Check for
Updates

Floyd: People are already confused about this. In fact, I saw
a report recently in which it was denied that ALcoL was a context-
free language because one has to use context to analyze it. So
maybe it’s better to bring out into the open the fact that it has
two meanings.

Gorn: But while the terminology is changing, do we have to
go through the dodge that symbolic logicians have to go through
in switching bound variables—substituting other names tem-
porarily until we can return to the original names when people
have forgotten their original meanings?

Ross: 1 have a handout, which I will read at a later session,
which I am afraid offers still another definition for context.

Gorn: Good, the more the merrier. The worse the problem is
the sooner someone will do something about it. Those of you who
have had the patience to look at some of my definitions will know
that I take an even more radical view of context. We have been
talking about purely syntactic context, the surrounding characters
in a string. But from my point of view the context of an expression
is the processor that happens to be working on it at the moment.
And at that point context transcends purely syntactical questions.

e . 19 . %
Structural Connections” in Formal Languages

E. T. Irons
Institute For Defense Analyses, Princefon, New Jersey

This paper defines the concept of “structural connection” in
a mechanical language in an attempt to classify various
formal languages according to the complexity of parsing
structures on strings in the languages. Languages discussed
vary in complexity from those with essentially no structure at
all to languages which are self-defining. The relationship be-
tween some existing recognition techniques for several language
classes is examined, as well as implications of language
structure on the complexity of automatic recognizers.

Probably the most popularly accepted definition of a
context-free language stems from a definition by Chomsky
for a context-free grammar [1], which may be summarized
(though not precisely defined) as follows:

A grammar (type 0) consists of a set of productions of
the form ¢ — ¢ (meaning ¢ may be rewritten as y, or ¢
generates ¥), where ¢ and ¢ are strings formed from a
vocabulary B consisting of basic symbols Vi, meta
variables Vx and the null string 1.

A type 1 grammar is a grammar in which all productions
take the form wpw, — wiyw, where ¢ € V, ¢ = I,
w1, ¥, W are strings over V.

A type 2 (conlext-free) grammar is a type 1 grammar in
which all productions take the form ¢ — ¢ where
o€V, ¢#]I1, yisa string over V.,

A context-free language is a language all of whose
sentences are generated by a context-free grammar. (We
note that aside from minor technicalities, a set of pro-
ductions in Backus Normal Form form a type 2 or context-
free grammar.)

In a type 1 grammar (or type 0) the neighboring
strings w; and w; (which of course may either or both be
null) determine whether the transformation ¢ — ¢ is
applicable for a given example. The restriction which
defines a type 2 or context-free grammar essentially states
that the rule ¢ — ¢ will always be applicable no matter

* Presented at a Working Conference on Mechanical Language
Structures, Princeton, N: J., August 1963, sponsored by the
Association for Computing Machinery, the Institute for Defense
Analyses, and the Business Equipment Manufacturers Associa-
tion.

Volume 7 / Number 2 / February, 1964

what the surroundings of ¢ may be in any particular
string. This distinction is useful for some discussions, but
the classifications of languages made here is rather too
broad to be useful in the all important matter of classifying
recognizers for various grammars. In the past few years,
several grammars and recognizers have come into being
which have significant applications in language trans-
lation and particularly in translation of formal languages
including algebraic computer languages, etc. These gram-
mars vary in power and scope from Chomsky’s type 0 to
those more restricted than type 2; yet the distinction
between them cannot be made simply in terms of the
Chomsky classification.

‘We propose here to establish a classification of languages
aimed more at clarifying the distinctions between and
unifying common concepts of some existing and proposed
recognition techniques, than at exhibiting mathematical
properties of grammars. We shall attempt to do so by
dealing with strings from a language and the parses of
these strings according to some (unspecified) grammar
rather than by concentrating on the form of the grammars
themselves. To this end, we adopt the following notation:
1) for basic symbols, small roman letters, a; 2) for strings
of basic symbols, capital roman letters, A; 3) for syntactic
categories, bracketed words [A]. We state the following
basic definitions:

1. A string A contains the string B (A 2 B) if the
string B occurs in A or is A. (We also say B is a substring
of A); e.g., abe 2 abe D ab.

2. A string B is a proper substring of A if A 2 B but
A 1s not identical to B.

3. If A and B are disjoint substrings of C A precedes
B (A < B) if A occurs before B in C.

4. An assignment of string A to a syntactic category
[A] (A € [A]) is simply a statement that A belongs to
category [A] in a given instance. :

5. A parse of a string A is an ordered set of assignments
of substrings of A subject to the following restrictions:

1) Where 8 is the assignment, B € [B] and v is the
assignment C € [C] for all assignments v and 8 in the

Communications of the ACM 67

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363921.363931&domain=pdf&date_stamp=1964-02-01

parse; if B and C are disjoint, if B < C, then 8 <
(read B precedes v in the list. of assignments); if B and C
are not disjoint, if B < C then 8 < v, if B O C then
B> v, and if B = Cthen 8 > v or y > 8 arbitrarily.
No other assignments are allowed (specifically, where B
and C are not disjoint as for ab and bec in abe,
we may not have an assignment for both ab and be).

2) The set of assignments must contain at least one
assighment for A,

In defining a parse this way, we are essentially setting
forth a precise notation for the commonly used “parse

a b c
e) | S
A C
L.]
D
L 1
E
L]
F
F1a. 1

NoTe. Since there is no ambiguity in the diagrams, [A] is
represented by A.

diagram.” For example, the diagram in Figure 1 is equiva-
lent to the parse

a € [A]
ab € [D]
¢ € [C]
abe € [E]

abe € [F]

6. We say a parse ¢ is equivalent to a parse ¢ (¢ = ¢)
if the assighments comprising ¥ are exactly those com-
prising ¢ and in the same order.

7. We say a parse ¢ covers a parse ¢ (¢ 2) if the
assignments of ¢ are among the assignments of ¢ and
occur consecutively in ¢ in the same order as in ¢. Also,
we write ¢ D ¥ if ¢ 2 ¢ and ¢ # . For example, the
parse

a b covers a
| S| —
A A
— e
B

8. A grammar is a set of rules for producing parses on
certain strings of basic symbols. A grammar may, for a
certain string of basic symbols, produce no parse at all,
or several parses.

9. A complete parse for a string A under a grammar G
is a parse which is covered by no other parse of A pro-
duceable under the rules of G.

Having defined a parse, we now attempt to classify
certain languages and their grammars according to the
parses the grammars produce on strings in the alphabets

68 Communications of the ACM

of the languages. Roughly speaking we intend to classify
languages according to the complexity of interaction be-
tween parses on disjoint substrings of a parsed string.
The simplest language with which we will work has no
such interactions. We would choose to call this type of
language context-free and the others of the system context-
dependent. However, since the grammars for these lan-
guages are much more restricted than Chomsky type 2
grammars we will hopefully avoid confusion by calling
our simplest class of languages ‘‘structurally unconnected”
languages and more complicated languages “structurally
connected”.

To give a precise meaning to these terms, we define

10. A structurally unconnected (SU) language L is one
such that for every string A on the alphabet of L there
exists not more than 1 complete parse of A; and if there
exists 1 parse «, then for every substring B of A there
exists not more than 1 complete parse of B (8) and
a2 B.

A structurally unconnected language is indeed a very
simple one. It does have the property that its recognizer
is very simple, since every assignment of a string is de-
termined uniquely by the string itself. An example of a
structurally unconnected language is one with the following
(BNF) grammar over the alphabet abe:

[B] ::= a| b[B]
[C] ::= ¢[B].
A string and its parse in this language are:
c b b b a
e J
B
e —
B
B
B
C

The grammar of this example is a Chomsky type 3
grammar [1] (one in which all productions take the form
A — aB or A — a where a is a basic symbol and A and B
are single “meta variables”). Not all type 3 grammars,
however, are SU. For example (using BNF notation),
the grammar

[B] ::= a | b[B]
[C] ::= a[B]
gives the parse
a b a
C " ¥
L .)

Volume 7 / Number 2 / February, 1964

to the string S = aba, but the substring consisting of the
first ‘a’ of S has the parse

a

S

v = B

and ¢ does not cover .

Therefore type 3 languages are in general structurally
connected according to

11. Any language L for which a parse exists for every
string considered to be “in’’ the language is structurally
connected (SC) if L is not SU.

Our main interest is in classifying SC languages, since
most of the interesting languages are SC. To this end we
give:

12. A bracketed substring A of a string S (with complete
parse a) to the {left/right} of a substring B of Sis (1) the
longest string {preceding/following} B in S which has a
complete parse ¢ such that & 2 ¢; (2) if no such string
exists, then A is the symbol {preceding/following} B.

We will say that A is the first bracketed substring of S
after B and that if C is the bracketed string after A then
C is the second bracketed string after B, and so on. For
example, in

a b c d
L] L J L. |
T A B D
R
C

be is the first bracketed string after a and d
second.

13. For every parse « of every string S on the alphabet
of language L, (1) let B be any substring of 8§ (with parse
B oceurring in a); (2) let R be the M {symbols/bracketed
strings} to the left of B; (3) let L be the N {symbols/
bracketed strings} to the left of B; (4) let £ and ¢ be the
parses of L and R (respectively) which occur in o; (5) let
¥ be any parse of a string containing LBR such that
¥ 2 £and ¢y 2 ¢. Then if B has no parse other than 8
contained in ¢, L is said to be SC N {symbols/brackets}
left and M {symbols/brackets} right, which we abbreviate
SC N {8/B}LM{S/B}R.

The essential point in 13 is to define the extent to which
symbols surrounding a string determine its parse. For a
language which is (for example) SC 5SL 53R we are
guaranteed that we can give the complete parse for any
string knowing only the string and the 5 symbols on either
side of it.

As an example of one such language, the type 3 language
given by

is the

[B] ::= a | b[B]

[C] ::= a[B]
from our earlier example is SC 1 SR 0SL or SC 1
symbol to the right. Since all parsable strings for [C] take
the form abbb-.-bba, (1) there exists no parse for

Volume 7 / Number 2 / February, 1964

any string ending in b; (2) there exists at most one parse
for any string beginning with b; and (3) there exists no
parse of the initial a except ¢ = a, B, and ¢ is not con-
tained in any parse of ab or any string containing ab.

In fact we can state generally that: A type 3 language
(at least as we have presented it on page 68) is SC 1 SR.

Proof. The only allowable productions of a type 3
language are of the form [A] ::= a[B] or [A] ::= a where
‘a’ represents a basic symbol and [A] and [B] meta vari-
ables. Therefore, the only parse for any string S = €182+ - -8a
is

81+ -8y — [Aj]

81+ +8a1 — [A]

o=
51— [Ax]
or diagramatically
81 82 e Sn—2 Sn—1 Sn
e
S

Every substring A = S;---8; (j = 1) of S must have a
parse a of the same form. But the string B = 8;---S;8; 4
has no parse for j < n; therefore B determines the parse
of A.

A class of grammars of considerable practical interest
today is a restricted BNF grammar described by Paul
(3, 4]. A language which can be described by such a
grammar (e.g., most of ALgoL) can be parsed using the
Bauer-Samuelson technique on a table constructed auto-
matically from productions in Paul’s grammar. Such a
grammar must evidently be classed as SC 1BL 1SR.
This can be seen by examining the Bauer-Samuelson
technique itself. In this technique, the assignments of the
parse are made according to the top two elements of a
stack of previous assignments and the next unparsed
symbol (left to right) of the string being parsed. The N
assignments of the stack are, in fact, the N bracketed
strings to the left of the unparsed string. Since assignments
are made over the string covered by the top one or two
assignments of the stack, any language parsable by this
technique must be SC 1BL 1SR at most.

For example, an SC 1BL 2SR language which
cannot be parsed by the Bauer-Samuelson technique is
given by

[A] ::= ab [D] ::= ce
[B] ::= [Ale [E] ::= b{D]
[G] ::= [BId [G] ::= a[E]
The parses of two strings of this language are:
a b c d a b c e
A D
e S |
B E
G G

Communications of the ACM 69

The parse of ab is affected by the second symbol to the
right.

The most general BNF grammars are structurally
connected in such a way that one cannot even fix the
degree of connectedness for a specific grammar. Consider,
for example, the grammar

8] ::= b [T] ::= b

[S] = x[S]x [T] = x[T]x
[R] ::= p[S]

[R] ::= q[T]

In the string px---xbx---x, the substring b has two
parses ([S] or [T]) inside all the strings x---xbx---x
which are composed of the N bracketed strings to the left
and right where N is the number of x’s in the string.
Since we may have any number of x’s we cannot fix the
degree of connectedness for this language.

The nature of the difference between BNTF languages
and yet “more complicated”’ languages must lie then not
in the degree of connectedness, as we have defined it,
but in the nature of the connections.

It is characteristic of all BNF grammars that the in-
formation needed to parse a substring is contained entirely
in the “names” of a certain number of brackets to the
left and right of the substring. No information is needed
about the structure of the parses associated with these
brackets. In languages “more complex” than BNF, it
will in general be true that the structures of parses outside
of a substring will affect the parse of the substring. It is
precisely this distinction that separates ‘“‘context free”
from ‘“‘non-context free” languages in most informal
definitions of the terms. Consider, for example, a string
from ArLcor-60 (whose parse cannot be generated from a
BNF grammar)

begin Boolean 7 , j ; 4 = j A j end

L ! L ! [1 J L— 1 | ——

V 'V B B B
| | | S|
VL BP
e | | IS
V1L BT

L] L. .|
DEC BS

L 1 [-l
DECL STAT

O |
STATL

.
PROGRAM

(The parse given here is not intended to conform even
partially to the official ArcoL syntax, but is given to
illustrate the point at hand as simply as possible.)

The implication in this parse is that the oceurrences of
¢ and 7 are given the parse [B] because the declaration
Boolean 1, j has occurred in a declaration list and that they
would be given another parse (say [I] for integer) if the
declaration had been different.

70 Communications of the ACM

The information necessary to give the assignment [B]
to 7 is, in fact, contained in the second bracket to the left
(IDECL]) but the “name” of this bracket is not all the
information needed to parse the 7. Rather the parse of ¢
depends on the detailed structure of the parse of [DECL]
(namely, that ¢ occurs in a “variable list”” after the declar-
ator Boolean. (One may say that the occurrence of
‘/\” suffices to determine that ¢ and § must be Boolean;
however, one must clearly be able to distinguish the
types of variables independently of the local context to be
able to observe that e.g., if the ‘A’ had been a ‘4’ the
program is not parsable.)

Let us informally define languages such as those of
the last example to be languages “structurally connected
in depth” or SCD languages. There are apparently ad-
ditional classifications of complexity in languages in-
volving perhaps the specific nature of structural con-
nections. Again there are languages which are not even
parsable in the sense we have used here (for example, the
Theorems of the Prepositional Calculus, ete.). The
languages thus far discussed here, however, cover most of
those for which automatic recognition techniques exist.

Rather than continuing the attempt to classify more
and more complex language structures, we choose to de-
vote the remainder of the paper to a brief discussion of the
implication for recognizers of the classification thus far
established. In particular, it is evident that the complexity
and efficiency of recognition techniques is closely related
to the complexity of the languages in the sense we have
used here. A recognizer for a SU language is little more
than a table lookup algorithm. Languages which are SC
a limited number of symbols or brackets to the left or
right will tend to have efficient recognizers. The apparent
great efficiency of the Bauer-Samuelson technique lies
in the fact that the restrictions imposed on the grammar
allow each assighment to be made once and for all (i.e.
once an assignment is made, it is never rescinded), for a
given string. Less restricted grammars such as BNF,
in particular (for a left-to-right processor) those which are
SC several symbols or brackets to the right, require
recognizers which make tentative assignments while
parsing a string and await further developments in the
parsing to determine whether a given assignment is kept
or rejected for the complete parse. Languages which are
SCD to the left may require dynamic modification of
grammar specifications or complicated intermediate
tabling procedures in their recognizers (for a left to right
recognizer). Languages which are SCD to the right may
require multiple-pass recognizers or in fact may not even
have a recognizer (for example a programming language
which is “self defining” in the sense that statements in
the language may define the syntax and semantics of
other statements which may occur either before or after
the defining statement).

In conclusion, I believe that the invention and con-
tinued refinement of automatic recognizers for more and
more complex grammars, will have a profound effect on

Volume 7 / Number 2 / February, 1964

future programming languages particularly in the area
of self-defining languages, and that investigations into
these areas may generate substantial contributions to
sophisticated activities in natural language manipulations,
probabilistic recognizers, and the like.

REFERENCES

1. Cuomsky, N. On certain formal properties of grammars.
Informat. Contr. 2, 137, 167.

2. ——. A note on phrase structure grammars. Informat. Contr. 2,
393-395.

3. Paur, M. A General Processor for Certatn Formal Languages.
Gymbalie Languages in Data Processing, Gordon and Breach,
London 1962, pp. 65-74.

4. Eicrer, J., Paur, M., Bavugr, F. L., SamueLson, K. “A Syntax
Controlled Generator of Formal Language Processors.”
Inst. fur Ang. Math. Univ. Mainz. (September, 1962).

5. Backus, J. W. The syntax and semantics of the proposed
international algebraic language of the Zurich ACM-GAMM
Conference. Proc. Internat. Conference on Information
Processing, UNESCO, June, 1959, pp. 125-132.

6. Naur, Perer (Ed.) Report on the algorithmic language
ALGOL 60. Comm. ACM 3 (1960), 299-314.

7. Irons, E. T. A syntax-directed compiler for ALGOL 60. Comm.
ACM 4 (1961), 51-55.

DISCUSSION

-+ -Ross commented on both the Floyd and Irons papers with a
prepared note entitled “On Context and Ambiguity in Parsing.”’
This note ig included in the papers of session 6- - -

Graham: The talk about context is very misleading. People
are talking about context of characters in strings, context of
syntactic types in strings, and mixtures of these.

Newell: 1 have an argument with the goals of your work.
Indeed it seems to me that you are trying to make a connection
between a simple theory and simple recognizers. This doesn’t
malke any sense because we have no real standard for a recognizer
in the first place. For example, what would happen if we changed
the underlying memory structure to an associative memory?
Then the kinds of things that it would be economic to search for
would be completely different.

Irons: An associative memory could certainly affect the kinds
of searching which would be reasonable. However, I think we
would still have the same level of complexity.

Gorn: The fact that Ross does not keep syntactic types in his
trees but keeps only the operators and pointers to symbols might
increase the speed of the parsing. How are n-ary operations
handled.

Ross: We can always represent an n-ary operation by a string
of binary operations.

Merner: Behind what you, and Irons in the preceding paper,
have presented seems to lie a tacit assumption that it is necessary
or at least desirable that practical languages be syntactically
unambiguous. ArcoL 60 unrevised has an interesting but se-
mantically well-defined syntactic ambiguity in the source lan-
guage:

if Bthen XelseY < Z

If X was a formal, call-by-name parameter the following two
bracketings would occur depending on the type of the actual
parameter.

X real or integer: (if B then X else Y) < Z

X Boolean: if B then X else (Y < 2)
This obviously can be implemented by inserting both meanings in
the target language and selecting the appropriate meaning on the
basis of the type of the actual parameter. Are such language
features really a priori undesirable or do they add power to the
language?

Yolume 7 / Number 2 / February, 1964

Irons: 1 think that they add power.

Ingerman: What is a definition of ambiguity, in the sense that
Merners example is clearly wnambiguous at run-time? If both
interpretations are compiled and the correct one selected at run-
time, then there is no ambiguity at compile time.

Gorn: They constitute, however, an ambiguous selection.

Warshall: Does, then, one have to have an infinite number of
meanings in order to admit that the statement is really ambiguous?

Wegstein: Doesn’t the parse depend on how the statement in
the language is to be used? For example, the parse of the string
317’ would be different if the intent was to generate the string
“three hundred and seventeen’ than if the intent was to generate
the binary equivalent.

Irons: Yes, I agree.

Cheatham: Incidentally, I think Wegstein’s comment provides
a good indication of why the Uncow concept is a poor one. That is,
it is often difficult to specify even a parse unless one knows the
use to which the result will be put. The use of a standard ‘“inter-
mediate language’’ requires, of course, that one is committed to a
fixed form of language from which to generate machine code in
addition to a fixed parse.

Kirsch: 1t is desirable to measure the complexity of a lan-
guage. It is difficult to measure, however, in terms of processors
for the language and whether or not the language is hard to
process. There are some priori measures which could be defined
by canonieal questions like: Does there exist a decision procedure
for determining whether or not a string belongs to the language,
and so on?

Irons: 1 think that it would be very useful to be able to
classify languages on the basis of a measurable complexity, but
the measure should be the recognizer.

Kogon: From what you have said it appears that you consider
ambiguities of the type if B then Xelse Y < Z to be useful
and desirable; I therefore assume that you would also welcome
the possibility to make the substitution of

if B’ then X’ else X” for B.
The problem seems to be not so much whether these ambiguities
can be handled but rather whether they are desirable.

The question of desirability seems to be linked to the question
of how much should a person using a language be expected or
required to know and understand about the procedure for the
solution of his problem. If you do not insist on precise and detailed
knowledge on the part of the programmer, how do you justify the
desirability or provide a language for a programmer at all?

Dijkstra: 1 should like to correct one of the speaker’s state-
ments: it has been proved that a one-pass load-and-go translator
for ALcoL 60 can be made which poses no restriction whatsoever
on the relative positioning of declaration and use of identifiers.

Irons: This must lead to some real inefliciencies at run time.

Perlis: What do people mean by one pass?

Wilkes: With a big enough memory almost anything can
appear one-pass.

Dijkstra: 1 am asking myself whether the speaker is willing
to consider two languages equivalent if between texts from the
different languages a one-to-one correspondence can be estab-
lished in both directions by a mechanical process.

For the purpose of illustration, some examples are: (1) Writing
with black ink on a white paper versus writing with white chalk
on a black board. (2) Writing the characters in the reverse order.
(3) Replacing in an ALGoL program each eapital letter by a point
followed by the corresponding small letter. (4) Introducing
separate characters for unary plus and minus. (5) Permuting all
expressions to reverse polish.

Holt: One can extend this list and ask if the statement of
Fermats Last Theorem is equivalent to its proof.

Gorn: One should not ask the question, “Is language 1 equiva-
lent to language 2?”’. Rather, one should ask, ‘‘Is language 1 plus
translator 1 equivalent to language 2 plus translator 2?77,

Communications of the ACM 71

Backus: 1 would like to hear some discussion on how we can
measure the efficiency of some of these processors.

Perlis: One measure is the ratio of the overage number of
instructions the compiler executes per instruetion the compiler
produces. I understand that the ratio for 220 BarcoL was 700.

Bauer: We have found ratios of 46 to 100 depending on the
machine used.

Dijkstra: We are running 1000.

Greiback: Concerning pp. 6-7ff. in IDA-CRD Working Paper
No. 93, ““An Error-correcting Parse Algorithm,’’ the conjecture is
correct—one can always find a BNF specification with desired
properties. The theorem states: For every context-free psg one can

find context-free psg whose rules are of form: Z — aYi, -, Y,
where a 1s a terminal symbol, Z and Y, are nonterminal. Here one
can link (B, a), eliminate the pointers, and the algorithm is
almost the multiple-path analyzer of Kuno-Oettinger. Details
can be found in my thesis, ‘“Inverse of Phrase Structure Gener-
ators” [Harvard Report NSF-11] and an unpublished paper, ‘A
New Normalform Theorem for Phrase Structure Generators.”
The bracket ({ }) device you use is indeed an intermediate.

Any BNF system (context-free psg) can be mechanically placed
in this special form (which I call standard form), preserving
ambiguities (or lack thereof).

FORTRAN IV as a Syntax Language”

B. M. Leavenworth
IBM Corporation, White Plains, New Yorkt

1. Introduction

It is a generally known fact that an algorithmic (source)
language is defined by its processor in the sense that
meanings of statements in that language are defined in
terms of a target language which is produced by the
processor [1]. The processor does not exhibit explicitly the
syntax of this source language but rather hides the syntax
in the details of its construction.

There is a trend toward specifying the syntax of context-
free programming languages by using generators or pro-
duction schema represented in some formal symbolism
such as Backus normal form. We believe that it will be
more convenient to specify the syntax of languages
behaviorally [2] so that a specification of this type can be
easily converted to recognition algorithms by a suitable
processor.

The purpose of this paper is to show how Fortran IV
can be used as a syntax language, that is, to specify the
syntax of a source language in a suitable form, then to
compile these specifications as recognizers together with
generators to synthesize a given target language. In order
to transform an input string of basic symbols into a target
string, let us define a processor (which solves this problem)
as a set of recognizers and generators P = {R;, Rs, -+ -,
R., Gi, Gy, ---, G,} together with some control mech-
anism which governs the sequencing of the recognizers.
With each R; is associated a corresponding G; (which
may be null). There are two types of recognizer: (1)
basic recognizer (recognizes basic symbols): this type is a
recognizer either for single symbols of the input string or
a class of symbols (such as the class of letters); (2) string

* Presented at a Working Conference on Mechanical Language
Structures, Princeton, N. J., August 1963, sponsored by the
Association for Computing Machinery, the Institute for Defense
Analyses, and the Business Equipment Manufacturers Associ-
ation.

1 Present Address: Advanced Systems Development Division,
International Business Machines Corp., Yorktown Heights, N.Y.

72 Communications of the ACM

recognizer: this type is a recognizer of syntactic types
(class names), which encompass subsets of the input
string, as well as temporary strings which are formed in
the course of translation. These temporary strings are
usually created to “remember” information previously
encountered on the input string.

If a denotes the input string and «; the target string
then: Pay implies oy «— G, G, --- Gyar. That is, the
application of the processor P to ap results in a sequence
of generator transformations on er (initially null). Each
recognizer except one, called the language recognizer
(corresponding to the root of the tree describing the source-
language) has a unique successor determined at run time.
This successor is a funection of the truth value of the
recognizer and the control mechanism,

The syntax specification of a language implicitly de-
termines the control flow between recognizers, and there-
fore is the control mechanism of a syntax processor. To
allow recognizers to call themselves recursively, a control
pushdown must be provided which becomes part of the
control mechanism. This type of organization allows a
considerable amount of flexibility. For example, we can
operate on more than one input string, shift attention
from one tree to another, have generators call on recog-
nizers for additional information, and so forth.

2. Language Properties Required for Syntax Trans-
lation

If an algorithmic language can be used to specify the
syntax of a source language, then this specification can be
converted (compiled) into an algorithmic recognizer. Some
of the properties required for this type of conversion are
now discussed.

Sequencing of Boolean Expressions. Assuming that the
language under consideration contains Boolean expres-
sions, the type of sequencing we have in mind is the
“optimization’” described by Huskey and Wattenburg [3].

Volume 7 / Number 2 / February, 1964

