
ETH Library

NOC-NOC: Towards Performance-
optimal Distributed Transactions

Conference Paper

Author(s):
Liu, Si; Multazzu, Luca; Wei, Hengfeng; Basin, David 

Publication date:
2024-02

Permanent link:
https://doi.org/10.3929/ethz-b-000665216

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Proceedings of the ACM on Management of Data 2(1), https://doi.org/10.1145/3639264

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0003-2952-939X
https://doi.org/10.3929/ethz-b-000665216
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1145/3639264
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


NOC-NOC: Towards Performance-optimal Distributed
Transactions
SI LIU, ETH Zurich, Switzerland

LUCA MULTAZZU, ETH Zurich, Switzerland

HENGFENG WEI, Nanjing University, China
DAVID A. BASIN, ETH Zurich, Switzerland

Substantial research efforts have been devoted to studying the performance optimality problem for distributed

database transactions. However, they focus just on optimizing transactional reads, and thus overlook crucial

factors, such as the efficiency of writes, which also impact the overall system performance. Motivated by a

recent study on Twitter’s workloads showing the prominence of write-heavy workloads in practice, we make

a substantial step towards performance-optimal distributed transactions by also aiming to optimize writes, a

fundamentally new dimension to this problem. We propose a new design objective and establish impossibility

results with respect to the achievable isolation levels. Guided by these results, we present two new transaction

algorithms with different isolation guarantees that fulfill this design objective. Our evaluation demonstrates

that these algorithms outperform the state of the art.

CCS Concepts: • Information systems→ Distributed database transactions; Database performance
evaluation.

Additional Key Words and Phrases: Isolation levels, concurrency control, impossibility results

ACM Reference Format:
Si Liu, Luca Multazzu, Hengfeng Wei, and David A. Basin. 2024. NOC-NOC: Towards Performance-optimal

Distributed Transactions . Proc. ACM Manag. Data 2, 1 (SIGMOD), Article 9 (February 2024), 25 pages. https:

//doi.org/10.1145/3639264

1 INTRODUCTION
Modern web services are layered atop high-performance database systems running in partitioned,

geo-distributed environments for system scalability and data availability. Distributed transactions,

encapsulating user requests, are an important building block of such database systems. To balance

the inherent trade-off between data consistency and system performance [8, 20], there is, therefore,

a plethora of isolation levels (or guarantees) for distributed databases. These include not only the

gold-standard serializability but also weaker guarantees such as read atomicity [5] and transactional
causal consistency [2, 31], catering for various web applications.

Substantial research efforts [3, 14, 15, 24, 32, 34, 49] have been devoted to studying performance

optimality for distributed transactions with respect to isolation levels. Two representative results

are the recent SNOW [32] and NOCS [34] theorems. Both of these are impossibility results that

capture conflicts among desirable properties. SNOW claims that it is impossible to design a Strictly

Authors’ addresses: Si Liu, si.liu@inf.ethz.ch, ETH Zurich, Department of Computer Science, Zurich, Switzerland; Luca

Multazzu, lmultazzu@student.ethz.ch, ETH Zurich, Department of Computer Science, Zurich, Switzerland; Hengfeng Wei,

hfwei@nju.edu.cn, Nanjing University, State Key Laboratory for Novel Software Technology, Nanjing, China; David A.

Basin, basin@inf.ethz.ch, ETH Zurich, Department of Computer Science, Zurich, Switzerland.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2024/2-ART9

https://doi.org/10.1145/3639264

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 9. Publication date: February 2024.

HTTPS://ORCID.ORG/0000-0003-3578-7432
HTTPS://ORCID.ORG/0009-0000-1393-4732
HTTPS://ORCID.ORG/0000-0002-0427-9710
HTTPS://ORCID.ORG/0000-0003-2952-939X
https://doi.org/10.1145/3639264
https://doi.org/10.1145/3639264
https://orcid.org/0000-0003-3578-7432
https://orcid.org/0009-0000-1393-4732
https://orcid.org/0009-0000-1393-4732
https://orcid.org/0000-0002-0427-9710
https://orcid.org/0000-0003-2952-939X
https://orcid.org/0000-0003-2952-939X
https://doi.org/10.1145/3639264


9:2 Si Liu, Luca Multazzu, Hengfeng Wei, and David A. Basin

serializable system with Non-blocking read-only transactions that finish in One round-trip when

transactional Writes are present. NOCS proves that a read-only transaction cannot terminate

with One round of Non-blocking communication with Constant-size metadata, while achieving

Strict serializability. In both cases, three of the four properties can be achieved at best, i.e., SNOW-

optimality or NOCS-optimality; in particular, under aweaker isolation level than strict serializability,
NOW and NOC are achievable, respectively.

Although these theorems state that achieving all four desirable performance criteria is impossible,

one should aim to achieve three of the four. For example, achieving N, O, and C, would boost the

performance of read-only transactions. These theorems are then considered as design objectives

and used to assess existing systems for potential performance improvements. For example, the

performance of Eiger [31], a causally consistent transaction system, has been significantly improved

by optimizing its transactional reads to meet the NOC criteria [34].

LORA RAMP-S RAMP-F RA-NOC

0 20 40 60 80 100120140

0

0.5

1

·103

Transaction Size

A
v
e
r
a
g
e
L
a
t
e
n
c
y
(
m
s
)

0 0.2 0.4 0.6 0.8 1

0

2

4

·103

Write Proportion

T
h
r
o
u
g
h
p
u
t
(
t
x
n
s
/
s
)

Fig. 1. Two examples suggesting that there is room for improvement beyond the optimality criteria of SNOW
(left) and NOCS (right). LORA and RA-NOC are SNOW-optimal and NOCS-optimal transaction algorithms
that satisfy read atomicity (RA), respectively. RAMP-F and RAMP-S are the original RAMP-family algorithms
designed for RA.

Unfortunately, these performance criteria miss crucial factors that also impact on overall system

performance. As shown in Figure 1, we have found two examples that suggest room for improvement

beyond the optimality criteria of SNOW and NOCS, respectively. First, LORA [27], a SNOW-optimal

algorithm satisfying read atomicity (RA), is expected to deliver optimal latency compared to other

RA algorithms that do not meet SNOW such as RAMP-S [5]. However, LORA incurs significantly

more latency under large-sized transaction workloads. As the metadata size is not considered by

SNOW, LORA is designed with the metadata, carried by both its reads and writes, being linear in

the transaction size.

Second, RA-NOC, a NOCS-optimal transaction algorithm, exhibits much lower throughput than

another original RAMP-family algorithm RAMP-F [5] when writes become heavy. This is because

NOCS only optimizes reads, while a NOCS-optimal algorithm like RA-NOC may use expensive

locks for processing writes.

Given that such important factors are missed by the state-of-the-art design criteria, a natural

question then to ask is “What would an ideal design objective be for distributed transactions?”

SNOW and NOCS have already provided a promising baseline, i.e., improving system performance

by optimizing reads. While reads still dominate the workloads in many applications (e.g., Google’s

AdWords [44]), according to a recent study on Twitter’s workloads [52], write-heavy workloads,

with 30% or more writes, are significantly more common in practice than previously thought and

expected to rise in prominence.

The NOC-NOC Design Objective. In this paper, we make a substantial step towards performance-

optimal distributed transactions by aiming to additionally optimize writes. This adds a fundamen-

tally new dimension to the performance optimality problem.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 9. Publication date: February 2024.



NOC-NOC: Towards Performance-optimal Distributed Transactions 9:3

Optimizing writes can improve overall system performance, especially given that system com-

ponents are often co-designed. In particular, less write latency leads to less average latency for

the entire system; moreover, higher throughput for writes gives rise to higher overall throughput.

As we will see in our case studies, even under read-heavy workloads, making writes efficient

significantly improve the overall system performance over the state of the art.

We propose the NOC-NOC design objective that aims at improving both latency and throughput
for both reads and writes. Along with the aforementioned NOC for reads, we define fine-grained

criteria, also called NOC, for writes as: an optimal write transaction shall proceed under Non-
blocking concurrency control, safely commit in One round-trip,1 and carry only Constant-size
metadata, while fulfilling the promised isolation guarantee, together with the accompanying

transactional reads.

Blocking for a write, due to, e.g., the use of locks or validation in optimistic concurrency control,

would increase the latency of the write transaction and decrease the system throughput due to,

e.g., CPU underutilization [54]. One-phase commit would incur less write latency and thus overall

system latency. Extra metadata (or message payload), e.g., increasing with the number of database

partitions, would burden the transmission or processing, thus negatively affecting both latency

and throughput.

Moreover, to save system developers’ effort trying to achieve impossible objectives, we also

identify the upper bound of achievable isolation guarantees for NOC-NOC. We prove that no

transaction system that provides parallel snapshot isolation [45] (a slightly weaker variant of

snapshot isolation) or any stronger isolation guarantees can achieve all the NOC-NOC criteria.

This suggests room for potential improvements to existing transaction algorithms that offer weaker

isolation guarantees, such as read atomicity and transactional causal consistency.

There is an inherent trade-off between data freshness and one round-trip reads with atomic

visibility [49]. We prove that, with additional one-phase writes, no transaction system that supports

read committed or any higher isolation level can make its writes visible to readers from a different

session immediately after the prepare phase completes. This, however, suggests that the desired

read-your-write session guarantee [48] is still potentially achievable under NOC-NOC.

Through the lens of NOC-NOC, along with its impossibility results, we examine the state-of-the-

art transaction algorithms and identify a gap in the design space. We focus in particular on two

recent isolation guarantees, namely read atomicity and transactional causal consistency, which

have attracted the attention of both academia and industry (see Section 2 and Section 3.4).

We present a new transaction algorithm for each isolation guarantee that fulfills the NOC-NOC

design objective. The key to achieving NOC-NOC common to both algorithms is the incorporation

of two novel ideas: dual views and version vectors. The dual view extracts global safe snapshots

of the database with respect to a certain isolation level and local safe snapshots for reading one’s

own writes without breaking the isolation guarantee, even when they are only prepared. We also

leverage a version vector to encode the dual view, with one element per database partition. In both

algorithms, a read request always carries two timestamps, one for each of the dual view, and a

server always returns one single timestamp to update these two views.

Contributions. Overall, we make the following contributions:

(1) At the conceptual level, we address the performance optimality problem by proposing the

NOC-NOC design objective that requires optimizing both reads and writes for both latency

1
This one-phase commit is from a client’s perspective: when running a two-phase commit protocol, a client can return

after the prepare phase and then execute the commit phase asynchronously. This is different from the definition of one

round-trip reads, which disallows off-path messages (see Section 3.2.1).

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 9. Publication date: February 2024.



9:4 Si Liu, Luca Multazzu, Hengfeng Wei, and David A. Basin

and throughput. We also establish impossibility results with respect to its achievable isolation

guarantees.

(2) At the technical level, we present two new transaction algorithms, each for a different isolation

guarantee, that fulfill all the NOC-NOC design criteria. We also establish their correctness.

Along with both designs, we propose a novel combination of two techniques, dual views and

version vectors, which can be leveraged to optimize transaction algorithms developed for

other isolation guarantees.

(3) At the practical level, we implement and extensively evaluate both algorithms. Our experi-

mental results show that both algorithms significantly outperform the state of the art and

achieve satisfactory data freshness. This demonstrates NOC-NOC’s effectiveness.

2 DISTRIBUTED TRANSACTIONS AND THEIR ISOLATION LEVELS
Modern web applications are built on distributed databases. With data partitioning, very large

amounts of data are divided into smaller parts stored across multiple servers (or database partitions)

for scalability. User requests are submitted as transactions to the database, typically represented by

front ends called clients. Each client then executes the transactions in its own session.

Distributed databases provide various isolation guarantees (or levels), depending on the desired

data consistency and availability. Figure 2 shows a spectrum of prevalent isolation guarantees,

ranging from weak levels such as read committed, through various forms of snapshot isolation, to
strong guarantees like strict serializability. We briefly explain two isolation levels and their variants,

which we focus our case studies on.

SER

SIRA

RC

TCC

TCCv


POS

RA+
 RSS

SSER

Fig. 2. A spectrum of isolation levels. 𝐴→ 𝐵 means that 𝐴 is strictly weaker than 𝐵. RC: read committed [6];
RA: read atomicity [5]; RA+: RA with read-your-writes [5, 48]; TCC: transactional causal consistency [34];
TCCv: TCC with convergence [2, 31]; SI: snapshot isolation [6], including its weaker variant parallel SI [45];
SER: serializability [42]; POS: process-ordered serializability [13, 32]; RSS: regular sequential serializability [22];
SSER: strict serializability [42].

Read Atomicity (RA). This ensures that either all or none of a transaction’s updates are observed
by another transaction [5]. It prohibits fractured reads anomalies, e.g., in a social network Cara only

observes that Ann is a friend of Bob, but Bob is not a friend of Ann. Many industrial databases have

integrated read-atomic transactions as an important building block. For example, RAMP-TAO [12]

has recently layered RA on Facebook’s TAO data store [9] to provide atomically visible and highly

available transactions.

RA with Read-your-writes (RA+). This isolation level is stronger than read atomicity. On a

social networking website, all of a user’s requests, submitted as transactions between login and

logout, typically form a session. Read-your-writes [48] is commonly provided by many production

databases such as Facebook’s TAO [9], MongoDB [39], and Cosmos DB [38]. It guarantees that the

effects of all writes performed in a client session are visible to its subsequent reads. For example,

after Ann tweets and refreshes, she should be able to see her own tweet. All read-atomic systems

we are aware of actually provide RA+, even including the RAMP-family algorithms [5] for which

read atomicity is originally proposed.

Transactional Causal Consistency (TCC). This combines two properties, namely read atomicity

and causal consistency (CC) [1, 43], and implies RA+. CC guarantees that two transactions that are

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 9. Publication date: February 2024.



NOC-NOC: Towards Performance-optimal Distributed Transactions 9:5

causally related must appear to all client sessions in the same causal order. It prevents causality

violations, such as Ann observing Bob’s comment on Cara’s post without seeing the post itself.

TCC with Convergence (TCCv).With TCC, transactions that are not causally related may be

observed in different orders by different sessions. This may result in permanent divergence of

these sessions’ views under conflicting concurrent updates. TCCv’s convergence property prohibits

such phenomena by requiring these views to converge to the same state [2, 30]. For example,

without convergence, Ann’s and Bob’s updates on the meeting place in a trip planner may end up

differently to Cara and Dan, while, with TCCv, they would see the same final place. To the best of

our knowledge, all production database systems claiming to support causal consistency actually

delivery its stronger variant with convergence.

3 THE NOC-NOC DESIGN OBJECTIVE
In this section we present the NOC-NOC design objective and establish impossibility results with

respect to its achievable isolation guarantees. Examining the state-of-the-art RA(+) and TCC(v)

transaction algorithms in the light of NOC-NOC, we identify a large gap in the design space.

3.1 System Model and Assumptions

System Model. We follow the system model as in SNOW [32] and NOCS [34]. A distributed

(transaction) system consists of a set of client processes and server processes that communicate

by sending and receiving messages. Processes behave deterministically: in each atomic step, they

receive messages (if any), perform deterministic local computations, and send messages (if any) to

other processes.

The network is asynchronous with no global clock. Processes run at arbitrary speeds and

messages can be arbitrarily delayed.

Definitions. A transaction starts when the client sends requests to the associated servers and

ends when the client receives all necessary responses. A transaction 𝑇1 happens before another
transaction 𝑇2 if 𝑇1 ends before 𝑇2 starts. Two transactions are concurrent if neither happens before
the other, i.e., their lifetimes overlap. Two transactions conflict if they access the same key and at

least one of them writes to this key. Two transactions write-conflict if they both write to the same

object.

Given its wide adoption in practice, we employ the two-phase commit (2PC) protocol as the

atomic commitment protocol for committing transactions. Each 2PC instance runs the prepare

phase first, followed by the commit phase. We call a 2PC variant one-phase commit (or one-phase
writes) if the 2PC coordinator (often the client) returns after completing the first phase, where all

writes are fully prepared on the associated servers. The coordinator then executes the second phase

asynchronously, which races with its subsequent transactions.

A transaction system satisfies the one-phase global visibility property if every transaction is

visible to all transactions that start after this transaction completes the first phase of 2PC.

Assumptions. We assume that the system, the processes, and the network are failure-free. We

also assume that every message will be delivered eventually. Our impossibility results also apply to

systems with faults.

We assume one-shot transactions [23], which are common in practice. A one-shot transaction

knows the database partitions that store the keys accessed by its reads/writes a priori. For one-shot

transactions, we can send read/write requests to database partitions in parallel, as there are no

key dependencies. Our impossibility results for one-shot transactions also apply to multi-shot

transactions.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 9. Publication date: February 2024.



9:6 Si Liu, Luca Multazzu, Hengfeng Wei, and David A. Basin

Moreover, we assume that clients issue one-shot read-only and write-only transactions to the

database. Our transaction algorithms presented in this paper, along with the competing algorithms,

can be naturally extended to support general read-write transactions [5]. Our impossibility results

for read-only and write-only transactions also apply to general read-write transactions.

Finally, we focus on the single-datacenter setting that supports data partitioning. Our impossibil-

ity results also apply to multi-datacenters with data replication.

3.2 Defining NOC-NOC
3.2.1 Performance Criteria for Reads. NOC-NOC adopts the performance criteria for read-only

transactions defined in NOCS [34].

Non-blocking Reads (N𝑅). Read-only transactions are considered to be non-blocking if transac-

tional reads are processed by servers without waiting for any external events, e.g., a lock to release,

a message to receive, or a timer to expire. Recall that we assume failure-free servers; otherwise,

read requests to faulty servers would be stalled. N𝑅 is desirable as blocking reads naturally increase

the latency of read-only transactions. Furthermore, as blocking delays may transitively cascade,

overall latency could scale with the size of the system. In addition, system throughput can also be

reduced due to, e.g., CPU underutilization [54].

One Round-trip Reads (O𝑅). This property requires a read-only transaction to finish in one round-

trip. Specifically, a client sends a parallel round of transactional reads to all the database partitions

involved, and each partition sends at most one response back. O𝑅 excludes read-only transaction

algorithms that may abort, since retries are essentially extra rounds of communication. Read-only

transactions that rely on “off-path” messages to ensure their correctness are also disallowed. For

example, COPS-SNOW [32] uses extra messages during writes to help transactional reads find

consistent snapshots, which are, however, not a necessity for processing writes. The O𝑅 criterion is

desirable as otherwise system latency and throughput would be negatively affected; in particular,

extra off-path messages would burden servers when processing writes.

Constant-size Metadata for Reads (C𝑅). Metadata, such as transaction identifiers and times-

tamps, are typically required by servers to find the correct versions of data for read requests.

The metadata associated with each transactional read are of constant size if they do not increase

with the transaction size, the number of database partitions, or the number of conflicting opera-

tions. Transmitting/processing extra metadata naturally increases latency and decreases system

throughput.

3.2.2 Performance Criteria for Writes. While missing C𝑅 , the SNOW design objective defines a

“write transactions” property for reads (in addition to non-blocking and one round-trip reads),

requiring a read-only transaction algorithm to be able to coexist with conflicting transactional

writes (W). NOC-NOC further turns this compatibility criterion into fine-grained performance

criteria for transactional writes. The key insight is that reducing the communication complexity

for writes can improve overall system performance, especially given that system components, e.g.,

read and write transaction algorithms, are often co-designed.

Non-blocking Writes (N𝑊 ). This criterion requires a non-blocking concurrency control mecha-

nism, which excludes the use of locks and any optimistic concurrency control mechanisms that

may block during validation. An example of a negative effect of using locks was shown in Figure 1,

where RA-NOC incurs significant overhead due to blocked writes. Hence, similar to N𝑅 , N𝑊 is

desirable not only for less write latency and for preventing overall network and system latency

from stacking, but also for overall throughput improvement.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 9. Publication date: February 2024.



NOC-NOC: Towards Performance-optimal Distributed Transactions 9:7

One-phaseWrites (O𝑊 ). After finishing the prepare phase of two-phase commit, the client should

commit the transaction. Subsequently, it issues the next transaction, if any, and runs the commit

phase asynchronously. Achieving O𝑊 decreases write latency, as a transaction can start immediately

after the prepare phase of the previous write transaction, rather than waiting for the commit phase

to complete. Moreover, committing a transaction in one phase enables earlier visibility of the

versions written. This improves data freshness that may be sacrificed for one round-trip reads [49].

Constant-size Metadata for Writes (C𝑊 ). Similar to C𝑅 , this criterion requires each request or

response of a write transaction to carry constant-size metadata. Otherwise, extra metadata would

downgrade overall system performance. As we have observed in Figure 1, LORA incurs significantly

higher average latency under large-sized transaction workloads as the metadata carried by its

writes (and reads) are linear in the transaction size.

3.3 Impossibility Results for NOC-NOC
We present two impossibility results for NOC-NOC.

Theorem 3.1. No transaction algorithms that support parallel snapshot isolation or snapshot
isolation can achieve all six NOC-NOC criteria.

Ardekani et al. [4] have proved that both parallel snapshot isolation (PSI) and snapshot isolation

(SI) are inherently non-scalable. The key to our proof of Theorem 3.1 is to show that NOC-NOC

implies scalability. Hence, both PSI and SI would be incompatible with NOC-NOC.

Proof. It has been proved that no transaction algorithms that support PSI or SI can simulta-

neously achieve the GPR (genuine partial replication), OFU (obstruction-free updates), and WFQ

(wait-free queries) properties [4]. We now show that the NOC-NOC criteria imply these three

properties.

First, GPR requires that each transaction contacts only the servers that store the keys accessed

by its reads/writes. Communication with other servers is a special kind of external event, which

is disallowed by both N𝑅 and N𝑊 . Second, OFU requires every write transaction to eventually

terminate in a failure-free system and commit if it does not write-conflict with another concurrent

transaction. This is implied by O𝑊 . Third, WFQ requires a read-only transaction to never wait for

another transaction and eventually commit. This is implied by N𝑅 . □

Theorem 3.1 suggests that isolation levels weaker than PSI/SI are possibly achievable under

NOC-NOC. This paper focuses on two such weaker isolation levels, RA+ and TCCv, and provides a

proof-by-construction for these possibilities.

Theorem 3.2. No transaction algorithms that support read committed can achieve all six NOC-NOC
criteria with global visibility.

This impossibility theorem holds as a read-only transaction, occurring after a write-only transac-

tion𝑇 completes its prepare phase but before𝑇 finishes the commit phase, is unable to conclusively

determine whether it is safe to read the value written by 𝑇 .

Proof. We prove the theorem using an indistinguishability argument. Consider a scenario where

the client 𝐶1 issues a write-only transaction 𝑇1. Suppose that one of the writes in 𝑇1 accesses the

key 𝐾 stored on the server 𝑆 . The client 𝐶1 first performs the prepare phase, where it sends the

prepare message to the server 𝑆 and receives the vote at time 𝑡 . Then,𝐶1 proceeds with the commit

phase, where 𝑆 receives the notification from 𝐶1 at time 𝑡 ′. Figure 3 depicts this scenario, where,
for simplicity, we omit the other servers involved in the write-only transaction.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 9. Publication date: February 2024.



9:8 Si Liu, Luca Multazzu, Hengfeng Wei, and David A. Basin

C1:

T1 t

S:
t′

C2:

T2

com
m
it

(a) 𝑇1 commits

C1:

T1 t

S:
t′

C2:

T2

ab
ort

(b) 𝑇1 aborts

Fig. 3. Two indistinguishable scenarios for the client 𝐶2.

Now consider another client𝐶2 that issues a read-only transaction𝑇2. Without loss of generality,

suppose that 𝑇2 only reads from the key 𝐾 . The client 𝐶2 issues a read request to 𝑆 , which arrives

in between 𝑡 and 𝑡 ′, i.e., when 𝑆 is waiting for 𝐶1’s notification.

Suppose, by contradiction, that the system satisfies O𝑊 with global visibility. Hence,𝑇1 is globally

visible after 𝑡 , which implies that 𝐶2 can then safely read the value written by 𝑇1.

Figure 3 shows two scenarios, where 𝑇1 commits and aborts (because, e.g., another server failed

to prepare the write) after 𝑡 ′, respectively. These two scenarios are indistinguishable to 𝐶2. Since

𝐶2’s computation is deterministic, it should behave the same in both scenarios. However, if𝑇2 reads

the value written by 𝑇1, then the execution in Figure 3b violates read committed. Otherwise, the

execution in Figure 3a violates O𝑅 . □

Despite being incompatible with one-phase global visibility under read committed (and beyond),

NOC-NOC still allows a client’s writes to be visible to its own subsequent reads. As we will see in

our case studies, with the dual-view design and co-location of client sessions in practice, sufficiently

fresh data are returned for reads.

3.4 Examining Existing Transaction Algorithms
The aforementioned two impossibility results suggest that it is possible to design a NOC-NOC-

optimal transaction algorithm with “local visibility”, which provides an isolation guarantee weaker

than PSI/SI. By examining the state-of-the-art transaction algorithms, we identify a significant gap

in the design space.

We focus on two isolation levels and their variants, namely RA(+) and TCC(v). The reason is

fourfold. First, all these guarantees are weaker than PSI/SI, which are potentially achievable under

NOC-NOC; in particular, TCCv is, to the best of our knowledge, the strongest isolation level weaker

than SI and its variants.

Second, they are prevalent and have attracted the attention of both academia and industry.

TCC(v) successfully combines ideas from the distributed computing and database communities and

is a relatively new isolation level compared to those defined by the SQL-92 standard. We have seen a

recent torrent of academic advances [2, 15, 16, 30–32, 34, 46, 47]. TCCv and its variants have also been

adopted by many production database systems such as Neo4j [41] (via “bookmarked” transactions),

ElectricSQL [18] (a successful transition from Cure [2] to production), and CosmosDB [38] (session

guarantees and prefix consistency for its transactional batch). Moreover, Facebook also advocates

the combination of causal consistency and transactions [35]. Read atomicity is an even newer

isolation guarantee. In addition to its already wide range of applications in practice, including

secondary indexing, foreign key enforcement, and materialized view maintenance [5], read-atomic

transactions have recently been deployed atop Facebook’s TAO [12].

Third, they present various underlying properties: atomic visibility for RA, additionally read-

your-writes for RA+, causal consistency for TCC, and additionally convergence for TCCv. Fourth,

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 9. Publication date: February 2024.



NOC-NOC: Towards Performance-optimal Distributed Transactions 9:9

Table 1. Comparison of the state-of-the-art RAMP-family and Eiger-family transaction algorithms. RAMP-
OPW does not satisfy the read-your-writes session guarantee. Eiger-PORT provides a weaker isolation
guarantee without convergence.

System Isolation N𝑅 O𝑅 C𝑅 N𝑊 O𝑊 C𝑊 Optimal

RAMP-F RA+ ✓ ≤ 2 × ✓ × × None

RAMP-S RA+ ✓ 2 × ✓ × ✓ None

RAMP-H RA+ ✓ ≤ 2 × ✓ × × None

RAMP-OPW RA ✓ ≤ 2 × ✓ ✓ × None

LORA RA+ ✓ ✓ × ✓ ✓ × SNOW

RA-NOC RA+ ✓ ✓ ✓ × × ✓ SNOW, NOCS

RA-NOC2 RA+ ✓ ✓ ✓ ✓ ✓ ✓ All

Eiger TCCv ✓ ≤ 3 ✓ ✓ × ✓ None

Eiger-PORT TCC ✓ ✓ ✓ ✓ × ✓ SNOW, NOCS

Eiger-NOC2 TCCv ✓ ✓ ✓ ✓ ✓ ✓ All

the upper bound of achievable isolation levels for NOCS-optimal read-only transactions in the

presence of transactional writes remains an open research question, and TCC (without convergence)

is conjectured as the upper bound [34].

Table 1 shows the comparison results, where we focus on two state-of-the-art families of trans-

action systems, namely the RAMP-family [5, 27, 29] and the Eiger-family [31, 34] algorithms. See

Section 9 for a discussion on other algorithms.

RA(+) Algorithms. None of the existing RAMP-family algorithms achieves NOC-NOC. In par-

ticular, all the original RAMP-family algorithms (i.e., RAMP-F/S/H), as well as the conjectured

optimization RAMP-OPW [5], fail to provide O𝑅 and C𝑅 , and they do not even satisfy SNOW and

NOCS. Moreover, only RAMP-OPW achieves one-phase writes at the cost of loosing the read-your-

writes session guarantee. Only RAMP-S attempts to achieve constant-size metadata, but only for

writes. LORA [27] is SNOW-optimal but not NOC-optimal as its metadata in both reads and writes

are linear in the transaction size. RA-NOC is NOCS-optimal; however, its writes are blocking and

do not commit in one phase. Our new design, RA-NOC2 fully meets all six NOC-NOC performance

criteria and provides RA+.

TCC(v) Algorithms. Eiger [31] supports TCCv but fails to achieve one round-trip reads and

one-phase writes. Eiger-PORT [34] optimizes Eiger with one round-trip reads by sacrificing the

convergence property. We present in Section 6 a new NOC-NOC-optimal transaction algorithm,

called Eiger-NOC2, which guarantees TCCv.

4 THE RA-NOC2 ALGORITHM
Following NOC-NOC’s performance criteria, we now present our new design, RA-NOC2, that

provides NOC-NOC-optimal distributed transactions with the RA+ isolation guarantee.

4.1 Overview
The main challenge for achieving NOC-NOC-optimal RA+ transactions is to satisfy all eight
properties together, including the six criteria of NOC-NOC and the two consistency properties,

namely read atomicity and read-your-writes (RYW). Compared to the state of the art, the most

challenging part is to achieve O and C for both reads and writes (each criterion is missed by at least

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 9. Publication date: February 2024.



9:10 Si Liu, Luca Multazzu, Hengfeng Wei, and David A. Basin

four of the six existing algorithms) without trading off the RYW session guarantee (RAMP-OPW

sacrifices this property for optimizing writes).

To provide both one round-trip reads and atomic visibility (which RA+ subsumes), RA-NOC2

may incur data staleness [49], i.e., it cannot be guaranteed to return the most recently committed

data. Given that users prefer recent data [21, 49], another challenge is, despite this theoretical result,

for RA-NOC2 to achieve satisfactory data freshness in practice.

RA-NOC2 addresses these challenges by incorporating two key ideas: version vectors and dual
views.
Version Vectors. Inspired by [34], we leverage version vectors to encode client views of database

states. Each client maintains a version vector, with one element per database partition. Each element

stores the latest safe time (LST) for the corresponding partition, which is defined as the minimum

of the timestamps of prepared-only and committed transactions, i.e., the most recent snapshot of

the database from the partition’s perspective where all writes are committed and safe to return.

Unlike the RAMP-family algorithms and LORA, which rely on message metadata of linear size

to compute the correct version to return, RA-NOC2 has only two timestamps for its dual view

(see below) in a read request (C𝑅), and reads from either of these two snapshots. Moreover, the

client-side version vector is updated upon receiving a response from the server, which always

carries the single timestamp LST (C𝑊 ).

Dual Views. Each client maintains a dual view and reads from one of them (O𝑅): (i) a global safe
view (GSV) for extracting RA-safe snapshots of the database, where each snapshot is the most recent

in the version order with the incorporated versions all committed on the servers (i.e., the minimum

of latest safe times across the associated partitions); and (ii) a local safe view (LSV) for computing

RYW-consistent snapshots, when the client must fetch any potential prepared-only versions (due

to one-phase writes in RA-NOC2) to read its own writes. To incorporate these versions into the

LSV, the client keeps track of its most recently prepared, possibly uncommitted, version of each

key locally.

Note that an LSV is often beyond a GSV, e.g., when the commit phase of a write transaction races

with subsequent transactional reads from the same client. Nonetheless, the associated prepared-only

writes are guaranteed to be present on the server as, otherwise, the client would not have “found”

them from its LSV, and safe as, otherwise, the client would have read within its GSV.

Ann PA PB Bob

𝑋0

𝑌1

𝑋2

𝑊1

𝑍2

𝑋0

𝑌1

𝑋2

𝑌3

𝑍0

𝑊1

𝑍2

𝑋0

𝑌1

𝑍0

𝑊1

LSV

GSV

LSV

GSV

Ve
rs
io
n
O
rd
er

Fig. 4. An illustrative example of dual views. Colors represent different keys, and shapes different clients
(squares for Ann and circles for Bob). Prepared-only and committed versions are transparent and filled,
respectively. Black and orange lines refer to Ann’s and Bob’s dual views, respectively.

Example 4.1. Figure 4 illustrates dual views with an example of two clients, Ann and Bob, and

two database partitions, each storing two keys. We assume that the keys 𝑋 and 𝑍 , resp. 𝑌 and𝑊 ,

are always siblings in a write transaction.
2
First, as a GSV is the minimum of the LSTs across all

2
For a key (or version), its sibling keys (or versions) are those keys (or versions) written in the same transaction.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 9. Publication date: February 2024.



NOC-NOC: Towards Performance-optimal Distributed Transactions 9:11

partitions, Ann’s GSV is at 1, even though her actual view of partition 𝐵 is at 2 by the version 𝑍2.

Note that her GSV cannot be advanced by 𝑋2 on partition 𝐴 since the version is only prepared and

thus not safe from 𝐴’s perspective.

Moreover, a client’s LSV is advanced by any write of its own as long as the associated write

transaction is at least fully prepared. For instance, Bob’s LSV is at 0 as the version 𝑍0 has been

prepared and its sibling version 𝑋0 is already committed. Similarly, Ann’s LSV is advanced by the

write transaction that writes 𝑋2 (prepared only) and 𝑍2 (committed). However, since 𝑌3’s sibling

version𝑊3 has not been prepared on partition 𝐵, Bob cannot advance his LSV. Note that an LSV

can only include one’s own prepared-only versions. Hence, Ann cannot see 𝑍0 prepared by Bob.

Note also that an LSV can be either ahead of a GSV like in Ann’s case, behind a GSV as for Bob, or

even the same as a GSV.

To reduce data staleness, RA-NOC2 tightly couples dual views and version vectors by design.

Instead of naively returning stale versions that satisfy RA+, a client constantly updates (i) its LSV,

upon completing a write transaction’s prepare phase, to include the latest writes of its own, and

(ii) its GSV of latest committed versions across partitions, during the processing of both reads

and writes, to always fetch the most recent versions up to the safe frontier of RA+. Moreover, via

co-location of sessions in practice, clients can keep each other’s dual view fresh by sharing.

4.2 Algorithm
We leverage dual views and version vectors to design RA-NOC2’s read-only and write-only transac-

tion algorithms, together with a multi-versioned database. Its pseudocode is given in Algorithm 1.

Client Dual Views. A client stores a version vector last (line 2), associating one timestamp to each

database partition. This allows the client to then compute its GSV, i.e., the latest database snapshot

that it knows to be read-atomic. Moreover, the client also maintains the prep data structure (line 3),

containing all fully prepared, possibly uncommitted, versions’ timestamps, along with their sibling

keys. These versions are used to compute its LSV, i.e., the latest safe version to date for a given key

from its perspective.

Server-side Data Structures. Each partition stores part of a multi-versioned database, where a

version maps each key to its value and timestamp (line 26). It also holds the highest committed

timestamp, called latest (line 27), and a set pending of prepared, yet uncommitted versions (line 28).

The latest safe time is computed by taking the minimum of pending, if it is nonempty, or otherwise

latest (lines 45–48).
Transactional Reads. A client constructs two views when reading from a key. The GSV is

encapsulated by a timestamp tsc , the minimum of last across all partitions involved in the read-only

transaction (line 17). The LSV is unique for each key k and corresponds to the highest timestamp

in prep where the associated version has k as its sibling key (line 19).

If the LSV is beyond the GSV, the client reads from the LSV of its own write by requesting from

the partition the version matched by tsp (lines 20–21). Figure 5a shows an example where Ann is

reading from key 𝑋 . Since her LSV is beyond GSV, her own write 𝑋3 is returned, although it is

prepared only.

If the LSV iswithin the GSV, the client reads from its GSV by sending both tsc and tsp (lines 22–23).
The partition then returns the most recent committed version in between these two timestamps

(lines 41–43). This is the case in Figure 5b where the committed version 𝑋2 between LSV and GSV

is returned to Ann.

If no version can be found (as the client’s GSV was advanced by other keys on this partition),

the exact version at tsp is sent back instead (line 44). For example, no version of 𝑋 exists between

the two views in Figure 5c; the version 𝑋1 situated at the LSV is therefore returned.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 9. Publication date: February 2024.



9:12 Si Liu, Luca Multazzu, Hengfeng Wei, and David A. Basin

Algorithm 1 The RA-NOC2 Algorithm

1: Client-side Data Structures & Methods
2: last [svr ]: last committed timestamp on server svr
3: prep [ts]: write set of prepared version ts

4: procedure prepare_all(𝑊 : set of ⟨key, value⟩)
5: ts← generate new timestamp

6: parallel-for ⟨𝑘, 𝑣⟩ ∈𝑊 do
7: tssvr ← prepare(⟨𝑘, 𝑣, ts⟩)
8: last [svr ] ← max(tssvr , last [svr ])
9: prep.add(ts, {𝑤.key | 𝑤 ∈𝑊 })
10: return

11: procedure commit_all(𝑉 : set of versions)

12: parallel-for ver ∈ 𝑉 do
13: tssvr ← commit(ver .ts)
14: last [svr ] ← max(tssvr , ver .ts, last [svr ])
15: return

16: procedure get_all(𝐾 : set of keys)

17: tsc ← min({last [svr ] | svr storing 𝑘 ∧ 𝑘 ∈ 𝐾 })
18: parallel-for 𝑘 ∈ 𝐾 do
19: ts𝑝 ← max({ts | 𝑘 ∈ prep [ts] })
20: if tsc < ts𝑝 then
21: rs [𝑘 ], last [svr ] ← get(𝑘, ts𝑝 , null)

22: if tsc ≥ ts𝑝 then
23: rs [𝑘 ], last [svr ] ← get(𝑘, tsc, ts𝑝 )

24: return rs

25: Server-side Data Structures & Methods
26: vers: multi-versions ⟨key, value, timestamp⟩
27: latest: highest committed timestamp

28: pending: timestamps for uncommitted write txns

29: procedure prepare(ver : version)
30: vers.add(ver)
31: pending.add(ver .ts)
32: return lst(pending,latest)

33: procedure commit(ts𝑐 : timestamp)

34: latest ← max(𝑡𝑠𝑐 , latest)
35: pending.remove(ts𝑐 )
36: return lst(pending,latest)

37: procedure get(𝑘, tsreq, tsp)
38: lst ← lst(pending,latest)
39: if tsp = null then
40: return vers [𝑘 ] .at(tsreq), lst
41: for ver ∈ vers [𝑘 ].between(tsp, tsreq) do
42: if ver .ts ∉ pending then
43: return ver .value, lst
44: return vers [𝑘 ] .at(tsp), lst

45: procedure lst(pending, latest)
46: if pending is empty then
47: return latest
48: return min(pending)

Note that we exclude any prepared version by the same client in between the aforementioned

two timestamps, as the associated write transaction has not been fully prepared yet (otherwise,

the client would have sent this version’s prepared timestamp, which is higher than ts𝑝 ). Figure 5d
depicts such a case: Ann’s own write 𝑋2 sits above the LSV, but it is unsafe to return; instead, the

read skips over it and fetches 𝑋1. In both cases, the partition returns the latest safe time as well,

which is then used by the client to advance its GSV.

𝑌0

𝑋1

𝑌2

𝑋3

LSV

GSV

Ve
rs
io
n
O
rd
er

(a) LSV beyond GSV: return at
LSV

𝑌0

𝑋1

𝑋2

𝑌3

GSV

LSV

(b) LSV within GSV: return in be-
tween

𝑌0

𝑋1

𝑌2

𝑌3

GSV

LSV

(c) LSV within GSV: return at
LSV

𝑌0

𝑋1

𝑋2

𝑌3

GSV

LSV

(d) LSV within GSV: skipping
own write

Fig. 5. Reading from different views (by Ann). We use the same setup as in Figure 4. For simplicity, we use
only one partition to illustrate different scenarios.

Transactional Writes. The traditional 2PC protocol [25] underlies RA-NOC2’s write-only trans-

actions. A client first generates a new timestamp for the versions that it intends to prepare on the

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 9. Publication date: February 2024.



NOC-NOC: Towards Performance-optimal Distributed Transactions 9:13

associated partitions (in parallel). Upon receiving the prepared version, the partition adds it to the

local database (line 30), as well as the pending list (line 31). After completing the prepare phase,

the client incorporates the new prepared versions into its LSV so that any subsequent reads are

guaranteed to see its own writes (line 9).

Upon finishing the prepare phase, the client asynchronously commits the transaction (in parallel)

with the version’s (commit) timestamp. The partition then updates latest and pending accordingly.

Upon receiving the ack, the client advances its GSV (for freshness) by incorporating the timestamp

of the version just committed and the partition’s latest safe time (line 14).

4.3 Correctness
RA-NOC2 meets all the NOC-NOC criteria by design. In particular, by encoding a client dual view

into two timestamps in a read request (C𝑅), this enables a server to extract the precise version to

return without any intervention (N𝑅), thus completing the read in one round-trip (O𝑅). RA-NOC2

meets O𝑊 by incorporating a client’s own writes into its LSV for future reads, thus enabling safe

asynchronous commits. It also achieves C𝑊 for both write request (the client’s identification) and

response (the latest safe timestamp).

We prove that RA-NOC2 satisfies both RA and RYW. The complete proof is given in [28].

Intuitively, as a client’s GSV captures the latest safe snapshot across all partitions, which includes

committed versions only, no fractured reads would ever happen, thus guaranteeing RA. Even

though we may jump beyond the GSV for the client’s own writes (RYW), the LSV then ensures

that any versions fetched are at least fully prepared, thus no fractured reads happen either. Note

that client 𝐴’s reads would never depend on client 𝐵’s prepared writes as they are only visible to

client 𝐵.

Note also that, from a single client’s perspective, one partition’s LST could be far behind those

of the other partitions in extreme cases, e.g., the client has not accessed the partition for a long

time. This may result in stale reads, but the correctness of RA-NOC2, as well as Eiger-NOC2, is not

affected. As we will see in our experiments, both algorithms can actually achieve satisfactory data

freshness in practice.

5 RA-NOC2 EVALUATION
We extensively compare RA-NOC2 to the state-of-the-art algorithms, demonstrating its throughput

and latency improvement. We also show that RA-NOC2’s data freshness is competitive.

5.1 Competitors
We consider five strong competitors (see also Table 1):

• RAMP-F and RAMP-S [5], which are the two original, yet state-of-the-art, read-atomic

algorithms;

• the RAMP-OPW design [5], which optimizes RAMP with one-phase writes while sacrificing

the read-your-writes session property (thus providing a weaker isolation guarantee than

RA-NOC2);

• LORA [27], which is a SNOW-optimal read-atomic algorithm, missing only C𝑅 and C𝑊 ; and

• the NOCS-optimal algorithm RA-NOC, which we have designed following the NOCS design

objective.
3

We do not consider RAMP-H since its performance lies between that of RAMP-F and RAMP-S [5].

3
The pseudocode of RA-NOC is given in [28].

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 9. Publication date: February 2024.



9:14 Si Liu, Luca Multazzu, Hengfeng Wei, and David A. Basin

5.2 Implementation, Setup, and Workloads
Implementation. For a fair comparison, we implement our algorithm RA-NOC2 (around 1000

LOC in Java), along with LORA, RAMP-OPW, and RA-NOC, atop a multi-versioned database in the

original RAMP codebase [5]. Our implementation also incorporates the cooperative termination
protocol [7] used by the RAMP-family algorithms to handle the inherent blocking issue in two-phase

commit; see Section 8 for details. For RAMP-OPW, we modify the RAMP-F implementation to com-

mit write-only transactions after the prepare phase and complete the commit phase asynchronously.

Keys are assigned to a database partition by a distributed hash table. Each client contacts the front

end of a partition that executes the requested transactions, i.e., the front end plays the role of the

client in Algorithm 1.

Experimental Setup. As RAMP is a concurrency control protocol, its original codebase does not

provide data replication. We follow the same primary-backup replication setup as in [34] where

two logical data centers are co-located in a CloudLab cluster [17]. Our extension for the replication

leads to additional 250 LOC. By default, each data center has five servers to partition the entire

database and five client machines to load the servers. We do not consider dynamic resharding in

our experiments. Each machine has two 10-Core, 3.4 GHz, Xeon E5-2640 v4 CPUs (xl170 node from

the Utah cluster) and a 10Gbps network interface. We run five 60-second trials for each data point

and plot the average.

Workloads. For a fair comparison, we employ the same YCSB benchmark as used by RAMP [5]

to generate transactional workloads where multiple operations are grouped into read-only or

write-only transactions.
4
By default, we choose the transaction size of 16 operations and the value

size of 1 byte, in order to fully expose the impact of metadata size on system performance. We

match the key-access distribution (Zipfian with the skewing factor of 0.99), database size (1 million

keys), and read/write ratio (95% read-heavy workloads) in RAMP. We also run 5000 YCSB client

threads distributed over 5 client machines.

5.3 Evaluation
Summary of Results. RA-NOC2 shows significant performance improvement over the competitors

under various workloads, which do not fulfill all the NOC-NOC criteria. In particular, under large-

sized transaction workloads, RA-NOC2 achieves 194%–650% improvement in throughput, along

with 55%–87% reduction in latency; it outperforms the competitors under full-spectrum workloads

with varying read/write ratios, exhibiting up to 82% higher throughput and incurring 46% less

latency. RA-NOC2 also demonstrates its scalability with increasing numbers of servers and clients.

All these performance achievements are attributed to RA-NOC2’s adherence to NOC-NOC for both

reads and writes. Given its one round-trip reads, RA-NOC2 is expected theoretically to trade off

data freshness [49]. Nonetheless, its data freshness remains competitive with that of the existing

algorithms, with over 99% up-to-date reads.

We defer the plots for the comparison between RA-NOC2 and RA-NOC to our technical re-

port [28], where the conclusions we draw from this section (e.g., on throughput and latency

improvements) also apply. Note that the design of RA-NOC is exactly the same with that of

RA-NOC2 except for N𝑊 and O𝑊 . Hence, RA-NOC can serve as a strong baseline to showcase

RA-NOC2’s performance improvement by adhering to the NOC criteria for writes.

Latency Improvement. RA-NOC2 performs well with large-sized workloads. Figure 6a and

Figure 6b show that, with an increase in the transaction size, RA-NOC2 significantly outperforms

4
The RAMP codebase currently only supports the key-value API.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 9. Publication date: February 2024.



NOC-NOC: Towards Performance-optimal Distributed Transactions 9:15

RA-NOC2 LORA RAMP-F RAMP-OPW RAMP-S

0 50 100 150 200 250

0

2

4

6

8

·103

Transaction Size

R
e
a
d
L
a
t
e
n
c
y
(
m
s
)

(a)

0 50 100 150 200 250

0

2

4

6

8

·103

Transaction Size

W
r
i
t
e
L
a
t
e
n
c
y
(
m
s
)

(b)

0 0.2 0.4 0.6 0.8 1

100

200

300

Read Proportion9
9
t
h
P
e
r
c
e
n
t
i
l
e
L
a
t
.
(
m
s
) (c)

0 0.5 1 1.5 2 2.5 3

·103

40

60

80

100

Staleness (ms)

R
e
a
d
S
t
a
l
e
n
e
s
s
C
D
F

(d)

0 1,000 2,000 3,000
96

98

100

0 0.2 0.4 0.6 0.8 1

1

2

3

4

·103

Read Proportion

T
h
r
o
u
g
h
p
u
t
(
t
x
n
s
/
s
)

(e)

0 50 100 150 200 250

0

2

4

·103

Transaction Size

T
h
r
o
u
g
h
p
u
t
(
t
x
n
s
/
s
)

(f)

100 200

0

5

10

15

·102

200 400 600 800 1,000

3

4

5
·103

Number of Clients

T
h
r
o
u
g
h
p
u
t
(
t
x
n
s
/
s
)

(g)

5 10 15 20 25

5

10

·103

Number of Servers

T
h
r
o
u
g
h
p
u
t
(
t
x
n
s
/
s
)

(h)

Fig. 6. Performance and data freshness comparisons. RAMP-OPW provides RA, which is strictly weaker than
RA+ provided by the other algorithms including RA-NOC2.

the competitors in both read and write latency. In particular, even compared to LORA (resp. RAMP-

OPW), which also has one round-trip reads (resp. writes), it achieves up to 83% (resp. 54%) reduction

in read (resp. write) latency. Overall, RA-NOC2’s latency improvement owes to O𝑅 , which the

RAMP-family algorithms do not satisfy, and to O𝑊 , which all RA+ algorithms except LORA fail

to provide. Two additional contributors are C𝑅 and C𝑊 , which naturally improve RA-NOC2’s

latency when transferring and handling larger metadata. We also measure 99th percentile latency

with varying read/write proportions. As shown in Figure 6c, one-phase writes, along with their

asynchronous commits, do not lead to more overhead, and RA-NOC2 consistently surpasses the

competing algorithms under full-spectrum workloads, with 22%–46% latency reduction.

Throughput Improvement. Overall, RA-NOC2 shows substantially higher throughput than the

state-of-the-art algorithms and owes this improvement to its adherence to C𝑅 and C𝑊 . Figure 6e

shows that RA-NOC2 consistently outperforms the competitors as we vary the read/write ratio:

it achieves up to 27% throughput improvement over the SNOW-optimal algorithm LORA; it also

surpasses RAMP-S by 82%, even under 95% read-heavy workloads for which the RAMP-family

algorithms are specifically designed. Moreover, RA-NOC2 exhibits significantly higher throughput

under large-sizedworkloads, as shown in Figure 6f. In particular, with 128 operations per transaction,

it achieves 563% improvement in throughput over LORA and at least 194% improvement over the

optimized RAMP algorithm OPW.

Finally, we explore the scalability of RA-NOC2. Figure 6g shows that RA-NOC2 scales well as

the number of client sessions increases (while we keep the number of client machines constant),

with noticeably higher throughput. Additionally, along with an increasing number of partitions,

we scale up the number of clients while keeping sessions per client machine constant, in order to

fully saturate the system. Figure 6h shows that, compared to the competitors, RA-NOC2 exhibits

superior scalability, consistently achieving higher throughput.

Data Freshness.We measure data freshness in terms of staleness defined as the time difference

(in milliseconds) between the version read and the latest commit of the associated key. Overall,

RA-NOC2 achieves competitive data freshness compared with the state-of-the-art algorithms; see

Figure 6d. In particular, despite the inherent loss of freshness due to O𝑅 [49], RA-NOC2 still reports

99% up-to-date reads, while LORA, also with one round-trip reads, only manages 35%. This owes to

our design choice of RA-NOC2 whereby a client’s dual view is always advanced up to the most

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 9. Publication date: February 2024.



9:16 Si Liu, Luca Multazzu, Hengfeng Wei, and David A. Basin

recent, yet safe frontier of RA+, and our implementation choice of sharing views among co-located

clients.

6 THE EIGER-NOC2 ALGORITHM
Guided by the NOC-NOC design objective, we improve an existing NOCS-optimal algorithm called

Eiger-PORT [34], that is, to the best of our knowledge, the most performant TCC algorithm to date.

The reason for choosing Eiger-PORT as a base algorithm to demonstrate NOC-NOC is threefold.

First, Eiger-PORT already provides optimal read-only transactions (NOC for reads), plus highly

efficient transactional writes (N𝑊 and C𝑊 ). Moreover, it already satisfies a sufficiently strong

isolation guarantee, namely TCC. Finally, the upper bound of achievable isolation levels for NOCS-

optimal read-only transactions in the presence of transactional writes remains an open research

question—TCCwithout convergence is conjectured as the upper bound [34]. All together, this renders
Eiger-PORT a strong baseline and any improvement to it non-trivial and challenging.

6.1 Eiger-PORT in a Nutshell
The Eiger-PORT design is guided by NOCS, thus satisfying NOC for reads. The core idea is to

capture a TCC-consistent snapshot of the database per client request (O𝑅), which is computed over

the client-side version stamps (similar to version vectors; see Section 4.1). The value of a version

stamp represents the safe time (similar to the latest safe time in RA-NOC2) on a partition, and

the minimum of such values across partitions like a global safe view is selected as the snapshot

embedded in a read (C𝑅). Moreover, version stamps are extracted from the Lamport clocks used by

the partitions to guarantee a causal ordering. Upon receiving a requested snapshot, the partition

checks for the existence of a committed version by the client (to satisfy read-your-writes) that is

strictly beyond the snapshot; given such a version, the client reorders it before the snapshot in

the version order. Altervatively, if such a version does not exist, the partition performs a recursive

backward search through the versions within the snapshot, finding a version that ensures read

atomicity (RA). As a result, clients may observe versions in different orders; this is allowed by TCC,

yet breaks convergence.

Write transactions proceed using a variant of the traditional 2PC that always commits [31]: a

client sends, in addition to the coordinator (as in the traditional 2PC), to each cohort (or partition)

a prepare message directly; upon receiving a request, a cohort proactively confirms with the

coordinator the commitment of a transaction if it has voted “yes” but not yet received the commit.

Between the two phases, the coordinator ensures that each cohort commits with the same version

timestamp by synchronizing the Lamport clocks across the cohorts up to the maximum of all the

proposed timestamps. This ensures a consistent snapshot of the database by the write transaction.

The coordinator and the cohorts return their local safe times for updating the client’s version stamp.

6.2 Overview of Eiger-NOC2
Eiger-PORT does not provide O𝑊 and satisfies only TCC without the convergence guarantee. O𝑊

is valuable given that write-heavy workloads (with 30% or even more writes) are significantly

more common in practice than previously thought [52]. Moreover, system components are often

co-designed, indicating that optimizing writes, even just their latency, would improve overall system

performance (as we have observed in RA-NOC2 and will see in Eiger-NOC2). Finally, convergence

is the de facto guarantee by causally consistent systems in practice [18, 38, 41].

Eiger-NOC2 leverages dual views to improve Eiger-PORT with both O𝑊 and convergence. A

dual view computes two separate snapshots of a database, i.e., the local safe view (LSV) and global

safe view (GSV), which underlies the fulfillment of O𝑊 without sacrificing RYW (as we have seen

in RA-NOC2). However, its integration into Eiger-PORT is challenging. We must guarantee (i) the

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 9. Publication date: February 2024.



NOC-NOC: Towards Performance-optimal Distributed Transactions 9:17

causal ordering, a strictly stronger consistency requirement than RYW, for both views, especially

local safe views that may include prepared-only versions, and (ii) convergence without losing read

atomicity (RA); the authors [34] conjecture that convergence would be incompatible with RA in

the presence of causally consistent reads that satisfy NOC.

Regarding challenge (i), like in Eiger-PORT, GSVs constructed over Lamport clocks across

partitions can precisely capture the causality among committed versions. However, to further

ensure a causal order of LSVs, we collect on the client side during its write transaction all the

prepare timestamps proposed by the partitions (also based on their Lamport clocks), and advance

the client’s LSV by mimicking how the coordinator would commit the transaction. Therefore, we

can correctly order the prepared versions for the client’s subsequent reads in the same way as they

would be causally ordered across partitions upon commitment. This guarantees causality whilst

achieving one-phase writes.

Before Write Txn Upon Prepared

(b) Ann(a) Partitions

𝑋0 𝑍0

LSV

𝑋0

𝑋1

𝑋2

𝑍0

𝑍2

LSV

Ve
rs
io
n
O
rd
er

Upon Prepared Upon Committed

PA PBPA PB

𝑋0

𝑋1

𝑋2

𝑍0

𝑍1

𝑋0

𝑋1

𝑋2

𝑍0

𝑍2

Ve
rs
io
n
O
rd
er

Mimicking

Fig. 7. Advancing a client’s LSV by mimicking the partition-side 2PC. Left: partition-side dynamics of 2PC.
Right: advancing the client Ann’s LSV upon finishing the prepare phase. Squares refer to Ann’s writes.

Example 6.1. In Figure 7, Ann is writing to the keys 𝑋 and 𝑍 via a write-only transaction, and

her original local safe view is at 𝑋0 and 𝑍0 (left in Figure 7b). Upon finishing the prepare phase,

the partitions have prepared 𝑋2 and 𝑍1, respectively. Both timestamps are assigned by advancing

the partitions’ local Lamport clocks, respectively, which are not synchronized (left in Figure 7a).

The write transaction is eventually committed at version 2 (i.e., the maximum of the prepared

timestamps), with 𝑍1 promoted to 𝑍2 in particular (right in Figure 7a).
5
This commit phase is

mimicked on the client side even before it happens. Specifically, the prepared messages sent back

to the 2PC coordinator are also received by Ann to advance her local safe view according to the

proposed prepare timestamps. Consequently, Ann can correctly order the prepared-only writes

even before they are committed (right in Figure 7b).

Regarding challenge (ii), we leverage GSVs to achieve convergence while keeping read-atomic

reads. Similar to Eiger-PORT, an Eiger-NOC2 client also encodes a database snapshot using a

version vector and takes the minimum as its GSV. Eiger-PORT has a conservative view of RA in

the sense that it tends to return the exact versions written by a write transaction, while RA in fact

allows part of the reads to fetch higher versions as long as no fractured reads are exhibited. This

forces Eiger-PORT to search for a conservative snapshot from the database within a client’s GSV,

which depends on whether a version was written by itself or another client. Consequently, this

would result in different orderings of versions among clients. In contrast, we recognize that it is

possible to return the highest committed version within a GSV without losing RA, and a convergent

ordering can be agreed upon by all readers.

5
Promotion in the PORT design [34] cannot ensure that all writes in the same transaction are promoted at the same time. In

contrast, our promotion respects the transaction boundary, even if a transaction is only prepared.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 9. Publication date: February 2024.



9:18 Si Liu, Luca Multazzu, Hengfeng Wei, and David A. Basin

PA PB

𝑋0

𝑋1

...

𝑋𝑛−1

𝑋𝑛

GSVAnn
GSVBob 𝑍0

𝑍1

(a) Initial

PA PB

𝑋0

𝑋1

...

𝑋𝑛−1

𝑋𝑛

GSVAnnGSVBob

𝑍0

𝑍1

...

𝑊𝑛−1

𝑊𝑛

(b) Eiger-PORT

PA PB

𝑋0

𝑋1

...

𝑋𝑛−1

𝑋𝑛

GSVAnnGSVBob

𝑍0

𝑍1

...

𝑊𝑛−1

𝑊𝑛

(c) Eiger-NOC2

Fig. 8. Illustrating convergence in Eiger-NOC2 and read atomicity in both Eiger-PORT and Eiger-NOC2.
Squares, circles, and diamonds refer to Ann’s, Bob’s, and a third client’s writes, respectively.

Example 6.2. In Figure 8, Ann and Bob are reading from 𝑋 and 𝑍 using read-only transactions

and both share the same GSVs. For simplicity, we assume no prepared versions, which suffices to

distinguish the two algorithms. Figure 8a shows the initial scenario, where both algorithms behave

the same. In particular, with the GSV at 0, Bob returns his own committed writes 𝑋1 and 𝑍1 by

jumping over the GSV; Ann reads 𝑋𝑛 written by herself for the same reason, but Bob’s 𝑍0 as it is

the only version included in the GSV.

Both GSVs are then advance to 𝑛. Bob still behaves the same in both algorithms, as shown

in Figure 8b for Eiger-PORT and Figure 8c for Eiger-NOC2, and returns the highest committed

versions within the GSV that satisfy RA, i.e., 𝑋𝑛 and 𝑍1.

These two algorithms differ when it comes to Ann. Eiger-PORT goes through an expensive

backward search until it hits a write by a different client, i.e., 𝑋1 (Figure 8b), while Eiger-NOC2

allows Ann to return hermost recent write𝑋𝑛 (Figure 8c). Note that both returns exhibit no fractured

reads, thus satisfying read atomicity [5]. Nonetheless, in Eiger-PORT, Ann orders 𝑋𝑛 before 𝑋1 in

the version order, while Bob sees the opposite order. This is allowed by TCC, which, however, does

not satisfy convergence. In contrast, a convergent order, i.e., 𝑋1 before 𝑋𝑛 , is established on both

Ann and Bob in Eiger-NOC2. Moreover, returning 𝑋𝑛 to Ann reduces the partition’s overhead of

backward search.

6.3 Algorithm
Eiger-NOC2 leverages dual views to improve Eiger-PORT’s read-only and write-only transactions.

Both algorithms utilize version vectors to encode database snapshots and Lamport clocks to capture

causal relations among transactions. We present its pseudocode in Algorithm 2, where we defer

to our technical report [28] the partition-side procedures for transactional writes that are largely

shared by both algorithms.

Transactional Reads. A client leverages its dual view when performing transactional reads. The

global safe view (GSV) is taken as the minimum of last (line 20), a version vector encoding the most

recent database snapshot that includes committed versions only (line 17). The local safe view (LSV)

per key is represented by a pair (txnid, town), with town the commit timestamp of the latest write

to the key by the client and txnid the associated write transaction’s identifier. Upon receiving a

read request, the server returns the highest committed version ver within the client’s GSV (line 9),

unless it is aware of a later, at least fully prepared, version of its own. Specifically, if the LSV town is
larger than ver’s commit timestamp (line 10), meaning that there indeed exists a safe version by

the client that is more advanced than ver, then the server returns the version at town (line 14). Note
that, if the version has not been committed yet, the server finds it from pending (line 12).

Transactional Writes. Both Eiger-NOC2 and Eiger-PORT adopt the variant of two-phase commit

in [31]. Eiger-NOC2 further adapts it for one-phase writes and convergence mainly in two ways.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 9. Publication date: February 2024.



NOC-NOC: Towards Performance-optimal Distributed Transactions 9:19

Algorithm 2 The Eiger-NOC2 Algorithm

1: /* Eiger-NOC2 adopts Eiger-PORT’s 2PC variant, except
2: coord/cohorts (i) return prepared timestamp in addition,
3: and (ii) perform commits asynchronously. See [28]. */

4: Partition-side Data Structures & Method
5: vers: multi-versioned DB ⟨key, value, tprep, tcom ⟩
6: tssvr : latest safe time

7: pending: uncommitted write txns txnid → tpend

8: procedure get(𝑘 , gsv, town, txnid)
9: ver ← vers [k] .at (gsv)
10: if town ≥ ver .tcom then
11: if txnid ∈ pending then
12: return vers [k] .at (pending [txnid ]), tssvr
13: else
14: return vers [k] .at (town), tssvr
15: return ver, tssvr

16: Client-side Data Structures & Methods
17: last [svr ]: last committed timestamp on server svr
18: latestWrite [key ]: key → txnid, town

19: procedure get_all(𝐾 : set of keys)

20: gsv ← min(last) // global safe view
21: parallel-for k ∈ K do
22: txnid, town ← latestWrite [k]
23: rs [𝑘 ], last [svr ] ← get(𝑘, gsv, town, txnid)
24: return rs

25: procedure put_all(𝑊 : set of ⟨key, value⟩)
26: txnid ← generate new transaction ID

27: parallel-for ⟨𝑘, 𝑣⟩ ∈𝑊 do
28: if k.server is coordinator then
29: tssvr , tprep ← write_coord(...) // see [28]
30: else
31: tssvr , tprep ← write_cohort(...) // [28]
32: last [k.server ] ← max(tssvr , last [svr ])
33: town ← max(tprep, town) // town initialized as -1

34: for k ∈𝑊 .keySet do
35: if latestWrite [k] .town < town then
36: latestWrite [k] ← (txnid, town)
37: return

First, Eiger-NOC2 completes the commit phase asynchronously, allowing any subsequent transac-

tions to race with it. Second, the way a write transaction’s commit timestamp is decided by the

coordinator is mimicked at the client side, so that clients can safely read prepared-only writes of

their own without breaking TCCv.

More specifically, when processing a write transaction, each cohort prepares a version with

a timestamp extracted from its Lamport clock. The coordinator chooses the highest timestamp

among all the received timestamps as the commit timestamp for the transaction. The cohorts then

proceed with the commits asynchronously. Each of the coordinator and cohorts returns its latest

safe time tssvr , which the client uses to advance its GSV (line 32), alongside its proposed prepare

timestamp tprep. This is in turn used to construct the client’s LSV with respect to the transaction

(line 36), mimicking how the commit timestamp would be decided on the server side.

6.4 Correctness
Eiger-NOC2 adheres to NOC-NOC’s performance criteria by design and improves Eiger-PORT

by additionally providing O𝑊 . The reasoning for RA-NOC2 applies to Eiger-NOC2 in general. In

particular, to guarantee safe asynchronous commits for O𝑊 , Eiger-NOC2 leverages the LSV that

keeps track of a client’s own writes in a causally consistent order with respect to other writes across

the database.

We also prove that Eiger-NOC2 satisfies TCCv. Intuitively, Eiger-NOC2 establishes the causal

relations among transactions using Lamport clocks. Moreover, it leverages GSVs to represent safe

snapshots of the database, where returning the most recent versions within a GSV guarantees

no fractured reads. When a client jumps over the GSV to fetch its own writes, the LSV ensures

that the jump is aligned along transactional boundaries and thus satisfies read atomicity. Finally,

convergence is achieved, since, by updating their dual views, all clients always share the same

total order of versions per key, which is established on the partition via monotonically advancing

Lamport clocks. We provide the proof in our technical report [28].

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 9. Publication date: February 2024.



9:20 Si Liu, Luca Multazzu, Hengfeng Wei, and David A. Basin

1 2 3 4 5 6

·103
0

100

200

300

Throughput (txns/s)

W
r
i
t
e
L
a
t
e
n
c
y
(
m
s
)

(a)

Eiger-PORT

Eiger-NOC2

2 8 32 128

0

0.2

0.4

0.6

0.8

1

Transaction Size

N
o
r
m
a
l
i
z
e
d
W
r
i
t
e
L
a
t
. (b)

Eiger-PORT

Eiger-NOC2

0 0.3 0.7 0.9 0.90.991.1 1.2

0.96

0.97

0.98

0.99

1

Zipfian Constant

N
o
r
m
a
l
i
z
e
d
A
v
g
.
L
a
t
. (c)

0 0.3 0.5 0.7 0.9

0.4

0.6

0.8

1

Read ProportionN
o
r
m
a
l
i
z
e
d
9
9
t
h
P
e
r
.
L
a
t
.

(d)

0 0.3 0.5 0.7 0.9 1

1

1.02

1.04

1.06

1.08

Read Proportion

N
o
r
m
a
l
i
z
e
d
T
h
r
o
u
g
h
p
u
t (e)

2 8 32 128

1

1.02

1.04

1.06

Transaction Size

N
o
r
m
a
l
i
z
e
d
T
h
r
o
u
g
h
p
u
t (f)

2 4 8 16 32

1

1.02

1.04

Number of Servers

N
o
r
m
a
l
i
z
e
d
T
h
r
o
u
g
h
p
u
t (g)

10 30 50 100 500 3000

80

85

90

95

100

Staleness (ms)

R
e
a
d
S
t
a
l
e
n
e
s
s
C
D
F

(h)

Fig. 9. Performance and data freshness comparisons between Eiger-NOC2 and Eiger-PORT.

7 EIGER-NOC2 EVALUATION
We assess Eiger-NOC2, showing its superior performance and data freshness

6
over the NOCS-

optimal Eiger-PORT algorithm as a strong baseline. Note that Eiger-PORT provides a weaker

isolation guarantee than Eiger-NOC2.

7.1 Implementation, Setup, and Workloads
Implementation. We build Eiger-NOC2, along with Eiger-PORT, on the RAMP codebase [5].

This consists of around 1250 LOC in Java for each algorithm including data replication, where we

reuse RAMP’s facilities such as distributed hash table and serializer. To prevent blocking in the

traditional 2PC, Eiger-NOC2 utilizes the same 2PC variant [31] as in Eiger-PORT, which ensures

that writes always commit (see Section 6.1). Similar to RA-NOC2, the front end of a partition

executes client-requested transactions.

Experimental Setup. We run our experiments on an Emulab [51] cluster of machines, each

with 2.4GHz Quad-Core Xeon CPU, 12GB RAM, and a 1Gbps network interface. We use the same

primary-backup replication setting as in Eiger-PORT [34], with two logical data centers co-located

in the cluster. By default, each data center employs eight servers for partitioning the database and

eight client machines to load the servers. The database partitioning is fixed once set up. For each

data point, we report the average over five trials, each lasting 60 seconds.

Workloads. For a fair comparison, we employ the same YCSB-like dynamic workload generator

and match Eiger-PORT’s default parameters [34]: 32 threads per client, a Zipfian distribution with

a skew factor of 0.8, 1 million keys, 128-byte values, 5 keys per transaction, and 90% reads.

7.2 Evaluation
Summary of Results. Our measurements show that Eiger-NOC2, even with a stronger isolation

guarantee, still surpasses Eiger-PORT in all experiments conducted. This demonstrates the effec-
tiveness of optimizing writes, even only with O𝑊 , in improving the overall system performance. In

particular, Eiger-NOC2 exhibits significantly lower write latency and noticeably higher through-

put. Moreover, the 99th percentile latency in Eiger-NOC2 is consistently lower or on par with

Eiger-PORT, which demonstrates that the O𝑊 optimization does not introduce extra overhead.

6
We have also observed that Eiger-NOC2 significantly outperforms Eiger [31]; both algorithms provide the same isolation

guarantee. See our technical report [28] for the experimental results.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 9. Publication date: February 2024.



NOC-NOC: Towards Performance-optimal Distributed Transactions 9:21

Eiger-NOC2 also scales well with an increasing number of partitions and is resilient to larger-sized

transaction workloads. Finally, it achieves slightly better data freshness results than Eiger-PORT.

Latency Improvement. Figure 9a depicts the write latency as a function of system throughput.

Compared to Eiger-PORT, Eiger-NOC2 achieves higher throughput (up to 7%) with the same

write latency and lower write latency (up to 48%) with the same throughput. The write latency

improvement is significant, around 47%, independent of the transaction size; see Figure 9b. Despite

varying skews (Figure 9c) and read/write ratios (Figure 9d), the latency in Eiger-NOC2 is overall

lower than Eiger-PORT, and the improvement tends to increase under highly skewed and write-

heavy workloads. Eiger-NOC2 owes all these improvements to the O𝑊 optimization.

Throughput Improvement. Overall, Eiger-NOC2 exhibits higher throughput than Eiger-PORT

under various workloads. Figure 9e shows that, when writes dominate the workload, the improve-

ment becomes more pronounced. Figure 9f depicts that Eiger-NOC2 consistently outperforms

Eiger-PORT regardless of transaction sizes, with up to 7% improvement. As shown in Figure 9g,

Eiger-NOC2 scales better when we increase the number of database partitions. All these throughput

improvements can be attributed mainly to two factors: (i) the O𝑊 optimization that boosts the

overall system performance and (ii) the precise capturing of TCCv snapshots, which reduces the

server-side overhead of backward search for safe versions.

Data Freshness. From Figure 9h we can observe that over 86% of the reads in Eiger-NOC2 (slightly

more than those in Eiger-PORT) are 10ms staler than up-to-date values, and almost all reads

experience less than 500 ms staleness. This is mainly because Eiger-NOC2 (like RA-NOC2) always

pushes a client’s dual view to the most recent, safe snapshot of the database by synchronizing with

the partitions and co-located clients.

8 DISCUSSION

Non-blocking Writes. N𝑊 focuses on non-blocking concurrency control mechanisms. When

coupling them with an atomic commitment protocol (ACP) for committing write transactions

(NOC-NOC assumes two-phase commit given its wide adoption in practice), a transaction system

may not make progress during failures as ACPs are inherently blocking [7] when, e.g., network

partitions occur. Many solutions exist in the literature for mitigating this blocking issue. Both

Eiger-NOC2 and Eiger-PORT employ the 2PC variant that always commits [31]; see Section 6.1.

RA-NOC2 runs the cooperative termination protocol (CTP) [7], which is both lightweight and

effective in practice [5]. CTP can always complete a transaction when failures occur during the

commit phase and a server has prepared the transaction but times out when waiting for the commit

message. Note that, by further leveraging LSVs, the writes of a transaction that are already fully

prepared can be safely returned, even before CTP recovers the blocked server.

Overhead of Local Computations. NOC-NOC, like many other design objectives or impossibility

results such as SNOW and NOCS, concentrates on communication complexity. However, there

may be other factors that negatively affect system performance, such as the overhead of local

computations. In particular, even though this is usually negligible compared to network latency,

especially in a geo-distributed setting, poor design choices or inefficient implementations could

still accumulate system-wide computation overhead, impairing overall system performance. To

return read-atomic versions in one round-trip, Eiger-PORT may perform expensive recursive scans

of the database. In both of our algorithms, to achieve one round-trip reads and one-phase writes,

maintaining dual views across clients may incur extra overhead under extremely skewed workloads,

although we have not observed this in practice. Investigating the trade-off between communication

complexity and the overhead of local computations is interesting future work.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 9. Publication date: February 2024.



9:22 Si Liu, Luca Multazzu, Hengfeng Wei, and David A. Basin

RA-NOC2 vs Eiger-NOC2. Despite both being NOC-NOC-optimal, the actual implementations of

RA-NOC2 and Eiger-NOC2 rely on the aforementioned different mechanisms to mitigate the 2PC

blocking issue (for fair comparisons with their respective competitors). For example, the 2PC variant

used by Eiger-NOC2 issues more prepare messages during the first phase, which are linear in the

size of cohorts. Upon timeout waiting for a commit message, a cohort in this 2PC variant checks

the commitment of a transaction 𝑇 only on the coordinator, while, with CTP, a cohort confirms 𝑇 ’s

status with any other sibling cohorts involved in𝑇 . Although we have observed RA-NOC2’s superior

performance over Eiger-NOC2,
7
a fair comparison would require re-implementing, e.g., Eiger-NOC2

with CTP, which we leave for future work. Nonetheless, Eiger-NOC2 is computationally more

expensive due to the supported stronger isolation guarantee. For example, clients need to mimic

the computation of commit timestamps on the server side.

Benchmarking with Realistic Workloads. Our evaluations only consider synthetic YCSB-like

benchmarks that are widely used by the database community [10, 22, 26, 36, 37, 53]. Although we

have experimented with a variety of workload parameters, standard benchmarks such as TPC-C

would provide more insights into our proposed optimizations. However, a recent study reveals that

TPC-C, essentially as an I/O benchmark, may not be ideal for benchmarking concurrency control

algorithms [50]. We could therefore consider benchmarks with realistic workloads (e.g., highly-

skewed transactions [11]) which are also suitable for concurrency control, or even design new

ones, e.g., by creating hot warehouses in TPC-C with YCSB’s Zipfian or hotspot distribution [50].

Ultimately, we could use realistic transaction workloads collected from production systems.

9 RELATEDWORK

Improving Existing Algorithms. Through the lens of NOC-NOC, we have examined a collection

of read-atomic and causally consistent distributed transaction algorithms, with the focus on the

RAMP-family and Eiger-family algorithms. There are many other algorithms in the literature which

do not fulfill all the NOC-NOC performance criteria. These include MySQL Cluster [40] for read

committed, RAMP with faster commit [5, 29] for read atomicity, COPS [30] and COPS-SNOW [32]

for causally consistent read-only transactions (with single-key writes), and a large number of TCCv

systems, e.g., GentleRain [16], Cure [2], Contrarian [15], PaRiS [46], and OCC [47]. Note that, as

NOC-NOC subsumes both SNOW and NOCS, any transaction algorithms that are suboptimal, or

even optimal (e.g., MySQL Cluster is NOCS-optimal; COPS-SNOW is SNOW-optimal), with respect

to these two design objectives, can be potentially optimized to achieve better system performance.

We showcase the possibilities by two novel algorithms. RA-NOC2 optimizes the SNOW-optimal

read-atomic algorithm LORA [27]. Eiger-NOC2 optimizes the Eiger-PORT design, which provides

TCC, and our prior design [19], which guarantees TCCv (see [28] for the performance comparison);

both designs are NOCS-optimal.

Note also that as TCCv is compatible with NOC-NOC, it is also achievable under NOCS. This

resolves the conjecture that TCC is the upper bound of achievable isolation levels for NOCS-optimal

read-only transactions in the presence of transactional writes [34].

Algorithms for Stronger Isolation Levels. NOC-NOC is incompatible with parallel snapshot

isolation and beyond (Theorem 3.1), while many distributed transaction systems offering stronger

isolation guarantees partially meet its criteria. Below we discuss some representative systems.

See also Figure 2 for the relationship among their supporting isolation levels. Walter [45], which

provides parallel snapshot isolation, can complete its transactions in one round-trip in the best

case. However, it has non-constant metadata for reads and fails to meet NOC for writes in general.

7
The performance comparison result is given in our technical report [28].

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 9. Publication date: February 2024.



NOC-NOC: Towards Performance-optimal Distributed Transactions 9:23

Scylla-PORT [34] is NOCS-optimal (satisfying NOC for reads) with process-ordered serializabil-

ity, but it does not support transactional writes. Spanner-RSS [22], providing regular sequential

serializability, improves latency for Spanner’s reads by reducing their blocking chances in the pres-

ence of conflicting writes. The strictly serializable system NCC [33] exhibits optimal performance

for its read-only transactions (i.e., NOC for reads) in the best case; however, it still aborts/retries

transactions in general, thereby not satisfying O𝑅 . These three recently-proposed systems focus

on optimizing reads. An open research question is whether they can be optimized to achieve

NOC-NOC-optimal best-case performance.

Design Objectives. Many performance criteria have been proposed for designing highly efficient

distributed transactions [3, 14, 15, 24, 32, 34, 49]. These criteria focus on optimizing reads. However,

some of them, such as SNOW [24, 32], miss crucial factors such as the metadata size, which also

impact system latency and throughput. Moreover, all these criteria, including NOCS, overlook how

optimizing writes can potentially improve overall system performance, even under read-heavy

workloads. In contrast, our NOC-NOC design objective aims at optimizing both reads and writes.

Some design objectives have stronger data freshness requirements (e.g., minimal progress [14]),

thus restricting the achievable combinations of performance criteria [3, 14, 15, 49]. NOC-NOC

assumes a weaker freshness criterion, as for SNOW and NOCS, which allows returning stale

snapshots. Nonetheless, satisfactory data freshness results can still be achieved in practice, as

shown by our evaluation.

10 CONCLUSION
We have proposed the NOC-NOC design objective and established related impossibility results.

Examining existing transaction algorithms in the light of NOC-NOC, we have identified a significant

gap in the design space. We have therefore designed two algorithms that fulfill all six NOC-NOC

criteria. Our evaluation shows their superior system performance and competitive data freshness.

Along with these two case studies, we have presented dual views which, when coupled with

version vectors, can be leveraged to design NOC-NOC-optimal transaction algorithms that provide

other isolation guarantees, in addition to RA+ and TCCv.

We expect NOC-NOC to help transaction system developers rethink their designs and implemen-

tations by accounting for the optimization of writes, avoiding efforts on achieving the impossible,

and guiding them to focus on what is actually possible.

DATA AVAILABILITY
Our technical report, prototypes, and experimental data are available at [28].

ACKNOWLEDGMENTS
We thank the reviewers for their valuable feedback. We express our gratitude to Kaile Huang for his

assistance in establishing the impossibility result for global visibility. We also extend our gratitude

to Haonan Lu for his assistance in facilitating our understanding of Eiger-PORT.

REFERENCES
[1] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto. 1995. Causal Memory: Definitions,

Implementation, and Programming. Distributed Comput. 9, 1 (1995), 37–49.
[2] Deepthi Devaki Akkoorath, Alejandro Z. Tomsic, Manuel Bravo, Zhongmiao Li, Tyler Crain, Annette Bieniusa, Nuno M.

Preguiça, and Marc Shapiro. 2016. Cure: Strong Semantics Meets High Availability and Low Latency. In ICDCS 2016.
IEEE Computer Society, 405–414.

[3] Karolos Antoniadis, Diego Didona, Rachid Guerraoui, and Willy Zwaenepoel. 2020. The Impossibility of Fast Transac-

tions. In IPDPS’20. IEEE, 1143–1154.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 9. Publication date: February 2024.



9:24 Si Liu, Luca Multazzu, Hengfeng Wei, and David A. Basin

[4] Masoud Saeida Ardekani, Pierre Sutra, Nuno Preguiça, and Marc Shapiro. 2013. Non-Monotonic Snapshot Isolation.

arXiv:1306.3906 [cs.DC]

[5] Peter Bailis, Alan D. Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2016. Scalable Atomic Visibility with

RAMP Transactions. ACM Trans. Database Syst. 41, 3 (2016), 15:1–15:45.
[6] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J. O’Neil, and Patrick E. O’Neil. 1995. A Critique of

ANSI SQL Isolation Levels. In SIGMOD’95. ACM Press, 1–10.

[7] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency Control and Recovery in Database
Systems. Addison-Wesley.

[8] Eric A. Brewer. 2000. Towards robust distributed systems (abstract). In PODC. 7.
[9] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo,

Sachin Kulkarni, Harry C. Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkateshwaran

Venkataramani. 2013. TAO: Facebook’s Distributed Data Store for the Social Graph. In ATC’13. USENIX Association,

49–60.

[10] Qingchao Cai, Wentian Guo, Hao Zhang, Divyakant Agrawal, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, Yong Meng

Teo, and Sheng Wang. 2018. Efficient Distributed Memory Management with RDMA and Caching. Proc. VLDB Endow.
11, 11 (2018), 1604–1617.

[11] Audrey Cheng, Xiao Shi, Aaron Kabcenell, Shilpa Lawande, Hamza Qadeer, Jason Chan, Harrison Tin, Ryan Zhao,

Peter Bailis, Mahesh Balakrishnan, Nathan Bronson, Natacha Crooks, and Ion Stoica. 2022. TAOBench: An End-to-End

Benchmark for Social Network Workloads. Proc. VLDB Endow. 15, 9 (2022), 1965–1977.
[12] Audrey Cheng, Xiao Shi, Lu Pan, Anthony Simpson, Neil Wheaton, Shilpa Lawande, Nathan Bronson, Peter Bailis,

Natacha Crooks, and Ion Stoica. 2021. RAMP-TAO: Layering Atomic Transactions on Facebook’s Online TAO Data

Store. Proc. VLDB Endow. 14, 12 (2021), 3014–3027.
[13] Khuzaima Daudjee and Kenneth Salem. 2004. Lazy Database Replication with Ordering Guarantees. In ICDE 2004.

IEEE Computer Society, 424–435.

[14] Diego Didona, Panagiota Fatourou, Rachid Guerraoui, Jingjing Wang, and Willy Zwaenepoel. 2019. Distributed

Transactional Systems Cannot Be Fast. In SPAA’19. ACM, 369–380.

[15] Diego Didona, Rachid Guerraoui, Jingjing Wang, and Willy Zwaenepoel. 2018. Causal Consistency and Latency

Optimality: Friend or Foe? Proc. VLDB Endow. 11, 11 (2018), 1618–1632.
[16] Jiaqing Du, Calin Iorgulescu, Amitabha Roy, and Willy Zwaenepoel. 2014. GentleRain: Cheap and Scalable Causal

Consistency with Physical Clocks. In SoCC 2014. ACM, 4:1–4:13.

[17] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler,

David Johnson, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael

Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The Design and Operation of CloudLab. In

ATC’19. USENIX Association, 1–14.

[18] ElectricSQL. Accessed in July, 2023. https://electric-sql.com/.

[19] Shabnam Ghasemirad. 2022. Mechanized Data Consistency Models for Distributed Database Transactions. Master’s

thesis. ETH Zurich. https://doi.org/10.3929/ethz-b-000581334.

[20] Seth Gilbert and Nancy A. Lynch. 2002. Brewer’s conjecture and the feasibility of consistent, available, partition-tolerant

web services. SIGACT News 33, 2 (2002), 51–59.
[21] Wojciech Golab, Xiaozhou Li, and Mehul A. Shah. 2011. Analyzing consistency properties for fun and profit. In

PODC’11. ACM, 197–206.

[22] Jeffrey Helt, Matthew Burke, Amit Levy, and Wyatt Lloyd. 2021. Regular Sequential Serializability and Regular

Sequential Consistency. In SOSP’21. ACM, 163–179.

[23] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander Rasin, Stanley Zdonik, Evan P. C. Jones,

Samuel Madden, Michael Stonebraker, Yang Zhang, John Hugg, and Daniel J. Abadi. 2008. H-Store: A High-Performance,

Distributed Main Memory Transaction Processing System. Proc. VLDB Endow. 1, 2 (2008), 1496–1499.
[24] Kishori M. Konwar, Wyatt Lloyd, Haonan Lu, and Nancy A. Lynch. 2021. SNOW Revisited: Understanding When Ideal

READ Transactions Are Possible. In IPDPS’21. IEEE, 922–931.
[25] Butler Lampson and Howard E. Sturgis. 1979. Crash recovery in a distributed storage system. Xerox Palo Alto Research

Center.

[26] Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. 2017. Cicada: Dependably Fast Multi-Core In-Memory

Transactions. In SIGMOD ’17. ACM, 21–35.

[27] Si Liu. 2022. All in One: Design, Verification, and Implementation of SNOW-Optimal Read Atomic Transactions. ACM
Trans. Softw. Eng. Methodol. 31, 3 (2022).

[28] Si Liu, Luca Multazzu, Hengfeng Wei, and David Basin. 2023. Artifact and technical report for “NOC-NOC: Towards

Performance-optimal Distributed Transactions”. https://github.com/siliunobi/NOC-NOC.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 9. Publication date: February 2024.

https://arxiv.org/abs/1306.3906
https://electric-sql.com/
https://doi.org/10.3929/ethz-b-000581334
https://github.com/siliunobi/NOC-NOC


NOC-NOC: Towards Performance-optimal Distributed Transactions 9:25

[29] Si Liu, Peter Csaba Ölveczky, Muntasir Raihan Rahman, Jatin Ganhotra, Indranil Gupta, and José Meseguer. 2016.

Formal modeling and analysis of RAMP transaction systems. In SAC’16. ACM, 1700–1707.

[30] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. 2011. Don’t settle for eventual: scalable

causal consistency for wide-area storage with COPS. In SOSP 2011. ACM, 401–416.

[31] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. 2013. Stronger Semantics for Low-

Latency Geo-Replicated Storage. In NSDI’13. USENIX Association, 313–328.

[32] Haonan Lu, Christopher Hodsdon, Khiem Ngo, Shuai Mu, and Wyatt Lloyd. 2016. The SNOW Theorem and Latency-

Optimal Read-Only Transactions. In OSDI’16. USENIX Association, 135–150.

[33] Haonan Lu, Shuai Mu, Siddhartha Sen, and Wyatt Lloyd. 2023. NCC: Natural Concurrency Control for Strictly

Serializable Datastores by Avoiding the Timestamp-Inversion Pitfall. In OSDI’23. USENIX Association, 305–323.

[34] Haonan Lu, Siddhartha Sen, andWyatt Lloyd. 2020. Performance-Optimal Read-Only Transactions. In OSDI’20. USENIX
Association, 333–349.

[35] Haonan Lu, Kaushik Veeraraghavan, Philippe Ajoux, Jim Hunt, Yee Jiun Song, Wendy Tobagus, Sanjeev Kumar, and

Wyatt Lloyd. 2015. Existential consistency: measuring and understanding consistency at Facebook. In SOSP 2015. ACM,

295–310.

[36] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2020. Aria: A Fast and Practical Deterministic OLTP Database. Proc.
VLDB Endow. 13, 12 (2020), 2047–2060.

[37] Yi Lu, Xiangyao Yu, and Samuel Madden. 2019. STAR: Scaling Transactions through Asymmetric Replication. Proc.
VLDB Endow. 12, 11 (2019), 1316–1329.

[38] Microsoft. Accessed in July, 2023. Azure Cosmos DB. https://learn.microsoft.com/en-us/azure/cosmos-db/consistency-

levels.

[39] MongoDB. Accessed in July, 2023. Read Isolation, Consistency, and Recency. https://docs.mongodb.com/manual/core

/read-isolation-consistency-recency/.

[40] MySQL. Accessed in July, 2023. MySQL Cluster CGE. https://www.mysql.com/products/cluster/.

[41] Neo4j. Accessed in July, 2023. https://neo4j.com/docs/operations-manual/current/clustering/introduction/.

[42] Christos H. Papadimitriou. 1979. The Serializability of Concurrent Database Updates. J. ACM 26, 4 (1979), 631–653.

[43] Matthieu Perrin, Achour Mostefaoui, and Claude Jard. 2016. Causal Consistency: Beyond Memory. SIGPLAN Not. 51, 8,
Article 26 (2016), 26:1–26:12 pages.

[44] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy, Chad Whipkey, Eric Rollins, Mircea Oancea, Kyle Littlefield,

David Menestrina, Stephan Ellner, John Cieslewicz, Ian Rae, Traian Stancescu, and Himani Apte. 2013. F1: A Distributed

SQL Database That Scales. Proc. VLDB Endow. 6, 11 (2013), 1068–1079.
[45] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. 2011. Transactional storage for geo-replicated systems.

In SOSP’11. ACM, 385–400.

[46] Kristina Spirovska, Diego Didona, and Willy Zwaenepoel. 2019. PaRiS: Causally Consistent Transactions with

Non-blocking Reads and Partial Replication. In ICDCS 2019. IEEE, 304–316.
[47] Kristina Spirovska, Diego Didona, and Willy Zwaenepoel. 2021. Optimistic Causal Consistency for Geo-Replicated

Key-Value Stores. IEEE Trans. Parallel Distributed Syst. 32, 3 (2021), 527–542.
[48] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer, Marvin Theimer, and Brent B. Welch. 1994. Session

Guarantees for Weakly Consistent Replicated Data. In PDIS. IEEE Computer Society, 140–149.

[49] Alejandro Z. Tomsic, Manuel Bravo, and Marc Shapiro. 2018. Distributed transactional reads: the strong, the quick, the

fresh & the impossible. In Middleware’18. ACM, 120–133.

[50] Yang Wang, Miao Yu, Yujie Hui, Fang Zhou, Yuyang Huang, Rui Zhu, Xueyuan Ren, Tianxi Li, and Xiaoyi Lu. 2022. A

Study of Database Performance Sensitivity to Experiment Settings. Proc. VLDB Endow. 15, 7 (2022), 1439–1452.
[51] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac Newbold, Mike Hibler, Chad Barb, and

Abhijeet Joglekar. 2002. An Integrated Experimental Environment for Distributed Systems and Networks. In OSDI.
USENIX Association, 255–270.

[52] Juncheng Yang, Yao Yue, and K. V. Rashmi. 2021. A Large-scale Analysis of Hundreds of In-memory Key-value Cache

Clusters at Twitter. ACM Trans. Storage 17, 3 (2021), 17:1–17:35.
[53] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy, and Dan R. K. Ports. 2015. Building

consistent transactions with inconsistent replication. In SOSP 2015. ACM, 263–278.

[54] Fang Zhou, Yifan Gan, Sixiang Ma, and Yang Wang. 2018. wPerf: Generic Off-CPU Analysis to Identify Bottleneck

Waiting Events. In OSDI’18. USENIX Association, 527–543.

Received 15 July 2023; revised 20 October 2023; accepted 20 November 2023

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 9. Publication date: February 2024.

https://learn.microsoft.com/en-us/azure/cosmos-db/consistency-levels
https://learn.microsoft.com/en-us/azure/cosmos-db/consistency-levels
https://docs.mongodb.com/manual/core/read-isolation-consistency-recency/
https://docs.mongodb.com/manual/core/read-isolation-consistency-recency/
https://www.mysql.com/products/cluster/
https://neo4j.com/docs/operations-manual/current/clustering/introduction/

