
Floyd: People are already confused about this. In fact, I saw
a report recently in which it was denied that ALGOL was a context-
free language because one has to use context to analyze it. So
maybe it's better to bring out into the open the fact that it has
two meanings.

Gorn: But while the terminology is changing, do we have to
go through the dodge that symbolic logicians have to go through
in switching bound variables--substituting other names tem-
porarily until we can return to the original names when people
have forgotten their original meanings?

Ross: I have a handout, which I will read at a later session,
which I am afraid offers still another definition for context.

Gorn: Good, the nmre the merrier. The worse the problem is
the sooner someone will do something about it. Those of you who
have had the patience to look at some of my definitions will know
that I take an even more radical view of context. We have been
talking about purely syntactic context, the surrounding characters
in a string. But from my point of view the context of an expression
is the processor that happens to be working on it at the moment.
And at that point context transcends purely syntactical questions.

"Structural Connections" in Formal Languages
E. T. Irons

Institute For Defense Analyses, Princeton, New Jersey

This paper defines the concept of "structural connection" in
a mechanical language in an attempt to classify various
formal languages according to the complexity of parsing
structures on strings in the languages. Languages discussed
vary in complexity from those with essentially no structure at
all to languages which are self-defining. The relationship be-
tween some existing recognition techniques for several language
classes is examined, as well as implications of language
structure on the complexity of automatic recognizers.

Probab ly the most popular ly accepted definition of a
context@'ee language stems f rom a definition by Chomsky
for a context-free gramlnar [1], which m a y be summarized
(though not precisely defined) as follows:

A grammar (type 0) consists of a set of product ions of
the form e - * ~ (meaning ¢ m a y be rewri t ten as ~, or ~,
generates ~), where ~ and ~ are strings formed f rom a
vocabulary B consisting of basic symbols VT, meta
variables VN and the null str ing I.

A type 1 grammar is a g rammar in which all product ions
take the form w~,w2 - -+w~w2 where g, C V, ~ ~ I,
w~, ¢, w2 are strings over V.

A type 2 (context-free) grammar is a type 1 g rammar in
which all product ions take the form ~,--+ ¢ where

C V, ¢ ¢ I, ¢, is a s tr ing over V.
A context-free language is a language all of whose

sentences are generated by a context-free grammar . (We
note tha t aside f rom minor technicalities, a set of pro-
ductions in Backus Normal F o r m form a type 2 or context-
free g rammar .)

I n a type 1 g rammar (or type 0) the neighboring
strings w~ and w2 (which of course m a y either or bo th be
null) determine whether the t ransformat ion ~ -+ ¢ is
applicable for a given example. The restriction which
defines a type 2 or context-free g rammar essentially states
tha t the rule e --~ ~ will a lways be applicable no mat te r

* Presented at a Working Conference on Mechanical Language
Structures, Princeton, N: J., August 1963, sponsored by the
Association for Computing Machinery, the Institute for Defense
Analyses, and the Business Equipment Manufacturers Associa-
tion.

what the surroundings of e may be in any particular
string. This distinction is useful for some discussions, but
the classifications of languages made here is rather too
broad to be useful in the all important matter of classifying
recognizers for various grammars. In the past few years,
several grammars and recognizers have come into being
which have significant applications in language trans-
lation and particularly in translation of formal languages
including algebraic computer languages, etc. These gram-
mars va ry in power and scope f rom Chomsky ' s type 0 to
those more restricted than type 2; ye t the distinction
between them cannot be made simply in terms of the
Chomsky classification.

We propose here to establish a classification of languages
aimed more at clarifying the distinctions between and
unifying common concepts of some existing and proposed
recognit ion techniques, t han at exhibiting mathemat ica l
properties of grammars . We shall a t t emp t to do so by
dealing with strings f rom a language and the parses of
these strings according to some (unspecified) g rammar
ra ther t han by concentra t ing on the form of the grammars
themselves. To this end, we adopt the following nota t ion:
1) for basic symbols, small roman letters, a; 2) for strings
of basic symbols, capital roman letters, A; 3) for syntact ic
categories, bracketed words [A]. We state the following
basic definitions:

1. A string A contains the string B (A ~ B) it' the
string B occm's in A or is A. (We also say B is a substring
of A) ; e.g., abc D abc ~ ab.

2. A string B is a proper substring of A if A 2 B but
A is not identical to B.

3. I f A and B are disjoint substrings of C A precedes
B (A < B) if A occurs before B in C.

4. An assignment of string A to a syntact ic category
[A] (A ~ [A]) is s imply a s ta tement t ha t A belongs to
category [A] in a given instance.

5. A parse of a string A is an ordered set of assignments
of substrings of A subject to the following restrictions:

1) Where ~ is the assignment, B C [B] and 3' is the
assignment C C [C] for all assignments 3' and ¢~ in the

Volume 7 / "Number 2 / February, 1964 C o m m u n i c a t i o n s o f t h e ACM 67

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363921.363931&domain=pdf&date_stamp=1964-02-01

parse; if B and C are disjoint, if B < C, t h e n ~ < 7
(read fl precedes ~ in the list of assignments) ; if B and C
are not disjoint, if B c C then B < % if B D C then

> % and if B = C then f~ > 7 or 7 > ~ arbitrarily.
No other assigmnents are allowed (specifically, where B
and C are not disjoint as for ab and bc in abc,
we may not have; an assignment for both ab and bc).

2) The set of assignments must contain at least one
assignment for A.

In defining a parse this way, we are essentially setting
forth a precise notation for the commonly used "parse

a b c

I I I ./

A c
L 3

D
t J

E
k J

F

Fro. 1

NOTE. Since there is no ambiguity in the diagrams, [A] is
represented by A.

diagram." For example, the diagram in Figure 1 is equiva-
lent to the parse

a E [A]

ab E [D]

c C [el

abe E [El

abe C [F]

6. We say a parse ~ is equivalent to a parse ¢ (~ = ¢J)
if the assignments comprising ¢~ are exactly those com-
prising ~ and in the same order.

7. We say a parse ~ covers a parse ~ (~ _D ~) if the
assignments of g, are among the assigmnents of ~, and
occur consecutively in ~, in the same order as in ~b. Also,
we write f D ¢ if ~ D ¢ and ,, ¢ ¢. For example, the
parse

I

A
L

b covers a

I l , I

A
I

B

8. A grammar is a set of rules for producing parses on
certain strings of basic symbols. A grammar may, for a
certain string of basic symbols, produce no parse at all,
or several parses.

9. A complete parse for a string A under a g rammar G
is a parse which is covered by no other parse of A pro-
duceable under the rules of G.

Having defined a parse, we now a t t empt to classify
certain languages and their grammars according to the
parses the grammars produce on strings in the alphabets

of the languages. Roughly speaking we intend to classify
languages according to the complexity of interaction be-
tween parses on disjoint substrings of a parsed string.
The simplest language with which we will work has no
such interactions. We would choose to call this type of
language context-free and the others of the system context-
dependent. However, since the grammars for these lan-
guages are much more restricted than Chomsky type 2
grammars we will hopefully avoid confusion by calling
our simplest class of languages "structural ly unconnected"
languages and more complicated languages "structural ly
connected".

To give a precise meaning to these terms, we define
10. A structurally unconnected (SU) language L is one

such tha t for every string A on the alphabet of L there
exists not more than 1 complete parse of A; and if there
exists 1 parse c~, then for every substring B of A there
exists not more than 1 complete parse of B (B) and
~ .

A structurally unconnected language is indeed a very
simple one. I t does have the proper ty tha t its recognizer
is very simple, since every assignment of a string is de-
termined uniquely by the string itself. An example of a
structurally unconnected language is one with the following
(B N F) grammar over the alphabet abc:

[B] : := a I biB]

[el : := c[B].

A string and its parse in this language are:

e b b b a ,

i _ _ 1

B
I

B
t 1

B
I_ I

B
t I

c

The g rammar of this example is a Chomsky type 3
grammar [1] (one in which all productions take the form
A ~ aB or A ~ a where a is a basic symbol and A and B
are single "me ta var iables") . Not all type 3 grammars ,
however, are SU. For example (using B N F notat ion) ,
the g rammar

[B] : := a Ib[B]

gives the parse

[C] : := a[B]

b

L 3

B
I 3

B
J

C

68 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 7 / N u m b e r 2 / F e b r u a r y , 1964

to the string S = aba, but the substring consisting of the
first 'a ' of S has the parse

I I

~ = B

and @ does not cover ~b.
Therefore type 3 languages are in general structurally

connected according to
11. Any language L for which a parse exists for every

string considered to be "in" the language is structurally
connected (SC) if L is not SU.

Our main interest is in classifying SC languages, since
most of the interesting languages are SC. To this end we
give:

12. A bracketed substring A of a string S (with complete
parse a) to the {left/right} of a substring B of S is (1) the
longest string {preceding/following} B in S which has a
complete parse ~ such tha t a ~ ~,; (2) if no such string
exists, then A is the symbol {preceding/following} B.

We will say tha t A is the first bracketed substring of S
after B and tha t if C is the bracketed string after A then
C is the second bracketed string after B, and so on. For
example, in

a b c d

I 2 I I L J

A B O
r 3

c

bc is the first bracketed string after a and d is the
second.

13. For every parse a of every string S on the alphabet
of language L, (1) let B be any substring of S (with parse
occurring in a) ; (2) let R be the M {symbols/bracketed

strings} to the left of B; (3) let L be the N [symbols/
bracketed strings} to the left of B; (4) let ~ and @ be the
parses of L and R (respectively) which occur in a; (5) let

be any parse of a string containing L B R such tha t
~b D (and ~ ~ ~. Then if B has no parse other than ¢~
contained in ¢, L is said to be SC N {symbols/brackets}
left and M {symbols/brackets} right, which we abbreviate
SC N {S/B}LM{S/B}R.

The essential point in 13 is to define the extent to which
symbols surrounding a string determine its parse. For a
language which is (for example) SC 5SL 5SR we are
guaranteed tha t we can give the complete parse for any
string knowing only the string and the 5 symbols on either
side of it.

As an example of one such language, the type 3 language
given by

[B] : := a] b[B]

[C] : := a[B]

f rom our earlier example is SC 1 SR 0SL or SC 1
symbol to the right. Since all parsable strings for [C] take
the form a b b b - . . b b a , (1) there exists no parse for

any string ending in b; (2) there exists at most one parse
for any string beginning with b; and (3) there exists no
parse of the initial a except ~ = a, B, and ~ is not con-
tained in any parse of ab or any string containing ab.

In fact we can state generally that : A type 3 language
(a t least as we have presented it on page 68) is SC 1 SR.

Proof. The only allowable productions of a type 3
language are of the form [A] : := a[B] or [A] :: = a where
'a ' represents a basic symbol and [A] and [B] meta vari-
ables. Therefore, the only parse for any string S = sis2. • • sn
is

S [' ' ' S n ~ [A i]

s ~ - ' - s n - 1 --~ [Aj]

or diagramatically
Sl ~ [A k]

S1 $2 ' " ' S n - 2 S n - I S n
I

L

L ~ p ~

I

L

Every substring A = Si . . .S~ (j ~ i) of S must have a
parse a of the same form. But the string B = Si . . -SjSj+I
has no parse for j < n; therefore B determines the parse
of A.

A class of grammars of considerable practical interest
today is a restricted B N F grammar described by Paul
[3, 4]. A language which can be described by such a
g rammar (e.g., most of ALGOL) can be parsed using the
Bauer-Samuelson technique on a table constructed auto-
matically from productions in Paul 's grammar. Such a
g rammar nmst evidently be classed as SC 1BL 1SR.
This can be seen by examining the Bauer-Samuelson
technique itself. In this technique, the assignments of the
parse are made according to the top two elements of a
stack of previous assignments and the next unparsed
symbol (left to right) of the string being parsed. The N
assignments of the stack are, in fact, the N bracketed
strings to the left of the unparsed string. Since assignments
are made over the string covered by the top one or two
assignments of the stack, any language parsable by this
technique must be SC 1BL 1SR at most.

For example, an SC 1BL 2SR language which
cannot be parsed by the Bauer-Samuelson technique is
given by

[A] ::= ab [D] ::= ce
[B] ::= [A]c [E] ::= b[D]
[G] ::= [B]d [G] ::= a[E]

The parses of two strings of this language are:

a b c d a b c e
I _J L - - J

A D
I , I I .I

B E
I J L J

G G

V o l u m e 7 / Number 2 / February, 1964 C o m m u n i c a t i o n s o f the ACM 69

The parse of ab is affected by the second symbol to the
right.

The most general B N F grammars are structurally
connected in such a way tha t one cannot even fix the
degree of connectedness for a specific grammar. Consider,
for example, the grammar

[S] ::= b IT] ::= b

[S] ::= x[S]x [T] ::= x[Tlx

[R] ::= p[S]

[R] ::= q[T]

In the string p x . - . x b x . - - x , the substring b has two
parses ([S] or [T]) inside all the strings x- • .xbx. • .x
which are composed of the N bracketed strings to the left
and right where N is the number of x's in the string.
Since we may have any number of x's we cannot fix the
degree of connectedness for this language.

The nature of the difference between B N F languages
and yet "more complicated" languages must lie then not
in the degree of connectedness, as we have defined it,
bu t in the nature of the connections.

I t is characteristic of all B N F grammars tha t the in-
formation needed to parse a substring is contained entirely
in the "names" of a certain mlmber of brackets to the
left and right of the substring. No information is needed
about the structure of the parses associated with these
brackets. In languages "more complex" than BNF, it
will in general be true tha t the structures of parses outside
of a substring will affect the parse of the substring. I t is
precisely this distinction tha t separates "context free"
from "non-context free" languages in most informal
definitions of the terms. Consider, for example, a string
from ALGOL-60 (whose parse cannot be generated from a
B N F grammar)

b e g i n B o o l e a n i , j ; i ::= j A j

I I L _ _ _ I ~ , J L--J I

V V B B B
k _ _ _ d I I

VL BP
I I k . I

VL BT
I -I k

DEC BS
1 4 L

DECL STAT
k

STATL

e n d

A

PROGRAM

(The parse given here is not intended to conform even
partially to the official ALGOL syntax, but is given to
illustrate the point at hand as simply as possible.)

The implication in this parse is that the occurrences of
i and j are given the parse [B] because the declaration
Boolean i, j has occurred in a declaration list and tha t they
would be given another parse (say [I] for integer) if the
declaration had been different.

The information necessary to give the assignment [B]
to i is, in fact, contained in the second bracket to the left
([DECL]) but the "name" of this bracket is not all the
information needed to parse the i. Ra ther the parse of i
depends on the detailed structure of the p a r s e of [DECL]
(namely, tha t i occurs in a "variable list" after the declar-
ator B o o l e a n . (One may say tha t the occurrence of
' A ' suffices to determine tha t i and j must be Boolean;
however, one must clearly be able to distinguish the
types of variables independently of the local context to be
able to observe tha t e.g., if the ' A ' had been a 'q - ' the
program is not parsable.)

Let us informally define languages such as those of
the last example to be languages "structm'al ly connected
in depth" or SCD languages. There are apparent ly ad-
ditional classifications of complexity in languages in-
volving perhaps the specific nature of structural con-
nections. Again there are languages which are not even
parsable in the sense we have used here (for example, the
Theorems of the Prepositional Calculus, etc.). The
languages thus far discussed here, however, cover most of
those for which automatic recognition techniques exist.

Rather than continuing the a t t empt to classify more
and more complex language structures, we choose to de-
vote the remainder of the paper to a brief discussion of the
implication for recognizers of the classification thus far
established. In particular, it is evident tha t the complexity
and efficiency of recognition techniques is closely related
to the complexity of the languages in the sense we have
used here. A recognizer for a SU language is little more
than a table lookup algorithm. Languages which are SC
a limited number of symbols or brackets to the left or
right will tend to have efficient recognizers. The apparent
great efficiency of the Bauer-Samuelson technique lies
in the fact tha t the restrictions imposed on the g rammar
allow each assignment to be made once and for all (i.e.
once an assignment is made, it is never rescinded), for a
given string. Less restricted grammars such as BNF,
in particular (for a left-to-right processor) those which are
SC several symbols or brackets to the right, require
recognizers which make tentat ive assignments while
parsing a string and await further developments in the
parsing to determine whether a given assigmnent is kept
or rejected for the complete parse. Languages which are
SCD to the left may require dynamic modification of
g rammar specifications or complicated intermediate
tabling procedures in their recognizers (for a left to right
recognizer). Languages which are SCD to the right may
require multiple-pass recognizers or in fact may not even
have a recognizer (for example a programming language
which is "self defining" in the sense tha t s tatements in
the language may define the syntax and semantics of
other s tatements which may occur either before or after
the defining statement) .

In conclusion, I believe tha t the invention and con-
tinued refinement of automatic recognizers for more and
more complex grammars, will have a profound effect on

7 0 C o m m u n i c a t i o n s o f the ACM V o l u m e 7 / N u m b e r 2 / F e b r u a r y , 1964

f u t u r e p r o g r a m m i n g l a n g u a g e s p a r t i c u l a r l y in t h e a r e a

of s e l f -de f in ing l a n g u a g e s , a n d t h a t i n v e s t i g a t i o n s i n t o

t h e s e a r e a s m a y g e n e r a t e s u b s t a n t i a l c o n t r i b u t i o n s t o

s o p h i s t i c a t e d a c t i v i t i e s in n a t u r a l l a n g u a g e m a n i p u l a t i o n s ,

p r o b a b i l i s t i c r e c o g n i z e r s , a n d t h e l ike.

R E F E R E N C E S

1. CHOMSKY, N. On cer ta in formal propert ies of grammars .
Informat. Contr. 2, 137,167.

2. - - - - . A note on phrase s t ruc ture grammars . Informat. Contr. 2,
393-395.

3. PAUL, M. A General Processor for Certain Formal Languages.
Gymbalie Languages in Data Processing, Gordon and Breach,
London 1962, pp. 65-74.

4. EICKEL, J., PAUL, M., BAUER, F. L., SAMUELSON, K. "A Syntax
Control led Genera tor of Formal Language Processors ."
Ins t . fur Ant . Math . Univ. Mainz. (September, 1962).

5. BACKU8, J. W. The syn tax and semantics of the proposed
in te rna t iona l algebraic language of the Zurich ACM-GAMM
Conference. Proc. I n t e rna t . Conference on In fo rmat ion
Processing, UNESCO, June, 1959, pp. 125-132.

6. NAUR, PETER (Ed.) Repor t on the a lgori thmic language
ALGOL 60. Comm. ACM 3 (1960), 299-314.

7. IRONS, E. T. A syntax-di rec ted compiler for ALGOL 60. Comm.
ACM 4 (1961), 51-55.

D I S C U S S I O N

• . -Ross commented on bo th the Floyd and Irons papers wi th a
prepared note ent i t led "On Context and Ambigui ty in Pa r s ing . "
This note is included in the papers of session 6 . . .

Graham: The t a lk abou t context is very misleading. People
are ta lking abou t context of characters in str ings, context of
syntac t ic types in str ings, and mixtures of these.

Newell: I have an a rgument wi th the goals of your work.
Indeed i t seems to me t h a t you are t ry ing to make a connect ion
between a simple theory and simple recognizers. This doesn ' t
make any sense because we have no real s t anda rd for a recognizer
in the first place. For example, wha t would happen if we changed
the under lying memory s t ruc ture to an associat ive memory?
Then the kinds of things t h a t i t would be economic to search for
would be completely different.

Irons: An associat ive memory could cer ta in ly affect the kinds
of searching which would be reasonable. However, I t h ink we
would still have the same level of complexity.

Gorn: The fac t t h a t Ross does not keep syntac t ic types in his
trees bu t keeps only the operators and pointers to symbols might
increase the speed of the parsing. How are n -a ry operat ions
handled.

Ross: We can always represent an n-ary operat ion by a s t r ing
of b inary operations.

Merner: Behind wha t you, and Irons in the preceding paper,
have presented seems to lie a t ac i t assumpt ion t h a t i t is necessary
or a t least desirable t h a t pract ical languages be syntac t ica l ly
unambiguous. ALGOL 60 unrevised has an in teres t ing bu t se-
mant ica l ly well-defined syntac t ic ambigui ty in the source lan-
guage :

i f B t h e n X e l s e Y < Z
If X was a formal, cal l -by-name pa ramete r the following two
bracket ings would occur depending on the type of the ac tual
parameter .

X real or i n t e g e r : (if B t h e n X e l s e Y) < Z
X B o o l e a n : i f B t h e n X e l s e (Y < Z)

This obviously can be implemented by inser t ing bo th meanings in
the ta rge t language and select ing the appropr ia te meaning on the
basis of the type of the ac tual parameter . Are such language
features really a priori undesirable or do they add power to the
language ?

Irons: I t h ink t h a t they add power.
Ingerman: W h a t is a definition of ambigui ty , in the sense t h a t

Merners example is clearly unambiguous a t run- t ime? If b o t h
in te rp re ta t ions are compiled and the correct one selected a t run-
time, then there is no ambigui ty a t compile t ime.

Gorn: They const i tu te , however, an ambiguous selection.
Warshall: Does, then , one have to have an infinite number of

meanings in order to admi t t h a t the s t a t emen t is really ambiguous?
Wegstein: Doesn ' t the parse depend on how the s t a t e m e n t in

the language is to be used? For example, the parse of the s t r ing
"317" would be different if the i n t e n t was to generate the s t r ing
" th ree hundred and seven teen" t h a n if the i n t e n t was to generate
the b inary equivalent .

Irons: Yes, I agree.
Cheatham: Inc identa l ly , I t h ink Wegstein 's comment provides

a good indicat ion of why the UNCOL concept is a poor one. T h a t is,
i t is often difficult to specify even a parse unless one knows the
use to which the resul t will be put . The use of a s t andard " in te r -
mediate language" requires, of course, t h a t one is commi t ted to a
fixed form of language from which to generate machine code in
addi t ion to a fixed parse.

Kirsch: I t is desirable to measure the complexity of a lan-
guage. I t is difficult to measure, however, in terms of processors
for the language and whether or no t the language is hard to
process. There are some priori measures which could be defined
by canonical quest ions like: Does there exist a decision procedure
for de te rmining whether or no t a s t r ing belongs to the language,
and so on?

Irons: I t h ink t h a t i t would be very useful to be able to
classify languages on the basis of a measurable complexity, bu t
the measure should be the recognizer.

Kogon: From wha t you have said i t appears t h a t you consider
ambiguit ies of the type i f B t h e n X e l s e Y < Z to be useful
and desirable; I therefore assume t h a t you would also welcome
the possibi l i ty to make the subs t i tu t ion of

i f B' t h e n X' e l s e X +' for B.
The problem seems to be not so much whether these ambigui t ies
can be handled bu t r a the r whether they are desirable.

The quest ion of desi rabi l i ty seems to be l inked to the quest ion
of how much should a person using a language be expected or
required to know and unde r s t and abou t the procedure for the
solution of his problem. If you do not insist on precise and detai led
knowledge on the pa r t of the programmer, how do you jus t i fy the
des i rabi l i ty or provide a language for a programmer a t all?

Dijkstra: I should like to correct one of the speaker 's state=
ments : i t has been proved t h a t a one=pass load-and-go t r ans l a to r
for ALGOL 60 can be made which poses no res t r ic t ion whatsoever
on the re la t ive posi t ioning of declara t ion and use of identifiers.

Irons: This mus t lead to some real inefficiencies a t run time.
Perlis: What do people mean by one pass?
Wilkes: With a big enough memory a lmost any th ing can

appear one-pass.
Dijkstra: I am asking myself whe ther the speaker is will ing

to consider two languages equ iva len t if be tween texts from the
different languages a one-to-one correspondence can be es tab-
l ished in bo th direct ions by a mechanical process.

For the purpose of i l lus t ra t ion , some examples are: (1) Wr i t ing
wi th black ink on a whi te paper versus wri t ing wi th whi te chalk
on a black board. (2) Wri t ing the characters in the reverse order.
(3) Replacing in an ALGOL program each capi ta l le t te r by a poin t
followed by the corresponding small le t ter . (4) In t roduc ing
separate characters for u n a r y plus and minus. (5) Pe rmut ing all
expressions to reverse polish.

Holt: One can extend this l ist and ask if the s t a t emen t of
Fermats Las t Theorem is equ iva len t to i ts proof.

Gorn: One should no t ask the quest ion, "Is language 1 equiva-
lent to language 2 ? ' . Ra ther , one should ask, " I s language 1 plus
t r ans la to r 1 equ iva len t to language 2 plus t r ans la to r 2?".

V o l u m e 7 / N u m b e r 2 / F e b r u a r y , 1964 C o m m u n i c a t i o n s o f t h e ACM '71.

Backus: I would like to hear some discussion on how we can
measure the efficiency of some of these processors.

Perlis: One measure is the ratio of the overage number of
instructions the compiler executes per instruction the compiler
produces. I understand that the ratio for 220 BALGOL was 700.

Bauer: We have found ratios of 46 to 100 depending on the
machine used.

Dijkstra: We are running 1000.
Greiback: Concerning pp. 6-7ff. in IDA-CRD Working Paper

No. 93, "An Error-correcting Parse Algorithm," the conjecture is
correct--one can always find a BNF specification with desired
properties. The theorem states: For every context-free psg one can

find context-free psg whose rules are of form: Z --~ aY1, . . . , Y~
where a is a terminal symbol, Z and Y~ are nonterminal. Here one
can link (B, a), eliminate the pointers, and the algorithm is
almost the multiple-path analyzer of Kuno-Oettinger. Details
can be found in my thesis, "Inverse of Phrase Structure Gener-
ators" [Harvard Report NSF-11] and an unpublished paper, "A
New Normalform Theorem for Phrase Structure Generators."
The bracket ({ I) device you use is indeed an intermediate.

Any BNF system (context-free psg) can be mechanically placed
in this special form (which I call standard form), preserving
ambiguities (or lack thereof).

FORTRAN IV as a Syntax Language
B. M. Leavenworth

IBM Corporation, White Plains, New York t

1. I n t r o d u c t i o n

I t is a generally known fact that an algorithmic (source)
language is defined by its processor in the sense that
meanings of statements in that language are defined in
terms of a target language which is produced by the
processor [1]. The processor does not exhibit explicitly the
syntax of this source language but rather hides the syntax
in the details of its construction.

There is a trend toward specifying the syntax of context-
free programming languages by using generators or pro-
duction schema represented in some formal symbolism
such as Backus normal form. We believe that it will be
more convenient to specify the syntax of languages
behaviorally [2] so that a specification of this type can be
easily converted to recognition algorithms by a suitable
processor.

The purpose of this paper is to show how FORTRAN IV
can be used as a syntax language, that is, to specify the
syntax of a source language in a suitable form, then to
compile these specifications as recognizers together with
generators to synthesize a given target language. In order
to transform an :input string of basic symbols into a target
string, let us define a processor (which solves this problem)
as a set of recognizers and generators P = {R~, R2, " " ,
R~, G~, G2, . . . , G,~} together with some control mech-
anism which governs the sequencing of the recognizers.
With each Rt is associated a corresponding G~ (which
may be null). There are two types of recognizer: (1)
basic recognizer (recognizes basic symbols): this type is a
recognizer either for single symbols of the input string or
a class of symbols (such as the class of letters) ; (2) string

* Presented at ~ Working Conference on Mechanical Language
Structures, Princeton, N. J., August 1963, sponsored by the
Association for Computing Machinery, the Institute for Defense
Analyses, and the Business Equipment Manufacturers Associ-
ation.

t" Present Address: Advanced Systems Development Division,
International Business Machines Corp., Yorktown Heights, N.Y.

recognizer: this type is a recognizer of syntactic types
(class names), which encompass subsets of the input
string, as well as temporary strings which are formed in
the course of translation. These temporary strings are
usually created to "remember" information previously
encountered on the input string.

If a0 denotes the input string and aT the target string
then: Pa0 implies aT ~-- Gr Gq . . . GpaT. That is, the
application of the processor P to a0 results in a sequence
of generator transformations on aT (initially null). Each
recognizer except one, called the language recognizer
(corresponding to the root of the tree describing the source-
language) has a unique successor determined at run time.
This successor is a function of the t ruth value of the
recognizer and the control mechanism.

The syntax specification of a language implicitly de-
termines the control flow between recognizers, and there-
fore is the control mechanism of a syntax processor. To
allow recognizers to call themselves recursively, a control
pushdown must be provided which becomes part of the
control mechanism. This type of organization allows a
considerable amount of flexibility. For example, we can
operate on more than one input string, shift attention
from one tree to another, have generators call oi1 recog-
nizers for additional information, and so forth.

2. L a n g u a g e P r o p e r t i e s R e q u i r e d for S y n t a x T r a n s -
l a t i o n

If an algorithmic language can be used to specify the
syntax of a source language, then this specification can be
converted (compiled) into an algorithmic recognizer. Some
of the properties required for this type of conversion are
now discussed.

Sequencing of Boolean Express ions . Assuming that the
language under consideration contains Boolean expres-
sions, the type of sequencing we have in mind is the
"optimization" described by Huskey and Wattenburg [3].

72 Communications of the ACM Volume 7 / Number 2 / February, 1964

