
Floyd: People are already confused about this. In fact, I saw 
a report recently in which it was denied that ALGOL was a context- 
free language because one has to use context to analyze it. So 
maybe it's better to bring out into the open the fact that it has 
two meanings. 

Gorn: But while the terminology is changing, do we have to 
go through the dodge that symbolic logicians have to go through 
in switching bound variables--substituting other names tem- 
porarily until we can return to the original names when people 
have forgotten their original meanings? 

Ross: I have a handout, which I will read at a later session, 
which I am afraid offers still another definition for context. 

Gorn: Good, the nmre the merrier. The worse the problem is 
the sooner someone will do something about it. Those of you who 
have had the patience to look at some of my definitions will know 
that I take an even more radical view of context. We have been 
talking about purely syntactic context, the surrounding characters 
in a string. But from my point of view the context of an expression 
is the processor that happens to be working on it at the moment. 
And at that point context transcends purely syntactical questions. 
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This paper defines the concept of "structural connection" in 
a mechanical language in an attempt to classify various 
formal languages according to the complexity of parsing 
structures on strings in the languages. Languages discussed 
vary in complexity from those with essentially no structure at 
all to languages which are self-defining. The relationship be- 
tween some existing recognition techniques for several language 
classes is examined, as well as implications of language 
structure on the complexity of automatic recognizers. 

Probab ly  the most  popular ly  accepted definition of a 
context@'ee language stems f rom a definition by  Chomsky  
for a context-free gramlnar  [1], which m a y  be summarized 
( though  not  precisely defined) as follows: 

A grammar ( type  0) consists of a set of product ions of 
the form e - *  ~ (meaning ¢ m a y  be rewri t ten as ~, or ~, 
generates ~),  where ~ and ~ are strings formed f rom a 
vocabulary  B consisting of basic symbols VT, meta  
variables VN and the null str ing I. 

A type 1 grammar is a g rammar  in which all product ions 
take the form w~,w2 - -+w~w2 where g, C V, ~ ~ I, 
w~, ¢, w2 are strings over V. 

A type 2 (context-free) grammar is a type  1 g rammar  in 
which all product ions take the form ~,--+ ¢ where 

C V, ¢ ¢ I, ¢, is a s tr ing over V. 
A context-free language is a language all of whose 

sentences are generated by  a context-free grammar .  (We 
note tha t  aside f rom minor  technicalities, a set of pro- 
ductions in Backus Normal  F o r m  form a type  2 or context-  
free g rammar . )  

I n  a type  1 g rammar  (or type  0) the neighboring 
strings w~ and w2 (which of course m a y  either or bo th  be 
null) determine whether  the t ransformat ion  ~ -+  ¢ is 
applicable for a given example. The  restriction which 
defines a type  2 or context-free g rammar  essentially states 
tha t  the rule e --~ ~ will a lways be applicable no mat te r  

* Presented at a Working Conference on Mechanical Language 
Structures, Princeton, N: J., August 1963, sponsored by the 
Association for Computing Machinery, the Institute for Defense 
Analyses, and the Business Equipment Manufacturers Associa- 
tion. 

what the surroundings of e may be in any particular 
string. This distinction is useful for some discussions, but 
the classifications of languages made here is rather too 
broad to be useful in the all important matter of classifying 
recognizers for various grammars. In the past few years, 
several grammars and recognizers have come into being 
which have significant applications in language trans- 
lation and particularly in translation of formal languages 
including algebraic computer  languages, etc. These gram- 
mars  va ry  in power and scope f rom Chomsky ' s  type  0 to 
those more restricted than  type  2; ye t  the distinction 
between them cannot  be made simply in terms of the 
Chomsky  classification. 

We propose here to establish a classification of languages 
aimed more at  clarifying the distinctions between and 
unifying common  concepts of some existing and proposed 
recognit ion techniques, t han  at exhibiting mathemat ica l  
properties of grammars .  We shall a t t emp t  to do so by  
dealing with strings f rom a language and the parses of 
these strings according to some (unspecified) g rammar  
ra ther  t han  by concentra t ing on the form of the grammars  
themselves. To  this end, we adopt  the following nota t ion:  
1) for basic symbols,  small roman  letters, a; 2) for strings 
of basic symbols,  capital roman  letters, A; 3) for syntact ic  
categories, bracketed words [A]. We state the following 
basic definitions: 

1. A string A contains the string B (A ~ B) it' the 
string B occm's in A or is A. (We also say B is a substring 
of A) ; e.g., abc D abc ~ ab. 

2. A string B is a proper substring of A if A 2 B but  
A is not  identical to B. 

3. I f  A and B are disjoint substrings of C A precedes 
B (A < B) if A occurs before B in C. 

4. An  assignment of string A to a syntact ic  category 
[A] (A ~ [A]) is s imply a s ta tement  t ha t  A belongs to 
category [A] in a given instance. 

5. A parse of a string A is an  ordered set of assignments 
of substrings of A subject to the following restrictions: 

1) Where  ~ is the assignment,  B C [B] and 3' is the 
assignment C C [C] for all assignments 3' and ¢~ in the 
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parse; if B and C are disjoint, if B < C, t h e n ~  < 7 
(read fl precedes ~ in the list of assignments) ; if B and C 
are not disjoint, if B c C then B < % if B D C then 

> % and if B = C then f~ > 7 or 7 > ~ arbitrarily. 
No other assigmnents are allowed (specifically, where B 
and C are not disjoint as for ab and bc in abc, 
we may  not have; an assignment for both  ab and bc).  

2) The set of assignments must  contain at  least one 
assignment for A. 

In  defining a parse this way, we are essentially setting 
forth a precise notation for the commonly used "parse 

a b c 

I I I ./ 

A c 
L 3 

D 
t J 

E 
k J 

F 

Fro. 1 

NOTE. Since there is no ambiguity in the diagrams, [A] is 
represented by A. 

diagram."  For example, the diagram in Figure 1 is equiva- 
lent to the parse 

a E  [A] 

ab E [D] 

c C [el 

abe E [El 

abe C [F] 

6. We say a parse ~ is equivalent to a parse ¢ (~ = ¢J) 
if the assignments comprising ¢~ are exactly those com- 
prising ~ and in the same order. 

7. We say a parse ~ covers a parse ~ (~ _D ~) if the 
assignments of g, are among the assigmnents of ~, and 
occur consecutively in ~, in the same order as in ~b. Also, 
we write f D ¢ if ~ D ¢ and ,, ¢ ¢. For example, the 
parse 

I 

A 
L 

b covers a 

I l , I  

A 
I 

B 

8. A grammar is a set of rules for producing parses on 
certain strings of basic symbols. A grammar  may,  for a 
certain string of basic symbols, produce no parse at  all, 
or several parses. 

9. A complete parse for a string A under a g rammar  G 
is a parse which is covered by no other parse of A pro- 
duceable under the rules of G. 

Having defined a parse, we now a t t empt  to classify 
certain languages and their grammars  according to the 
parses the grammars  produce on strings in the alphabets 

of the languages. Roughly speaking we intend to classify 
languages according to the complexity of interaction be- 
tween parses on disjoint substrings of a parsed string. 
The simplest language with which we will work has no 
such interactions. We would choose to call this type of 
language context-free and the others of the system context- 
dependent. However,  since the grammars  for these lan- 
guages are much more restricted than  Chomsky type 2 
grammars  we will hopefully avoid confusion by calling 
our simplest class of languages "structural ly unconnected" 
languages and more complicated languages "structural ly 
connected". 

To give a precise meaning to these terms, we define 
10. A structurally unconnected (SU) language L is one 

such tha t  for every string A on the alphabet  of L there 
exists not more than  1 complete parse of A; and if there 
exists 1 parse c~, then for every substring B of A there 
exists not more than  1 complete parse of B (B) and 
~ .  

A structurally unconnected language is indeed a very 
simple one. I t  does have the proper ty  tha t  its recognizer 
is very simple, since every assignment of a string is de- 
termined uniquely by  the string itself. An example of a 
structurally unconnected language is one with the following 
( B N F )  grammar  over the alphabet  abc: 

[B] : := a I biB] 

[el : := c[B]. 

A string and its parse in this language are: 

e b b b a ,  

i _ _ 1  

B 
I 

B 
t 1 

B 
I_ I 

B 
t I 

c 

The g rammar  of this example is a Chomsky type 3 
grammar  [1] (one in which all productions take the form 
A ~ aB or A ~ a where a is a basic symbol and A and B 
are single "me ta  var iables") .  Not  all type 3 grammars ,  
however, are SU. For  example (using B N F  notat ion) ,  
the g rammar  

[B] : := a Ib[B] 

gives the parse 

[C] : := a[B] 

b 

L 3 

B 
I 3 

B 
J 

C 
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to the string S = aba, but  the substring consisting of the 
first 'a '  of S has the parse 

I I 

~ =  B 

and @ does not cover ~b. 
Therefore type 3 languages are in general structurally 

connected according to 
11. Any language L for which a parse exists for every 

string considered to be "in" the language is structurally 
connected (SC) if L is not SU. 

Our main interest is in classifying SC languages, since 
most of the interesting languages are SC. To this end we 
give: 

12. A bracketed substring A of a string S (with complete 
parse a) to the {left/right} of a substring B of S is (1) the 
longest string {preceding/following} B in S which has a 
complete parse ~ such tha t  a ~ ~,; (2) if no such string 
exists, then A is the symbol {preceding/following} B. 

We will say tha t  A is the first bracketed substring of S 
after B and tha t  if C is the bracketed string after A then 
C is the second bracketed string after B, and so on. For  
example, in 

a b c d 

I 2 I I L J 

A B O 
r 3 

c 

bc is the first bracketed string after a and d is the 
second. 

13. For every parse a of every string S on the alphabet 
of language L, (1) let B be any substring of S (with parse 
occurring in a) ; (2) let R be the M {symbols/bracketed 

strings} to the left of B; (3) let L be the N [symbols/ 
bracketed strings} to the left of B; (4) let ~ and @ be the 
parses of L and R (respectively) which occur in a; (5) let 

be any parse of a string containing L B R  such tha t  
~b D ( and ~ ~ ~. Then if B has no parse other than  ¢~ 
contained in ¢, L is said to be SC N {symbols/brackets} 
left and M {symbols/brackets} right, which we abbreviate 
SC N {S/B}LM{S/B}R. 

The essential point in 13 is to define the extent to which 
symbols surrounding a string determine its parse. For a 
language which is (for example) SC 5SL 5SR we are 
guaranteed tha t  we can give the complete parse for any  
string knowing only the string and the 5 symbols on either 
side of it. 

As an example of one such language, the type 3 language 
given by  

[B] : := a ] b[B] 

[C] : := a[B] 

f rom our earlier example is SC 1 SR 0SL or SC 1 
symbol to the right. Since all parsable strings for [C] take 
the form a b b b - . . b b a ,  (1) there exists no parse for 

any  string ending in b; (2) there exists at  most one parse 
for any  string beginning with b; and (3) there exists no 
parse of the initial a except ~ = a, B, and ~ is not con- 
tained in any parse of ab or any  string containing ab. 

In  fact we can state generally that :  A type 3 language 
(a t  least as we have presented it on page 68) is SC 1 SR. 

Proof. The only allowable productions of a type 3 
language are of the form [A] : := a[B] or [A] :: = a where 
'a '  represents a basic symbol and [A] and [B] meta  vari- 
ables. Therefore, the only parse for any string S = sis2. • • sn 
is 

S [ ' ' ' S n  ~ [ A i ]  

s ~ - ' - s n - 1  --~ [Aj] 

or diagramatically 
Sl  ~ [ A k ]  

S1 $2 ' " ' S n - 2  S n - I  S n  
I 

L 

L ~ p ~  

I 

L 

Every  substring A = Si . . .S~ (j ~ i) of S must  have a 
parse a of the same form. But  the string B = Si . .  -SjSj+I 
has no parse for j < n; therefore B determines the parse 
of A. 

A class of grammars  of considerable practical interest 
today is a restricted B N F  grammar  described by  Paul  
[3, 4]. A language which can be described by such a 
g rammar  (e.g., most of ALGOL) can be parsed using the 
Bauer-Samuelson technique on a table constructed auto- 
matically from productions in Paul 's  grammar.  Such a 
g rammar  nmst  evidently be classed as SC 1BL 1SR. 
This can be seen by examining the Bauer-Samuelson 
technique itself. In  this technique, the assignments of the 
parse are made according to the top two elements of a 
stack of previous assignments and the next unparsed 
symbol (left to right) of the string being parsed. The N 
assignments of the stack are, in fact, the N bracketed 
strings to the left of the unparsed string. Since assignments 
are made over the string covered by the top one or two 
assignments of the stack, any  language parsable by  this 
technique must  be SC 1BL 1SR at  most. 

For example, an SC 1BL 2SR language which 
cannot be parsed by the Bauer-Samuelson technique is 
given by 

[A] ::= ab [D] ::= ce 
[B] ::= [A]c [E] ::= b[D] 
[G] ::= [B]d [G] ::= a[E] 

The parses of two strings of this language are: 

a b c d a b c e 
I _J L - - J  

A D 
I , I  I .I 

B E 
I J L J 

G G 
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The parse of ab is affected by the second symbol to the 
right. 

The most  general B N F  grammars  are structurally 
connected in such a way tha t  one cannot even fix the 
degree of connectedness for a specific grammar.  Consider, 
for example, the grammar  

[S] ::= b IT] ::= b 

[S] ::= x[S]x [T] ::= x[Tlx 

[R] ::= p[S] 

[R] ::= q[T] 

In  the string p x . - . x b x . - - x ,  the substring b has two 
parses ([S] or [T]) inside all the strings x- • .xbx. • .x 
which are composed of the N bracketed strings to the left 
and right where N is the number of x's in the string. 
Since we may  have any number of x's we cannot fix the 
degree of connectedness for this language. 

The nature of the difference between B N F  languages 
and yet  "more complicated" languages must  lie then not 
in the degree of connectedness, as we have defined it, 
bu t  in the nature of the connections. 

I t  is characteristic of all B N F  grammars  tha t  the in- 
formation needed to parse a substring is contained entirely 
in the "names"  of a certain mlmber  of brackets to the 
left and right of the substring. No information is needed 
about  the structure of the parses associated with these 
brackets. In  languages "more complex" than  BNF,  it 
will in general be true tha t  the structures of parses outside 
of a substring will affect the parse of the substring. I t  is 
precisely this distinction tha t  separates "context  free" 
from "non-context free" languages in most  informal 
definitions of the terms. Consider, for example, a string 
from ALGOL-60 (whose parse cannot be generated from a 
B N F  grammar)  

b e g i n  B o o l e a n  i , j ; i ::= j A j 

I I L _ _ _ I  ~ , J L--J I 

V V B B B 
k _ _ _ d  I I 

VL BP 
I I k .  I 

VL BT 
I -I  k 

DEC BS 
1 4 L 

DECL STAT 
k 

STATL 

e n d  

A 

PROGRAM 

(The parse given here is not intended to conform even 
partially to the official ALGOL syntax, but  is given to 
illustrate the point at  hand as simply as possible.) 

The implication in this parse is that  the occurrences of 
i and j are given the parse [B] because the declaration 
Boolean i, j has occurred in a declaration list and tha t  they 
would be given another parse (say [I] for integer) if the 
declaration had been different. 

The information necessary to give the assignment [B] 
to i is, in fact, contained in the second bracket  to the left 
([DECL]) but  the "name"  of this bracket  is not all the 
information needed to parse the i. Ra ther  the parse of i 
depends on the detailed structure of the p a r s e  of [DECL] 
(namely, tha t  i occurs in a "variable list" after the declar- 
ator B o o l e a n .  (One may  say tha t  the occurrence of 
' A '  suffices to determine tha t  i and j must  be Boolean; 
however, one must  clearly be able to distinguish the 
types of variables independently of the local context to be 
able to observe tha t  e.g., if the ' A '  had been a 'q - '  the 
program is not parsable.) 

Let  us informally define languages such as those of 
the last example to be languages "structm'al ly connected 
in depth"  or SCD languages. There are apparent ly  ad- 
ditional classifications of complexity in languages in- 
volving perhaps the specific nature of structural  con- 
nections. Again there are languages which are not even 
parsable in the sense we have used here (for example, the 
Theorems of the Prepositional Calculus, etc.). The 
languages thus far discussed here, however, cover most  of 
those for which automatic  recognition techniques exist. 

Rather  than  continuing the a t t empt  to classify more 
and more complex language structures, we choose to de- 
vote the remainder of the paper  to a brief discussion of the 
implication for recognizers of the classification thus far 
established. In  particular, it is evident tha t  the complexity 
and efficiency of recognition techniques is closely related 
to the complexity of the languages in the sense we have 
used here. A recognizer for a SU language is little more 
than  a table lookup algorithm. Languages which are SC 
a limited number  of symbols or brackets to the left or 
right will tend to have efficient recognizers. The apparent  
great efficiency of the Bauer-Samuelson technique lies 
in the fact tha t  the restrictions imposed on the g rammar  
allow each assignment to be made once and for all (i.e. 
once an assignment is made, it is never rescinded), for a 
given string. Less restricted grammars  such as BNF,  
in particular (for a left-to-right processor) those which are 
SC several symbols or brackets to the right, require 
recognizers which make tentat ive assignments while 
parsing a string and await further developments in the 
parsing to determine whether a given assigmnent is kept  
or rejected for the complete parse. Languages which are 
SCD to the left may  require dynamic modification of 
g rammar  specifications or complicated intermediate 
tabling procedures in their recognizers (for a left to right 
recognizer). Languages which are SCD to the right may  
require multiple-pass recognizers or in fact may  not even 
have a recognizer (for example a programming language 
which is "self defining" in the sense tha t  s tatements  in 
the language may  define the syntax and semantics of 
other s tatements  which may  occur either before or after 
the defining statement) .  

In  conclusion, I believe tha t  the invention and con- 
tinued refinement of automatic  recognizers for more and 
more complex grammars,  will have a profound effect on 
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f u t u r e  p r o g r a m m i n g  l a n g u a g e s  p a r t i c u l a r l y  in  t h e  a r e a  

of s e l f -de f in ing  l a n g u a g e s ,  a n d  t h a t  i n v e s t i g a t i o n s  i n t o  

t h e s e  a r e a s  m a y  g e n e r a t e  s u b s t a n t i a l  c o n t r i b u t i o n s  t o  

s o p h i s t i c a t e d  a c t i v i t i e s  in  n a t u r a l  l a n g u a g e  m a n i p u l a t i o n s ,  

p r o b a b i l i s t i c  r e c o g n i z e r s ,  a n d  t h e  l ike.  
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D I S C U S S I O N  

• . -Ross commented  on bo th  the  Floyd and  Irons papers  wi th  a 
prepared note  ent i t led  "On Context  and Ambigui ty  in Pa r s ing . "  
This note is included in the  papers  of session 6 . . .  

Graham: The t a lk  abou t  context  is very  misleading. People 
are ta lking abou t  context  of characters  in str ings,  context  of 
syntac t ic  types in str ings,  and  mixtures  of these.  

Newell: I have an a rgument  wi th  the  goals of your work. 
Indeed  i t  seems to me t h a t  you are t ry ing  to make a connect ion 
between a simple theory  and  simple recognizers. This doesn ' t  
make any sense because we have no real s t anda rd  for a recognizer 
in the  first place. For  example, wha t  would happen  if we changed 
the  under lying memory  s t ruc ture  to an  associat ive memory? 
Then  the kinds of things t h a t  i t  would be economic to search for 
would be completely different. 

Irons: An associat ive memory could cer ta in ly  affect the  kinds 
of searching which would be reasonable.  However,  I t h ink  we 
would still  have the  same level of complexity.  

Gorn: The fac t  t h a t  Ross does not  keep syntac t ic  types in his 
trees bu t  keeps only the  operators  and  pointers  to symbols might  
increase the  speed of the  parsing.  How are n -a ry  operat ions 
handled.  

Ross: We can always represent  an n-ary  operat ion by  a s t r ing  
of b inary  operations.  

Merner: Behind wha t  you, and  Irons in the  preceding paper,  
have  presented seems to lie a t ac i t  assumpt ion t h a t  i t  is necessary 
or a t  least  desirable t h a t  pract ical  languages be syntac t ica l ly  
unambiguous.  ALGOL 60 unrevised has an in teres t ing  bu t  se- 
mant ica l ly  well-defined syntac t ic  ambigui ty  in the  source lan- 
guage : 

i f B t h e n  X e l s e  Y < Z 
If  X was a formal,  cal l -by-name pa ramete r  the  following two 
bracket ings  would occur depending on the  type  of the  ac tual  
parameter .  

X real  or i n t e g e r :  (if  B t h e n  X e l s e  Y) < Z 
X B o o l e a n :  i f  B t h e n  X e l s e  (Y < Z) 

This  obviously can be implemented  by inser t ing bo th  meanings in 
the  ta rge t  language and  select ing the  appropr ia te  meaning on the  
basis of the  type  of the  ac tual  parameter .  Are such language 
features  really a priori  undesirable  or do they  add power to the  
language ? 

Irons: I t h ink  t h a t  they add power. 
Ingerman: W h a t  is a definition of ambigui ty ,  in the  sense t h a t  

Merners  example is clearly unambiguous a t  run- t ime? If b o t h  
in te rp re ta t ions  are compiled and the  correct  one selected a t  run-  
time, then  there  is no ambigui ty  a t  compile t ime. 

Gorn: They const i tu te ,  however,  an  ambiguous selection. 
Warshall: Does, then ,  one have to have an infinite number  of 

meanings in order to admi t  t h a t  the s t a t emen t  is really ambiguous? 
Wegstein: Doesn ' t  the  parse depend on how the  s t a t e m e n t  in 

the language is to be used? For  example, the  parse of the s t r ing  
"317" would be different if the  i n t e n t  was to generate  the  s t r ing  
" th ree  hundred  and  seven teen"  t h a n  if the  i n t e n t  was to generate  
the b inary  equivalent .  

Irons: Yes, I agree. 
Cheatham: Inc identa l ly ,  I t h ink  Wegstein 's  comment  provides  

a good indicat ion of why the  UNCOL concept  is a poor one. T h a t  is, 
i t  is often difficult to specify even a parse unless one knows the  
use to which the  resul t  will be put .  The use of a s t andard  " in te r -  
mediate  language"  requires,  of course, t h a t  one is commi t ted  to a 
fixed form of language from which to generate  machine code in 
addi t ion  to a fixed parse. 

Kirsch: I t  is desirable to measure the  complexity of a lan- 
guage. I t  is difficult to measure,  however,  in terms of processors 
for the  language and whether  or no t  the  language is hard  to 
process. There  are some priori  measures which could be defined 
by  canonical  quest ions like: Does there  exist  a decision procedure 
for de te rmining  whether  or no t  a s t r ing  belongs to the  language,  
and so on? 

Irons: I t h ink  t h a t  i t  would be very  useful to be able to  
classify languages on the  basis of a measurable  complexity,  bu t  
the  measure should be the recognizer. 

Kogon: From wha t  you have said i t  appears  t h a t  you consider 
ambiguit ies  of the  type  i f  B t h e n  X e l s e  Y < Z to be useful 
and  desirable;  I therefore assume t h a t  you would also welcome 
the possibi l i ty to make the  subs t i tu t ion  of 

i f  B' t h e n  X'  e l s e  X +' for B. 
The  problem seems to be not  so much  whether  these ambigui t ies  
can be handled  bu t  r a the r  whether  they are desirable. 

The quest ion of desi rabi l i ty  seems to be l inked to the  quest ion 
of how much should a person using a language be expected or 
required to know and unde r s t and  abou t  the  procedure for the  
solution of his problem. If  you do not  insist  on precise and  detai led 
knowledge on the  pa r t  of the  programmer,  how do you jus t i fy  the  
des i rabi l i ty  or provide a language for a programmer  a t  all? 

Dijkstra: I should like to correct  one of the speaker 's  state= 
ments :  i t  has been proved t h a t  a one=pass load-and-go t r ans l a to r  
for ALGOL 60 can be made which poses no res t r ic t ion  whatsoever  
on the  re la t ive  posi t ioning of declara t ion  and  use of identifiers. 

Irons: This  mus t  lead to some real inefficiencies a t  run  time. 
Perlis: What  do people mean  by  one pass? 
Wilkes: With  a big enough memory  a lmost  any th ing  can 

appear  one-pass. 
Dijkstra: I am asking myself whe ther  the  speaker  is will ing 

to consider two languages equ iva len t  if be tween texts  from the  
different languages a one-to-one correspondence can be es tab-  
l ished in bo th  direct ions by  a mechanical  process. 

For  the  purpose of i l lus t ra t ion ,  some examples are:  (1) Wr i t ing  
wi th  black ink on a whi te  paper  versus wri t ing wi th  whi te  chalk  
on a black board.  (2) Wri t ing  the  characters  in the  reverse order. 
(3) Replacing in an ALGOL program each capi ta l  le t te r  by  a poin t  
followed by the  corresponding small  le t ter .  (4) In t roduc ing  
separate  characters  for u n a r y  plus and  minus.  (5) Pe rmut ing  all 
expressions to reverse polish. 

Holt: One can extend  this  l ist  and  ask if the s t a t emen t  of 
Fermats  Las t  Theorem is equ iva len t  to i ts proof. 

Gorn: One should no t  ask the  quest ion,  "Is language 1 equiva-  
lent  to language 2 ? ' .  Ra ther ,  one should ask, " I s  language 1 plus 
t r ans la to r  1 equ iva len t  to language 2 plus t r ans la to r  2?".  
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Backus: I would like to hear some discussion on how we can 
measure the efficiency of some of these processors. 

Perlis: One measure is the ratio of the overage number of 
instructions the compiler executes per instruction the compiler 
produces. I understand that the ratio for 220 BALGOL was 700. 

Bauer: We have found ratios of 46 to 100 depending on the 
machine used. 

Dijkstra: We are running 1000. 
Greiback: Concerning pp. 6-7ff. in IDA-CRD Working Paper 

No. 93, "An Error-correcting Parse Algorithm," the conjecture is 
correct--one can always find a BNF specification with desired 
properties. The theorem states: For every context-free psg one can 

find context-free psg whose rules are of form: Z --~ aY1, . . . ,  Y~ 
where a is a terminal symbol, Z and Y~ are nonterminal. Here one 
can link (B, a), eliminate the pointers, and the algorithm is 
almost the multiple-path analyzer of Kuno-Oettinger. Details 
can be found in my thesis, "Inverse of Phrase Structure Gener- 
ators" [Harvard Report NSF-11] and an unpublished paper, "A 
New Normalform Theorem for Phrase Structure Generators." 
The bracket ({ I) device you use is indeed an intermediate. 

Any BNF system (context-free psg) can be mechanically placed 
in this special form (which I call standard form), preserving 
ambiguities (or lack thereof). 

FORTRAN IV as a Syntax Language 
B. M. Leavenworth 

IBM Corporation, White Plains, New York t 

1. I n t r o d u c t i o n  

I t  is a generally known fact that  an algorithmic (source) 
language is defined by its processor in the sense that  
meanings of statements in that language are defined in 
terms of a target language which is produced by the 
processor [1]. The processor does not exhibit explicitly the 
syntax of this source language but rather hides the syntax 
in the details of its construction. 

There is a trend toward specifying the syntax of context- 
free programming languages by using generators or pro- 
duction schema represented in some formal symbolism 
such as Backus normal form. We believe that  it will be 
more convenient to specify the syntax of languages 
behaviorally [2] so that  a specification of this type can be 
easily converted to recognition algorithms by a suitable 
processor. 

The purpose of this paper is to show how FORTRAN IV 
can be used as a syntax language, that  is, to specify the 
syntax of a source language in a suitable form, then to 
compile these specifications as recognizers together with 
generators to synthesize a given target language. In  order 
to transform an :input string of basic symbols into a target 
string, let us define a processor (which solves this problem) 
as a set of recognizers and generators P = {R~, R2, " "  , 
R~, G~, G2, . . .  , G,~} together with some control mech- 
anism which governs the sequencing of the recognizers. 
With each Rt is associated a corresponding G~ (which 
may be null). There are two types of recognizer: (1) 
basic recognizer (recognizes basic symbols): this type is a 
recognizer either for single symbols of the input string or 
a class of symbols (such as the class of letters) ; (2) string 
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recognizer: this type is a recognizer of syntactic types 
(class names), which encompass subsets of the input 
string, as well as temporary strings which are formed in 
the course of translation. These temporary strings are 
usually created to "remember" information previously 
encountered on the input string. 

If  a0 denotes the input string and aT the target string 
then: Pa0 implies aT ~-- Gr Gq . . .  GpaT. That  is, the 
application of the processor P to a0 results in a sequence 
of generator transformations on aT (initially null). Each 
recognizer except one, called the language recognizer 
(corresponding to the root of the tree describing the source- 
language) has a unique successor determined at run time. 
This successor is a function of the t ruth value of the 
recognizer and the control mechanism. 

The syntax specification of a language implicitly de- 
termines the control flow between recognizers, and there- 
fore is the control mechanism of a syntax processor. To 
allow recognizers to call themselves recursively, a control 
pushdown must be provided which becomes part of the 
control mechanism. This type of organization allows a 
considerable amount of flexibility. For example, we can 
operate on more than one input string, shift attention 
from one tree to another, have generators call oi1 recog- 
nizers for additional information, and so forth. 

2. L a n g u a g e  P r o p e r t i e s  R e q u i r e d  for S y n t a x  T r a n s -  
l a t i o n  

If an algorithmic language can be used to specify the 
syntax of a source language, then this specification can be 
converted (compiled) into an algorithmic recognizer. Some 
of the properties required for this type of conversion are 
now discussed. 

Sequencing  of Boolean Express ions .  Assuming that  the 
language under consideration contains Boolean expres- 
sions, the type of sequencing we have in mind is the 
"optimization" described by Huskey and Wattenburg [3]. 
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