and
are in the same order. Hence, the constructors are syntactically equal and thus
definitionally equal.

Part 7 follows by induction on the typing derivation.

Definition 18. forA capability C is unique in C ′ if there does not exist C ′′ such
that C ′′ ∈ C ′ and C ∈ C ′′. A capability C is duplicatable in C ′ if C ′′ ∈ C ′ and
C ∈ C ′′.

Lemma 19. If ∆ ` C ′ : Cap and C is duplicatable in C ′ then ∆ ` C ′ = C ′′⊕C :
Cap.

Proof. By induction on the typing derivation.

Lemma 20. If ∆ ` C ′ : Cap and C is unique in C ′ then ∆ ` C ′ = C ′′⊕C : Cap.

Proof. By induction on the typing derivation.

Lemma (Capability Equality Cardinality Preservation(CECP)). If
∆ ` C1 = C2 : Cap and ∆ ` a : Cap and a = ε or {r} then

(1) a is unique (duplicatable) in C1 iff a is unique (duplicatable) in C2.
(2) The number of unique occurences of a is the same in C1 and C2.

Proof. By induction on the derivation.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 47

Lemma (Capability Subtyping Cardinality Preservation(CSCP)). If
· ` C1 ≤ C2 : Cap then

(1) For all region names ν, {ν} ∈ C1 iff {ν} ∈ C2.
(2) For all region names ν, if {ν} is not unique in C1 then {ν} is not unique in

C2.

Proof. By induction on the derivation and Capability Equality Cardinality
Preservation. Note that by Subtyping Regularity and Lemma 12, no type variables
ε appear in C1, and consequently, the rule sub-var never appears in the deriva-
tion.

Lemma (Type Substitution). Let
∆0 be ∆[c1, . . . , cn/∆′] Γ0 be Γ[c1, . . . , cn/∆′] C0 be C[c1, . . . , cn/∆′]
r0 be r[c1, . . . , cn/∆′] τ0 be τ [c1, . . . , cn/∆′].
If ∆′ is b1, . . . , bn where for 1 ≤ i ≤ n:

A1. if bi is αi:κi then · ` ci : κi
A2. if bi is εi ≤ Ci then · ` ci ≤ Ci : Cap

then

(1) If ∆′,∆ ` ∆′′ then ∆0 ` ∆′′[c1, . . . , cn/∆′]
(2) If ∆′,∆ ` c : κ then ∆0 ` c[c1, . . . , cn/∆′] : κ
(3) If ∆′,∆ ` c = c′ : κ then ∆0 ` c[c1, . . . , cn/∆′] = c′[c1, . . . , cn/∆′] : κ
(4) If ∆′,∆ ` c ≤ c′ : κ then ∆0 ` c[c1, . . . , cn/∆′] ≤ c′[c1, . . . , cn/∆′] : κ
(5) If ∆′,∆ ` ∆1 = ∆2 then ∆0 ` ∆1[c1, . . . , cn/∆′] = ∆2[c1, . . . , cn/∆′]
(6) If Ψ; ∆′,∆; Γ; r ` h : τ then Ψ; ∆0; Γ0; r0 ` h[c1, . . . , cn/∆′] : τ0
(7) If Ψ; ∆′,∆; Γ ` v : τ then Ψ; ∆0; Γ0 ` v[c1, . . . , cn/∆′] : τ0
(8) If Ψ; ∆′,∆; Γ;C ` d⇒ ∆′,∆′′; Γ′′;C ′′ then

Ψ; ∆0; Γ0;C0 ` d[c1, . . . , cn/∆′]⇒ (∆′′; Γ′′;C ′′)[c1, . . . , cn/∆′]
(9) If Ψ; ∆′,∆; Γ;C ` e then Ψ; ∆0; Γ0;C0 ` e[c1, . . . , cn/∆′].

Proof. By induction on the derivations. Almost all cases follow directly from
the IH. In part 2, we must prove our lemma for the following rules.

∆′,∆ ` α : κ
(∆′,∆(α) = κ)

∆′,∆ ` ε : Cap
((ε ≤ C) ∈ ∆′,∆)

In the first case, we have our result by A1 and Type Context Extension. In the
second case, assume ε is εi. By A2, we have · ` ci ≤ Ci : Cap. Because · ` ·,
Subtyping Regularity tells us that · ` ci : Cap. By Type Context Extension, we
know that ∆0 ` ci : Cap. In part 4, the lemma follows for the rule

∆′,∆ ` ε ≤ C : Cap
((ε ≤ C) ∈ ∆′,∆)

by A2 and Type Context Extension. In part 9, the case for let , we can apply
the induction hypothesis because inspection of the rules for declarations show that
Ψ; ∆; Γ;C ` d ⇒ ∆,∆′′; Γ′′;C ′ instead of the more general Ψ; ∆; Γ;C ` d ⇒
∆′′; Γ′′;C ′.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

48 · D. Walker, K. Crary, and G. Morrisett

Lemma (Value Substitution). If Γ is {x1:τ1, . . . , xn:τn}, · ` Γ and for 1 ≤
i ≤ n, Ψ; ·; · ` vi : τi then

(1) If Ψ; ∆; Γ,Γ′ ` h at r : τ then Ψ; ∆; Γ′ ` h[v1, . . . , vn/x1, . . . , xn] at r : τ
(2) If Ψ; ∆; Γ,Γ′ ` v : τ then Ψ; ∆; Γ′ ` v[v1, . . . , vn/x1, . . . , xn] : τ
(3) If Ψ; ∆; Γ,Γ′;C ` d⇒ ∆′; Γ,Γ′′;C ′

then Ψ; ∆; Γ′;C ` d[v1, . . . , vn/x1, . . . , xn]⇒ ∆′; Γ′′;C ′

(4) If Ψ; ∆; Γ,Γ′;C ` e then Ψ; ∆; Γ′;C ` e[v1, . . . , vn/x1, . . . , xn].

Proof. By induction on the typing derivations. In part 4, the case for let ,
we can use the induction hypothesis because inspection of the typing rules for
declarations reveals that Ψ; ∆; Γ;C ` d⇒ ∆′; Γ,Γ′;C ′ instead of the more general
Ψ; ∆; Γ;C ` d⇒ ∆′; Γ′;C ′.

Lemma (Term Judgment Regularity). If

A1 ` Ψ
A2 · ` C : Cap
A3 · ` r : Rgn

then

(1) If Ψ; ·; · ` v : τ then · ` τ : Type
(2) If Ψ; ·; · ` h at r : τ then · ` τ : Type
(3) If Ψ; ·; ·;C ` d⇒ ∆′; Γ′;C ′ then · ` ∆′ and ∆′ ` Γ′ and ∆′ ` C ′ : Cap.

Proof. By induction on the typing derivations. Almost all cases follow directly
from the induction hypothesis and Equality Regularity or Subtyping Regularity. In
part 1, consider the case for type application:

Ψ; ·; · ` v : ∀[α:κ,∆].(C ′, τ1, . . . , τn)→ 0 at r · ` c : κ
Ψ; ·; · ` v[c] : (∀[∆].(C ′, τ1, . . . , τn)→ 0)[c/α] at r

By the induction hypothesis, and then inspection of the typing rules for arrow
types, we can deduce a judgment of the following form:

α:κ ` ∆
· ` α:κ,∆ α:κ,∆ ` C ′ : Cap α:κ,∆ ` τi : Type (for 1 ≤ i ≤ n)

· ` ∀[α:κ,∆].(C ′, τ1, . . . , τn)→ 0 at r : Type

By Type Substitution, we may deduce that · ` (∀[∆′].(C ′, τ1, . . . , τn)→ 0)[c/α] at r.
The second type application rule follows similarly.

Lemma (Canonical Memory Forms). If
` {ν1 7→ R1, . . . , νn 7→ Rn} : {ν1:Υ1 . . . , νn:Υn} then for all 1 ≤ i ≤ n and for all
` ∈ Dom(Υi), either

(1) Υi(`) is 〈τ1, . . . , τm〉 at νi and Ri(`) = 〈v1, . . . , vm〉 and for 1 ≤ j ≤ m, Ψ; ·; · `
vj : τj or

(2) Υi(`) is ∀[∆].(C, τ1, . . . , τn)→ 0 at νi
and Ri(`) = fix f [∆](C, x1:τ1, . . . , xn:τn).e
and Ψ; ∆; {f :∀[∆].(C, τ1, . . . , τn)→ 0 at νi, x1:τ1, . . . , xn:τn};C ` e.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 49

Proof. By inspection of the typing judgments for memory, regions, and heap
values.

Lemma (Canonical Memory Forms II). (1) If ` M : Ψ and ν 6∈ M then
ν 6∈ Ψ

(2) If Ψ ` R at ν′ : Υ and ν 6∈ R and ν′ is not ν then ν 6∈ Υ
(3) If Ψ; ·; · ` h at ν′ : τ and ν′ is not ν and ν 6∈ h then ν 6∈ τ
(4) If Ψ; ·; · ` v : τ and ν 6∈ v then ν 6∈ τ .

Proof. By induction on the typing derivations.

Lemma (Canonical Forms). If `M : Ψ and Ψ; ·; · ` v : τ then

(1) If τ is int then v = i

(2) If τ is ν handle then v = handle(ν)
(3) If τ is ∀[∆].(C, τ1, . . . , τn)→ 0 at ν then

(a) v = ν.`[c1, . . . , cm]
(b) M(ν.`) = fix f [∆′,∆′′](C ′, x1:τ ′1, . . . , xn:τ ′n).e
(c) ∆′ is b1, . . . , bm and for 0 ≤ i ≤ m, either bi is αi:κi and · ` ci:κi, or bi is

εi ≤ Ci and · ` ci ≤ Ci : Cap.
(d) · ` ∆ = ∆′′[c1, . . . , cm/∆′], and ∆ ` C = C ′[c1, . . . , cm/∆′], and

for 1 ≤ i ≤ n, ∆ ` τi = τ ′i [c1, . . . , cm/∆
′] : Type

(e) Ψ; ∆′,∆′′; {f :∀[∆′,∆′′].(C ′, τ ′1, . . . , τ ′n)→ 0 at ν, x1:τ ′1, . . . , xn:τ ′n};C ′ ` e
or instead of (b),(c),(d), and (e), ν 6∈ Ψ

(4) If τ is 〈τ1, . . . , τn〉 at ν then
(a) v = ν.`
(b) M(ν.`) = 〈v1, . . . , vn〉
(c) Ψ; · ` vi : τi
or instead of (b),(c), ν 6∈ Ψ.

Proof. Part 1, 2 follow by inspection of the typing rules for word values.
Part 3 follows by induction on the derivation, Ψ; ·; · ` v : τ . By Canonical Memory
Forms and inspection of the typing rules for word values, either ν.` or one of the
type application rules are last.

case ν.` where ν 6∈ Ψ:
(a) Trivial.

case ν.` where ν ∈ Ψ:
(a) Trivial.
(b) By Canonical Memory Forms where ∆′ is ·, ∆′′ is ∆, C ′ is C, and for 1 ≤
i ≤ n, τ ′i is τi.

(c) Trivial.
(d) Trivial.
(e) By inspection of judgment.

case v[C]

Ψ; ·; · ` v : ∀[ε ≤ Ca,∆].(Cb, τ1, . . . , τn)→ 0 at r · ` C ≤ Ca : Cap
Ψ; ·; · ` v[C] : (∀[∆].(Cb, τ1, . . . , τn)→ 0)[C/ε] at r

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

50 · D. Walker, K. Crary, and G. Morrisett

By Term Judgment Regularity and Lemma 12, r is ν. The inductive hypothesis
is as follows:
(a) v = ν.`[c1, . . . , cn]
(b) M(ν.`) = fix f [∆′, ε ≤ C ′a,∆′′](C ′b, x1:τ ′1, . . . , xn:τ ′n).e
(c) ∆′ is b1, . . . , bm and for 0 ≤ i ≤ m, either bi is αi:κi and · ` ci:κi, or bi is
εi ≤ Ci and · ` ci ≤ Ci : Cap.

(d) · ` ε ≤ Ca,∆ = (ε ≤ C ′a,∆′′)[c1, . . . , cm/∆′]
and ε ≤ Ca,∆ ` Cb = C ′b[c1, . . . , cm/∆

′]
and for 1 ≤ i ≤ n, ε ≤ Ca,∆ ` τi = τ ′i [c1, . . . , cm] : Type

(e) Ψ; ∆′, ε ≤ Ca,∆′′; Γ;C ′b ` e
where Γ = {f :∀[∆′, ε ≤ Ca,∆′′].(C ′b, τ ′1, . . . , τ ′n)→ 0 at ν, x1:τ ′1, . . . , xn:τ ′n}

or instead of (b),(c),(d), and (e), ν 6∈ Ψ. Thus,
(a) v[C] = ν.`[c1, . . . , cn, C] from IH.

If ν 6∈ Ψ then the result follows trivially. Thus assume ν ∈ Ψ.
(b) By IH.
(c) By IH and the typing judgement which states · ` C ≤ Ca : Cap.
(d) By IH and Type Substitution.
(e) By IH.

case v[c] Similar.

Part 4 follows by inspection of the typing rules for word values. Notice only the
ν.` rule when ν ∈ Ψ, or the rule for tuples when ν 6∈ Ψ can apply. Assuming the
former (the latter is trivial), then (a) is immediate and (b), (c) follow by Canonical
Memory Forms.

Lemma (Memory Type GC). If ` Ψ and Ψ′ is Ψ\ν then

(1) If Ψ; ∆; Γ ` h at r : τ then Ψ′; ∆; Γ ` h at r : τ
(2) If Ψ; ∆; Γ ` v : τ then Ψ′; ∆; Γ ` v : τ
(3) If Ψ; ∆; Γ;C ` d⇒ ∆′; Γ′;C ′ then Ψ′; ∆; Γ;C ` d⇒ ∆′; Γ′;C ′

(4) If Ψ; ∆; Γ;C ` e then Ψ′; ∆; Γ;C ` e
(5) If Ψ ` R at ν : Υ then Ψ′ ` R at ν : Υ.

Proof. By induction on the typing derivation. All cases follow directly from IH
except the rule

Ψ; ∆; Γ ` ν′.` : τ
(Ψ(ν′.`) = τ)

.

When ν is not ν′ this case is trivial so assume ν is ν′. By Canonical Memory Forms,
τ is either ∀[∆′].(ε, τ1, . . . , τn)→ 0 at ν or 〈τ1, . . . , τn〉 at ν. Because ` Ψ, we have
· ` τ : Type. By Type Context Extension, ∆ ` τ : Type. Thus, in either of the
above cases, Ψ; ∆; Γ ` ν′.` : τ via one of the two rules for ν 6∈ Dom(Ψ).

Lemma (Memory Type Extension). If ν does not appear in Ψ, ∆, Γ, r, h,
v, d, e, or R, and Ψ′ is Ψ{ν:{ }} then

(1) If Ψ; ∆; Γ ` h at r : τ then Ψ′; ∆; Γ ` h at r : τ
(2) If Ψ; ∆; Γ ` v : τ then Ψ′; ∆; Γ ` v : τ
(3) If Ψ; ∆; Γ;C ` d⇒ ∆′; Γ′;C ′ then Ψ′; ∆; Γ;C ` d⇒ ∆′; Γ′;C ′

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 51

(4) If Ψ; ∆; Γ;C ` e then Ψ′; ∆; Γ;C ` e
(5) If Ψ ` R at ν′ : Υ then Ψ′ ` R at ν′ : Υ.

Proof. By induction on the typing derivation. In part 2, for the rule

∆ ` 〈τ1, . . . , τn〉 at ν′ : Type
Ψ; ∆; Γ ` ν′.` : 〈τ1, . . . , τn〉 at ν′

(ν′ 6∈ Ψ)

ν′ is not ν by assumption and thus the result holds, and similarly for the analogous
rule for arrow types.

Lemma (Region Type Extension). If ν ∈ Dom(Ψ), ` 6∈ Dom(Ψ(ν)), and Ψ′

is Ψ{ν.`:τ} then

(1) If Ψ; ∆; Γ ` h at r : τ then Ψ′; ∆; Γ ` h at r : τ
(2) If Ψ; ∆; Γ ` v : τ then Ψ′; ∆; Γ ` v : τ
(3) If Ψ; ∆; Γ;C ` d⇒ ∆′; Γ′;C ′ then Ψ′; ∆; Γ;C ` d⇒ ∆′; Γ′;C ′

(4) If Ψ; ∆; Γ;C ` e then Ψ′; ∆; Γ;C ` e
(5) If Ψ ` R at ν′ : Υ then Ψ′ ` R at ν′ : Υ
(6) If Ψ ` C sat then Ψ′ ` C sat.

Proof. By induction on the typing derivation.

Lemma 32. If ∆ ` C1 ⊕ C2 : Cap and ∆ ` C1 ⊕ C2 = a1 ⊕ · · · ⊕ an : Cap then
∆ ` C1 = a′1 ⊕ · · · ⊕ a′m : Cap and a′1, . . . , a

′
m is a subset of a1, . . . , an.

Proof. By Lemma 17 (1), ∆ ` C1 = a′1 ⊕ · · · ⊕ a′m : Cap. By Lemma 17 (5),
E (a′1 ⊕ · · · ⊕ a′m) = E (C1) ⊆ E (C1 ⊕ C2) = E (a1 ⊕ · · · ⊕ an). By CECP, ai is
unique (duplicatable) in a′1 ⊕ · · · ⊕ a′m if and only if ai is unique (duplicatable) in
a1 ⊕ · · · ⊕ an. Therefore, a ∈ a′1, . . . , a′m implies a ∈ a1, . . . , an.

Lemma (Capability Satisfiability Preservation).

(1) If Ψ ` C sat and · ` C = C ′ : Cap then Ψ ` C ′ sat.
(2) If Ψ ` C sat and · ` C ≤ C ′ : Cap then Ψ ` C ′ sat.

Proof. (1) By symmetry and transitivity of equality and inspection of the sat
derivation.

(2) By induction on the subtyping derivation.
case equality: From Part 1.
case transitivity: By IH.
case · ` ε ≤ C: Does not apply because the context (·) is empty and therefore,

by Lemma 12, the two capabilities must not contain any free variables.
case · ` C ≤ C:

Assume:
· ` C = {νϕ1

1 , . . . , νϕnn } : Cap (2)
{ν1:Υ1, . . . , νn:Υn} ` C sat (1)

(ν1, . . . , νn distinct (3))

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

52 · D. Walker, K. Crary, and G. Morrisett

4. From 2, using rule eq-congruence-bar, · ` C = {νϕ1
1 , . . . , νϕnn } : Cap

5. From 4, by constructor equality rules, · ` C = {ν+
1 , . . . , ν

+
n } : Cap

6. Hence, from 5,3 we have {ν1:Υ1, . . . , νn:Υn} ` C sat
case

· ` C1 ≤ C ′1 (1) · ` C2 ≤ C ′2 (2)
· ` C1 ⊕ C2 ≤ C ′1 ⊕ C ′2 (0)

Assume:

· ` C1 ⊕ C2 = {νϕ1
1 , . . . , νϕnn } : Cap (4)

{ν1:Υ1, . . . , νn:Υn} ` C1 ⊕ C2 sat (3)
(ν1, . . . , νn distinct (5))

6. By 4 and Equality Regularity, C1,C2,C ′1,C ′2 are all well-formed under
the empty context ·.
7. By 6 and Lemma 17(1), · ` C1 = {νϕ1,1

1,1 , . . . , ν
ϕ1,n1
1,n1

} : Cap
8. From 7 and CECP, for 1 ≤ i ≤ n1, νϕ1,i

1,i ∈ C1

9. Hence, we have νϕ1,i
1,i ∈ C1 ⊕ C2

10. and by 4 and CECP again, we can conclude νϕ1,i
1,i ∈ {ν

ϕ1
1 , . . . , νϕnn }

11. For 1 ≤ i ≤ n1 and i 6= j, if ν1,i = ν1,j and ϕ1,i = ϕ1,j = + then by
Lemma 17(4), we can eliminate the duplicates and assume without loss of
generality that {νϕ1,1

1,1 , . . . , ν
ϕ1,n1
1,n1

} does not contain duplicates of this form.
12. For some 1 ≤ i ≤ n1 and i 6= j, assume (anticipating a contradiction)
that ν1,i = ν1,j and one of ϕ1,i or ϕ1,j is 1 then by CECP, {νϕ1,i

1,i } and
{νϕ1,j

1,j } both appear in C1

13. From 12, we have {νϕ1,i
1,i } and {νϕ1,j

1,j } both appear in C1 ⊕ C2

14. and from 13, and CECP, {νϕ1,i
1,i } and {νϕ1,j

1,j } both appear in the ca-
pability {νϕ1

1 , . . . , νϕnn }
15. However, 14 and 12 (ν1,i = ν1,j) contradict 5, indicating our assump-
tion 12 was false
16. By 15 and 11, we may assume without loss of generality that
ν1,1, . . . , ν1,n1 distinct
17. By 7, 11, and 16, we can conclude Ψ1 ` C1 sat where Ψ1 is Ψ with
domain restricted to {ν1,1 . . . , ν1,n1}
18. Analogous reasoning and definitions for Ψ2 yields Ψ2 ` C2 sat
19. From 17 and 1, using the inductive hypothesis, we have Ψ1 ` C ′1 sat
20. From 18 and 2, using the inductive hypothesis, we have Ψ2 ` C ′2 sat
21. From 19 (20) and inspection of the sat judgment, we know · `
C ′1 = {νϕ1′,1

1′,1 , . . . , ν
ϕ1′,n′

1
1′,n′1

} : Cap for some ν
ϕ1′,1
1′,1 , . . . , ν

ϕ1′,n′
1

1′,n′1
(and we know

· ` C ′2 = {νϕ2′,1
2′,1 , . . . , ν

ϕ2′,n′
1

2′,n′1
} : Cap for some ν

ϕ2′,1
2′,1 , . . . , ν

ϕ2′,n′
1

2′,n′1
)

22. We have

· ` {νϕ1
1 , . . . , νϕnn } = C1 ⊕ C2 (By 3)

≤ C ′1 ⊕ C ′2 (By 0)

= {νϕ1′,1
1′,1 , . . . , ν

ϕ1′,n′
1

1′,n′1
}⊕ (By 21, eq-congruence)

{νϕ2′,1
2′,1 , . . . , ν

ϕ2′,n′
1

2′,n′1
}

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 53

23. From 22 and CSCP, we know ν ∈ ν1, . . . , νn if and only if ν ∈
ν1′,1, . . . , ν1′,n′1 , ν2′,1, . . . , ν2′,n′1
24. From 22 and 5 and by reasoning analogously to steps 12 through 16,
we can deduce that {νϕ1′,1

1′,1 , . . . , ν
ϕ1′,n′

1
1′,n′1

, ν
ϕ2′,1
2′,1 , . . . , ν

ϕ2′,n′
1

2′,n′1
} contains no du-

plicate region names aside from those which both have multiplicity flag +.
25. By Lemma 17 parts 3 and 4, we may eliminate duplicate region names
with flag + and reorder them as we choose. Hence, by 23 and for some set
of multiplicities ϕ′1, . . . , ϕ

′
n, we know:

· ` {νϕ1′,1
1′,1 , . . . , ν

ϕ1′,n′
1

1′,n′1
, ν
ϕ2′,1
2′,1 , . . . , ν

ϕ2′,n′
1

2′,n′1
} = {νϕ

′
1

1 , . . . , ν
ϕ′n
n } : Cap

(where ν1, . . . , νn distinct)
26. From 22 and 25, · ` C ′1 ⊕ C ′2 = {νϕ

′
1

1 , . . . , ν
ϕ′n
n } : Cap

(where ν1, . . . , νn distinct)
27. From 26, {ν1:Υ1, . . . , νn:Υn} ` C ′1 ⊕ C ′2 sat

Lemma 34. If Ψ ` C ⊕ {ν} sat then Ψ\ν ` C sat.

Proof. 1. Assume Ψ ` C ⊕ {ν} sat
2. and Ψ = {ν1:Υ1, . . . , νn:Υn}
3. From 1, we know · ` C ⊕ {ν} = {νϕ1

1 , . . . , νϕnn } : Cap
4. and ν1, . . . , νn distinct
5. From 3, 4, and CECP, ν appears once in {νϕ1

1 , . . . , νϕnn } and once in C ⊕ {ν}.
6. From 5, and Equality Lemma, part 3,
· ` {νϕ1

1 , . . . , ν
ϕi−1
i−1 , ν1, ν

ϕi+1
i+1 , . . . , νϕnn } = {νϕ1

1 , . . . , ν
ϕi−1
i−1 , ν

ϕi+1
i+1 , . . . , νϕnn } ⊕ {ν} :

Cap
7. From 3, 6, transitivity of equality, and Equality Lemma, part 7,
· ` C = {νϕ1

1 , . . . , ν
ϕi−1
i−1 , ν

ϕi+1
i+1 , . . . , νϕnn } : Cap

8. Hence, from 2,4,7 we have Ψ\ν ` C sat

Lemma (Preservation). If ` (M, e) and (M, e) 7−→ (M ′, e′) then ` (M ′, e′)

Proof. The proof proceeds by cases on the structure of e. In each case, we show
the form of the typing judgment that can be inferred by inspection of the typing
rules and refer to it throughout the case as “the typing judgment”. Then we give
the transition specified by the operational semantics. Using these two facts, we
derive the result ` (M ′, e′).

—let v

`M : Ψ Ψ ` C sat

Ψ; ·; · ` v : τ
Ψ; ·; ·;C ` x = v ⇒ ·; {x:τ};C Ψ; ·; {x:τ};C ` e

Ψ; ·; ·;C ` letx = v in e

` (M, letx = v in e)

and (M, letx = v in e) 7−→ (M, e[v/x]). By the typing judgment and Value
Substitution, ` (M, e[v/x]).

—leth
`M : Ψ Ψ ` C sat (A)
` (M, letx = h at v in e)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

54 · D. Walker, K. Crary, and G. Morrisett

Ψ; ·; · ` v : ν handle
Ψ; ·; · ` h at ν : τ · ` C ≤ C ′ ⊕ {ν}

Ψ; ·; ·;C ` x = h at v ⇒ ·; {x:τ};C

...
Ψ; ·; {x:τ};C ` e

Ψ; ·; ·;C ` letx = h at v in e
(A)

where v = handle(ν)
and ν ∈ Dom(M) and ` 6∈ Dom(M(ν))
and M ′ = M{ν.` 7→ h}
and (M, letx = h at v in e) 7−→ (M ′, e[ν.`/x])
and let Ψ′ = Ψ{ν.`:τ}
(1) (a) τ is 〈τ1, . . . , τn〉 at ν or ∀[].(C ′′, τ1, . . . , τn)→ 0 at ν by inspection of the

heap value typing rules and the typing judgment.
(b) `M ′ : Ψ′ by the typing judgment and inspection of the memory typing

rule.
(2) Ψ′ ` C sat by Region Type Extension.
(3) (a) Ψ′; ·; · ` ν.` : τ by the typing rules for word values.

(b) Ψ′; ·; ·;C ` e[ν.`/x] by (a) and Value Substitution.
By 1(b), 2, and 3(b), we have ` (M ′, e[ν.`/x]).

—πiv

`M : Ψ Ψ ` C sat

Ψ; ·; · ` v : 〈τ1, . . . , τn〉 at ν
· ` C ≤ C ′ ⊕ {ν}

Ψ; ·; ·;C ` x = πiv ⇒ ·; {x:τi};C Ψ; ·; {x:τi};C ` e
Ψ; ·; ·;C ` letx = πiv in e

` (M, letx = πiv in e)

where v = ν.`
and M(ν.`) = 〈v1, . . . , vn〉
and (M, letx = πiv in e) 7−→ (M, e[vi/x])
(1) `M : Ψ by the typing judgment.
(2) Ψ ` C sat by the typing judgment.
(3) (a) Ψ; ·; · ` vi : τi by Canonical Forms and the typing judgment.

(b) Ψ; ·; ·;C ` e[vi/x] by Value Substitution, (a), and the typing judgment.
By 1,2,and 3(b), ` (M, e[vi/x]).

—freergn

`M : Ψ Ψ ` C sat

Ψ; ·; · ` v : ν handle · ` C ≤ C ′ ⊕ {ν}
Ψ; ·; ·;C ` freergn v ⇒ ·; ·;C ′ Ψ; ·; ·;C ′ ` e

Ψ; ·; ·;C ` freergn v in e
` (M, freergn v in e)

where v is handle(ν) and (M, freergn v in e) 7−→ (M\ν, e). Let Ψ′ be Ψ\ν.
(1) `M ′ : Ψ′ by Memory Type GC and the typing judgment.
(2) (a) Ψ ` C sat and · ` C ≤ C ′ ⊕ {ν} by the typing judgment.

(b) Ψ ` C ′ ⊕ {ν} sat by Capability Satisfiability Preservation and (a)
(c) Ψ′ ` C ′ sat by Lemma 34 and (b)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 55

(3) Ψ′; ·; ·;C ′ ` e by the typing judgment and Memory Type GC.
By 1, 2(e), and 3, ` (M\ν, e).

—newrgn

`M : Ψ
· ` C = C ′ : Cap

Ψ ` C sat
(...)

(A) (B)
Ψ; ·; ·;C ` newrgn ρ, xρ in e

` (M, newrgn ρ, xρ in e)

Ψ; ·; ·;C ` newrgn ρ, xρ ⇒ ρ:Rgn; {xρ:ρ handle};C ⊕ {ρ}
(A)

...
Ψ; ρ:Rgn; {xρ:ρ handle};C ⊕ {ρ} ` e

(B)

The operational rule is

(M, newrgn ρ, xρ in e) 7−→ (M ′, e[ν, handle(ν)/ρ, xρ])

where M ′ = M{ν 7→ { }} and ν 6∈M and ν 6∈ e.
In what follows, let Ψ′ = Ψ{ν:{ }}.
(1) ` Ψ′ by Memory Type Extension and the typing judgment.
(2) Since ν 6∈ Ψ by assumption in the operational semantics, we can satisfy the

side condition on the sat judgment. We can also prove · ` C⊕{ν} = C ′⊕{ν} :
Cap by the congruence rule for equality. Consequently, Ψ′ ` C ⊕ {ν} sat.

(3) Ψ′; ·; ·;C ⊕ {ν} ` e[ν, handle(ν)/ρ, xρ] from the typing judgment and appli-
cation of Type and Value Substitution and then Memory Type Extension
Lemmas.

By 1, 2(e), and 3, ` (M ′, e[ν, handle(ν)/ρ, xρ]).
—if0

`M : Ψ Ψ ` C sat
Ψ; ·; · ` i : int Ψ; ·; ·;C ` e2 Ψ; ·; ·;C ` e3

Ψ; ·; ·;C ` if0 i then e2 else e3

` (M, if0 i then e2 else e3)

(M, e) 7−→ (M, e2) if i = 0 and (M, e) 7−→ (M, e3) otherwise. By the typing
judgment, ` (M, e2), or ` (M, e3).

—v0(v1, . . . , vn)

`M : Ψ Ψ ` C sat

Ψ; ·; · ` vi : τi (for 0 ≤ i ≤ n)
· ` C ≤ C ′′ ⊕ {ν} : Cap

· ` τ0 = ∀[].(C ′, τ1, . . . , τn)→ 0 at ν
· ` C ≤ C ′ : Cap

Ψ; ·; ·;C ` v0(v1, . . . , vn)
` (M, v0(v1, . . . , vn))

(M, v0(v1, . . . , vn)) 7−→ (M,S(e))
where v0 = ν.`[c1, . . . , cm]
and M(ν.`) = fix f [b1, . . . , bm](C ′′, x1 : τ1, . . . , xn:τn).e
and for 1 ≤ i ≤ m, bi = αi:κi or bi = αi ≤ Ci
and S = [c1, . . . , cm, ν.`, v1, . . . , vn/α1, . . . , αm, f, x1, . . . , xn].

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

56 · D. Walker, K. Crary, and G. Morrisett

(1) `M : Ψ by the typing judgment.
(2) Ψ ` C ′ sat by Capability Satisfiability Preservation.
(3) (a) Ψ ` C ′′⊕{ν} sat by Capability Satisfiability Preservation and the typing

judgment.
(b) ν ∈ Dom(Ψ) by CECP and (a).
(c) Ψ; ·; · ` v0 : ∀[].(C ′′′, τ ′′′1 , . . . , τ

′′′
n)→ 0 and

· ` ∀[].(C ′′′, τ ′′′1 , . . . , τ
′′′
n)→ 0 = ∀[].(C ′, τ1, . . . , τn)→ 0 by the typing

judgment.
(d) Ψ; b1, . . . , bm; {x1:τ1, . . . , xn:τn};C ′′ ` e by Canonical Forms 3(e), (b),

and (c).
(e) · ` C ′ = C ′′[c1, . . . , cm/α1, . . . , αm] : Cap by the transitivity of equality,

Canonical Forms 3(d), (b), and (c).
(f) Ψ; ·; ·;C ′ ` S(e) by Type and Value Substitution, and (e).

By 1, 2, and 3(f), ` (M,S(e))

Lemma (Progress). If ` (M, e) then either:

(1) There exists (M ′, e′) such that (M, e) 7−→ (M ′, e′) or
(2) e = halt v and Ψ; ·; · ` v : int.

Proof. The proof proceeds by cases on the structure of e and makes heavy use
of the Canonical Forms lemma.

—let v Trivial.
—leth

`M : Ψ Ψ ` C sat

Ψ; ·; · ` v : r handle
Ψ; ·; · ` h at r : τ
· ` C ≤ C ′ ⊕ {r}

Ψ; ·; ·;C ` x = h at v ⇒ ·; {x:τ};C · · ·
Ψ; ·; ·;C ` letx = h at v in e

` (M, letx = h at v in e)

Ψ; ·; · ` v : r handle directly from the typing judgment. By Term Judgment
Regularity and Lemma 12, r is ν, and by Canonical Forms, v is handle(ν). By
Capability Satisfiability Preservation, Ψ ` C ′⊕{ν}sat and thus ν ∈ Dom(Ψ). By
inspection of the memory typing rules, ν ∈ Dom(M). Thus (M, e) 7−→ (M{ν.` 7→
h}, e[ν.`/x]).

—πiv

`M : Ψ Ψ ` C sat

Ψ; ·; · ` v : 〈τ1, . . . , τn〉 at r · ` C ≤ C ′ ⊕ {r}
Ψ; ·; ·;C ` x = πiv ⇒ ·; {x:τi};C · · ·

Ψ; ·; ·;C ` letx = πiv in e

` (M, letx = πiv in e)

By Capability Satisfiability Preservation, Ψ ` C ′ ⊕ {ν} sat. By CECP, ν ∈
Dom(Ψ) and by Canonical Forms, M(ν.`) = 〈v1, . . . , vn〉. By the typing judg-
ment, 1 ≤ i ≤ n. Thus (M, letx = πiv in e) 7−→ (M, e[vi/x]).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 57

—newrgn Trivial.
—freergn

`M : Ψ Ψ ` C sat

Ψ; ·; · ` v : r handle · ` C ≤ C ′ ⊕ {r} : Cap
Ψ; ·; ·;C ` freergn v ⇒ ·; ·;C ′ · · ·

Ψ; ·; ·;C ` freergn v in e
` (M, freergn v in e)

By Term Judgment Regularity and Lemma 12, r is ν, and by Canonical Forms,
v is handle(ν). By Capability Satisfiability Preservation, Ψ ` C ⊕{ν} sat. Thus,
by CECP, ν ∈ Dom(Ψ), and by inspection of the memory typing rules, ν ∈
Dom(M). Consequently, (M, freergn v in e) 7−→ (M\ν, e).

—if0

Ψ; ∆; Γ ` v : int
Ψ; ∆; Γ;C ` e2 Ψ; ∆; Γ;C ` e3

Ψ; ∆; Γ;C ` if0 v then e2 else e3

By Canonical Forms, v must be integer. Therefore, one of the two operational
rules for if0 applies.

—v0(v1, . . . , vn)

`M : Ψ Ψ ` C sat

Ψ; ·; · ` vi : τi (for 0 ≤ i ≤ n)
· ` C ≤ C ′′ ⊕ {r} : Cap

· ` τ0 = ∀[].(C ′, τ1, . . . , τn)→ 0 at r
· ` C ≤ C ′ : Cap

Ψ; ·; ·;C ` v0(v1, . . . , vn)
` (M, v0(v1, . . . , vn))

By Subtyping Regularity and Lemma 12, r is ν. By Capability Satisfiability
Preservation, Ψ ` C ′′⊕{ν} sat, and by CECP, ν ∈ Dom(Ψ). Thus, by Canonical
Forms, v0 = ν.`[c1, . . . , cm], M(ν.`) = fix f [b1, . . . , bm](C, x1:τ1, . . . , xn:τn).e and
for 1 ≤ i ≤ n, bi = αi:κi or bi = αi ≤ Ci. If we let S1 be [c1, . . . , cm/α1, . . . , αm]
and S2 be [ν.`, v1, . . . , vn/f, x1, . . . , xn] then

(M, v0(v1, . . . , vn)) 7−→ (M,S2(S1(e))).

—halt

`M : Ψ Ψ ` C sat
Ψ; ·; · ` v : int · ` C = ∅ : Cap

Ψ; ·; ·;C ` halt v

` (M, halt v)

Part 2 holds by inspection of the typing judgement.

Definition 37. An abstract machine state (M, e) is stuck if e is not halt v and
there does not exist (M ′, e′) such that (M, e) 7−→ (M ′, e′).

Theorem (Type Soundness). If ` (M, e) and (M, e) 7−→∗ (M ′, e′) then (M ′, e′)
is not stuck.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

58 · D. Walker, K. Crary, and G. Morrisett

Proof. By induction on the number of steps taken in the operational semantics
and Preservation, if ` (M, e) and (M, e) 7−→∗ (M ′, e′) then ` (M ′, e′). By Progress,
no well-typed state (M ′, e′) is stuck: either e′ is halt v or (M ′, e′) 7−→ (M ′′, e′′).

Theorem (Complete Collection). If ` (M, e) then either (M, e) ⇑ or
(M, e) 7−→∗ (M ′, halt v) and M ′ = { }.

Proof. Assume ` (M, e) and (M, e) 7−→∗ (M ′, e′), and assume there is no
(M ′′, e′′) such that (M ′, e′) 7−→ (M ′′, e′′). By Preservation and Progress, e′ =
halt v and

`M ′ : Ψ Ψ ` C sat
Ψ; ·; · ` v : int · ` C = ∅ : Cap

Ψ; ·; ·;C ` halt v

` (M ′, halt v)

By CECP and the sat judgment, ν ∈ Dom(Ψ) if and only if ν ∈ ∅. Consequently,
Ψ = { }. By inspection of the judgment for memory types, M ′ = { }.

B. REGION TRANSLATION TYPE PRESERVATION

In this section, we prove our translation of the region calculus into the CL is type
preserving. In other words, given a well-formed source language term, the result of
the translation is a well-formed CL term. Section 3 describes the syntax and static
semantics of the term constructs.

B.1 Notation

We use the notation ∆ `R Γ to indicate that all the types in Γ are well-formed
under type context ∆. Formally:

∆ `R ·
∆ `R Γ ∆ `R τ : Type

∆ `R Γ, x:τ
(x 6∈ Dom(Γ))

B.2 Overview

The theorem uses several lemmas from the proof of soundness including lemmas for
manipulating capabilities (Lemma 17) and asserting well-formedness (Lemma 13).
We also require a number of suplementary lemmas:

—Lemmas 40 and 41 describe additional well-formedness constraints on the types
and effects that appear in region calculus judgments.

—Lemmas 42, 43, and 44 state that well-formedness of constructors, constructor
equality, and substitution is preserved across the translation.

—Lemma 47 describes the way the subset relation is preserved during the transla-
tion of effects (sets) to capabilities (not sets). This lemma makes use of Lemmas
45 and 46 in its proof.

—Lemma 48 is a miscellaneous lemma required in the proof of the letregion con-
struct.

—Lemma 49 gives the conditions under which the static application of a continua-
tion closure to its arguments (i .e. A(k, v)) is well-formed.

Lemma 40.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 59

(1) If ∆ `R c1 = c2 : κ then ∆ `R c1 : κ and ∆ `R c2 : κ.
(2) If ∆ `R ψ1 ⊆ ψ2 then ∆ `R ψ1 : Eff and ∆ `R ψ2 : Eff

Proof. By induction on the derivations.

Lemma 41. If ∆ `R Γ and ∆; Γ `R e : τ, ψ then ∆ `R τ : Type and ∆ `R ψ : Eff

Proof. By induction on the derivation ∆; Γ `R e : τ, ψ.

Lemma (Well-Formedness Preservation).

(1) If ∆ `R ∆′ then K[[∆]] ` K[[∆′]]
(2) If ∆ `R c : κ then K[[∆]] ` T [[c]] : K[[κ]]

Proof. By induction on the derivations.

Lemma (Equality Preservation).

(1) If ∆ `R ψ = ψ′ : Eff then K[[∆]] ` T [[ψ]] = T [[ψ′]] : Cap
(2) If ∆ `R c = c′ : κ and κ 6= Eff then K[[∆]] ` T [[c]] = T [[c′]] : Cap

Proof. By induction on the equality derivations.

Lemma (Substitution Preservation). If ∆, α:κ `R τ : Type and ∆ `R c : κ
then
K[[∆]] ` T [[τ [c/α]]] = T [[τ]][T [[c]]/α] : Type.

Proof. By induction on the typing derivation.

Lemma 45. If ∆ ` ψ = ψ′ : Eff then E (T [[ψ]]) = E (T [[ψ′]]).

Proof. By induction on the derivation.

Lemma 46. If ∆ ` ψ ⊆ ψ′ then E (T [[ψ]]) ⊆ E (T [[ψ′]]).

Proof. By inspection of the sub-effecting rule, ∆ ` ψ ∪ ψ′′ = ψ′ : Eff for some
effect ψ′′.
By Lemma 45, E (T [[ψ ∪ ψ′′]]) = E (T [[ψ′]]).
By definition of E and the type translation, we have E (T [[ψ]]) ∪ E (T [[ψ′′]]) =
E (T [[ψ′]]).
Hence, E (T [[ψ]]) ⊆ E (T [[ψ′]]).

Lemma 47. If ∆ ` ψ ⊆ ψ′ and ∆ ` C = C ⊕ T [[ψ′]] : Cap then ∆ ` C =
C ⊕ T [[ψ]] : Cap.

Proof. 1. By ∆ ` C = C ⊕ T [[ψ′]] : Cap and Equality (5), E (C) = E (C ⊕
T [[ψ′]]).
2. Thus, by definition of E , E (T [[ψ′]]) ⊆ E (C).
3. By ∆ ` ψ ⊆ ψ′ and Lemma 46, E (T [[ψ]]) ⊆ E (T [[ψ′]]).
4. By 2 and 3, E (T [[ψ]]) ⊆ E (C).
5. Hence, by definition of E , E (C) = E (C ⊕ T [[ψ]]).
6. By 5 and Equality (6), ∆ ` C = C ⊕ T [[ψ]] : Cap.

Lemma 48. If ∆ `R ψ then K[[∆]] ` T [[ψ\{ρ}]]⊕ {ρ1} = T [[ψ]]⊕ {ρ1} : Cap.

Proof. The proof is by induction on the structure of ψ.
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

60 · D. Walker, K. Crary, and G. Morrisett

—ψ = ∅. By definition, T [[∅\{ρ}]] = ∅. The result follow immediately from the
reflexivity of equality.

—ψ = ε or ψ = {ρ′} and ρ 6= ρ′. Similar.
—ψ = {ρ}. The following reasoning provides the result.

K[[∆]] ` T [[{ρ}\{ρ}]]⊕ {ρ1} = ∅ ⊕ {ρ1} (By definition)
= {ρ1} (By rule eq-∅)
= {ρ1} ⊕ {ρ1} (By rule eq-dup)

—ψ = ψ1 ∪ ψ2. By induction, we know that (1) K[[∆]] ` T [[ψi\{ρ}]]⊕ {ρ1} =
T [[ψi]]⊕ {ρ1} for i = 1, 2. Now, the following reasoning provides the result.

K[[∆]] ` T [[(ψ1 ∪ ψ2)\{ρ}]]⊕ {ρ1}
= T [[ψ1\{ρ}]]⊕ T [[(ψ2\{ρ})]]⊕ {ρ1} (By def.)
= T [[ψ1\{ρ}]]⊕ T [[(ψ2\{ρ})]]⊕ {ρ1} ⊕ {ρ1} (By eq-dup)
= T [[ψ1\{ρ}]]⊕ {ρ1} ⊕ T [[(ψ2\{ρ})]]⊕ {ρ1} (By eq-comm)
= T [[ψ1]]⊕ {ρ1} ⊕ T [[ψ2]]⊕ {ρ1} (By 1)
= T [[ψ1]]⊕ T [[ψ2]]⊕ {ρ1} ⊕ {ρ1} (By eq-comm)
= T [[ψ1]]⊕ T [[ψ2]]⊕ {ρ1} (By eq-dup)

Lemma 49. Let k = 〈xk; ek〉. If Ψ; ∆; Γ, xk:τ ;C ` ek and Ψ; ∆; Γ ` v : τ then
Ψ; ∆; Γ;C ` A(k, v).

Proof. The term A(k, v) is defined to be letxk = v in ek. The following deriva-
tion is a proof the lemma.

Ψ; ∆; Γ ` v : τ Ψ; ∆; Γ, xk:τ ;C ` ek

Ψ; ∆; Γ;C ` letxk = v in ek

Lemma 50. If { }; ∆; Γ, x:τ ;C ` e and ∆ ` τ = τ ′ : Type then { }; ∆; Γ, x:τ ′;C `
e.

Proof. The proof is by induction on the typing derivation for expressions.

Theorem (CPS Type Preservation). If ·; · ` e : int, ∅ then
{ }; ·; ·; ∅ ` C·;·;Θ(e)〈x; halt x〉 where x is fresh and Θ is 〈·; ·; ∅; ∅〉.

Proof. The proof is by induction on the typing derivation of the expression
using the following inductive hypothesis.

Given ∆, Γ, Θ, e, and k where Θ = 〈∆Θ; ΓΘ;CΘ;BΘ〉 and k = 〈xk; ek〉. If

A. ∆; Γ `R e : τ, ψ
B. { };K[[∆]],∆Θ;S[[Γ]],ΓΘ, xk:T [[τ]];CΘ ` ek

C. K[[∆]],∆Θ ` CΘ ≤ BΘ

D. K[[∆]],∆Θ ` BΘ = BΘ ⊕ T [[ψ]]

Then:
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 61

E. { };K[[∆]],∆Θ;S[[Γ]],ΓΘ;CΘ ` C∆;Γ;Θ(e)k

We use several abbreviations and conventions in the proof. First, we will often
use the meta-variable Φ to range over type-checking contexts of the form Ψ; ∆; Γ
or Ψ; ∆; Γ;C.

We also abbreviate derivations involving let. A derivation

D1 · · · Dn
Ψ; ∆; Γ;C ` d⇒ ∆′; Γ′;C ′ Ψ; ∆′; Γ′;C ′ ` e

Ψ; ∆; Γ;C ` let d in e

is abbreviated by

D1 · · · Dn Ψ; ∆′; Γ′;C ′ ` e
Ψ; ∆; Γ;C ` let d in e .

Many of the typing rules contain the side condition that a CL variable ρ, ε, or
x not be contained in the context ∆ or Γ for that judgment. We have assumed
that all the variables in the translated term have been generated fresh so that this
will be the case. For the sake of brevity, we do not mention this side condition
each time it occurs in the proof. Many of the rules also contain well-formedness
constraints on types or capabilities (ie: ∆ ` τ or ∆ ` C). These well-formedness
constraints always follow directly from the source typing judgement and Lemma 42.
However, in order to concentrate on the more important aspects of the proof, we
do not mention these conditions each time they appear in a derivation.

In the following, we prove the result for the more difficult cases: letrec, type
application, value application, letregion , and equality. The other cases follow a
similar, but simpler pattern.

—The case for letrec. The translation is

C∆;Γ;Θ(letrecf [∆′](x) : σ at e1 = e2 in e3)k =
C∆;Γ;Θ(e1)〈x1;
let f = (fix f [K[[∆′]],∆′′](ε′, x:T [[τ1]], xcont:τcont).

C∆∆′;Γ{f :σ,x:τ1};Θ′(e2)〈x2;xcont(x2)〉) at x1
in C∆;Γ{f :σ};Θ(e3)k〉

where

σ = ∀[∆′].τ1
ψf→ τ2 at r

τcont = ∀[].(ε′, T [[τ2]])→ 0 at ρ
BΘ′ = ε⊕ T [[ψf]]⊕ {ρ1}
∆′′ = ρ:Rgn, ε:Cap, ε′ ≤ BΘ′

∆Θ′ = ∆Θ,∆′′

ΓΘ′ = ΓΘ, x1:r handle, xcont:τcont
CΘ′ = ε′

Θ′ = 〈∆Θ′ ; ΓΘ′ ;CΘ′ ;BΘ′〉

The source typing derivation A:
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

62 · D. Walker, K. Crary, and G. Morrisett

(A1) ∆; Γ `R e1 : r handle, ψ1
(A2) ∆∆′; Γ{f :σ, x:τ1} `R e2 : τ2, ψf

(A3) ∆; Γ{f :σ} `R e3 : τ3, ψ3

∆; Γ `R letrecf [∆′](x) : σ at e1 = e2 in e3 : τ3, ψ1 ∪ ψ3 ∪ {r}
(x, f 6∈ Dom(Γ))

In order to make the derivations for this case more manageable, we will use the
following abbreviations.

Φ0 = { };K[[∆]],∆Θ;S[[Γ]],ΓΘ, x1:r handle
Φ1 = { };K[[∆]],∆Θ;S[[Γ]],ΓΘ, x1:r handle;CΘ

Φ2 = { };K[[∆,∆′]],∆Θ′ ;S[[Γ, f :σ, x:τ1]],ΓΘ′ , x1:T [[r handle]], x2:T [[τ1]];CΘ′

Φ3 = { };K[[∆,∆′]],∆Θ′ ;S[[Γ, f :σ, x:τ1]],ΓΘ′x1:T [[r handle]];CΘ′

Φ4 = { };K[[∆]],∆Θ;S[[Γ, f :σ]],ΓΘ;CΘ

Φ5 = { };K[[∆]],∆Θ;S[[Γ, f :σ]],ΓΘ, x1:T [[r handle]];CΘ

We begin by showing the continuation used in the translation of e2 is well-formed
under the appropriate context (call this fact B2).

(By v-var)
Φ2 ` xcont : T [[τcont]]

(By v-var)
Φ2 ` x2 : T [[τ1]]

(By eq-reflex)

K[[∆,∆′]],∆Θ′ ` ε′ ≤ ε′ Dε′
Φ2 ` xcont(x2)

The derivation Dε′ follows (recall ∆Θ′ = ∆Θ, ρ:Rgn, ε:Cap, ε′ ≤ ε⊕ T [[ψ]]⊕ {ρ1}).

K[[∆,∆′]],∆Θ′ ` ε′ ≤ ε⊕ T [[ψ]]⊕ {ρ1} (By sub-var)
= ε⊕ T [[ψ]]⊕ {ρ+} (By eq-distrib)

We have now shown B2. By use of rule sub-var, we can conclude that (C2)

K[[∆,∆′]],∆Θ′ ` CΘ′ ≤ BΘ′

We also have (D2)

K[[∆,∆′]],∆Θ′ ` BΘ′ = ε⊕ T [[ψf]]⊕ {ρ1} (expand abbreviation)
= ε⊕ {ρ1} ⊕ T [[ψf]] (By eq-comm)
= ε⊕ {ρ1} ⊕ T [[ψf]]⊕ T [[ψf]] (By eq-dup).

Using A2, B2, C2, and D2, we can apply the induction hypothesis and obtain E2:

Φ3 ` C∆∆′;Γ{f :σ,x:τ1};Θ′(e2)〈x2;xcont(x2)〉

Now, from A3, B, C, and D, we can apply the induction hypothesis and obtain
E3:

Φ4 ` C∆;Γ{f :σ};Θ,x1:T [[r handle]](e3)k

Using E2 and E3, we can build the typing derivation for the code in the contin-
uation for translating e1 (call this fact B1):

Dx1

E2

Φ0 ` fix f · · ·.C∆∆′;Γ{f :σ,x:τ1};Θ′(e2)〈x2;xcont(x2)〉 at r Dr E3

Φ1 ` let f = (· · ·) at x1 in C∆;Γ{f :σ};Θ,x1:r handle(e3)k
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 63

where the derivation Dx1 is

(By v-var)
Φ1 ` x1 : r handle.

and the derivation Dr is

K[[∆]]∆Θ ` CΘ ≤ BΘ (By assumption C)
= BΘ ⊕ {r1} (By assumption D, Lemma 47)
= BΘ ⊕ {r+} (By eq-distrib).

Finally, using A1, B1, C, and D, we can apply the induction hypothesis to the
translation of e1, giving us the final result:

{ };K[[∆]],∆Θ;S[[Γ]],ΓΘ;CΘ ` C∆;Γ;Θ(letrecf [∆′](x) : σ at e1 = e2 in e3)k

—The case for type application. The translation is

C∆;Γ;Θ(f [c1, . . . , cn])k = A(k, f [T [[c1]], . . . , T [[cn]]]).

The source typing derivation A, where σ is ∀[α1:κ1, . . . , αn:κn].τ1
ψ→ τ2 at r :

∆ `R σ ∆ `R ci : κi

∆; Γ `R f [c1, . . . , cn] : (τ1
ψ→ τ2)[c1, . . . , cn/α1, . . . , αn] at r, ∅

(Γ(f) = σ)
.

First, we must show that the value f [T [[c1]], . . . , T [[cn]]] is well-formed under the
context

Φ1 = { };K[[∆]],∆Θ;S[[Γ]],ΓΘ

where Θ = 〈∆Θ; ΓΘ;CΘ;BΘ〉
First, we can conclude that

(By A and rule v-var)

Φ1 ` f : T [[∀[α1:κ1, . . . , αn:κn].τ1
ψ→ τ2 at r]]

Now, by induction on the number of constructors ci applied to f , and use of the
rule v-type, we can conclude that

Φ1 ` f [T [[c1]], . . . , T [[cn]]] : T [[τ1
ψ→ τ2 at r]][T [[c1]], . . . , T [[cn]]/α1, . . . , αn].

By the Substitution Lemma, Lemma 44, we have

Φ1 ` f [T [[c1]], . . . , T [[cn]]] : T [[(τ1
ψ→ τ2 at r)[c1, . . . , cn/α1, . . . , αn]]].

Using this fact, assumption B, and Lemma 49, we obtain our final result:

Φ1;CΘ ` A(k, f [T [[c1]], . . . , T [[cn]]])

—The case for application. The translation is
ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

64 · D. Walker, K. Crary, and G. Morrisett

C∆;Γ;Θ(eτf1 e2)k =
C∆;Γ;Θ(e1)〈x1;
C∆;Γ;Θ,x1:T [[τf]](e2)〈x2;
let newrgn ρ, xρ in
let fcont = (fix fcont[](CΘ ⊕ {ρ1}, x:T [[τ2]]).

let freergnxρ inA(k, x)) at xρ in
x1[ρ,BΘ, CΘ ⊕ {ρ1}](x2, fcont)〉〉

where

τf = τ1
ψf→ τ2 at r.

The source typing derivation for the term is (A):

(A1) ∆; Γ `R e1 : τ1
ψ3→ τ2 at r, ψ1 (A2) ∆; Γ `R e2 : τ1, ψ2

∆; Γ `R e1e2 : τ2, ψ1 ∪ ψ2 ∪ ψ3 ∪ {r}

We begin showing that the result of the translation is type-correct by showing
that the body of the innermost continuation (let newrgn ρ, xρ in · · ·) is well-
formed under the appropriate context. In order to make the derivation more
manageable, we will use the following abbreviations:

Φ1 = { };K[[∆]],∆Θ;S[[Γ]],ΓΘ, x1:T [[τf]], x2:T [[τ2]];CΘ

Φ2 = { };K[[∆]],∆Θ, ρ:Rgn;S[[Γ]],ΓΘ, x1:T [[τf]], x2:T [[τ2]], xρ:ρ handle
Φ3 = Φ2;CΘ ⊕ {ρ1}
Φ4 = Φ2, fcont:τcont
Φ5 = Φ2, fcont:τcont, x:T [[τ2]]
e′1 = let fcont = hcont at xρ in e′2
e′2 = x1[ρ,BΘ, CΘ ⊕ {ρ1}](x2, fcont)
hcont = fix fcont[](CΘ ⊕ {ρ1}, x:T [[τ2]]).let freergnxρ inA(k, x))
τapp = (CΘ ⊕ {ρ1}, T [[τ1]], τcont)→ 0 at r
τcont = (CΘ ⊕ {ρ1}, T [[τ2]])→ 0 at ρ

The derivation is as follows:

Dapp
Φ4 ` x1[ρ,BΘ, CΘ ⊕ {ρ1}] : τapp Dx2 Dfcont Dr DCΘ

Φ3, fcont:τcont ` x1[ρ,BΘ, CΘ ⊕ {ρ1}](x2, fcont) Dxρ Dh Dρ
Φ3 ` let fcont = hcont at xρ in e′2

Φ1 ` let newrgn ρ, xρ in e′1

The derivation Dapp can be proven as follows. First, by rule v-var, we can deduce

Φ4 ` x1 : T [[τf]] =
∀[ρ′:Rgn, ε:Cap, ε′ ≤ ε⊕ T [[ψ3]]⊕ {ρ′1}].(ε′, T [[τ1]], τcont)→ 0 at r.

From this judgment, two applications of the rule v-type give us

Φ4 ` x1[ρ,BΘ] : ∀[ε′ ≤ BΘ ⊕ T [[ψ3]]⊕ {ρ1}].(ε′, T [[τ1]], τcont)→ 0 at r.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 65

Finally, by rule v-sub, we can conclude

Φ4 ` x1[ρ,BΘ, CΘ ⊕ {ρ1}] : ∀[].(CΘ ⊕ {ρ1}, T [[τ1]], τcont)→ 0 at r

because the required subcapability relation holds:

K[[∆]],∆Θ, ρ:Rgn ` CΘ ⊕ {ρ1}
≤ BΘ ⊕ {ρ1} (By assumption C)
= BΘ ⊕ T [[ψ3]]⊕ {ρ1} (By assumption D, Lemma 47)
≤ BΘ ⊕ T [[ψ3]]⊕ {ρ1} (By rule sub-bar)

The derivation Dx2 is

(by v-var)
Φ4 ` x2 : T [[τ1]]

,

and Dfcont is

(by v-var)
Φ4 ` fcont : τcont

.

Next, we consider the derivation Dr. Here we must show that

K[[∆]],∆Θ, ρ:Rgn ` CΘ ⊕ {ρ1} ≤ C ′′ ⊕ {r+}

for some capability C ′′. The reasoning is straightforward:

K[[∆]],∆Θ, ρ:Rgn ` CΘ ⊕ {ρ1}
= {ρ1} ⊕ CΘ (By rule eq-comm)
≤ {ρ1} ⊕BΘ (By assumption C)
= {ρ1} ⊕BΘ ⊕ T [[{r}]] (By assumption D, Lemma 47)
= {ρ1} ⊕BΘ ⊕ {r1} (By def. of translation)
= {ρ1} ⊕BΘ ⊕ {r+} (By rule eq-distrib)

Next, we consider DCΘ . The judgment we must prove is

K[[∆]],∆Θ ` CΘ ⊕ {ρ1} ≤ CΘ ⊕ {ρ1}.

This follows by rules sub-eq and eq-reflex.
Next, we consider Dxρ . The judgment we must prove is Φ2 ` xρ : ρ handle. The
judgment follows by rule v-var.
Next, we must prove Dh:

(by v-var)
Φ5 ` xρ : ρ handle

(by eq-reflex)

K[[∆]],∆Θ, ρ:Rgn ` CΘ ⊕ {ρ1} = CΘ ⊕ {ρ1} : Cap DA(k,x)

Φ5;CΘ ⊕ {ρ1} ` let freergnxρ inA(k, x)
Φ2 ` hcont at ρ : T [[τf]]

The judgment we are trying to prove in the derivation DA(k,x) is Φ5;CΘ `
A(k, x). Using rule v-var, we can conclude that Φ5 ` x : T [[τ2]]. Assumption
B tells us that Φ5;CΘ ` ek. Hence, by Lemma 49, we have the result.
Finally, we show Dρ. We must prove K[[∆]],∆Θ, ρ:Rgn ` CΘ⊕{ρ1} ≤ C ′′⊕{ρ+}
for some capability C ′′. This fact follows using rule sub-dup (C ′′ is CΘ).

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

66 · D. Walker, K. Crary, and G. Morrisett

We have now satisfied all of the requirements necessary to show that the body
of the innermost continuation is well-formed:

(B2) Φ1 ` letregion ρ, xρ in e′1
We have A2 from the source typing derivation. If we let C2 be C and D2 be D,
then we fulfill all of the requirements for the induction hypothesis, and we may
conclude E2:

{ };K[[∆]],∆Θ;S[[Γ]],ΓΘ, x1:T [[τf]];CΘ `
C∆;Γ;Θ,x1:T [[τf]](e2)〈x2; letregion ρ, xρ in e′1〉

Now, using this fact, A1 from the source typing derivation, C, and D, we can
apply the induction hypothesis and conclude E1:

{ };K[[∆]],∆Θ;S[[Γ]],ΓΘ;CΘ ` C∆;Γ;Θ(e1)〈x1; C∆;Γ;Θ,x1:T [[τf]](e2)〈· · ·〉〉

which is equivalent to the result E that we were trying to prove.
—The case for letregion . The translation is

C∆;Γ;Θ(letregion ρ, xρ in e)k =
let newrgn ρ, xρ in
C∆{ρ:Rgn};Γ{xρ:ρ handle};Θ′(e)〈x′; freergnxρ inA(k, x′)〉

where
Θ′ = 〈∆Θ; ΓΘ;CΘ ⊕ {ρ1};BΘ ⊕ {ρ1}〉.

The source typing derivation A

(A1) ∆{ρ:Rgn}; Γ{xρ:ρ handle} `R e : τ, ψ
∆; Γ `R letregion ρ, xρ in e : τ, ψ\{ρ}

(
ρ 6∈ ftv(τ) ∪Dom(∆)

xρ 6∈ Dom(Γ)

)
.

First, we show that the continuation for the translation of e is well-formed under
an appropriate context:

DA(k,x′) DCΘ Dxρ
(B1) K[[∆, ρ:Rgn]],∆Θ;S[[Γ, xρ:ρ handle]],ΓΘ, x′:T [[τ]];CΘ ⊕ {ρ1} `

let freergnxρ inA(k, x′)

The judgment we must prove in DA(k,x′) is

(J) K[[∆, ρ:Rgn]],∆Θ;S[[Γ, xρ:ρ handle]],ΓΘ, x′:T [[τ]];CΘ ` A(k, x′).

By rule v-var, we can conclude that

K[[∆, ρ:Rgn]],∆Θ;S[[Γ, xρ:ρ handle]],ΓΘ, x′:T [[τ]] ` x′ : T [[τ]].

Using this fact, assumption B and Lemma 49, we can conclude (J).
The judgment we must prove in DCΘ is

K[[∆, ρ:Rgn]],∆Θ ` CΘ ⊕ {ρ1} = CΘ ⊕ {ρ1}

which follows by the rule eq-reflex.
The derivation Dxρ is

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 67

(by v-var)

K[[∆, ρ:Rgn]],∆Θ;S[[Γ, xρ:ρ handle]],ΓΘ,Γk, x′:T [[τ]] ` xρ : ρ handle
.

Now, we have fulfilled all the requirements necessary to show that the body of
the innermost continuation is well-formed (call this fact B1). We have A1 from
the typing derivation. In order to apply the induction hypothesis, we must show
C1:

K[[∆, ρ:Rgn]],∆Θ ` CΘ ⊕ {ρ1} ≤ BΘ ⊕ {ρ1} (By assumption C)
≤ BΘ ⊕ {ρ1} (By rule sub-bar)
= BΘ ⊕ {ρ1} (By rule eq-distrib)

and D1:

K[[∆, ρ:Rgn]],∆Θ ` BΘ ⊕ {ρ1} = BΘ ⊕ T [[ψ\{ρ}]]⊕ {ρ1} (By assumption D)
= BΘ ⊕ T [[ψ]]⊕ {ρ1} (By Lemma 48)
= BΘ ⊕ {ρ1} ⊕ T [[ψ]] (By rule eq-comm)

Together A1, B1, C1, and D1 satisfy the preconditions for applying the induction
hypothesis. The result is E1:

K[[∆, ρ:Rgn]],∆Θ;S[[Γ, xρ:ρ handle]],ΓΘ;CΘ ⊕ {ρ1} `
CK[[∆,ρ:Rgn]],∆Θ;S[[Γ,xρ:ρ handle]],Θ′(e)〈· · ·〉

Now, we can show the result of the translation type-checks:

E1

K[[∆]],∆Θ;S[[Γ]],ΓΘ;CΘ `
let newrgn ρ, xρ in CK[[∆,ρ:Rgn]],∆Θ;S[[Γ,xρ:ρ handle]],Θ′(e)〈· · ·〉

—The equality rule. The source typing derivation A is

∆; Γ `R e : τ, ψ ∆ `R τ = τ ′ : Type ∆ `R ψ ⊆ ψ′

(A1)∆; Γ `R e : τ ′, ψ′
.

and the continuation k = 〈x; ek〉 is well-formed under the appropriate context
(B):

{ };K[[∆]],∆Θ;S[[Γ]],ΓΘ, x:T [[τ]];CΘ ` ek

By Lemma 43 and the equality judgment ∆ ` τ = τ ′ : Type we can deduce that

K[[∆]] ` T [[τ]] = T [[τ ′]] : Type.

Therefore, by Lemma 50, we can deduce (B1).

{ };K[[∆]],∆Θ;S[[Γ]],ΓΘ, x:T [[τ ′]];CΘ ` ek

Now, recall Assumption D states that

K[[∆]],∆ ` BΘ = BΘ ⊕ T [[ψ′]] : Cap.

Using this fact, and the source typing derivation (A), which states that ∆ ` ψ ⊆
ψ′, and Lemma 47, we can deduce that (D1)

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

68 · D. Walker, K. Crary, and G. Morrisett

K[[∆]],∆ ` BΘ = BΘ ⊕ T [[ψ]] : Cap.

Using A1, B1, C, and D1, we can apply the induction hypothesis and obtain

{ };K[[∆]],∆Θ;S[[Γ]],ΓΘ;CΘ ` C∆;Γ;Θ(e)k,

and we are done.

We have completed the proof that the induction hypothesis is preserved by the
translation. In order to obtain the proof of the CPS translation theorem, we simply
instantiate the induction hypothesis. We are given part A: ·; · ` e : int, ∅.

The continuation k is 〈x; halt x〉. Using the halt rule, we have part B,

{ }; ·;x:int ` x : int · ` ∅ = ∅ : Cap
{ }; ·;x:int; ∅ ` halt x

Part C is trivial: · ` ∅ ≤ ∅.
Part D is also straightforward,

· ` ∅ ≤ ∅ (By rule sub-eq)
= ∅ ⊕ ∅ (By rule eq-dup)
= ∅ ⊕ T [[∅]] (By definition of T [[·]])

Therefore, we can conclude E, { }; ·; ·; ∅ ` CΘ(e)k where Θ is the empty translation
environment 〈·; ·; ∅; ∅〉 and k is the trivial continuation 〈x; halt x〉.

ACKNOWLEDGMENTS

We would like to thank Lars Birkedal, Martin Elsman, Neal Glew, Dan Grossman,
Chris Hawblitzel, Fred Smith, Mads Tofte, Stephanie Weirich, and Steve Zdancewic
for their comments and suggestions on earlier drafts of this article. We are also
grateful both to the anonymous reviewers of this TOPLAS article and to the re-
viewers of its precurser, a paper that appeared in the twenty-sixth Symposium on
Principles of Programming Languages.

REFERENCES

Abramsky, S. 1993. Computational interpretations of linear logic. Theoretical Computer Sci-
ence 111, 3–57.

Aiken, A., Fähndrich, M., and Levien, R. 1995. Better static memory management: Improving
region-based analysis of higher-order languages. In ACM Conference on Programming Language
Design and Implementation. ACM Press, La Jolla, California, 174–185.

Alpern, B. and Schneider, F. 1987. Recognizing safety and liveness. Distributed Computing 2,
117–126.

Baker, H. G. 1978. List processing in real-time on a serial computer. Communications of the
ACM 21, 4, 280–294.

Bershad, B., Savage, S., Pardyak, P., Sirer, E., Fiuczynski, M., Becker, D., Chambers, C.,
and Eggers, S. 1995. Extensibility, safety and performance in the SPIN operating system. In
Fifteenth ACM Symposium on Operating Systems Principles. ACM Press, Copper Mountain,
267–284.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 69

Birkedal, L., Rothwell, N., Tofte, M., and Turner, D. N. 1993. The ML Kit (version 1).
Tech. Rep. 93/14, Department of Computer Science, University of Copenhagen.

Birkedal, L., Tofte, M., and Vejlstrup, M. 1996. From region inference to von Neumann
machines via region representation inference. In Twenty-Third ACM Symposium on Principles
of Programming Languages. ACM Press, St. Petersburg, 171–183.

Blelloch, G. and Greiner, J. 1996. A provably time and space efficient implementation of NESL.
In ACM International Conference on Functional Programming. ACM Press, Philadelphia, 213–
225.

Crary, K., Walker, D., and Morrisett, G. 1999. Typed memory management in a calculus
of capabilities. In Twenty-Sixth ACM Symposium on Principles of Programming Languages.
ACM Press, San Antonio, 262–275.

Crary, K., Weirich, S., and Morrisett, G. 1998. Intensional polymorphism in type-erasure
semantics. In ACM International Conference on Functional Programming. ACM Press, Balti-
more, 301–312.

Danvy, O., Dzafic, B., and Pfenning, F. 1999. On proving syntactic properties of CPS pro-
grams. In Third International Workshop on Higher-Order Operational Techniques in Seman-
tics, A. Gordon and A. Pitts, Eds. Electronic Notes in Computer Science, vol. 26. Elsevier,
Paris, 19–31.

Danvy, O. and Filinski, A. 1992. Representing control: a study of the CPS transformation.
Mathematical Structures in Computer Science 2, 4 (Dec.), 361–391.

Filinski, A. 1996. Controlling effects. Ph.D. thesis, Carnegie Mellon University, School of Com-
puter Science, Pittsburgh, Pennsylvania.

Fischer, M. J. 1972. Lambda calculus schemata. In Proceedings of the ACM Conference on
Proving Assertions about Programs. 104–109.

Flanagan, C. and Abadi, M. 1999. Types for safe locking. In Lecture Notes in Computer
Science, S. Swierstra, Ed. Vol. 1576. Springer-Verlag, Amsterdam, 91–108. Appeared in the
Eighth European Symposium on Programming.

Gay, D. and Aiken, A. 1998. Memory management with explicit regions. In ACM Conference
on Programming Language Design and Implementation. ACM Press, Montreal, 313 – 323.

Gifford, D. K. and Lucassen, J. M. 1986. Integrating functional and imperative program-
ming. In ACM Conference on Lisp and Functional Programming. ACM Press, Cambridge,
Massachusetts, 28–38.

Girard, J.-Y. 1987. Linear logic. Theoretical Computer Science 50, 1–102.
Harper, R. and Lillibridge, M. 1993. Explicit polymorphism and CPS conversion. In Twentieth

ACM Symposium on Principles of Programming Languages. ACM Press, Charleston, 206–219.
Harper, R. and Morrisett, G. 1995. Compiling polymorphism using intensional type analysis.

In Twenty-Second ACM Symposium on Principles of Programming Languages. ACM Press,
San Francisco, 130–141.

Hawblitzel, C., Chang, C.-C., Czajkowski, G., Hu, D., and von Eicken, T. 1998. Imple-
menting multiple protection domains in Java. In 1998 USENIX Annual Technical Conference.
USENIX, New Orleans.

Hawblitzel, C. and von Eicken, T. 1999. Type system support for dynamic revocation. In
ACM SIGPLAN workshop on Compiler Support for System Software. ACM Press, Atlanta.

Jouvelot, P. and Gifford, D. K. 1991. Algebraic reconstruction of types and effects. In
Eighteenth ACM Symposium on Principles of Programming Languages. ACM Press, Orlando,
303–310.

Kozen, D. 1998. Efficient code certification. Tech. Rep. TR98-1661, Cornell University. Jan.
Lafont, Y. 1988. The linear abstract machine. Theoretical Computer Science 59, 157–180.
Launchbury, J. and Peyton Jones, S. L. 1995. State in Haskell. LISP and Symbolic Compu-

tation 8, 4 (Dec.), 293–341.
Lindholm, T. and Yellin, F. 1996. The Java Virtual Machine Specification. Addison-Wesley,

Menlo Park, California.
Lucassen, J. M. 1987. Types and effects—towards the integration of functional and imperative

programming. Ph.D. thesis, MIT Laboratory for Computer Science.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

70 · D. Walker, K. Crary, and G. Morrisett

Milner, R., Tofte, M., Harper, R., and MacQueen, D. 1997. The Definition of Standard ML
(Revised). MIT Press, Boston.

Minamide, Y. 1999. Space-profiling semantics of the call-by-value lambda calculus and the CPS
transformation. In Third International Workshop on Higher-Order Operational Techniques in
Semantics, A. D. Gordon and A. Pitts, Eds. Electronic Notes in Computer Science, vol. 26.
Elsevier, Paris, 103–118.

Moggi, E. 1991. Notions of computation and monads. Information and Computation 93, 55–92.
Morrisett, G., Crary, K., Glew, N., Grossman, D., Samuels, R., Smith, F., Walker, D.,

Weirich, S., and Zdancewic, S. 2000. Typed Assembly Language for the Intel IA32 architec-
ture. See http://www.cs.cornell.edu/talc for the latest implementation.

Morrisett, G., Felleisen, M., and Harper, R. 1995. Abstract models of memory management.
In ACM Conference on Functional Programming and Computer Architecture. ACM Press, La
Jolla, 66–77.

Morrisett, G. and Harper, R. 1997. Semantics of memory management for polymorphic lan-
guages. In Higher-Order Operational Techniques in Semantics, A. Gordon and A. Pitts, Eds.
Publications of the Newton Institute. Cambridge University Press, Cambridge, UK.

Morrisett, G., Walker, D., Crary, K., and Glew, N. 1998. From System F to Typed Assembly
Language. In Twenty-Fifth ACM Symposium on Principles of Programming Languages. ACM
Press, San Diego, 85–97.

Morrisett, G., Walker, D., Crary, K., and Glew, N. 1999. From System F to Typed Assembly
Language. ACM Transactions on Progamming Languages and Systems 21, 3 (May), 528–569.

Necula, G. 1997. Proof-carrying code. In Twenty-Fourth ACM Symposium on Principles of
Programming Languages. ACM Press, Paris, 106–119.

Necula, G. and Lee, P. 1996. Safe kernel extensions without run-time checking. In Proceedings
of Operating System Design and Implementation. USENIX assoc., Seattle, 229–243.

Necula, G. and Lee, P. 1998. The design and implementation of a certifying compiler. In ACM
Conference on Programming Language Design and Implementation. ACM Press, Montreal, 333
– 344.

Peyton Jones, S. L. and Wadler, P. 1993. Imperative functional programming. In Twentieth
ACM Symposium on Principles of Programming Languages. ACM Press, Charleston, South
Carolina.

Plotkin, G. D. 1975. Call-by-name, call-by-value, and the lambda calculus. Theoretical Computer
Science 1, 125–159.

Reynolds, J. C. 1972. Definitional interpreters for higher-order programming languages. In
Conference Record of the 25th National ACM Conference. Boston, 717–740.

Reynolds, J. C. 1978. Syntactic control of interference. In Fifth ACM Symposium on Principles
of Programming Languages. ACM Press, Tucson, Arizona, 39–46.

Reynolds, J. C. 1989. Syntactic control of interference, part 2. In Automata, Languages and
Programming: 16th International Colloquium. Lecture Notes in Computer Science, vol. 372.
Springer-Verlag, Stresa, Italy, 704–722.

Sabry, A. and Felleisen, M. 1993. Reasoning about programs in continuation-passing style.
LISP and Symbolic Computation 6, 3/4, 289–360.

Schneider, F. 2000. Enforceable security policies. ACM Transactions on Information and System
Security 3, 1 (Feb.).

Smith, F., Walker, D., and Morrisett, G. 2000. Alias types. In Lecture Notes in Computer
Science, G. Smolka, Ed. Vol. 1782. Springer-Verlag, Berlin, 366–381. Appeared in the Ninth
European Symposium on Programming.

Tofte, M. and Birkedal, L. 1998. A region inference algorithm. Transactions on Programming
Languages and Systems 20, 4 (Nov.), 734–767.

Tofte, M. and Talpin, J.-P. 1994. Implementation of the typed call-by-value λ-calculus using a
stack of regions. In Twenty-First ACM Symposium on Principles of Programming Languages.
ACM Press, Portland, Oregon, 188–201.

Tofte, M. and Talpin, J.-P. 1997. Region-based memory management. Information and Com-
putation 132, 2, 109–176.

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Typed Memory Management via Static Capabilities · 71

Wadler, P. 1990. Linear types can change the world! In Programming Concepts and Meth-
ods, M. Broy and C. Jones, Eds. North Holland, Sea of Galilee, Israel. IFIP TC 2 Working
Conference.

Wadler, P. 1993. A taste of linear logic. In Mathematical Foundations of Computer Science.
Lecture Notes in Computer Science, vol. 711. Springer-Verlag, Gdansk, Poland.

Wahbe, R., Lucco, S., Anderson, T., and Graham, S. 1993. Efficient software-based fault isola-
tion. In Fourteenth ACM Symposium on Operating Systems Principles. ACM Press, Asheville,
203–216.

Walker, D. 2000. A type system for expressive security policies. In Twenty-Seventh ACM
Symposium on Principles of Programming Languages. ACM Press, Boston, 254–267.

Walker, D. and Morrisett, G. 2000. Alias types for recursive data structures. In Workshop
on Types in Compilation. Montreal.

Wilson, P. R. 1992. Uniprocessor garbage collection techniques. In International Workshop
on Memory Management, Y. Bekkers and J. Cohen, Eds. Number 637 in Lecture Notes in
Computer Science. Springer-Verlag, St. Malo, 1–42.

Wright, A. K. and Felleisen, M. 1994. A syntactic approach to type soundness. Information
and Computation 115, 1, 38–94.

Wulf, W. A., Levin, R., and Harbison, S. P. 1981. Hydra/C.mmp: An Experimental Computer
System. McGraw-Hill, New York, NY.

Received February 2000; accepted May 2000

ACM Transactions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

