algorithm of [3, 4] when cast in Algorithmic-Theory-of-
Language terms, as is shown in Figure 2. (The detection of
unary minus corresponds to Iloyd’s note on his Production
7.) Therefore, whether these various views of context
dependency coincide or not is as yet undecided.

The “SC1BL2SR language which cannot be parsed by
the Bauer-Samelson technique” which Irons gives is an
elegant little exercise of the algorithm of Figure 1. The
Like Matrix and two parsings are given in Figure 3. The
algorithm starts generating the ‘“‘abce” parsing but if d
occurs instead of e, the structure is meticulously unwound
to the proper form. However, here again, since the al-
gorithm would behave the same for longer strings of the
same form, I would classify all such languages together.

Further questions on correspondence of viewpoints
arise in Irons’ next examples. It appears that the b in
“px - -+ xbx - -+ x”” can only be an [S], with the given rules.
In the next example of a “string from ArcoL 60" which he
uses to illustrate his SCD languages, the fact that “the
‘name’ of the bracket is not all the information needed to
parse 1” illustrates the need to treat “type’” information
separately from metaterms such as are used in BNF.

But since the type computation is an integral part of [3]
and Figure 1, it seems that the SCD concept should ac-
tually apply to something other than this one example of
declared type, and probably is closely related to what I
refer to as “full context dependency,” in which the type
computation depends on the detailed parsing of the left
or right context and not merely on the type assigned there
by a previous type computation.

In any case it is clear that there is much to be discussed
and learned about regarding context dependency. I hope
that this informal note will contribute to a stimulating
session at the workshop.

REFERENCES

1. Froyp, R. W. Bounded context syntactic analysis.
ACM Mechanical Languages Workshop, August 1963.

2. Irons, E. T. Structural connections’ in formal languages.
Paper, ACM Mechanical Languages Workshop, August 1963.

3. Ross, D. T. An algorithmic theory of language. Report
ESL-TM-156, Electronic Systems Lab., MIT, Nov. 1962. To
be published in J. ACM.

4. Ross, D. T., anp Robricurz, J. E. Theoretical foundations
for the computer-aided design system. Proc. Spring Joint
Comput. Conf., AFIPS Vol. 23, pp. 305-322, May 1963.

Paper,

Summary Remarks
By S. Gorn

The topics began with discussion of almost exclusively syn-
tactic analysis and methods. Beginning with context-free phrase-
structure languages, we considered limitations thereof to remove
generative syntactic ambiguities (Floyd), and extensions thereto
to introduce more context-dependence (Rose). As the conference
proceeded we ran through a spectrum of considerations in which
the expressions in the languages considered were examined less
and less as meaningless objects (the formal, or purely syntactic
approach, as in the paper by Steel) and required more and more
meaningful interpretations. In other words, we became more and
more involved with semantic considerations. It is clear, then, that
applications of the study of mechanical languages to program-
ming must involve semantic questions; App must mean something
more than the concatenation of three (not two) characters. The
papers beyond Session 1 were therefore discussing the mechaniza-
tion of semantics, but in only one case did we hear about the
formalization (and hence mechanization) of the specification of
the semantics of a language (McCarthy).

We don’t even have a formal or mechanical way to handle
general syntactic analysis, but we nevertheless recognize that
such a goal, important though it may be, is not enough. We are
mechanizing semantic analysis every day on machines, and we
must learn to mechanize the specification of semantics and the
analysis of semantic structure. The papers by Irons, Leavenworth,
Iverson and Brooker were directly concerned with the translation
of expressions which were not meaningless but had semantie con-
tent, with points of view varying from formalistie, through in-
terpretive, to precompiling.

All through the conference, for the majority of us, there was
something else besides syntax and semantics which was in the
back of our minds. This was the operating environment of the
language or class of languages we were discussing, the background
machine, if you will. T submit that even if we specify an abstract
language, stating that there is no particular machine which in-

Volume 7 / Number 2 / February, 1964

terprets it, we still have in mind an idealized machine; and this
idealized machine should be specified along with the language,
not merely to illustrate the syntactic and semantic synthesis and
analysis of the linguistic expressions, but also to indicate the se-
quencing of interpretation, the direction of scan, the determina-
tion of scopes, the manner of referencing, naming, allocation of
storage, selection of appropriate interpretation, etc. These are
functions which belong to the control of the background machine
in its control counters, instruction registers, order-type decoders,
address selectors, or even pushdown controllers, index registers,
storage allocators, subprocessor schedulers, subprocessor linkers
and assemblers, converters, ete. I stated early in the conference
that I am one of those extremists who feel that it is impossible
to separate a language from its interpreting machine. The rela-
tionship between the symbols and their interpreters is the subject
matter of ‘“‘pragmatics.”” We must also look explicitly at prag-
matics as well as at syntactics and semantics.

The other papers presented (Perlis, Lombardi, Allard, Ittu-
riaga, and Ross) were looking more directly at the pragmatic
questions, and the main flavor of all the discussions was pragmatic.
These papers and discussions refused to ignore the machine en-
vironment itself, and faced problems of format control, data
expression, control of data flow, etc. Some of these ‘“‘control
level’” languages were very simple, but nevertheless went beyond
purely syntactic and semantic questions; for example, it was here
that questions of efficiency first became relevant.

The minimum pragmatic requirements of mechanical languages
designed for the purpose of specifying mechanical languages
would be such interpreters (symbol manipulation functions) as
character recognizers, concatenators and deconcatenators (i.e.
double registers for shifting), counters, comparators, generators
and recognizers of cleared registers (the ‘“null”’ language), se-
quencers, storers, storage identifiers, generators and recognizers
and selectors of storage identifiers (corresponding to the address

Communications of the ACM 133


http://crossmark.crossref.org/dialog/?doi=10.1145%2F363921.363946&domain=pdf&date_stamp=1964-02-01

selectors in our everyday machines), generators and recognizers
and selectors of processor identifiers (e.g. procedures in ALGOL).
Moreover, we would want the processor identifiers to be a subset
of the storage identifiers, to be able to recognize when an identifier
is identifying a processor, and to be able to transform a storage
identifier into a processor identifier (as in a programmed switch;
this is a pragmatic effect par excellence), and vice versa. The
background machine must therefore have a naming operator and
an execution operator (as has been remarked in the past by
Dijkstra).

It is clear, then, that to have a specification language for lan-
guages the background machine is equivalent to a big machine,
with many features not directly available on our present machines.
For efficiency’s sake we would even want to be able to specify
simultaneous actions (as in Allard’s paper), synchronization, and
scheduling calls (as in Lombardi’s paper), and a variety of priority
controlling subprocessors. As yet we do not even have a good
programming language to specify calls for simultaneous actions,
although the background hardware of existing machines do just
this, for many gates, every microsecond, and machines like the
6600 will require it.

Backing up from specification of pragmatics to mere specifica-
tion of semantics, McCarthy has suggested *‘‘declarations of
meaning.”’ I believe it is also possible to specify meanings in a
language by programming, just as we program the meaning of a
procedure. It seems to me that much of the semantic intent in
AnGorn could have been specified in other than natural language
and that the failure to do so caused confusion. The point is that
often semantic specification for an object language can be attained
by mechanizing the syntax language and programming operations
in this syntax language. For example, in ALGOL, beginning at
character level, we can specify the ‘“‘object-level’”’ sublanguage
in the recursive phrase structure manner provided by Backus
normal form to contain identifiers, labels, numbers, etc. The next
level sublanguage of Ancorn would contain “‘expressions’ with
“‘command characters’” like “+’’ in them. The syntax of 4"’
would be the same as stated in the ALgoL report but the semantics

General

Evans: A lot has been said about how to define semantics, but
there is one aspect of the problem hardly discussed which I think
is really a crucial part and that is (the aspect) of control. Now I
address myself to one specific problem: What is the semantics of
a procedure call in Arcor admitting parameters by name? I do
not think that anyone has the foggiest idea how to express this
in any kind of a formalism whatsoever.

Irons: I think that this question of semantics is being over-
worked. In order to describe a language—any language—you
bave to have another language to use as some instrument by means
of which to convey information. One way of specifying the seman-
tics, as has been pointed out time and time again, is to write
compilers. Then the semantics are specified by a program on a
machine all the way down to the molecules which move inside the
transistors. You will say that I am using the machine language,
and I am using a certain hardware configuration to define the
language I am talking about. Nonformal methods do this; I've
done it myself. Formal notations have been developed for doing
it. The only thing is, that you must have a language to use to
describe the other language—the one you are trying to describe,
and it should be simple enough so that it is easily understood by
people who look at it. If you insist you need hardware to do this,
then you have it, time and time again. If you insist on something
else, then you have simply done more and given more meaning
to it.

Gorn: An example is Gilmore’s machine which he explicitly
describes, even though it is an ideal machine, in Lisp-like lan-
guage.

134 Communications of the ACM

of “4’* could be given by providing an addition table for the
primitive semantics of “‘a -+ b”> when a and b are digits, and then
by presenting a procedure in the specifying syntax language,
which procedure would be the necessary string manipulation on
arabic numerals which does table-lookup and carrying. This
procedure, specified in the syntax language mechanized for pro-
gramming, is the ‘“meaning” of the expression ‘@ 4 b’ in the
object language. If we were to take the trouble to give such a
mechanical specification of the semantics of ALcor, we would soon
find that Avcor has a third level, the control level, to specify not
only the semantics of such sequencing controls as go to, if, and
for, which operate on the semantics of labels, but also the se-
mantics of type declarations and the block structure itself. The
declarations are really setting the stage for the compiler to do
storage allocation and therefore involve the control of that
vaguely implied background machine. In short, Argor should have
been specified as a hierarchy of object languages (characters;
words such as labels, identifiers and numbers; phrases such as
expressions, procedures, etec.; clauses involving if, then, else,
for, ete.; sentences involving go to, :=, procedure calls, etc.;
paragraphs such as blocks, etc.) which is embedded in a syntax
language itself containing two other levels: the ‘‘command’”
level, and the ‘“‘control”” level. In such a structure, syntax, se-
mantics and pragmantics can all be mechanically specified.

Such a mechanized instrument in a declarative form (a ‘“‘de-
seriptive’” syntax) rather than a command form, is what is needed
to prove the truth of properties of the specified languages, or to
prove that processors we design actually do what we claim them
to do. It is just this type of instrument that McCarthy presents.

We can therefore expect that within the next few years, before
we call another conference on this subject, there will be more
work in the mechanization of more general types ¢f syntactic
control, of semantic control, and of pragmatic control.

Comments and questions are now in order which either sum-
marize and predict, as I have just done, or criticize such summary
attitudes, or compare several papers we have heard, or discuss
the papers in groups.

Discussion

Evans: Well, you have a language that describes itself, namely
“English,” which does this.

Gorn: However, I think that if you want a language to define
the meaning of something it has to define it in terms of something
else which already has meaning. So you have to have semantics
to get semantics. In every case this means some machine in the
background because that is where something happens which means
something.

Bauer: We never can get rid of this, and it means that we must
really come to some level that we can easily agree upon.

Gorn: Tt may be a very simple machine, however.

McCarthy: Well, T think that that which has been pointed
out has been pointed out incorrectly, and that to describe seman-
tics by means of a translation rule is an incorrect thing to do.
You use a language to describe semantics. Now different things
have different and appropriate semanties. If I restrict myself to
the question of terms, the semantics of the term is its value; the
semantics of a program, however, is highly complex: the state of
something or other. Now another question arises: What do you
mean in terms of your description? It is not clear that you should
know what it means, in the sense that a translation into these
terms is a mere intuitive thing, but the language you use for mak-
ing the description should have some formal properties. Only then
can you do some mathematics with it.

However, I raised my hand in answer to Evans’ question as
to how to describe the semantics of procedure calls, and this has
something to do with the remark that I made earlier—that re-
quired considerable good will—to accept my definition of the cor-

Volume 7 / Number 2 / February, 1964



: ess of & compiler. I think that one can hint at what is meant
.ﬁcu;le semantics of a procedure call and this is in terms of the
by b of the procedure call on the state vector, namely: Where is

uter now? Well, it is in a procedure which has been called
¢ with the following parameters so that the state of oper-

. AveoL under this procedure is involved. I think if one wants
Dt”ngmplete this description of the semantics of ALgow then one
to c:o complete a description of the current state of the Arnaon

am.

PrOBEZ rge: 1am going to address myself to the question of Evans,
mely: What is the meaning of a procedure call (call by name,

fits

value, etc.). Suppose you consider: Evaluating a procedure
oa“ with function names as arguments in expressions.
¢ The procedure for evaluation is defined by the values of the
ments, and then, finally, the value of the operators in the
a,oced“re list apply the function to its arguments. This is pre-
cely what is happening.
o If you have an expression which is called by value, then evalu-
re the expression however it is produced. When it is called by
8 ame, the value of such an expression is & function and this ad-
:ﬁtﬂ lots of interpretations. When it is called by name, what you
are putting in is something that looks like a procedure body, and
ence its value will produce a piece of program. When inside the
rocedure you come across the formal parameter that corresponds
1o this actual parameter, what it does is apply this function to an
grgument to produce a value of the expression. That is one possible
interpretation. So, what you are going to do in fact is turn the
expreSSion into a function by building a lamda (x) at some point
or 8 lambda (), to turn the expression into an expression that
describes the function.
. Irons: 1 would like to continue this question of specifying the
gemantics of procedure calls in Avgor. The way in which I wrote
the compiler specified the semantics of the ALGoL procedure call
and all the rest of it, in the CDC 1604 machine language, and that
js all. In fact, not only have I done that, but for the most part it
has been done in a reasonably simple notation which might be
further developed. In fact, if it were cleaned up a bit—and maybe
in & language other than 1604 machine language—it might very
well be susceptible to all kinds of elegant mathematical manipu-
Jation.

Gosden: 1 used to think that if you have a statement (8) and
want to know what it meant, you put S through a compiler C to
produce a program P that runs on some machine M. P is unam-
biguous and ‘‘defines’ S. Well, it doesn’t!

I think the problem is that P running in M is a process that
includes the meaning of (8) as a subset. When S was written it
described a process that was limited to some range of data, usually
pot explicitly stated. On the other hand, P is defined for all pos-
sible values of data the machine M can accept.

As an example, consider a routine designed to set an integer
X equal to the larger of two integers Y and Z. Suppose the names
of X, Y, and Z are parameters. What happens, if, via indirect
addressing or other dynamic setting of data, X and Z are alpha-
betic or real, or floating? Some machines will stop, some will do
something. Even though this case is obviously trivial a complex
case which is more subtle can be conceived; for example, a negative
number put into a square root circuit on a future machine could
generate a good result, an imaginary number. In that case a proc-
ess for squaring a number by raising its square root to the fourth
power would work correctly.

Thus a given compiler C for a given machine M is not a satis-
factory means of defining the language in which S was written.

Irons: You may have several definitions of the same lan-
guage in terms of several different machines.

Abrahams: 1 would like to propose that any semantics of a
programming language should be defined by the machine language
but perhaps in a somewhat different way; namely, we should de-
fine the meaning of certain atomic operations in a programming
language, say ALGoL, and say the operation of “plus.” Usually

rglt

Volume 7 / Number 2 / February, 1964

in a specific machine and language, ‘‘plus’ corresponds to a se-
quence of CLEAR AND ADD, ADD, STORE. Then one can define, by
means of construction or concatenation, the building up of ArLcoL
expressions, and relate these to specific ways of building up
machine programs.

Iverson: 1 would like to suggest that in using the word
“‘gemantics”’, we are not only clouding the issue but also debasing
a perfectly good English word. Because by semantics we seem
here to mean not what is normally meant by semantics, but sim- -
ply a correspondence in another language.

However, if someone professed to tell me the meaning
of “meaning”’ and he said it was “Bedeutung,” I would be very
disappointed. Furthermore, whether or not he was telling the truth
now depends on the context because those words are equivalent
only within a certain context. In that sense, addition on
the UNivac is understood by all of us within a restricted range.
Now, I am sure it is too late to do anything about this, but I would
like to suggest the word “significance,” which appears in both
Webster and Oxford and is not quite synonymous with semantics.
It is not used in the general sense, so adopting it in a technical
sense would have the advantage that we would really know what
we mean in this restricted sense.

Gorn: We discussed that at lunch, and we get a curious side-
effect by using ‘‘significance.” “Significant’’ has an ethical value
attached to it, whereas “‘semantics’’ does not.

Iverson: But significance means exactly that in source
contexts. For example: What is the significance of this symbol in
some other language? It is a question of translating symbols; and
furthermore, there are a lot of derivative words available which
I believe we can find very useful in describing what is called se-
mantics. However, I don’t insist on this proposal because I know
that it is too late to do anything about it.

Gorn: What you are then suggesting is that one part of the
problem is purely one of terminology. :

Tverson: Well, as I see this question, when you use a word
which has larger connotations then it clouds the issue. Invariably.

Gorn: Almost as bad as using machine language.

Iverson: Well, I did not address myself to that question.

Wilkes: 1 agree with what has just been said and I agree with
the line that Ned Irons has been taking. A compiler is & trans-
lator and semantics should have nothing whatsoever to do with
translation. Translation is a formal process.

Now the only thing that I can see that it has to do
with “semantics’’ is that it makes our study of ArLGoL and other
languages more interesting than it otherwise would be. But trans-
lators are between formal systems, and the compiler is part of a
formal system. By all means let us have some semantics after-
wards so that we quite know what it means. But let us not get
mixed up! Let us not bring semantics in before we have to.

Iverson: My suggestion was that semantics would be a matter
of hidden agreement as to whether our significs were correct.

Perlis: All the emphasis on research in semanties and syntax
and phrase structure grammar and so forth reminds me of the
man who says that the Himalayas or Mount Everest is there and
therefore must be climbed. But there is a different kind of problem
which says: Starting next month I must transport 10,000 men per
day onto the top of Mount Everest. I claim that the research done
for the two classes of problems would be totally different. There-
fore, I think it is worth keeping in mind: Just why are we inter-
ested in semantics? We are interested in semantics so that we can
mechanize the process of translation on computers, and this is
really the only reason we are interested in semanties in program-
ming and computation. The front end, which is the syntax end
if you will, we feel we made reasonable progress towards, and sev-
eral of the papers during this meeting were papers that would
never have appeared at self-respecting meetings on pure logic
because they were concerned with efficient ways of defining a
syntax so that it could do work usefully and rapidly. I also think -
that when we talk about semantics we ought to keep in mind just

Communications of the ACM 135




that fact; namely, the problem we have in mind is to mechanize
the hind end of translators.

Gorn: It seems to me at this point that Iverson’s earlier re-
mark about the effect of terminology is very important here,
because Drs. Wilkes, Perlis and Irons have all given essentially
the same argument though one has said he is for semanties and the
other has said he is against semantics.

McCarthy: Now let’s see. I think that I introduced semantics
—the word “semantics’’—as it is used today and I want to say
that what I mean by semantics is not the dictionary definition of
the word but an attempt to make a correspondence to what is
done in mathematical logic when one discusses the semantics of

formal systems. It resembles closely the semantics of the predicate -

calculus, and what I propose as to what is appropriate for the
semantics of a program in a programming language is the effect
of this program on some kind of a state vector describing the state
of a computing process. Now this is not a correct question to ask
on translation of the program into some other language. You
may have to use some language to describe what this program
does to the state vector, but what is meant by the semantics of a
program is this function taking an old state vector into a new one.
Now with regard to the difficulties in the semantics of Argov,
the difficulties are not in the meaning of ‘‘plus.” In fact, the
‘“plus” in the mathematical sense—that is the operation of addi-
tion on real numbers—is a subject which is much better and much
more widely understood than the App operation in the IBM 704
or the Unrvac I. In terms of the meaning of ALcow, what one would
prefer to mean by ‘“plus” is as close an approximation to the addi-
tion of real numbers as could be obtained. Now the difficulties
with the semantics of ALgoL arise not so much in the interpreta-
tion of the basic arithmetic operations, but in the interpretation
of things like procedure calls and for-statements and so forth;
and these apparently are not to be described very easily in terms
of basic arithmetic operations, but have to be described in terms
of their effect on the ALcoL process.

Now, one other comment with regard to the question of de-
fining ALcoL with regard to its translation into some specific
machine. If you really say that you are defining ArcoL by means
of a 1604 ArGoL compiler, then how can you ever say that there
is a bug in this compiler?

Brooker: When talking about formalizing semantics I'm not
quite sure what you have in mind; certainly you can only explain
something with reference to something else which may be intui-
tive.

Gorn: Let me interrupt on a terminology point, please.
“Formalizing semantics’’ is a self-contradiction. Formalization
means taking semantic content away from the object level. What
you mean, I think, is mechanizing, and that can be broader than
formalizing.

Brooker: In the case of ALcoL, the most useful concepts are
scope of an identifier, block structure, substitution of expressions
for names in the body of the text, and all the usual arithmetical
concepts. The arithmetical parts are fairly easily understood by
most people; it is the other concepts that the nonprogrammer is
unfamiliar with. I personally cannot see how else these can be
explained except by high quality English prose.

Backus: 1 want to take brief issue with Perlis’ statement that
there is only one purpose to describing interpretations of program-
ming languages. I think, for Algolists who regard ArGoL as the
language, there is existent only one language, and therefore the
only problem is to mechanize that one. This statement may be
-true, but I think one purpose that one could have in desecribing
meaningful mechanisms, for describing the meaning of programs
in arbitrary new languages, is so that people can publish a descrip-
tion of a newly proposed language and have it made clear to the
readers in a fairly transparent way what interpretation he wishes
to place on the statements of this language.

136 Communications of the ACM

Irons: And to compiler writers!

Backus: So that if the compiler writers for several machines
do undertake this task they will come up with programs which are
sufficiently equivalent. By sufficiently equivalent I mean: per-
mitting ‘“‘addition’ to differ slightly in meaning depending on the
word length and that sort of thing. (

Perlis: 1 want to answer John {Backus]. Whenever You say,
“there is only one thing wrong,” obviously, what you come up
with is always wrong. I just want to make another plea, which is
that we—with great haste—expand ALGoL in every possible
way. I know that it has become the crutch of people who work in
phrase structure grammars and in semantics, obviously because
it happens to be a real thing that they can talk about, prove theo-
rems about, and say it cannot be described by this system or that
system. In order that their research continue to progress it is
necessary that we—those of us who invent languages (either by
committee or individually)—operate very rapidly in building
bigger and better languages. If we do not, I am very much afraid
that they will run out of abstractions to play with.

Jacobs: I am very much bothered by the definition of seman-
tics used by McCarthy,! because it seems to involve a source
language, a formal language, and a processor which is not intrinsic
to the formal language, but which represents a translation pro-
gram to the machine.

McCarthy: That was not a definition of semantics. That was
a definition of the correctness of the translator. Nemanties of
ALGoL is given in one of the terms, which is not spelled out on the
board.

Jacobs: Semantics to me must have to do with the ability to
achieve a result that is intended. In effect the intended program
is mapping a domain of inputs into a range of outputs. The actual
program takes a representation of the inputs into a representation
of the outputs, and given any machine, the represented range of {
output need not be co-extensive with that which was in the mind
of the source programmer. An example is given by the square root
routine applied to the set of positive reals. The actual program
will produce only a rational approximation to the square root of 8
positive real. In addition, given an input which is not a Te{‘l
number, the square root routine may produce a result which 18
irrelevant to the programmer’s intention. In the general case, i?"s
almost out of the question that the operation of an actual machine
would precisely reproduce the intent of the user of the sourc® t
language. :

Bauer: Concerning semantics, I get into real difficulties be
cause there are so many interpretations; but I feel that forma
logic people have a very good statement, specifically the BerliB
School represented by Schroter. They put it in this way: What
we are doing here is to look for the translation of one langu?ge
which has a semantic in another language and that translatio?
has to be semantic-preserving.

McCarthy: 1 agree entirely with what Fritz {Bauer] said about
the intent of what is meant by the relations of semantics to ques”
tions of correctness of translation. In fact, the formula on ?he
board is intended precisely to state that the process of transiatio®
is a semantics-preserving process.

Bauer: Then there is a general remark which I would like ¥
make: There are some very theoretically minded people her®
there are some very practical minded people here, and there migh
be some people who appreciate both. I find it often true that 0“_6
side does not listen to the other side. Nevertheless, the theoret!”
cally minded people and the practically minded people have to
work together. J

Gorn: The point that Professor Bauer has just made is a §°°
note on which to end the conference.

. .. pif
1 McCarthy was referring to an expression appearing in hi
paper presented at the IFIP Congress in Munich, 1961.

Volume 7 / Number 2 / February, 1964 "'






