
algorithm ot [3, 4] when cast in Algorithmic-Theory-of-
Language terms, as is shown in Figure 2. (The detection of
unary minus corresponds to Floyd's note on his Production
7.) Therefore, whether these various views of context
dependency coincide or not is as yet undecided.

The "SCIBL2SR language which cannot be parsed by
the Bauer-Samelson technique" which Irons gives is an
elegant little exercise of the algorithm of Figure 1. The
Like Matrix and two parsings are given in Figure 3. The
algorithm starts generating the "abce" parsing but if d
occurs instead of e, the structure is meticulously unwound
to the proper form. However, here again, since the al-
gorithm would behave the same for longer strings of the
same form, I would classify all such languages together.

Further questions on correspondence of viewpoints
arise in Irons ' next examples. I t appears tha t the b in
"px • • • xbx • • • x" can only be an [S], with the given rules.
In the next example of a "string from ALGOL 60" which he
uses to illustrate his SCD languages, the fact tha t " the
'name ' of the bracket is not all the information needed to
parse i" illustrates the need to t reat " t ype" information
separately from metaterms such as are used in BNF.

But since the type computat ion is an integral par t of [3]
and Figure 1, it seems tha t the SCD concept should ac-
tually apply to something other than this one example of
declared type, and probably is closely related to what I
refer to as "full context dependency," in which the type
computat ion depends on the detailed parsing of the left
or right context and not merely on the type assigned there
by a previous type computation.

In any case it is clear tha t there is much to be discussed
and learned about regarding context dependency. I hope
tha t this informal note will contribute to a stimulating
session at the workshop.

R E F E R E N C E S

1. FLOYD, R. W. Bounded context syn tac t ic analysis . Paper ,
ACM Mechanical Languages Workshop, August 1963.

2. IRONS, E. T. S t ruc tura l connect ions ' in formal languages.
Paper , ACM Mechanical Languages Workshop, August 1963.

3. Ross , D. T. An algori thmic theory of language. Repor t
ESL-TM-156, Elect ronic Systems Lab. , MIT , Nov. 1962. To
be publ ished in J. ACM.

4. Ross , D. T., AND RODRIGUEZ, J . E . Theoret ica l foundat ions
for the computer-a ided design system. Proc. Spring Joint.
Comput . Conf., AFIPS Vol. 23, pp. 305-322, May 1963.

Summary Remarks
By S. Gorn

The topics began wi th discussion of a lmost exclusively syn-
tact ic analysis and methods. Beginning wi th context-free phrase-
s t ruc ture languages, we considered l imi ta t ions thereof to remove
generat ive syntact ic ambiguit ies (Floyd), and extensions there to
to introduce nmre context-dependence (Rose). As the conference
proceeded we ran th rough a spec t rum of considerat ions in which
the expressions in the languages considered were examined less
and less as meaningless objects (the formal, or purely syntac t ic
approach, as in the paper by Steel) and required more and nmre
meaningful in terpre ta t ions . In other words, we became more and
more involved wi th semant ic considerat ions. I t is clear, then , t h a t
applicat ions of the s tudy of mechanical languages to program-
ruing mus t involve semantic quest ions; ADD mus t mean something
more t h a n the concatena t ion of three (not two) characters . The
papers beyond Session 1 were therefore discussing the mechaniza-
t ion of semantics, bu t in only one case did we hear abou t the
formalizat ion (and hence mechanizat ion) of the specification of
the semantics of a hmguage (McCar thy) .

We don ' t even have a formal or mechanical way to handle
general syntact ic analysis, bu t we nevertheless recognize t h a t
such a goal, impor t an t though i t may be, is not enough. We are
mechanizing semant ic analysis every day on machines , and we
mus t learn to mechanize the specification of semantics and the
analysis of semant ic s t ructure . The papers by Irons, Leavenwor th ,
Iverson and Brooker were direct ly concerned wi th the t r ans la t ion
of expressions which were not meaningless bu t had semant ic con-
ten t , wi th points of view vary ing from formalistic, t h rough in-
te rpre t ive , to precompiling.

All th rough the conference, for the major i ty of us, there was
something else besides syn tax and semantics which was in the
back of our minds. This was the operat ing env i ronment of the
language or class of languages we were discussing, the background
machine, if you will. I submi t t h a t even if we specify an abs t rac t
language, s t a t ing t h a t there is no par t icular machine which in-

t e rpre t s it, we still have in mind an idealized machine; and th is
idealized machine should be specified along wi th the language,
not merely to i l lus t ra te the syntac t ic and semant ic synthesis and
analysis of the l inguistic expressions, bu t also to indicate the se-
quencing of in te rpre ta t ion , the direct ion of scan, the de te rmina-
t ion of scopes, the manner of referencing, naming, a l locat ion of
storage, selection of appropr ia te in te rpre ta t ion , etc. These are
funct ions which belong to the control of the background machine
in i ts control counters, ins t ruc t ion registers, order- type decoders,
address selectors, or even pushdown controllers, index registers,
storage allocators, subprocessor schedulers, subprocessor l inkers
and assemblers, converters , etc. I s t a t ed early in the conference
t h a t I am one of those extremists who feel t h a t i t is impossible
to separate a language fronl i ts in te rp re t ing machine. The rela-
t ionship between the symbols and the i r in te rpre ters is the subjec t
m a t t e r of "p ragma t i c s . " We mus t also look explicit ly at prag-
mat ics as well as at syntac t ics and semantics .

The other papers presented (Perlis, Lombardi , Allard, I t tu -
riaga, and Ross) were looking more direct ly at the pragmat ic
questions, and the main flavor of all the discussions was pragmat ic .
These papers and discussions refused to ignore the machine en-
v i ronment itself, and faced problems of fo rmat control , da ta
expression, control of da ta flow, etc. Some of these "cont ro l
level" languages were very simple, bu t never theless went beyond
purely syntactic and semantic questions; for example, it was here
that questions of efficiency first became relevant.

The mininmm pragmatic requirements of mechanical languages
designed for the purpose of specifying mechanical languages
would be such interpreters (symbol manipulation functions) as
character recognizers, concatenators and deconeatenators (i.e.
double registers for shifting), counters, comparators, generators
and recognizers of cleared registers (the "null" language), se-
quencers, storers, storage identifiers, generators and recognizers
and selectors of storage identifiers (corresponding to the address

V o l u m e 7 / N u m b e r 2 / F e b r u a r y , 1964 C o m m u n i c a t i o n s of t h e ACM 133

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363921.363946&domain=pdf&date_stamp=1964-02-01

selectors in our everyday machines) , generators and recognizers
and selectors of processor identifiers (e.g. procedures in ALGOL).
Moreover, we would want, the processor identifiers to be a subset
of the storage identifiers, to be able to recognize when an identifier
is ident i fy ing a processor, and to be able to t ransform a storage
identifier into a processor identifier (as in a programmed switch;
this is a pragmat ic effecl; par excellence), and vice versa. The
background machine mus t therefore have a naming operator and
an execution operator (as has been remarked in the pas t by
Dij kstra) .

I t is clear, then, t h a t to have a specification language for lan-
guages the background machine is equivalent to a big machine,
wi th many features not di rect ly avai lable on our present machines.
For efficiency's sake we would even want to be able to specify
s imul taneous act ions (as in Allard 's paper) , synchronizat ion, and
schedul ing calls (as in Lombard i ' s paper) , and a var ie ty of pr ior i ty
control l ing subprocessors. As yet we do not even have a good
programming language to specify calls for s imul taneous actions,
a l though the background hardware of exist ing machines do jus t
this , for m a n y gates, every microsecond, and machines like the
6600 will require it.

Backing up from specification of pragmat ics to mere specifica-
t ion of semantics, M c C a r t h y has suggested "dec lara t ions of
mean ing . " I believe it is also possible to specify meanings in a
language by programming, jus t as we program the meaning of a
procedure. I t seems to me t h a t much of the semant ic i n t en t in
AL6oL could have been specified in other t h a n na tu ra l language
and t h a t the failure to do so caused confusion. The point is t h a t
of ten semant ic specification for an object language can be a t t a ined
by mechanizing the syntax language and programming operat ions
in this syntax language. For example, in ALGOL, beginning at
charac ter level, we can specify the "object-level" sublanguage
in the recursive phrase s t ruc ture manner provided by Backus
normal form to conta in identifiers, labels, numbers , etc. The next
level sublanguage of ALGOL would contain "express ions" wi th
" command cha rac t e r s " like " + " in them. The syn tax of "+"
would be the same as s ta ted in the AS~OL repor t bu t the semantics

of " + " could be given by providing an addi t ion table for the
pr imi t ive semantics of "a + b" when a and b are digits, and then
by present ing a procedure in the specifying syn tax language,
which procedure would be the necessary s t r ing manipu la t ion on
arabic numerals which does table- lookup and carrying. This
procedure, specified in the syntax language mechanized for pro-
gramming, is the "meaning" of the expression "a + b" in the
object language. If we were to take the t rouble to give such a
mechanical specification of the semantics of ALGOb, we would soon
find t h a t ALGOL has a th i rd level, the control level, to specify not
only the semantics of such sequencing controls as go to , i f , and
for , which operate on the semantics of labels, bu t also the se-
mant ics of type declarat ions and the block s t ruc ture itself. The
declarat ions are real ly se t t ing the stage for the compiler to do
storage al locat ion and therefore involve the control of t h a t
vague ly impl ied backgroundmach ine . In short , ALGOL should have
been specified as a h ie rarchy of object languages (characters;
words such as labels, identifiers and numbers ; phrases such as
expressions, procedures, etc.; clauses involving if , t h e n , e lse ,
for , etc.; sentences involving go to , :=, procedure calls, etc.;
pa ragraphs such as blocks, etc.) which is embedded in a syn tax
language itself conta in ing two other levels: the " c o m m a n d "
level, and the " c o n t r o l " level. In such a s t ruc ture , syntax, se-
mant ics and pragmant ies can all be mechanica l ly specified.

Such a mechanized ins t rument in a declara t ive form (a "de-
sc r ip t ive" syntax) r a the r t h a n a command form, is what is needed
to prove the t r u t h of propert ies of the specified languages, or to
prove t h a t processors we design actual ly do what we claim them
to do. I t is jus t this type of i n s t rumen t t h a t McCar thy presents .

We can therefore expect t h a t wi th in the next few years, before
we call ano ther conference on this subject , there will be more
work in the mechaniza t ion of more general types cf syn tac t i c
control , of semant ic control , and of p ragmat ic control.

Comments and quest ions are now in order which e i ther sum-
marize and predict , as I have jus t done, or criticize such summary
a t t i tudes , or compare several papers we have heard, or discuss
the papers in groups.

General
Evans: A lot has been said abou t how to define semant ics , bu t

there is one aspect of the problem hard ly discussed which I t h ink
is real ly a crucial pa r t and t h a t is (the aspect) of control . Now I
address myself to one specific problem: W h a t is the semant ics of
a procedure call in ALGOL admi t t i ng pa ramete r s by name? I do
not t h i n k t h a t anyone has the foggiest idea how to express this
in any kind of a formal ism whatsoever .

Irons: I t h i n k t h a t this quest ion of semant ics is being over-
worked. In order to describe a l anguage - -any l anguage- -you
have to have ano ther language to use as some i n s t r u m e n t by means
of which to convey informat ion . One way of specifying the seman-
tics, as has been pointed out t ime and t ime again, is to write
compilers. Then the semant ics are specified by a program on a
machine all the way down to the molecules which move inside the
t rans is tors . You will say t h a t I am using the machine language,
and I am using a cer ta in hardware configurat ion to define the
language I am ta lk ing about . Nonformal methods do this ; I ' v e
done i t myself. Formal no ta t ions have been developed for doing
it. The only th ing is, t h a t you mus t have a language to use to
describe the other l anguage - - the one you are t ry ing to describe,
and i t should be simple enough so t h a t i t is easily unders tood by
people who look a t it. If you insist you need hardware to do this ,
t hen you have it, t ime and t ime again. If you insist on something
else, t hen you have simply done more and given more meaning
to it.

Gorn: An example is Gilmore 's machine which he explicit ly
describes, even though i t is an ideal machine, in LisP-like lan-
guage.

Discussion
Evans: Well, you have a language t h a t describes itself, namely

"Eng l i sh , " which does this .
Gorn: However, I t h i n k t h a t if you want a language to define

the meaning of something i t has to define i t in terms of something
else which a l ready has meaning. So you have to have semant ics
to get semantics . In every case this means some machine in the
background because t h a t is where something happens which means
something.

Bauer: We never can get rid of this, and i t means t h a t we mus t
real ly come to some level t h a t we can easily agree upon.

Gorn: I t may be a very simple machine, however.
McCarthy: Well, I t h i n k t h a t t h a t which has been pointed

out has been pointed out incorrect ly, and t h a t to describe seman-
t ics by means of a t r ans la t ion rule is an incorrect th ing to do.
You use a language to describe semantics . Now different th ings
have different and appropr ia te semantics . If I res t r ic t myself to
the quest ion of terms, the semant ics of the t e rm is its value; the
semant ics of a program, however, is highly complex: the s ta te of
something or other. Now another quest ion arises: Wha t do you
mean in te rms of your descript ion? I t is not clear t h a t you should
know what i t means, in the sense t h a t a t r ans la t ion in to these
te rms is a mere in tu i t ive th ing, bu t the language you use for mak-
ing the descr ipt ion should have some formal propert ies . Only then
can you do some mathemat ics wi th it.

However, I raised my hand in answer to E v a n s ' quest ion as
to how to describe the semant ics of procedure calls, and this has
something to do wi th the remark t h a t I made ea r l i e r - - t ha t re-
quired considerable good wi l l - - to accept my definit ion of the c o r -

134 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 7 / N u m h e r 2 / F e b r u a r y , 1964

