
Efficient Algorithm for K-Multiple-Means

YASUHIRO FUJIWARA, NTT Communication Science Laboratories, Japan

ATSUTOSHI KUMAGAI, NTT Computer and Data Science Laboratories, Japan

YASUTOSHI IDA, NTT Computer and Data Science Laboratories, Japan

MASAHIRO NAKANO, NTT Communication Science Laboratories, Japan

MAKOTO NAKATSUJI, NTT Human Informatics Laboratories, Japan

AKISATO KIMURA, NTT Communication Science Laboratories, Japan

K-Multiple-Means is an extension of K-means for the clustering of multiple means used in many applications,

such as image segmentation, load balancing, and blind-source separation. Since K-means uses only one mean

to represent each cluster, it fails to capture non-spherical cluster structures of data points. However, since

K-Multiple-Means represents the cluster by computing multiple means and grouping them into specified

𝑐 clusters, it can effectively capture the non-spherical clusters of the data points. To obtain the clusters,

K-Multiple-Means updates a similarity matrix of a bipartite graph between the data points and the multiple

means by iteratively computing the leading 𝑐 singular vectors of the matrix. K-Multiple-Means, however,

incurs a high computation cost for large-scale data due to the iterative SVD computations. Our proposal,

F-KMM, increases the efficiency of K-Multiple-Means by computing the singular vectors from a smaller

similarity matrix between the multiple means obtained from the similarity matrix of the bipartite graph. To

compute the similarity matrix of the bipartite graph efficiently, we skip unnecessary distance computations

and estimate lower bounding distances between the data points and the multiple means. Theoretically, the

proposed approach guarantees the same clustering results as K-Multiple-Means since it can exactly compute

the singular vectors from the similarity matrix between the multiple means. Experiments show that our

approach is several orders of magnitude faster than previous clustering approaches that use multiple means.

CCS Concepts: • Information systems→Clustering; •Computingmethodologies→Machine learning
algorithms.

ACM Reference Format:
YASUHIRO FUJIWARA, ATSUTOSHI KUMAGAI, YASUTOSHI IDA, MASAHIRO NAKANO, MAKOTO

NAKATSUJI, and AKISATO KIMURA. 2024. Efficient Algorithm for K-Multiple-Means. Proc. ACM Manag.
Data 2, 1 (SIGMOD), Article 18 (February 2024), 26 pages. https://doi.org/10.1145/3639273

1 INTRODUCTION
Massive datasets are now being stored day after day with the rapid development of database

systems, and they must be managed in an effective manner [12–14]. Clustering is an essential data

analysis process as it can extract clusters by grouping data with high similarity. K-means is one of

Authors’ addresses: YASUHIRO FUJIWARA, NTT Communication Science Laboratories, Morinosato Wakamiya, Atsugi-shi,

Japan, yasuhiro.fujiwara@ntt.com; ATSUTOSHI KUMAGAI, NTT Computer and Data Science Laboratories, Midori-cho,

Musashino-shi, Japan, atsutoshi.kumagai@ntt.com; YASUTOSHI IDA, NTT Computer and Data Science Laboratories,

Midori-cho, Musashino-shi, Japan, yasutoshi.ida@ieee.org; MASAHIRO NAKANO, NTT Communication Science Labora-

tories, Morinosato Wakamiya, Atsugi-shi, Japan, ma.nakano@ntt.com; MAKOTO NAKATSUJI, NTT Human Informatics

Laboratories, Hikarinooka, Yokosuka-shi, Japan, makoto.nakatsuji@ntt.com; AKISATO KIMURA, NTT Communication

Science Laboratories, Morinosato Wakamiya, Atsugi-shi, Japan, akisato@ieee.org.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2024/2-ART18

https://doi.org/10.1145/3639273

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 18. Publication date: February 2024.

HTTPS://ORCID.ORG/0000-0003-2181-0056
https://doi.org/10.1145/3639273
https://orcid.org/0000-0003-2181-0056
https://doi.org/10.1145/3639273


18:2 Yasuhiro Fujiwara et al.

(1-1) Two-moon (1-2) K-means

(1-3) Multi-prototypes (1-4) K-Multiple-Means

Fig. 1. Comparison of K-means and K-Multiple-Means.

a
1

x
1

a
2

a
3

a
4

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

(2-1) Bipartite graph

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

a
1

a
2

a
3 a

4

(2-2) Connected component

Fig. 2. Bipartite graph partitioning problem

the most popular clustering approaches [26]. Theoretically, it is categorized as a prototype-based

clustering approach that computes clusters by minimizing the sum of the squared errors of data

points to the associated prototype (the mean of the cluster). Despite its simplicity, K-means has a

major drawback: it does not work well for non-spherically separable datasets. For example, K-means

fails to capture the clusters for the two-moon dataset of Fig. 1-1 with two non-spherical clusters,

as shown in Fig. 1-2. This is because K-means assigns each data point to the nearest prototype;

it assumes the dataset has hyper-spherical clusters. Note that, in Fig. 1, data points of the same

cluster have the same color, and green square points are prototypes.

Nie et al. proposed K-Multiple-Means to overcome the drawback of K-means [30]. Unlike K-

means, it uses the multi-prototype representation, which models clusters via multiple prototypes

to compute specified 𝑐 clusters. As shown in Fig. 1-3, it first separates the data points into𝑚(> 𝑐)

sub-clusters and then groups the𝑚 sub-clusters into 𝑐 clusters, as shown in Fig. 1-4. Since it uses

more than one prototype per cluster, it can effectively represent the geometries of non-spherical

shapes. As a result, K-Multiple-Means can more effectively capture cluster structures than K-means,

as well as other clustering approaches such as Self-tuning spectral clustering [49], Mercer kernel-

based clustering [16], RSFKM [48], MEAP [42], K-MEAP [45], and CLR [33]. Due to its effectiveness,

K-Multiple-Means is used in many applications, such as image segmentation [20], load balancing

[17], and blind source separation [25].

Theoretically, K-Multiple-Means formalizes the multiple-means clustering problem as a graph

partitioning problem. In the problem, it considers a bipartite graph of data point x𝑖 (1 ≤ 𝑖 ≤ 𝑛) and

prototype a𝑗 (1 ≤ 𝑗 ≤ 𝑚), as shown in Fig. 2-1, and it iteratively updates similarities between nodes

in the bipartite graph so that the bipartite graph has 𝑐 connected components, as shown in Fig. 2-2.

Since the 𝑛 data points with the𝑚 prototypes are partitioned into 𝑐 connected components, the

clusters correspond to the connected components in the bipartite graph. Besides, if the bipartite

graph has 𝑐 connected components, the rank of the normalized Laplacian matrix of the bipartite

graph is 𝑛 +𝑚 − 𝑐 [41]. Therefore, to obtain the clusters, K-Multiple-Means models the partitioning

of 𝑛 data points with 𝑚 prototypes as a bipartite graph partitioning problem with constrained

Laplacian rank. Note that the normalized Laplacian matrix of the bipartite graph is obtained from

the similarities between the data points and prototypes [31].

To solve the problem, K-Multiple-Means uses an alternating optimization strategy for an 𝑛 ×𝑚

similarity matrix of the bipartite graph. Specifically, it iteratively updates the similarities using the

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 18. Publication date: February 2024.



Efficient Algorithm for K-Multiple-Means 18:3

𝑐 singular vectors associated with the 𝑐 largest singular values of the similarity matrix to satisfy

the rank constraint. Then, it updates the prototypes of sub-clusters. However, it incurs excessive

processing time for large-scale data since it iteratively computes SVD at 𝑂 (𝑛𝑚2) time on the 𝑛 ×𝑚

similarity matrix to obtain the singular vectors. Although we can reduce the computational cost by

exploiting randomized SVD [28], this approach yields different clustering results from the original

approach of K-Multiple-Means since it approximately computes SVD. As a result, this approach

sacrifices the clustering result to improve efficiency.

This paper proposes F-KMM, a novel and fast clustering approach that guarantees the same

clustering results as K-Multiple-Means. To efficiently obtain the 𝑐 singular vectors, the proposed

approach exploits a low-rank property of the similarity matrix; the rank of the similarity matrix

is at most 𝑚 since the size of the similarity matrix is 𝑛 ×𝑚 where we have 𝑚 < 𝑛 [46]. From

this property, we compute an𝑚 ×𝑚 similarity matrix between the prototypes from the similarity

matrix of the bipartite graph, and we exactly compute the 𝑐 singular vectors by computing the

eigenvectors of the𝑚 ×𝑚 similarity matrix between prototypes; we do not compute the SVD of the

𝑛 ×𝑚 similarity matrix of the bipartite graph. Since we have𝑚 ≪ 𝑛 in practice, we can efficiently

compute the eigenvectors of the𝑚 ×𝑚 prototype matrix. Moreover, since the𝑚 ×𝑚 prototype

matrix is broken into small block matrices according to the graph partitions in the iterations, we can

efficiently compute the singular vectors by processing the block matrices individually. To efficiently

obtain the similarity matrix of the bipartite graph, we skip unnecessary distance computations

and estimate lower bounding distances between the data points and the prototypes. Furthermore,

we can optionally improve the clustering accuracy of our approach by initializing the prototypes

effectively. In summary, the main contributions of this paper are as follows:

• We propose an efficient approach to K-Multiple-Means that computes the singular vectors

of the similarity matrix of the bipartite graph by computing the eigenvectors of the smaller

similarity matrix between the prototypes.

• Our approach does not sacrifice the clustering results to improve the efficiency of K-Multiple-

Means. This is because it can exactly compute the singular vectors from the similarity matrix

between the prototypes. In addition, the clustering accuracy of our approach can be optionally

improved by initializing the prototypes effectively.

• Experiments confirm that our approach is up to 4,150 times faster than previous clustering

approaches of the multi-prototype representation while it yields accurate clustering results

as the original approach of K-Multiple-Means.

The remainder of this paper is organized as follows: Section 2 describes related work. Section 3

overviews the background. Section 4 introduces our approach. Section 5 shows experimental results.

Section 6 provides our conclusions.

2 RELATEDWORK
Despite the simpleness, K-means fails to capture non-spherical clusters since it exploits squared

errors for prototype assignment. To overcome the problem, we can use nonlinear clustering methods

such as kernel-based clustering and spectral clustering [8, 29, 32, 50]. Kernel-based clustering

embeds the data points into a feature space where non-spherical clusters become linearly separable

[35, 43]. Spectral clustering constructs a weighted graph of the data points and computes the

eigenvectors of an affinity matrix to cluster the data points [9, 38]. However, the design of the

appropriate kernel or the construction of the weighted graph is not easy to determine for each

partition problem [9, 33].

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 18. Publication date: February 2024.



18:4 Yasuhiro Fujiwara et al.

Table 1. Definitions of main symbols.
Symbol Definition

𝑛 Number of data points

𝑚 Number of prototypes

𝑐 Number of clusters

𝑑 Number of dimensions

𝑏 Number of block matrices

_𝑖,𝑗 𝑗 -th largest eigenvalue of M′
𝑖

𝑠 [𝑖 ] [ 𝑗 ] Similarity of the 𝑖-th data point and the 𝑗 -th prototype

𝐷 [𝑖, 𝑗 ] Distance between the 𝑖-th data point and 𝑗 -th prototype

x𝑖 𝑖-th data point

a𝑗 𝑗 -th prototype

q𝑖,𝑗 𝑗 -th eigenvector of M′
𝑖

A 𝑚 × 𝑑 prototype matrix

S 𝑛 ×𝑚 similarity matrix of the bipartite graph

F (𝑛 +𝑚) × 𝑐 matrix of singular vectors

M′
𝑖 𝑖-th block matrix of𝑚𝑖 ×𝑚𝑖

Multi-prototype clustering is a simple but effective alternative approach; it represents each cluster

via multiple prototypes [2, 21, 23, 24, 30, 40, 44, 51]. K-Multiple-Means is categorized as a multi-

prototype clustering. Multi-prototype clustering typically has two stages. In the split stage, the data

points are divided into sub-clusters. In the merge stage, the sub-clusters are iteratively aggregated

into a given number of clusters. Recently, Wang et al. proposed GKM-MPC as a multi-prototype

clustering method [44]. In the split stage of GKM-MPC, sub-clusters are initialized using global

K-means [22], and the sub-clusters are split by computing the shortest path in a nearest neighbor

graph of prototypes to detect sub-clusters with low densities. In the merge stage, the densities

around the boundaries of all the sub-cluster pairs are computed to form a density matrix between

the prototypes, and 𝑐 connected components are computed from the density matrix by iteratively

truncating its elements. However, GKM-MPC has a high computation cost since it requires𝑂 (𝑛2𝑚𝑑)
time to use global K-means to initialize the sub-clusters. Zhang recently proposed nKMM as a

multi-prototype clustering method [51]. In the split stage, it initializes prototypes by randomly

sampling data points. In the merge stage, it aggregates the sub-clusters if they have high similarities.

It then uses the Chameleon algorithm to obtain the prespecified number of clusters [19]. Specifically,

it computes a nearest neighbor graph of the data points and iteratively merges sub-clusters until

it has 𝑐 connected components in the graph. After the iteration, it updates the prototypes based

on the clustering result. However, since it needs 𝑂 (𝑛2𝑑) time to construct the nearest neighbor

graph, nKMM incurs a high computation cost. As a result, since the computational costs of the

recent approach to multi-prototype clustering are quadratic to the number of data points, they do

not scale well enough to support large numbers of data points with high dimensionality.

3 PRELIMINARIES
We introduce here the background of this paper. Table 1 lists the main symbols. If 𝑑 is the number

of dimensions, the 𝑖-th data point is represented as x𝑖 = [𝑥𝑖 [1], . . . , 𝑥𝑖 [𝑑]]. The 𝑗-th prototype is

represented as a𝑗 = [𝑎 𝑗 [1], . . . , 𝑎 𝑗 [𝑑]] and A = [a1, . . . , a𝑚]⊤ is an𝑚 ×𝑑 prototype matrix. The 𝑖-th

data point x𝑖 connects to the 𝑗-th prototype a𝑗 with similarity 𝑠 [𝑖] [ 𝑗]. Let ∥ · ∥2 be the 𝐿2-norm,

𝑠 [𝑖] [ 𝑗] has a large value as ∥x𝑖 − a𝑗 ∥2

2
is small. If S is an 𝑛 ×𝑚 matrix whose (𝑖, 𝑗)-th element is

𝑠 [𝑖] [ 𝑗], S associates with the bipartite graph between the data points and the prototypes. To group

the 𝑛 data points with the𝑚 prototypes into 𝑐 clusters, K-Multiple-Means computes the normalized

Laplacian matrix L as follows:

L = I − D− 1

2 WD− 1

2 , W =

[
S

S⊤

]
. (1)

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 18. Publication date: February 2024.



Efficient Algorithm for K-Multiple-Means 18:5

In this equation, D is a (𝑛 +𝑚) × (𝑛 +𝑚) diagonal matrix whose 𝑖-th diagonal element 𝑑 [𝑖] is set
as follows:

𝑑 [𝑖] = ∑𝑛+𝑚
𝑗=1

𝑤 [𝑖] [ 𝑗] . (2)

If the rank of L is 𝑛 +𝑚 − 𝑐 , the bipartite graph has 𝑐 connected components; the 𝑛 data points with

the𝑚 prototypes are grouped into the 𝑐 clusters [41]. Therefore, K-Multiple-Means computes the

clusters by solving the following optimization problem:

minS,A
∑𝑛

𝑖=1

∑𝑚
𝑗=1

𝑠 [𝑖] [ 𝑗] ∥x𝑖 − a𝑗 ∥2

2
+ 𝛼 ∥S∥2

𝐹
+ 𝛽

∑𝑐
𝑖=1

𝜌𝑖

s.t. S ≥ 0, S1𝑚 = 1𝑚,A ∈ 𝑅𝑚×𝑑 ,
(3)

where ∥ · ∥𝐹 is the Frobenius-norm, 𝛼(≥ 0) and 𝛽(≥ 0) are the regularization parameters of the

optimization problem, 𝜌𝑖 is the 𝑖-th smallest eigenvalue of L, and 1𝑚 is a column vector of length

𝑚 such that 1𝑚 = [1, . . . , 1]⊤. In the problem of (3), the first and second terms correspond to

the assignment problem of the 𝑛 data points to the𝑚 prototypes based on the weighted squared

error. Regularization parameter 𝛼 controls the sparsity of the connection of the data points to the

multi-prototypes. The third term corresponds to the rank constraint of L; it groups the𝑚 prototypes

into 𝑐 sets. When 𝛽 is large enough,

∑𝑐
𝑖=1

𝜌𝑖 would be small in the optimal solution, thus satisfying

the rank constraint. According to Ky Fan’s Theorem [11], if F is an (𝑛 +𝑚) × 𝑐 matrix of singular

vectors, the optimization problem can be written as follows:

minF,S,A
∑𝑛

𝑖=1

∑𝑚
𝑗=1

𝑠 [𝑖] [ 𝑗] ∥x𝑖 − a𝑗 ∥2

2
+ 𝛼 ∥S∥2

𝐹
+ 𝛽 tr (F⊤LF)

s.t. F ∈ 𝑅 (𝑛+𝑚)×𝑐 , F⊤F = I, S ≥ 0, S1𝑚 = 1𝑚,A ∈ 𝑅𝑚×𝑑 ,
(4)

where tr (·) is the trace.
K-Multiple-Means solves the problem of (4) by using an alternating optimization method that

updates F, S, and A iteratively. Specifically, in the first step, it updates F by fixing S and A. In the

second step, it updates S by fixing F and A. It iterates these two steps until the rank constraint of L
is satisfied; the bipartite graph has 𝑐 connected components. The third step updates A by fixing F
and S to relocate each prototype. It repeats step 1, 2, and 3 until the assignments of the prototypes

no longer change. After the convergence, it obtains the 𝑐 clusters from the 𝑐 connected components.

When S and A are fixed, since L = I − D− 1

2 WD− 1

2 , the optimization problem of (4) becomes as

follows:

maxF∈𝑅 (𝑛+𝑚)×𝑐 ,F⊤F=I tr (F⊤D− 1

2 WD− 1

2 F). (5)

As shown in [31], this problem can be solved by computing the singular vectors of the following

matrix:

S̃ = D− 1

2

𝑛 SD− 1

2

𝑚 , (6)

where D𝑛 ∈ 𝑅𝑛×𝑛 and D𝑚 ∈ 𝑅𝑚×𝑚
are diagonal matrices calculated as follows:

D =

[
D𝑛

D𝑚

]
. (7)

Note that S̃ is a sparse matrix the same as S since D𝑛 and D𝑚 are diagonal matrices. Let U𝑐 ∈ 𝑅𝑛×𝑐

and V𝑐 ∈ 𝑅𝑚×𝑐
be matrices of the leading 𝑐 left and right singular vectors of S̃ associated with the

largest 𝑐 singular values, respectively,
√

2

2
U𝑐 and

√
2

2
V𝑐 are the optimal solutions to the problem. As

a result, F is given as follows:

F =
√

2

2

[
U𝑐

V𝑐

]
. (8)

Since it needs to compute SVD on S̃ to obtain
√

2

2
U𝑐 and

√
2

2
V𝑐 , it requires a considerable computation

time to compute F.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 18. Publication date: February 2024.



18:6 Yasuhiro Fujiwara et al.

When F and A are fixed, the problem of (4) becomes as follows:

minS
∑𝑛

𝑖=1

∑𝑚
𝑗=1

𝑠 [𝑖] [ 𝑗] ∥x𝑖 − a𝑗 ∥2

2
+ 𝛼 ∥S∥2

𝐹
+ 𝛽 tr (F⊤LF)

s.t. S ≥ 0, S1𝑚 = 1𝑚 .
(9)

This problem has a closed-form solution [32]. Specifically, each element of S is given as follows:

𝑠 [𝑖] [ 𝑗] =
{
(𝐷𝑖,𝑙+1 − 𝐷 [𝑖, 𝑗])/(𝑙𝐷𝑖,𝑙+1 −

∑
a𝑘 ∈N𝑖 𝐷 [𝑖, 𝑘]) if a𝑗 ∈ N𝑖

0 otherwise

, (10)

where 𝑙 is the predefined hyper-parameter that gives the number of neighbor prototypes, N𝑖 is the
set of 𝑙 nearest prototypes to the 𝑖-th data points, 𝐷 [𝑖, 𝑗] is the distance between x𝑖 and a𝑗 , and

𝐷𝑖,𝑙+1 is the distance to the (𝑙 + 1)-th nearest prototype of x𝑖 . In Equation (10), distance 𝐷 [𝑖, 𝑗] is
given as follows:

𝐷 [𝑖, 𝑗] = ∥x𝑖 − a𝑗 ∥2

2
+ 𝛽

 f𝑖√
𝑑 [𝑖 ]

− f𝑛+𝑗√
𝑑 [𝑛+𝑗 ]

2

2

, (11)

where f𝑖 is the 𝑖-th row vector of F. To obtain the nearest prototypes of each data point, it needs to

compute the distance of Equation (11) for all the pairs of data points and prototypes. Note that S is

a sparse matrix where each row has 𝑙 non-zero elements normalized as follows:∑𝑚
𝑗=1

𝑠 [𝑖] [ 𝑗] = 1. (12)

Moreover, 𝛼 can be set to 𝛼 = 1

𝑛

∑𝑛
𝑖=1

( 𝑙
2
𝐷𝑖,𝑙+1 − 1

2

∑
a𝑘 ∈N𝑖 𝐷 [𝑖, 𝑘]). As a result, regularization param-

eter 𝛼 can be set by tuning the number of nearest neighbors, 𝑙 .

When F and S are fixed, the problem of (4) becomes as follows:

minA∈𝑅𝑚×𝑑
∑𝑛

𝑖=1

∑𝑚
𝑗=1

𝑠 [𝑖] [ 𝑗] ∥x𝑖 − a𝑗 ∥2

2
. (13)

Therefore, each prototype is computed as follows:

a𝑗 =
∑𝑛

𝑖=1
𝑠 [𝑖 ] [ 𝑗 ]x𝑖∑𝑛

𝑖=1
𝑠 [𝑖 ] [ 𝑗 ] . (14)

Although K-Multiple-Means can effectively compute the clusters, it incurs excessive processing

time. Since the size of S̃ of Equation (6) is 𝑛 ×𝑚, step 1 requires 𝑂 (𝑛𝑚2) time to update F from

Equation (8) by computing SVD on S̃ to obtain the leading singular vectors. Since it needs𝑂 (𝑛𝑚(𝑐 +
𝑑)) time to compute the distances between data points and prototypes from Equation (11), step 2

takes𝑂 (𝑛𝑚(𝑐+𝑑 + log𝑚)) time to update S by computing the nearest prototypes from Equation (10).

After iteratively updating F and S until 𝑐 connected components are determined, step 3 takes𝑂 (𝑛𝑚𝑑)
time to update the prototypes from Equation (14). As a result, if 𝑡𝑐 is the number of iterations to

obtain the 𝑐 connected components and 𝑡𝑎 is the number of iterations to obtain the converged

assignments, it requires𝑂 (𝑛𝑚(𝑑 +𝑐 +𝑚)𝑡𝑐 +𝑛𝑚𝑑𝑡𝑎) time to compute the clusters. Since K-Multiple-

Means needs to compute SVD at 𝑂 (𝑛𝑚2) time in step 1 iteratively, the computational costs are

excessive for large-scale data. In addition, the original algorithm requires 𝑂 (𝑛(𝑚 + 𝑑)) space. This
is because it needs 𝑂 (𝑛𝑑) space to hold the data points, and the sizes of matrix F, S, and A are

𝑐 (𝑛 +𝑚), 𝑛𝑚, and𝑚𝑑 , respectively where 𝑐 < 𝑚 < 𝑛.

4 PROPOSED METHOD
This section explains our approach. Section 4.1 overviews the ideas that underlie our approach.

Section 4.2 describes our approach to computing the leading 𝑐 left and right singular vectors

from the similarity matrix between the prototypes. Section 4.3 shows our approach for efficiently

computing the similarity matrix of the bipartite graph. Section 4.4 details our clustering algorithm

and its properties.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 18. Publication date: February 2024.



Efficient Algorithm for K-Multiple-Means 18:7

4.1 Main Ideas
We introduce the idea of using the following𝑚 ×𝑚 matrix M instead of S̃ in updating matrix F:

M = S̃⊤S̃. (15)

Since 𝑛 ×𝑚 matrix S̃ corresponds to the similarities between the data points and the prototypes

from Equation (6),𝑚 ×𝑚 matrix M corresponds to the similarities between the prototypes.

This approach has two advantages. First, we can exactly compute the leading singular vectors

from M (Section 4.2). Since the size of S̃ is 𝑛 × 𝑚 where 𝑚 < 𝑛, the rank of S̃ is at most 𝑚

[46]. In addition, it is clear that M is symmetric from Equation (15). Therefore, eigenvalues of

M are associated with singular values of S̃. As a result, we can obtain singular vectors of S̃ by

computing eigenvectors of M. Second, we can efficiently compute the leading singular vectors from

M (Section 4.2). As mentioned in Section 3, K-Multiple-Means suffers from high computation costs

since it iteratively computes SVD on 𝑛 ×𝑚 matrix S̃ in updating matrix F; each iteration takes

𝑂 (𝑛𝑚2) time to obtain the leading singular vectors by computing SVD. On the other hand, since the

number of prototypes,𝑚, is much smaller than that of the data points, 𝑛, in practice (i.e.,𝑚 ≪ 𝑛),

we can efficiently compute eigenvectors of the𝑚 ×𝑚 matrix M. Moreover, as each iteration breaks

the𝑚 ×𝑚 similarity matrix into small block matrices corresponding to connected components, we

can improve the efficiency of computing the leading singular vectors from the eigenvectors of the

small block matrices. Although it needs to compute S̃ to obtain M, as shown in Equation (15), we

can efficiently compute S̃ by skipping unnecessary distance computations and estimating lower

bounding distances between the data points and the prototypes (Section 4.3).

4.2 Efficient Singular Vector Computation
In this section, we show how to compute the singular vectors from the block matrices efficiently.

Specifically, Section 4.2.1 describes the approach used to compute the block matrices of the𝑚 ×𝑚

similarity matrix between the prototypes. Section 4.2.2 shows how we efficiently compute the

eigenvectors of the block matrices.

4.2.1 Block Matrix Computation. Our approach uses the𝑚×𝑚 similarity matrix M of Equation (15)

to avoid computing SVD on 𝑛 ×𝑚 matrix S̃. We have the following property for M:

Lemma 4.1. Let _𝑖 be the 𝑖-th largest eigenvalue of symmetric matrix M, q𝑖 be the eigenvector
associated with _𝑖 , and u𝑖 and v𝑖 be the leading left and right singular vectors associated with the 𝑖-th
largest singular value 𝜎𝑖 of S̃, respectively. M has non-negative eigenvalues such that _𝑖 = 𝜎2

𝑖 , and the
𝑖-th leading left and right singular vectors of S̃ can be computed as follows:

u𝑖 =
1√
_𝑖

S̃q𝑖 , v𝑖 = q𝑖 . (16)

Proof. Let 𝜎𝑖 be the 𝑖-th largest singular value of S̃, Σ = diag(𝜎1, . . . , 𝜎𝑚) be a diagonal matrix

of singular values, and U = [u1, . . . , u𝑚] and V = [v1, . . . , v𝑚] be matrices of the left and right

singular vectors, respectively. Note that singular values are non-negative; 𝜎𝑖 ≥ 0 holds [46]. M
is computed as M = VΣU⊤UΣV⊤ = VΣ2V⊤

. Moreover, if Λ = diag(_1, . . . , _𝑚) is a diagonal

matrix of eigenvalues of M and Q = [q1, . . . , q𝑚] is a matrix of eigenvectors, we have M = QΛQ⊤
.

As a result, since VV⊤ = V⊤V = I and QQ⊤ = Q⊤Q = I, we have V = Q and thus Σ2 = Λ.
Therefore, v𝑖 = q𝑖 and _𝑖 = 𝜎2

𝑖 hold. Moreover, since S̃ = UΣV⊤
, we have U = S̃VΣ−1

. Therefore,

u𝑖 = (𝜎𝑖 )−1S̃v𝑖 = 1√
_𝑖

S̃q𝑖 . □

Lemma 4.1 indicates that we can compute the leading left and right singular vectors of S̃ from

the eigendecomposition of𝑚 ×𝑚 matrix M; we do not need to compute SVD from 𝑛 ×𝑚 matrix S̃.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 18. Publication date: February 2024.



18:8 Yasuhiro Fujiwara et al.

In addition, since the similarities between the data points and the prototypes are updated to satisfy

the rank constraint, the bipartite graph between the data points and the prototypes is divided

into connected components in each iteration; M is broken into block matrices in the iterations.

Specifically, if M′
is a prototype-permutated matrix of M,𝑚𝑖 is the number of prototypes included

in the 𝑖-th connected component, M′
𝑖 is the 𝑖-th block matrix of𝑚𝑖 ×𝑚𝑖 , and 𝑏 is the number of the

block matrices corresponding to the connected components, we have the following equation:

M′ = PMP⊤ =


M′

1

. . .

M′
𝑏

 , (17)

where P is a prototype-permutation matrix that yields the block matrices. P is an𝑚 ×𝑚 orthogonal

matrix where every row and column contains a single 1 with 0s everywhere else; 𝑝 [𝑖] [ 𝑗] = 1

indicates that the 𝑖-th row is permutated into the 𝑗-th row.

Algorithm 1 shows the approach to computing the blockmatrices by obtaining P. In this algorithm,

0𝑛 = [0, . . . , 0] is a row vector of length 𝑛, c̃𝑖 is the 𝑖-th column vector of S̃, r is a row vector of

length 𝑛, and b𝑖 be the set of prototypes included in the 𝑖-th connected component. We first

set elements of r from non-zero elements of S̃ (lines 2-4). Since M = S̃⊤S̃ from Equation (15),

we compute element𝑚[𝑖] [ 𝑗] of M by computing the inner product of r and s̃𝑖 (line 5-8). Then,
the connected components in M and prototype permutation matrix P (line 9-15) are computed.

Finally, the prototype permutated matrix is computed from Equation (17) (line 16). Algorithm 1 can

efficiently compute the block matrices using the sparsity of S̃.

Lemma 4.2. Algorithm 1 takes 𝑂 (𝑛𝑚𝑙) time to compute the block matrices from matrix S̃.

Proof. It needs𝑂 (𝑚2) time to set vector w of length𝑚. Since 𝑠𝑖 would have
𝑛𝑙
𝑚

non-zero elements

and M is a matrix of𝑚 ×𝑚, it takes𝑂 (𝑛𝑚𝑙) time to compute M. It requires𝑂 (𝑚2) time to compute

the connected components of M [6]. Since M′
is a permutation matrix of M, it needs𝑂 (𝑚2) time to

compute M′
. As a result, since we have𝑚 ≪ 𝑛, the computation cost of Algorithm 1 is𝑂 (𝑛𝑚𝑙). □

Since M′
of Equation (17) is a block-diagonal matrix, we can compute eigenvectors of M from the

block matrices [18]. Specifically, if _𝑖, 𝑗 is the 𝑗-th largest eigenvalue of M′
𝑖 , q𝑖, 𝑗 is the eigenvector of

M′
𝑖 associated with _𝑖, 𝑗 , _ 𝑗 ′ is the eigenvalue of M corresponding to _𝑖, 𝑗 , and q𝑗 ′ is the eigenvector

of M associated with _ 𝑗 ′ , we have

_ 𝑗 ′ = _𝑖, 𝑗 , q𝑗 ′ = P⊤
[
0∑𝑖−1

𝑘=1
𝑚𝑘

, q⊤𝑖, 𝑗 , 0∑𝑏
𝑘=𝑖+1

𝑚𝑘

]⊤
. (18)

As a result, we can efficiently compute the eigenvalues and eigenvectors of M from the block

matrices.

4.2.2 Eigenvector Computation. As shown in the previous section, we can compute the leading

𝑐 left and right singular vectors of S̃ from the 𝑐 largest eigenvalues and their eigenvectors of the

block matrices. From Lemma 4.1, the eigenvalues of M and the singular values of matrix S̃ are

non-negative. Therefore, a naive approach to obtain the leading 𝑐 singular vectors is to compute

the 𝑐 largest eigenvalues and their eigenvectors for each block matrix using the power method

[7]. However, since this approach computes 𝑐 eigenvectors of 𝑏 block matrices, it needs to use the

power method 𝑏𝑐 time. To reduce the number of computations, the proposed approach uses the

following property of M′
𝑖 :

Lemma 4.3. Let b be a column vector of length𝑚 such that b = D
1

2

𝑚1𝑚 =
[√︁

𝑑 [𝑛 + 1], . . . ,
√︁
𝑑 [𝑛 +𝑚]

]⊤,
P𝑖 be the 𝑖-th𝑚 ×𝑚𝑖 sub-matrix of P such that P = [P1, . . . , P𝑏], and b′

𝑖 be a column vector of length

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 18. Publication date: February 2024.



Efficient Algorithm for K-Multiple-Means 18:9

Algorithm 1 Block Matrix Computation

Input: matrix S̃
Output: block matrices M′

1
, . . . ,M′

𝑏

1: for 𝑖 = 1 to𝑚 do
2: r = 0𝑛 ;
3: for each non-zero element 𝑐 [𝑖 ] [ 𝑗 ] ∈ c̃𝑖 do
4: 𝑟 [ 𝑗 ] = 𝑐 [𝑖 ] [ 𝑗 ];
5: for 𝑗 = 1 to𝑚 do
6: 𝑚 [𝑖 ] [ 𝑗 ] = 0;

7: for each non-zero element 𝑐 [ 𝑗 ] [𝑘 ] ∈ c̃𝑗 do
8: 𝑚 [𝑖 ] [ 𝑗 ] =𝑚 [𝑖 ] [ 𝑗 ] + 𝑟 [𝑘 ]𝑐 [ 𝑗 ] [𝑘 ];
9: compute connected components in M;

10: P = 0;
11: 𝑘 = 1;

12: for 𝑖 = 1 to 𝑏 do
13: for each prototype 𝑎 𝑗 ∈ b𝑖 do
14: 𝑝 [𝑘 ] [ 𝑗 ] = 1;

15: 𝑘 = 𝑘 + 1;

16: M′ = PMP⊤
;

Algorithm 2 Eigenvector Computation

Input: number of clusters 𝑐 , block matrices M′
1
, . . . ,M′

𝑏

Output: eigenvalues _1, . . . , _𝑐 , eigenvectors q1, . . . , q𝑐
1: E = ∅;
2: add 𝑐 dummy eigenvalues to E;
3: for each block matrix M′

𝑖 do
4: set pair (𝑖, 𝑗) = (𝑖, 1) ;
5: _𝑖,𝑗 = 1;

6: q𝑖,𝑗 = b′𝑖 ;
7: M′

𝑖 = M′
𝑖 − q𝑖,𝑗_𝑖,𝑗q⊤𝑖,𝑗 ;

8: add _𝑖,𝑗 to E;
9: subtract _𝑖′, 𝑗′ = minE {_𝑖′, 𝑗′ } from E;
10: update pair (𝑖, 𝑗) = (𝑖, 𝑗 + 1) ;
11: if 𝑏 < 𝑐 then
12: repeat
13: M′

𝑖 = argmaxM′ {_𝑖,𝑗 };
14: if _𝑖,𝑗 ≥ minE {_𝑖′, 𝑗′ } holds for M′

𝑖 then
15: compute _𝑖,𝑗 and q𝑖,𝑗 by the power method;

16: M′
𝑖 = M′

𝑖 − q𝑖,𝑗_𝑖,𝑗q⊤𝑖,𝑗 ;
17: if _𝑖,𝑗 ≥ minE {_𝑖′, 𝑗′ } then
18: add _𝑖,𝑗 to E;
19: subtract _𝑖′, 𝑗′ = minE {_𝑖′, 𝑗′ } from E;
20: update pair (𝑖, 𝑗) = (𝑖, 𝑗 + 1) ;
21: until _𝑖,𝑗 < minE {_𝑖′, 𝑗′ } holds for M′

𝑖

22: for each _𝑖,𝑗 ∈ E do
23: compute q𝑗′ from q𝑖,𝑗 associated with _𝑖,𝑗 by Equation (18);

𝑚𝑖 such that b′
𝑖 = P⊤

𝑖 b. The largest eigenvalue of the 𝑖-th block matrix M′
𝑖 is _𝑖,1 = 1 and its associated

eigenvector is q𝑖,1 = b′
𝑖 .

Proof. Let B𝑖 be the 𝑖-th𝑚𝑖 ×𝑚𝑖 block matrix of matrix PS⊤SP⊤
such that

PS⊤SP⊤ =


B1

. . .

B𝑏

 . (19)

Note that B𝑖 corresponds to the similarities between the prototypes in the 𝑖-th connected component.

If L′
𝑖 is the normalized Laplacian matrix of B𝑖 , it is given as follows:

L′
𝑖 = I − D′

𝑖
− 1

2 B𝑖D′
𝑖
− 1

2 , D′
𝑖 =


∑𝑚𝑖

𝑗=1
𝑏𝑖 [1] [ 𝑗]

. . . ∑𝑚𝑖

𝑗=1
𝑏𝑖 [𝑚𝑖 ] [ 𝑗]

 . (20)

Since B𝑖 has a single connected component, L′
𝑖 has single eigenvalue 0 and its associated eigenvector

is given as D′
𝑖

1

2 1𝑚𝑖
[41]. Moreover, since the (𝑖, 𝑗)-th element of S⊤S is given as

∑𝑛
𝑘=1

𝑠 [𝑘] [𝑖]𝑠 [𝑘] [ 𝑗]
and

∑𝑚
𝑗=1

𝑠 [𝑖] [ 𝑗] = 1 from Equation (12), the sum of the 𝑖-th row elements of S⊤S is computed as∑𝑚
𝑗=1

∑𝑛
𝑘=1

𝑠 [𝑘] [𝑖]𝑠 [𝑘] [ 𝑗] = ∑𝑛
𝑘=1

𝑠 [𝑘] [𝑖] . (21)

In addition, from Equation (1) and (2), we have

𝑑 [𝑛 + 𝑖] = ∑𝑛+𝑚
𝑗=1

𝑤 [𝑖] [ 𝑗] = ∑𝑛
𝑘=1

𝑠 [𝑘] [𝑖] . (22)

Therefore, the sum of the 𝑖-th row elements of S⊤S is given as∑𝑚
𝑗=1

∑𝑛
𝑘=1

𝑠 [𝑘] [𝑖]𝑠 [𝑘] [ 𝑗] = 𝑑 [𝑛 + 𝑖] . (23)

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 18. Publication date: February 2024.



18:10 Yasuhiro Fujiwara et al.

As shown in Equation (19), matrix PS⊤SP⊤
is the row/column permutated matrix of S⊤S. Therefore,

if the 𝑖-th row of matrix S⊤S is permutated to the 𝑖 ′-th row of block matrix B𝑖 , we have the following

equation for the 𝑖 ′-th diagonal element of D′
𝑖 of Equation (20):∑𝑚𝑖

𝑗=1
𝑏𝑖 [𝑖 ′] [ 𝑗] =

∑𝑚
𝑗=1

∑𝑛
𝑘=1

𝑠 [𝑘] [𝑖]𝑠 [𝑘] [ 𝑗] = 𝑑 [𝑛 + 𝑖] . (24)

As a result, since we have b′
𝑖 = P⊤

𝑖 b = P⊤
𝑖 D

1

2

𝑚1𝑚 = D′
𝑖

1

2 1𝑚𝑖
, vector b′

𝑖 is the eigenvector of L′
𝑖

associated with eigenvalue 0.

In addition, since D𝑛 = I holds from Equation (1), (2), and (7), the following equation holds from

Equation (6), (15), and (17):

M′ = PD− 1

2

𝑚 S⊤SD− 1

2

𝑚 P⊤ . (25)

As a result, from Equation (17) and (19), we have the following equation for each block matrix:

M′
𝑖 = D′

𝑖
− 1

2 B𝑖D′
𝑖
− 1

2 . (26)

On the other hand, if _′𝑖, 𝑗 is the 𝑗-th largest eigenvalue of L′
𝑖 , the following property holds for L′

𝑖 [5]:

2 ≥ _′𝑖,1 ≥ . . . ≥ _′𝑖,𝑚𝑖−1

> _′𝑖,𝑚𝑖
= 0. (27)

As a result, since L′
𝑖 = I − M′

𝑖 from Equation (20) and M′
𝑖 has non-negative eigenvalues from

Lemma 4.1 and Equation (18), we have the following property for each eigenvalue of M′
𝑖 :

1 = _𝑖,1 > _𝑖,2 ≥ . . . ≥ _𝑖,𝑚𝑖−1
= 0. (28)

Moreover, since L′
𝑖 = I−M′

𝑖 has an eigenvector of b′
𝑖 associated with eigenvalue 0, we have q𝑖,1 = b′

𝑖

associating with _𝑖,1 = 1 for matrix M′
𝑖 . □

Note that, the eigenvector obtained by Lemma 4.3 is not normalized. Therefore, the proposed

approach uses the following normalized eigenvector q̄𝑖,1 instead of q𝑖,1:

q̄𝑖,1 = 1

∥q𝑖,1 ∥2

q𝑖,1. (29)

Since we can compute vector q𝑖,1 from the elements of diagonal matrix D, Lemma 4.3 indicates that

we can efficiently compute the largest eigenvalues and their eigenvectors of the block matrices

without using the power method. However, since we need to compute the 𝑐 largest eigenvalues

and their eigenvectors of the block matrices, if the number of block matrices, 𝑏, is smaller than

the number of clusters, 𝑐 (i.e., 𝑏 < 𝑐), we need to additionally compute 𝑐 − 𝑏 eigenvalues and

eigenvectors of the block matrices by using the power method. To efficiently compute the additional

eigenvalues and eigenvectors, we prune unnecessary computations by computing the upper bounds

of eigenvalues as follows:

Definition 4.4. For block matrix M′
𝑖 , let _𝑖, 𝑗 be the upper bound of _𝑖, 𝑗 such that 𝑗 > 1, we compute

_𝑖, 𝑗 as follows:

_𝑖, 𝑗 = min(_𝑖, 𝑗−1, 𝛿𝑖, 𝑗 ), 𝛿𝑖, 𝑗 =
{∑𝑚𝑖

𝑘=1
𝑚′

𝑖 [𝑘] [𝑘] − _𝑖,1 if 𝑗 = 2

𝛿𝑖, 𝑗−1 − _𝑖, 𝑗−1 otherwise

. (30)

We have the following property for bound _𝑖, 𝑗 :

Lemma 4.5. For a block matrix M′
𝑖 , it holds that _𝑖, 𝑗 ≥ _𝑖, 𝑗 .

Proof. We have 𝛿𝑖, 𝑗 =
∑𝑚𝑖

𝑘=1
𝑚′

𝑖 [𝑘] [𝑘] − _𝑖,1 if 𝑗 = 2, and we have 𝛿𝑖, 𝑗 = 𝛿𝑖, 𝑗−1 − _𝑖, 𝑗−1 otherwise.

Therefore, 𝛿𝑖, 𝑗 =
∑𝑚𝑖

𝑘=1
𝑚′

𝑖 [𝑘] [𝑘] −
∑𝑗−1

𝑘=1
_𝑖,𝑘 . Moreover,

∑𝑚𝑖

𝑘=1
𝑚′

𝑖 [𝑘] [𝑘] = tr (M′
𝑖 ) =

∑𝑚𝑖

𝑘=1
_𝑖,𝑘 holds

[7], and the eigenvalues have non-negative property, as shown in Lemma 4.1. Therefore, we have

_𝑖, 𝑗 ≤
∑𝑚𝑖

𝑘=𝑗
_𝑖,𝑘 =

∑𝑚𝑖

𝑘=1
_𝑖,𝑘 −

∑𝑗−1

𝑘=1
_𝑖,𝑘 = 𝛿𝑖, 𝑗 . (31)

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 18. Publication date: February 2024.



Efficient Algorithm for K-Multiple-Means 18:11

In addition, it is clear that _𝑖, 𝑗−1 ≥ _𝑖, 𝑗 holds. Therefore, we have _𝑖, 𝑗 = min(_𝑖, 𝑗−1, 𝛿𝑖, 𝑗 ) ≥ _𝑖, 𝑗 . □

Algorithm 2 details the approach that efficiently computes the eigenvectors of the block matrices

corresponding to the 𝑐 largest eigenvalues by using Lemma 4.3 and 4.5. In Algorithm 2, E is a set of
the 𝑐 largest eigenvalues andM′

is the set of 𝑏 block matrices. Algorithm 2 initializes E by adding 𝑐

dummy eigenvalues whose values are 0 (line 1-2). It then obtains the largest eigenvalues and their

eigenvectors of the block matrices by using Lemma 4.3 (line 3-10). Specifically, for block matrix M′
𝑖 ,

it sets pair (𝑖, 𝑗) to (𝑖, 1) in order to specify the largest eigenvalue of the block matrix (line 4). It

then sets the largest eigenvalue and its eigenvector (line 5-6). From M′
𝑖 , it subtracts q𝑖, 𝑗_𝑖, 𝑗q⊤𝑖, 𝑗 that

corresponds to the matrix of the largest eigenvalues to compute the second largest eigenvalue (line

7). It then updates E by _𝑖, 𝑗 (line 8-9). It also updates pair (𝑖, 𝑗) to (𝑖, 𝑗 + 1) in order to specify the

second largest eigenvalue (line 10). If 𝑏 < 𝑐 , we efficiently compute the additional eigenvalues and

eigenvectors using Lemma 4.5 (line 11-21). Specifically, it specifies the block matrix that gives the

maximum upper bound (line 13). If the maximum upper bound is not smaller than the smallest

obtained eigenvalue, it uses the power method to compute the eigenvalue and eigenvector of the

block matrix (line 15). It then updates M′
𝑖 , E, and (𝑖, 𝑗) (line 16-20). It iterates these procedures until

the maximum upper bound is smaller than the smallest obtained eigenvalue (line 21). It finally

computes the 𝑐 largest eigenvalues and their eigenvectors of M from Equation (18) (line 22-23). We

have the following property for Algorithm 2:

Lemma 4.6. Let 𝑡𝑝 denote the number of iterations used in the power method. Algorithm 2 computes
the 𝑐 largest eigenvalues and their eigenvectors of matrix M in time of 𝑂 ((𝑚

𝑏
)2𝑡𝑝 + 𝑚𝑐

𝑏
).

Proof. Algorithm 2 needs𝑂 (𝑚) time to obtain the largest eigenvalue and its eigenvector of each

block matrix. It takes 𝑂 (𝑚) time to compute the upper bounds of eigenvalues from Equation (30).

Since the size of each block matrix would be
𝑚
𝑏
× 𝑚

𝑏
, the power method requires𝑂 ((𝑚

𝑏
)2𝑡𝑝 ) time [7].

Since the length of q𝑖, 𝑗 would be 𝑚
𝑏
, it needs𝑂 (𝑚𝑐

𝑏
) time to obtain eigenvectors ofM by Equation (18).

As a result, Algorithm 2 takes 𝑂 ((𝑚
𝑏
)2𝑡𝑝 + 𝑚𝑐

𝑏
) time to compute the 𝑐 largest eigenvalues and their

eigenvector of M. □

As described in Section 3, the original approach of K-Multiple-Means computes SVD on matrix

S̃ of 𝑛 ×𝑚 to obtain the leading 𝑐 left and right singular vectors. On the other hand, as shown

in Algorithm 2, the proposed approach uses the smaller block matrices to compute the largest

eigenvalues and their eigenvectors. As a result, since the leading singular vectors can be obtained

from the eigenvalues and their eigenvectors as shown in Lemma 4.1, our approach can compute

the leading singular vectors more efficiently than the original approach.

4.3 Efficient Similarity Matrix Computation
The proposed approach uses S̃ to obtain the block matrix, as shown in Equation (15). From Equa-

tion (6), we have S̃ = D− 1

2

𝑛 SD− 1

2

𝑚 and S is obtained by computing the nearest prototypes for each

data point, as shown in Equation (10). Therefore, we need to compute the nearest prototypes based

on the following distance to obtain S̃:

𝐷 [𝑖, 𝑗] = 𝐷𝐸 [𝑖, 𝑗] + 𝛽𝐷𝐹 [𝑖, 𝑗], (32)

where

𝐷𝐸 [𝑖, 𝑗] = ∥x𝑖 − a𝑗 ∥2

2
(33)

and

𝐷𝐹 [𝑖, 𝑗] =
 f𝑖√

𝑑 [𝑖 ]
− f𝑛+𝑗√

𝑑 [𝑛+𝑗 ]

2

2

. (34)

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 18. Publication date: February 2024.



18:12 Yasuhiro Fujiwara et al.

Note that 𝛽 is the regularization parameter of the optimization problem. 𝐷𝐸 [𝑖, 𝑗] is the distance of
𝑑-length vectors x𝑖 and a𝑗 . 𝐷𝐹 [𝑖, 𝑗] is the distance of 𝑐-length vectors f𝑖/

√︁
𝑑 [𝑖] and f𝑛+𝑗/

√︁
𝑑 [𝑛 + 𝑗].

Therefore, if the number of dimensions, 𝑑 , and the number of clusters, 𝑐 , have large values, the

computation costs of distance 𝐷 [𝑖, 𝑗] would become high, necessitating a considerable computation

time to obtain S̃. This section describes our approach that efficiently computes S̃ to obtain M.

Section 4.3.1 describes the approach to computing 𝐷𝐹 [𝑖, 𝑗] by skipping unnecessary distance

computations. Section 4.3.2 shows how our approach estimates lower bounding distances between

the data points and the prototypes.

4.3.1 Skipping Distance Computations. In this section, to simplify the presentation, we assume that

𝑏 < 𝑐 , that is, the number of block matrices is smaller than the number of clusters. As described

in Section 4.2.1, the block matrices correspond to the connected components. Therefore, if 𝑏 < 𝑐 ,

the number of connected components is smaller than the number of clusters. Let f𝑖,𝑏 be a 𝑏-length

sub-vector of f𝑖 such that f𝑖 = [f𝑖,𝑏, f𝑖,𝑐−𝑏], and f𝑛+𝑗,𝑏 be a 𝑏-length sub-vector of f𝑛+𝑗 such that

f𝑛+𝑗 = [f𝑛+𝑗,𝑏, f𝑛+𝑗,𝑐−𝑏]. We have the following property for f𝑖,𝑏 and f𝑛+𝑗,𝑏 such that 𝑏 < 𝑐:

Lemma 4.7. If c𝑖 is the connected component that includes x𝑖 and c𝑗 is the connected component
that includes a𝑗 , we have  f𝑖,𝑏√

𝑑 [𝑖 ]
− f𝑛+𝑗,𝑏√

𝑑 [𝑛+𝑗 ]

2

2

=

{
0 if c𝑖 = c𝑗
1

2

(
1

𝑛𝑖
+ 1

𝑛 𝑗

)
otherwise

, (35)

where 𝑛𝑖 and 𝑛 𝑗 are the numbers of data points included in c𝑖 and c𝑗 , respectively.
Proof. The 𝑏 eigenvectors of the largest eigenvalues of the block matrices associate with the

leading singular vectors of S̃, as shown in Equation (16). Therefore, sub-vector f𝑖,𝑏 is associated

with the 𝑏 eigenvectors of the largest eigenvalues from Equation (8). As a result, let u𝑘 be the 𝑘-th

column vector of U𝑐 such that 𝑘 ≤ 𝑏, we have the following equation from Lemma 4.3 since we

have U = S̃VΣ−1
and V = Q as shown in Lemma 4.1:

u𝑘 = S̃q𝑘 . (36)

In the case that x𝑖 is included in the 𝑘-th connected component, we have the following equation

from Equation (18) and (29) if connected component c𝑖 associates with M′
𝑘′ :

u𝑘 = 1

∥q𝑘′,1 ∥2

S̃P⊤
[
0∑𝑘′−1

𝑘′′=1
𝑚𝑘′′

, q⊤
𝑘′,1, 0∑𝑏

𝑘′′=𝑘′+1
𝑚𝑘′′

]⊤
. (37)

Since D𝑛 = I holds from Equation (1), (2), and (7), we have 𝑑 [𝑖] = 1 and S̃P⊤ = SD− 1

2

𝑚 P⊤
from

Equation (6). Therefore, if s′𝑖 is an𝑚𝑘′ length sub-vector of the 𝑖-th row vector of matrix SD− 1

2

𝑚 P⊤

associated with M′
𝑘′ , we have the following equation from Equation (8):

𝑓𝑖,𝑏 [𝑘 ]√
𝑑 [𝑖 ]

=
√

2

2∥q𝑘′,1 ∥2

s′𝑖q𝑘′,1. (38)

As a result, since 𝑖-th row vector s′𝑖 of matrix SD− 1

2

𝑚 P⊤
is associated with block matrix M′

𝑘′ , we have

𝑓𝑖,𝑏 [𝑘 ]√
𝑑 [𝑖 ]

=

√
2

(∑
a𝑘′′ ∈b𝑘′

𝑠 [𝑖 ] [𝑘′′ ]√
𝑑 [𝑛+𝑘′′ ]

√
𝑑 [𝑛+𝑘′′ ]

)
2

√︂∑
a𝑘′′ ∈b𝑘′

(√
𝑑 [𝑛+𝑘′′ ]

)
2

=

√
2(∑a𝑘′′ ∈b𝑘′ 𝑠 [𝑖 ] [𝑘

′′ ])
2

√∑
a𝑘′′ ∈b𝑘′ 𝑑 [𝑛+𝑘

′′ ] . (39)

We have

∑
a𝑘′′ ∈b𝑘′ 𝑠 [𝑖] [𝑘

′′] = 1 since each row of S is normalized as shown in Equation (12).

Therefore, from Equation (1), (2), and (12), we have∑
a𝑘′′ ∈b𝑘′ 𝑑 [𝑛 + 𝑘 ′′] = ∑

x𝑖′ ∈c𝑘
∑

a𝑘′′ ∈b𝑘′ 𝑠 [𝑖
′] [𝑘 ′′] = 𝑛𝑘 . (40)

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 18. Publication date: February 2024.



Efficient Algorithm for K-Multiple-Means 18:13

As a result, in the case that x𝑖 is included in the 𝑘-th connected component, we have the following

equation from Equation (40):

𝑓𝑖,𝑏 [𝑘 ]√
𝑑 [𝑖 ]

= 1√
2𝑛𝑘

. (41)

On the other hand, in the case that x𝑖 is not included in the 𝑘-th connected component, from

Equation (18), we have,

𝑓𝑖,𝑏 [𝑘 ]√
𝑑 [𝑖 ]

= 0. (42)

In addition, since each eigenvector is normalized as per Equation (29), in the case that a𝑗 is

included in the 𝑘-th connected component, we have the following equation from Equation (8), (16)

and (29) if a𝑗 associates with the 𝑗 ′-th row of M′
𝑘′ :

𝑓𝑛+𝑗,𝑏 [𝑘] =
√

2

2

1

∥q𝑘′,1 ∥2

𝑞𝑘′,1 [ 𝑗 ′] . (43)

We have the following equation from Lemma 4.3:

𝑓𝑛+𝑗,𝑏 [𝑘 ]√
𝑑 [𝑛+𝑗 ]

= 1√
𝑑 [𝑛+𝑗 ]

√
2

2

1√︂∑
a𝑘′′ ∈b𝑘′

(√
𝑑 [𝑛+𝑘′′ ]

)
2

√︁
𝑑 [𝑛 + 𝑗] = 1√

2

∑
a𝑘′′ ∈b𝑘′ 𝑑 [𝑛+𝑘

′′ ] . (44)

As a result, from Equation (40), in the case that a𝑗 is included in the 𝑘-th connected component, we

have

𝑓𝑛+𝑗,𝑏 [𝑘 ]√
𝑑 [𝑛+𝑗 ]

= 1√
2𝑛𝑘

. (45)

On the other hand, in the case that a𝑗 is not included in the 𝑘-th connected component, from

Equation (18), we have

𝑓𝑛+𝑗,𝑏 [𝑘 ]√
𝑑 [𝑛+𝑗 ]

= 0. (46)

Consequently, from Equation (41), (42), (45), and (46), if x𝑖 and a𝑗 are present in the same connected

component, we have

f𝑖,𝑏√
𝑑 [𝑖 ]

=
f𝑛+𝑗,𝑏√
𝑑 [𝑛+𝑗 ]

. (47)

Therefore, we have  f𝑖,𝑏√
𝑑 [𝑖 ]

− f𝑛+𝑗,𝑏√
𝑑 [𝑛+𝑗 ]

2

2

= 0. (48)

If x𝑖 and a𝑗 are present in different connected components, f𝑖,𝑏√
𝑑 [𝑖 ]

− f𝑛+𝑗,𝑏√
𝑑 [𝑛+𝑗 ]

2

2

=

(
1√
2𝑛𝑖

)
2

+
(

1√
2𝑛 𝑗

)
2

= 1

2

(
1

𝑛𝑖
+ 1

𝑛 𝑗

)
, (49)

which completes the proof. □

Since f𝑖,𝑏 and f𝑛+𝑗,𝑏 correspond to the first 𝑏 elements of f𝑖 and f𝑛+𝑗 , respectively, this lemma

indicates that we can compute distance 𝐷𝐹 [𝑖, 𝑗] in 𝑂 (1) time instead of 𝑂 (𝑏) time for the first 𝑏

elements. From Lemma 4.7, we introduce the following property:

Lemma 4.8. Let 𝑓𝑖,𝑐−𝑏 = ∥f𝑖,𝑐−𝑏 ∥2

2
and 𝑓𝑗,𝑐−𝑏 = ∥f𝑗,𝑐−𝑏 ∥2

2
, if 𝑏 < 𝑐 , distance 𝐷𝐹 [𝑖, 𝑗] is computed as

𝐷𝐹 [𝑖, 𝑗] =


f𝑖,𝑐−𝑏 − 1√

𝑑 [𝑛+𝑗 ]
f𝑗,𝑐−𝑏

2

2

if c𝑖 = c𝑗

1

2

(
1

𝑛𝑖
+ 1

𝑛 𝑗

)
+ 𝑓𝑖,𝑐−𝑏 + 1

𝑑 [𝑛+𝑗 ] 𝑓𝑗,𝑐−𝑏 otherwise
. (50)

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 18. Publication date: February 2024.



18:14 Yasuhiro Fujiwara et al.

Proof. Since f𝑖 = [f𝑖,𝑏, f𝑖,𝑐−𝑏], we have

𝐷𝐹 [𝑖, 𝑗] =
 f𝑖,𝑏√

𝑑 [𝑖 ]
− f𝑛+𝑗,𝑏√

𝑑 [𝑛+𝑗 ]

2

2

+
 f𝑖,𝑐−𝑏√

𝑑 [𝑖 ]
− f𝑛+𝑗,𝑐−𝑏√

𝑑 [𝑛+𝑗 ]

2

2

. (51)

If c𝑖 = c𝑗 , since 𝑑 [𝑖] = 1, we have the following equation from Lemma 4.7:

𝐷𝐹 [𝑖, 𝑗] =
f𝑖,𝑐−𝑏 − 1√

𝑑 [𝑛+𝑗 ]
f𝑗,𝑐−𝑏

2

2

. (52)

If c𝑖 ≠ c𝑗 , we have the following equation from Lemma 4.7:

𝐷𝐹 [𝑖, 𝑗] = 1

2

(
1

𝑛𝑖
+ 1

𝑛 𝑗

)
+
f𝑖,𝑐−𝑏 − 1√

𝑑 [𝑛+𝑗 ]
f𝑗,𝑐−𝑏

2

2

. (53)

Since c𝑖 ≠ c𝑗 holds, x𝑖 and a𝑗 are present in different connected components. Therefore, if ⟨·⟩
represents the inner product of two vectors, ⟨f𝑖,𝑐−𝑏, f𝑗,𝑐−𝑏⟩ = 0 from Equation (18). As a result,f𝑖,𝑐−𝑏 − 1√

𝑑 [𝑛+𝑗 ]
f𝑗,𝑐−𝑏

2

2

= ∥f𝑖,𝑐−𝑏 ∥2

2
+ 1

𝑑 [𝑛+𝑗 ] ∥f𝑗,𝑐−𝑏 ∥2

2
− 2√

𝑑 [𝑛+𝑗 ]
⟨f𝑖,𝑐−𝑏, f𝑗,𝑐−𝑏⟩

=𝑓𝑖,𝑐−𝑏 + 1

𝑑 [𝑛+𝑗 ] 𝑓𝑗,𝑐−𝑏 .

(54)

Therefore, if c𝑖 ≠ c𝑗 , we have

𝐷𝐹 [𝑖, 𝑗] = 1

2

(
1

𝑛𝑖
+ 1

𝑛 𝑗

)
+ 𝑓𝑖,𝑐−𝑏 + 1

𝑑 [𝑛+𝑗 ] 𝑓𝑗,𝑐−𝑏 . (55)

which completes the proof. □

Lemma 4.8 indicates that, if x𝑖 and a𝑗 are present in the same connected component, since f𝑖,𝑐−𝑏
is a vector of length 𝑐 − 𝑏, we can compute distance 𝐷𝐹 [𝑖, 𝑗] in 𝑂 (𝑐 − 𝑏) time by skipping the

distance computations for the first 𝑏 elements of f𝑖 . Furthermore, if x𝑖 and a𝑗 are present in different

connected components, we can compute distance 𝐷𝐹 [𝑖, 𝑗] in𝑂 (1) time from Lemma 4.8. As a result,

if 𝑏 < 𝑐 , we can efficiently compute 𝐷𝐹 [𝑖, 𝑗] from Lemma 4.8.

If 𝑏 ≥ 𝑐 , since the eigenvectors of the largest eigenvalues of the block matrices are associated

with vector f𝑖 , it is clear that 𝐷𝐹 [𝑖, 𝑗] can be computed as follows from Lemma 4.8:

𝐷𝐹 [𝑖, 𝑗] =
{

0 if c𝑖 = c𝑗
1

2

(
1

𝑛𝑖
+ 1

𝑛 𝑗

)
otherwise

. (56)

This equation indicates that we can compute 𝐷𝐹 [𝑖, 𝑗] in 𝑂 (1) time if 𝑏 ≥ 𝑐 . In addition, as shown

in Equation (56), if 𝑏 ≥ 𝑐 , we can compute 𝐷𝐹 [𝑖, 𝑗] without using either f𝑖 or f𝑛+𝑗 . As a result,

if 𝑏 ≥ 𝑐 , we can directly compute 𝐷𝐹 [𝑖, 𝑗] by skipping the computation of F. Consequently, we
can significantly improve the efficiency if we have 𝑏 ≥ 𝑐 . In Section 4.4, we will detail the direct

computation of 𝐷𝐹 [𝑖, 𝑗] by skipping the computation of F.

4.3.2 Lower Bounding Similarity. Even though we can efficiently compute distance 𝐷𝐹 [𝑖, 𝑗] as
described in the previous section, the high computation cost of 𝑂 (𝑑) is incurred in computing

𝐷𝐸 [𝑖, 𝑗] to obtain the nearest prototypes due to the high dimensionality of the data points. This

section describes our approach that efficiently computes the nearest prototypes to each data point.

To improve the efficiency, we approximate each data point and prototype by SVD since it

gives the smallest error in approximating high-dimensional data [36]. To approximate data point

x𝑖 = [𝑥𝑖 [1], . . . , 𝑥𝑖 [𝑑]] and prototype a𝑗 = [𝑎 𝑗 [1], . . . , 𝑎 𝑗 [𝑑]] of 𝑑 dimensions, we compute SVD

of rank 𝑑 ′
for sampled data points. Specifically, let X′ = [x′

1
, . . . , x′

𝑚]⊤ be an𝑚 × 𝑑 matrix of𝑚

randomly sampled data points, we compute SVD of rank 𝑑 ′
on X′

as U𝑑′Σ𝑑′V⊤
𝑑′ , and we obtain

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 18. Publication date: February 2024.



Efficient Algorithm for K-Multiple-Means 18:15

the approximations x̃𝑖 = [𝑥𝑖 [1], . . . , 𝑥𝑖 [𝑑 ′]] and ã𝑗 = [𝑎 𝑗 [1], . . . , 𝑎 𝑗 [𝑑 ′]] with 𝑑 ′
dimensions as

x̃𝑖 = x𝑖V𝑑′ and ã𝑗 = a𝑗V𝑑′ , respectively. To efficiently compute the nearest prototypes, we introduce

the following lower bounding distance:

Definition 4.9. Let 𝑥 ′
𝑖 =

√︃
∥x𝑖 ∥2

2
− ∥x̃𝑖 ∥2

2
and 𝑎′𝑗 =

√︃
∥a𝑗 ∥2

2
− ∥ã𝑗 ∥2

2
, lower bounding distance

�̃� [𝑖, 𝑗] between x𝑖 and a𝑖 is given by

�̃� [𝑖, 𝑗] = ∥x̃𝑖 − ã𝑗 ∥2

2
+ (𝑥 ′

𝑖 − 𝑎′𝑗 )2 + 𝛽𝐷𝐹 [𝑖, 𝑗] . (57)

We show the following lemma for the lower bounding distance:

Lemma 4.10. �̃� [𝑖, 𝑗] has the following property:
�̃� [𝑖, 𝑗] ≤ 𝐷 [𝑖, 𝑗] . (58)

Proof. From Equation (32) and (33), we have

𝐷 [𝑖, 𝑗] = ∥x𝑖 − a𝑗 ∥2

2
+ 𝛽𝐷𝐹 [𝑖, 𝑗] =

∑𝑑
𝑘=1

(𝑥𝑖 [𝑘] − 𝑎 𝑗 [𝑘])2 + 𝛽𝐷𝐹 [𝑖, 𝑗] . (59)

Since SVD is an orthonormal transformation [36], we have∑𝑑
𝑘=1

(𝑥𝑖 [𝑘] − 𝑎 𝑗 [𝑘])2 =
∑𝑑′

𝑘=1
(𝑥𝑖 [𝑘] − 𝑎 𝑗 [𝑘])2 +∑𝑑

𝑘=𝑑′+1
(𝑥𝑖 [𝑘] − 𝑎 𝑗 [𝑘])2

=∥x̃𝑖 − ã𝑗 ∥2

2
+∑𝑑

𝑘=𝑑′+1
(𝑥𝑖 [𝑘] − 𝑎 𝑗 [𝑘])2 .

(60)

From the Cauchy-Schwarz inequality [39], we have∑𝑑
𝑘=𝑑′+1

(𝑥𝑖 [𝑘] − 𝑎 𝑗 [𝑘])2 =
∑𝑑

𝑘=𝑑′+1
(𝑥𝑖 [𝑘])2 +∑𝑑

𝑘=𝑑′+1
(𝑎 𝑗 [𝑘])2 − 2

∑𝑑
𝑘=𝑑′+1

𝑥𝑖 [𝑘]𝑎 𝑗 [𝑘]

≥
(√︃∑𝑑

𝑘=𝑑′+1
(𝑥𝑖 [𝑘])2 −

√︃∑𝑑
𝑘=𝑑′+1

(𝑎 𝑗 [𝑘])2

)
2

= (𝑥 ′
𝑖 − 𝑎′𝑗 )2.

(61)

Therefore, we have

𝐷 [𝑖, 𝑗] ≥ ∥x̃𝑖 − ã𝑗 ∥2

2
+ (𝑥 ′

𝑖 − 𝑎′𝑗 )2 + 𝛽𝐷𝐹 [𝑖, 𝑗], (62)

which completes the proof. □

Since x̃𝑖 and ã𝑗 are vectors of length 𝑑 ′
, computing lower bounding distance �̃� [𝑖, 𝑗] is more

efficient than computing distance𝐷 [𝑖, 𝑗]. Algorithm 3 depicts our approach that efficiently computes

S̃. In Algorithm 3, A𝑖 is the set of 𝑙 + 1 nearest prototypes to data point x𝑖 . If 𝛽 ≠ 0, it computes

distance 𝐷𝐹 [𝑖, 𝑗] for each pair of a data point and a prototype (line 1-7). Specifically, if 𝑏 < 𝑐 , it

computes 𝐷𝐹 [𝑖, 𝑗] from Equation (50) (line 4-5); it uses Equation (32) to compute 𝐷𝐹 [𝑖, 𝑗], otherwise
(line 6-7). It then computes the nearest prototypes of each data point (line 8-17). Specifically, it

initializes A𝑖 by adding 𝑙 + 1 dummy prototypes whose distances to x𝑖 are∞ (line 9-10). It picks up

prototypes to compute the lower bounding distances (line 11-12). If a prototype can be the nearest

prototype, it accurately computes the distance for the prototype (line 13-14), and then updates the

nearest prototypes if necessary (line 15-17). Then, it computes each element of S from the obtained

nearest prototypes (line 18-19). Finally, it computes S̃ from Equation (6) (line 20). The computational

cost of Algorithm 3 is given as follows:

Lemma 4.11. Algorithm 3 takes 𝑂 (𝑛(𝑚𝑑 ′ + 𝑙𝑑)) time.
Proof. In the case of 𝑏 < 𝑐 , if x𝑖 and a𝑗 are present in the same connected component, it requires

𝑂 (𝑐 − 𝑏) time to compute 𝐷𝐹 [𝑖, 𝑗] from Equation (50). In addition, if x𝑖 and a𝑗 are included in

different connected components, it takes 𝑂 (1) time to compute 𝐷𝐹 [𝑖, 𝑗] from Equation (50). Since

𝑚
𝑐
prototypes would be present in the same connected component as x𝑖 , it requires 𝑂 (𝑛𝑚) time to

compute 𝐷𝐹 [𝑖, 𝑗] for the pairs of the data points and the prototypes. On the other hand, in the case

of 𝑏 ≥ 𝑐 , it needs𝑂 (1) time to compute 𝐷𝐹 [𝑖, 𝑗] from Equation (56). Therefore, it takes𝑂 (𝑛𝑚) time

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 18. Publication date: February 2024.



18:16 Yasuhiro Fujiwara et al.

Algorithm 3 Similarity Matrix Computation

Input: data points x1, . . . , x𝑛 , prototypes a1, . . . , a𝑚 , approximate

data points x̃1, . . . , x̃𝑛 , approximate prototypes ã1, . . . , ã𝑚 ,

number of clusters 𝑐 , number of neighbor prototypes 𝑙 , number

of block matrix 𝑏, matrix F, regularization parameter 𝛽

Output: matrix S̃
1: if 𝛽 ≠ 0 then
2: for 𝑖 = 1 to 𝑛 do
3: for 𝑗 = 1 to𝑚 do
4: if 𝑏 < 𝑐 then
5: compute 𝐷𝐹 [𝑖, 𝑗 ] from Equation (50);

6: else
7: compute 𝐷𝐹 [𝑖, 𝑗 ] from Equation (56);

8: for 𝑖 = 1 to 𝑛 do
9: A𝑖 = ∅;
10: add 𝑙 + 1 dummy prototypes to A𝑖 ;
11: for 𝑗 = 1 to𝑚 do
12: compute �̃� [𝑖, 𝑗 ] from Equation (57);

13: if �̃� [𝑖, 𝑗 ] ≤ maxA𝑖 {𝐷 [𝑖, 𝑘 ] } then
14: compute 𝐷 [𝑖, 𝑗 ] from Equation (32);

15: if 𝐷 [𝑖, 𝑗 ] ≤ maxA𝑖 {𝐷 [𝑖, 𝑘 ] } then
16: add a𝑗 to A𝑖 ;
17: subtract a𝑘 = argmaxA𝑖 {𝐷 [𝑖, 𝑘 ] } from A𝑖 ;
18: for 𝑖 = 1 to 𝑛 do
19: compute the 𝑖-th row of S from A𝑖 and Equation (10);

20: compute S̃ from Equation (6);

Algorithm 4 F-KMM

Input: data points x1, . . . , x𝑛 , prototypes a1, . . . , a𝑚 , number of

clusters 𝑐 , number of prototypes𝑚, number of nearest proto-

types 𝑙

Output: 𝑐 clusters

1: set X′
by randomly sampling𝑚 data points;

2: compute rank-𝑑′
SVD on X′

;

3: for 𝑖 = 1 to 𝑛 do
4: x̃𝑖 = x𝑖V𝑑′ ;
5: A = X′

;

6: for 𝑖 = 1 to𝑚 do
7: ã𝑖 = a𝑖V𝑑′ ;
8: compute S̃ by Algorithm 3 by setting 𝛽 = 0;

9: 𝛽 = 𝛼 ;

10: repeat
11: compute S̃ by Algorithm 3;

12: repeat
13: compute M′

1
, . . . ,M′

𝑏
by Algorithm 1;

14: if 𝑏 ≠ 𝑐 then
15: if 𝑏 < 𝑐 then
16: 𝛽 = 2𝛽 ;

17: compute q1, . . . , q𝑐 by Algorithm 2;

18: compute F from Equation (18);

19: else
20: 𝛽 = 𝛽/2;

21: compute S̃ by Algorithm 3;

22: until 𝑏 = 𝑐

23: for 𝑖 = 1 to𝑚 do
24: update a𝑖 from Equation (14);

25: ã𝑖 = a𝑖V𝑑′ ;
26: until assignments of prototypes converge

27: obtain clusters from 𝑐 connected components;

to compute 𝐷𝐹 [𝑖, 𝑗] for the pairs of the data points and prototypes. In addition, it needs 𝑂 (𝑛𝑚𝑑 ′)
time to compute the lower bounding distances of Equation (57) and 𝑂 (𝑛𝑙𝑑) time to compute the

distances using Equation (32) accurately. Since the elements of S are obtained from the distances

of the nearest prototypes, it needs 𝑂 (𝑛𝑙) time to compute S from Equation (10). Since the number

of non-zero elements in S is 𝑛𝑙 , it takes 𝑂 (𝑛𝑙) time to compute S̃ from S using Equation (6). As a

result, 𝑂 (𝑛(𝑚𝑑 ′ + 𝑙𝑑)) time is needed to compute each element of matrix S̃. □

4.4 Clustering Algorithm
Algorithm 4 gives a complete description of our approach. It first computes SVD for the sampled

data points (line 1-2). It then computes approximate data points (line 3-4). Following the original

approach, it sets the sampled data points as the prototypes and computes approximate prototypes

(line 5-7). Following the original approach, it initializes the regularization parameter as 𝛽 = 𝛼 by

computing S̃ (line 8-9). It then iterates the computations (line 10-26). Specifically, it computes S̃ by

Algorithm 3 (line 11) and the block matrices by Algorithm 1 (line 13). If 𝑏 < 𝑐 , it doubles 𝛽 as in the

original approach and computes F after computing eigenvalues and eigenvectors by Algorithm 2

(line 15-18). If 𝑏 > 𝑐 , it reduces 𝛽 by half, following the original approach (line 19-20). Note that

it does not compute F if 𝑏 > 𝑐 . It then computes S̃ by Algorithm 3 (line 21). If 𝑏 = 𝑐 , it terminates

the iterations and updates the prototypes and their approximations (line 22-25). It iterates these

procedures until the assignments of the prototypes no longer change (line 26). After the iterations

terminate, it computes the 𝑐 clusters from the connected components of the bipartite graph (line

27). As shown in Algorithm 4, if 𝑏 > 𝑐 , we skip the computations of F to improve the efficiency of

the proposed approach as described in Section 4.3.1.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 18. Publication date: February 2024.



Efficient Algorithm for K-Multiple-Means 18:17

4.4.1 Theoretical Analysis. The proposed approach has the following properties:

Theorem 4.12. If 𝑡𝑓 is the number of iterations needed to update F, Algorithm 4 takes 𝑂 (𝑛𝑑𝑑 ′ +
𝑚𝑑2 + ((𝑚

𝑏
)2𝑡𝑝 + 𝑐𝑛)𝑡𝑓 + 𝑛(𝑚𝑑 ′ + 𝑙𝑑 +𝑚𝑙)𝑡𝑐 + (𝑛𝑑 +𝑚𝑑𝑑 ′)𝑡𝑎) time.

Proof. It needs𝑂 (𝑚𝑑2) time to compute SVD for the𝑚 sampled data points. It takes (𝑛 +𝑚)𝑑𝑑 ′

time to compute the approximate data points and prototypes. Since it needs 𝑂 ((𝑚
𝑏
)2𝑡𝑝 + 𝑚𝑐

𝑏
) time

to compute the eigenvalues and eigenvectors from Lemma 4.6 and it requires 𝑂 (𝑐𝑛) time to obtain

F, it needs𝑂 ((𝑚
𝑏
)2𝑡𝑝 + 𝑐𝑛)𝑡𝑓 time to update F if 𝑏 < 𝑐 . Otherwise, it takes𝑂 (𝑡𝑐 − 𝑡𝑓 ) time to update

𝛽 . Since it needs 𝑂 (𝑛(𝑚𝑑 ′ + 𝑙𝑑)) time to compute S̃ from Lemma 4.11 and 𝑂 (𝑛𝑚𝑙) time to compute

the block matrices from Lemma 4.2, it needs 𝑂 (𝑛(𝑚𝑑 ′ + 𝑙𝑑 +𝑚𝑙)𝑡𝑐 ) times to compute S̃ and the

block matrices in iterated calculations. In addition, it requires 𝑂 (𝑛𝑑 +𝑚𝑑𝑑 ′)𝑡𝑎 time to compute

the prototypes and their approximations. Consequently, the computation cost of Algorithm 4 is

𝑂 (𝑛𝑑𝑑 ′ +𝑚𝑑2 + ((𝑚
𝑏
)2𝑡𝑝 + 𝑐𝑛)𝑡𝑓 + 𝑛(𝑚𝑑 ′ + 𝑙𝑑 +𝑚𝑙)𝑡𝑐 + (𝑛𝑑 +𝑚𝑑𝑑 ′)𝑡𝑎). □

Theorem 4.13. Algorithm 4 takes 𝑂 (𝑛(𝑚 + 𝑑) + 𝑑𝑑 ′) space.
Proof. Relative to the original approach, the proposed approach additionally needs to hold

matrix M, Q, P, Σ, and V𝑑′ . Moreover, it additionally holds the upper bounds of eigenvalues,

approximate data points, and approximate prototypes. Matrix M, Q, and P have the size of𝑚 ×𝑚. It

needs spaces of 𝑂 (𝑚) and 𝑂 (𝑑𝑑 ′) to hold Σ and V𝑑′ , respectively. It takes spaces of 𝑂 (𝑚), 𝑂 (𝑛𝑑 ′),
and 𝑂 (𝑚𝑑 ′) to hold the upper bounds of eigenvalues, approximate data points, and approximate

prototypes, respectively. Therefore, the additional memory cost is 𝑂 (𝑛𝑚 + (𝑛 + 𝑑)𝑑 ′). On the other

hand, the original approach needs 𝑂 (𝑛(𝑚 + 𝑑)) space, as described in Section 3. As a result, the

memory cost of Algorithm 4 is 𝑂 (𝑛(𝑚 + 𝑑) + 𝑑𝑑 ′). □

Theorem 4.14. Algorithm 4 yields the same clustering results as the original approach.
Proof. It uses Algorithm 2 to compute the 𝑐 eigenvalues and eigenvectors from the block

matrices. For each block matrix M′
𝑖 , it can exactly compute the largest eigenvalues and their

eigenvectors since we have _𝑖, 𝑗 = 1 and q𝑖, 𝑗 = b′
𝑖 from Lemma 4.3. Moreover, if the 𝑐 largest

eigenvalues of the block matrices are not obtained in the process of Algorithm 2, we must have

_𝑖, 𝑗 ≥ minE{_𝑖′, 𝑗 ′} due to the upper bounding property of Lemma 4.5. Therefore, Algorithm 2

cannot prune the computations of the 𝑐 largest eigenvalue and their eigenvectors. As a result, since

Algorithm 2 can exactly compute the 𝑐 largest eigenvalues and their eigenvectors of M by using

Equation (18), we can exactly compute F.
In addition, we use Algorithm 3 to obtain matrix S by computing the nearest prototypes of

each data point. As shown in Lemma 4.10, �̃� [𝑖, 𝑗] has the lower bounding property such that

�̃� [𝑖, 𝑗] ≤ 𝐷 [𝑖, 𝑗]. Therefore, we must have �̃� [𝑖, 𝑗] ≤ maxA𝑖 {𝐷 [𝑖, 𝑘]} for the nearest prototypes
in Algorithm 3. As a result, Algorithm 3 cannot prune the nearest prototypes in computing S.
Therefore, it can exactly compute S. Since we can exactly compute F and S, Algorithm 4 guarantees

the same clustering result as K-Multiple-Means. □

Theorem 4.12 and 4.13 indicate that, for large-scale data, our approach need 𝑂 (𝑛𝑚(log𝑑 + 𝑙)𝑡𝑐 )
time and 𝑂 (𝑛(𝑚 + 𝑑)) space. This is because, (1)𝑚 ≪ 𝑛, 𝑑 ′ < 𝑑 ≪ 𝑛, and 𝑙 ≪ 𝑛 holds for large-

scale data, (2) we have 𝑡𝑓 < 𝑡𝑐 and 𝑡𝑎 < 𝑡𝑐 , (3) we set𝑚 =
√
𝑛𝑐 and 𝑑 ′ = log𝑑 as we describe in

the next section. On the other hand, for large-scale data, the original approach takes 𝑂 (𝑛𝑚2𝑡𝑐 )
time and 𝑂 (𝑛(𝑚 + 𝑑)) space since 𝑑 ≪ 𝑚, 𝑐 ≪ 𝑚 and 𝑡𝑎 < 𝑡𝑐 . As a result, for large-scale data,

our approach has a smaller computation cost than the original approach while making memory

overhead negligible.

Theorem 4.12 and 4.14 theoretically show that the proposed approach offers better efficiency

than K-Multiple-Means while guaranteeing the equivalence of clustering results.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 18. Publication date: February 2024.



18:18 Yasuhiro Fujiwara et al.

4.4.2 Extension. This section shows the extensions of our approach.

Clustering Accuracy. As described in the previous section, we can yield the same clustering results

as the original approach. This section proposes an approach to improving clustering accuracy. As

shown in Algorithm 4, we randomly initialize the prototypes. To improve clustering accuracy, we

initialize the prototypes using k-means++ [1]. Since k-means++ selects data points as prototypes

based on the distances to the closest prototypes, it can effectively spread prototypes tomatch the data

distribution and improve clustering accuracy. However, k-means++ incurs the high computation

cost of 𝑂 (𝑛𝑚𝑑) to identify the closest prototype of each data point. In the proposed approach, we

use SVD to reduce this cost.

Algorithm 5 shows the approach used to initializing the prototypes. In this algorithm, 𝐷𝑐 [𝑖] is
the distance of data point x𝑖 to its closest prototype. Algorithm 5 first samples a data point as a

prototype and computes its approximation (line 1-2). It initializes 𝐷𝑐 [𝑖] for each data point (line

3-4). It then iteratively determines prototypes using 𝐷𝑐 [𝑖], the same as k-means++ (line 6-7). It

uses SVD to update 𝐷𝑐 [𝑖] for each data point efficiently (line 9-14). Specifically, since we have

∥x̃𝑗 − ã𝑖+1∥ + (𝑥 ′
𝑗 − 𝑎′𝑖+1

)2 ≤ ∥x𝑗 − a𝑖+1∥2

2
for x𝑗 and a𝑖+1 as shown in the proof of Lemma 4.10,

it updates 𝐷𝑐 [𝑖] only if ∥x̃𝑗 − ã𝑖+1∥ + (𝑥 ′
𝑗 − 𝑎′𝑖+1

)2 ≤ 𝐷𝑐 [ 𝑗] holds (line 11). Note that we can use

Algorithm 5 instead of line 5-7 of Algorithm 4. The computation and memory costs of Algorithm 5

are given as follows:

Lemma 4.15. Algorithm 5 requires 𝑂 (𝑛𝑑 log𝑚 + 𝑛𝑚𝑑 ′ +𝑚𝑑𝑑 ′) time and 𝑂 (𝑛) space to initialize
the prototypes.

Proof. It takes𝑂 (𝑚𝑑𝑑 ′) and𝑂 (𝑛𝑚𝑑 ′) time to compute approximate prototypes and approximate

distances, respectively. It requires 𝑂 (𝑛𝑑 ′
log𝑚) time to compute the distances accurately even if

we randomly sample prototypes [6]. It needs 𝑂 (𝑛𝑚) time to sample data points by using 𝐷𝑐 [𝑖]. In
addition, it needs 𝑂 (𝑛) space to hold 𝐷𝑐 [𝑖] for each data point. As a result, the computational and

memory costs of Algorithm 5 are 𝑂 (𝑛𝑑 log𝑚 + 𝑛𝑚𝑑 ′ +𝑚𝑑𝑑 ′) and 𝑂 (𝑛), respectively. □

Number of Prototypes. As shown in Algorithm 4, number of prototypes𝑚 is a hyper-parameter of

our approach. Since each cluster is obtained by grouping prototypes in our approach, the number

of prototypes impacts clustering accuracy. A simple approach for determining𝑚 is to use cross-

validation that iteratively computes the clusters by changing the number of prototypes. However,

since the number of prototypes ranges from 𝑐 + 1 to 𝑛 (i.e., 𝑐 + 1 ≤ 𝑚 ≤ 𝑛), it needs a significantly

high computational cost to perform the cross-validation for large-scale data. In addition, if a dataset

does not have labels, we cannot use the cross-validation. In this section, we describe the approach

to determining the number of prototypes according to the data distribution.

We modify Algorithm 5 to determine𝑚 according to the data distribution, as shown in Algo-

rithm 6. Specifically, ifXa𝑖 is a set of data points whose closest prototype is a𝑖 , it iteratively adds

prototypes until we have |Xa𝑚 | = 1; the added prototype is the closest prototype of a single data

point (line 3-6). This is because, if we have |Xa𝑚 | = 1, data points are well represented by other

prototypes; there is no need to add prototypes. As a result, we can determine𝑚 according to the

data distribution. Note that, since each prototype is sampled from the data points in Algorithm 5,

each prototype is the prototype closest to at least a single data point (i.e., |Xa𝑖 | ≥ 1). Algorithm 6

can be used instead of Algorithm 5 to determine the prototypes. Since Algorithm 6 uses Algorithm 5,

its computational and memory costs are the same as Algorithm 5.

Outlier Detection. Our approach can capture non-spherical clusters since it has the same clustering

results as the original approach. In obtaining non-spherical clusters, DBSCAN is a popular density-

based approach that detects not only clusters but also outliers [10]. An outlier is a data point that

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 18. Publication date: February 2024.



Efficient Algorithm for K-Multiple-Means 18:19

Algorithm 5 Prototype Initialization

Input: data points x1, . . . , x𝑛 , approximate data points x̃1, . . . , x̃𝑛 ,
number of prototypes𝑚, matrix V𝑑′

Output: prototypes a1, . . . , a𝑚 , approximate prototypes

ã1, . . . , ã𝑚
1: set a1 by randomly sampling a data point;

2: ã1 = a1V𝑑′ ;
3: for 𝑖 = 1 to 𝑛 do
4: 𝐷𝑐 [𝑖 ] = ∥x𝑖 − a1 ∥2

2
;

5: for 𝑖 = 1 to𝑚 − 1 do
6: sample data point x𝑗 with probability

𝐷𝑐 [ 𝑗 ]∑
1≤𝑘≤𝑛 𝐷𝑐 [𝑘 ] ;

7: a𝑖+1 = x𝑗 ;

8: ã𝑖+1 = a𝑖+1V𝑑′ ;
9: for 𝑗 = 1 to 𝑛 do
10: compute ∥x̃𝑗 − ã𝑖+1 ∥ + (𝑥 ′𝑗 − 𝑎′𝑖+1

)2
;

11: if ∥x̃𝑗 − ã𝑖+1 ∥ + (𝑥 ′𝑗 − 𝑎′𝑖+1
)2 ≤ 𝐷𝑐 [ 𝑗 ] then

12: compute ∥x𝑗 − a𝑖+1 ∥2

2
;

13: if ∥x𝑗 − a𝑖+1 ∥2

2
≤ 𝐷𝑐 [ 𝑗 ] then

14: 𝐷𝑐 [ 𝑗 ] = ∥x𝑗 − a𝑖+1 ∥2

2
;

Algorithm 6 Adaptive Prototype Initialization

Input: data points x1, . . . , x𝑛 , approximate data points x̃1, . . . , x̃𝑛 ,
matrix V𝑑′ , number of clusters 𝑐

Output: prototypes a1, . . . , a𝑚 , approximate prototypes

ã1, . . . , ã𝑚
1: compute 𝑐 + 1 prototypes by Algorithm 5;

2: 𝑚 = 𝑐 + 1;

3: repeat
4: compute a𝑚+1 by line 6-14 of Algorithm 5;

5: 𝑚 =𝑚 + 1;

6: until |Xa𝑚 | = 1

Algorithm 7 Outlier Detection

Input: data points x1, . . . , x𝑛 , approximate data points x̃1, . . . , x̃𝑛 ,
matrix V𝑑′ , number of clusters 𝑐 , number of neighbor proto-

types 𝑙

Output: data points x1, . . . , x𝑛 , prototypes a1, . . . , a𝑚 , ap-

proximate data points x̃1, . . . , x̃𝑛 , approximate prototypes

ã1, . . . , ã𝑚 , set of outliers O
1: compute prototypes by Algorithm 6;

2: compute nearest prototype set N𝑖 of each data point by line

8-17 of Algorithm 3;

3: compute average distance \ ;

4: X = ∅;
5: O = ∅;
6: for 𝑖 = 1 to 𝑛 do
7: for each nearest prototype a𝑗 ∈ N𝑖 do
8: if 𝐷𝐸 [𝑖, 𝑗 ] > \ then
9: subtract a𝑗 from N𝑖 ;

10: if |N𝑖 | < 𝑙/2 then
11: add x𝑖 to O;
12: else
13: add x𝑖 to X;
14: 𝑛 = 𝑛 − |O |;
15: 𝑖 = 1;

16: for each data point x𝑗 ∈ X do
17: x𝑖 = x𝑗 ;

18: x̃𝑖 = x̃𝑗 ;

19: 𝑖 = 𝑖 + 1;

lies alone in a low-density region [4], and outlier detection is used in many applications, such as

flight anomaly detection [37], wind power prediction [52], and weather anomaly detection [47]. In

this section, we extend the proposed approach to find outliers as well as clusters.

Since an outlier is in a low-density region [10], it is distant from its nearest prototypes. Therefore,

if we compute distances between the data points and prototypes, outliers have larger distances to

their nearest prototypes than non-outliers. We detect outliers based on this observation, as shown

in Algorithm 7. In this algorithm, \ is the average distance between data points and their nearest

prototypes,O is a set of outliers, andX is a set of data points to compute clusters. Algorithm 7 first

computes the prototypes by Algorithm 6 (line 1). It then obtains the nearest prototypes of each data

point by Algorithm 3 and computes the average distance between data points and their nearest

prototypes (line 2-3). It detects outliers by using the distances of each data point to their nearest

prototypes. Specifically, if a data point is distant from its nearest prototypes, it adds the data point

to O as an outlier (line 10-11). Otherwise, it adds the data point to X (line 12-13). It sets the IDs of

data points by using X to compute clusters (line 16-19). Note that we can use Algorithm 7 instead

of line 5-7 of Algorithm 4. The computation and memory costs of Algorithm 7 are as follows:

Lemma 4.16. Algorithm 7 takes 𝑂 (𝑛𝑑 log𝑚 + 𝑛𝑚𝑑 ′ + 𝑛𝑙𝑑 +𝑚𝑑𝑑 ′) time and 𝑂 (𝑛𝑙) space to detect
outliers.

Proof. It takes 𝑂 (𝑛𝑑 log𝑚 + 𝑛𝑚𝑑 ′ +𝑚𝑑𝑑 ′) time to obtain prototypes by using Algorithm 5. It

requires 𝑂 (𝑛(𝑚𝑑 ′ + 𝑙𝑑)) time to obtain the nearest prototype of each data point by Algorithm 3. It

needs 𝑂 (𝑛𝑙) time to compute O and X. Moreover, it requires 𝑂 (𝑛) space to hold O and X. It takes

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 18. Publication date: February 2024.



18:20 Yasuhiro Fujiwara et al.

Table 2. Characteristics of the experimental data.
Dataset (Abbreviation) #Data points #Dimensions #Clusters

BinAlpha (BN) 1,854 256 10

Abalone (AB) 4,177 8 28

Fashion-MNIST (FS) 70,000 784 10

FARS (FR) 100,968 29 8

Spoken-Arabic-Digit (SP) 263,256 14 10

Kuzushiji-49 (KZ) 270,912 784 49

Covertype (CV) 581,012 54 7

Poker (PK) 1,025,010 10 10

10
0

10
2

10
4

10
6

10
8

10
10

BN AB FS FR SP KZ CV PK

W
a
ll 

c
lo

c
k
 t
im

e
 [
s
]

F-KMM
F-KMM++

F-KMM#
F-KMM-OD

Randomized

nKMM
Original

GKM-MPC
DBSCAN

Fig. 3. Clustering time of each approach.

𝑂 (𝑛𝑙) space to hold N𝑖 for each data point. Therefore, Algorithm 7 needs𝑂 (𝑛𝑑 log𝑚 +𝑛𝑚𝑑 ′ +𝑛𝑙𝑑 +
𝑚𝑑𝑑 ′) time and 𝑂 (𝑛𝑙) space. □

5 EXPERIMENTAL EVALUATION
We performed experiments to confirm the effectiveness of our approaches. In this section, “F-KMM”

represents the results of our clustering approach of Algorithm 4, and “F-KMM++” represents

the results of our approach with prototype initialization by Algorithm 5. “F-KMM#”’ represents

the results of our clustering approach that determines the number of prototypes by Algorithm 6.

“F-KMM-OD” represents the results of our approach that finds outliers as well as clusters by

Algorithm 7. “Original”, “Randomized”, “GKM-MPC”, “nKMM”, and “DBSCAN” represent the

results of the original approach [30], the randomized SVD-based approach [28], GKM-MPC [44],

nKMM [51], and DBSCAN [10], respectively. GKM-MPC and nKMM are recent proposals for multi-

prototype clustering, as described in Section 2. For the randomized SVD-based approach, we used

randomized SVD to compute F by approximately computing the leading singular vectors [28].

DBSCAN is a popular density-based clustering approach [10].

In the experiments, we used eight real-world data sets of various domains. We summarize the

main statistics of these datasets in Table 2. BinAlpha (BN) and Abalone (AB) are the datasets used

in the original paper of K-Multiple-Means [30], and other datasets were downloaded from the

website of OpenML
1
. By following the original paper of K-Multiple-Means [30], the number of

clusters, 𝑐 , was set to be the ground truth, the number of nearest prototypes was set to 𝑙 = 5, and

the number of prototypes was set to𝑚 =
√
𝑛𝑐 in the experiment

2
. For the proposed approaches,

we set the target rank of SVD to 𝑑 ′ = log𝑑 and the tolerance of the power method to 0.00001. For

GKM-MPC, we set the number of nearest neighbors to five to construct the nearest neighbor graph

of prototypes, as shown in [44]. Similarly, we set the number of nearest neighbors to five for nKMM

to construct the nearest neighbor graph of data points, the same as in [51]. For DBSCAN, we set

the minimum number of neighborhood data points to 2𝑑 and set the radius of a neighborhood by

sorting distances of a nearest neighbor graph in accordance with [10, 34]; we used the median of

the nearest distances as the neighborhood radius. All the approaches were implemented in C++.

We conducted all experiments on a Linux server with Intel Xeon Platinum 8280 CPU with 2.70GHz

processors. The server had 1.5TB of memory and a 1TB hard disk.

5.1 Clustering Time
We assessed the clustering time of each approach in Fig. 3. Table 3 shows a breakdown of the

processing time of our approaches, as well as the original and randomized SVD-based approaches,

1
https://www.openml.org/

2
In real applications, the number of prototypes,𝑚, is set to𝑚 =

√
𝑛𝑐 as is recommended in the papers on multi-prototype clustering [30, 51].

The number of clusters, 𝑐 , is set differently to match the application. In image segmentation, 𝑐 is a user-specified number of image segments

[20]. In load balancing of vehicular networks, 𝑐 is set as the number of shards wherein each base station communicates [17]. In blind source

separation, 𝑐 is set to the number of estimated sources [25].

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 18. Publication date: February 2024.

https://www.openml.org/


Efficient Algorithm for K-Multiple-Means 18:21

Table 3. Breakdown of processing time [s].
Processing step F-KMM F-KMM++ F-KMM# F-KMM-OD Randomized Original

Compute SVD 0.0140 0.0140 0.0140 0.0140 − −
Initialize Prototype 0.0003 1.1231 0.1699 0.1699 0.0003 0.0003

Detect outlier − − − 0.8932 − −
Compute S̃ 46.033 45.293 15.960 6.4464 91.506 91.801

Compute F 5.5019 5.5541 2.3729 0.8001 1115.9 1906.2

Compute A 0.0462 0.0454 0.0260 0.0166 0.0477 0.0496

Table 4. Number of prototypes.
Approach BN AB FS FR SP KZ CV PK

F-KMM 136 341 836 898 1,622 3,643 2,016 3,201

F-KMM++ 136 341 836 898 1,622 3,643 2,016 3,201

F-KMM# 78 76 221 243 670 1,851 910 1,444

F-KMM-OD 78 76 221 243 670 1,851 910 1,444

Table 5. Number of outliers.
Approach BN AB FS FR SP KZ CV PK

DBSCAN 461 2,040 17,814 50,637 89,727 54,252 289,273 122,300

F-KMM-OD 687 2,598 23,278 50,672 86,010 67,504 235,913 304,615

for the FARS dataset. Note that we attained almost the same results for other datasets. Table 4

shows the number of prototypes used in our approaches, and Table 5 shows the number of outliers

detected by F-KMM-OD and DBSCAN.

As shown in Fig. 3, our approaches offer higher efficiency than the previous approaches. Specifi-

cally, our approaches are up to 144.8, 166.5, 475.6, 4151.8, and 888.2 times faster than the randomized

SVD-based approach, nKMM, the original approach, GKM-MPC, and DBSCAN, respectively. As

shown in Table 3, the original approach incurs a high computation cost to iteratively compute SVD

on 𝑛 ×𝑚 matrix S̃ to obtain F. Since the computation cost of SVD is 𝑂 (𝑛𝑚2), the original approach
is slower than our approaches. Although the randomized SVD-based approach approximately com-

putes SVD to reduce the computation cost as shown in Table 3, it still needs 𝑂 (𝑛𝑚(𝑐 + 𝑑 + log𝑚))
time to compute the nearest prototypes of each data point to obtain S̃. Therefore, it is slower than
our approaches. As described in Section 2, in the merge stage of nKMM, it needs to construct the

nearest neighbor graph of the data points. Since the computation cost of the nearest neighbor

graph is quadratic to the number of data points, nKMM is much slower than our approaches.

Moreover, since the split stage of GKM-MPC needs 𝑂 (𝑛2𝑚𝑑) time to initialize the sub-clusters,

it incurs significantly higher computation times than our approaches. Moreover, since DBSCAN

iteratively performs range searches from the data points, its computation cost is high.

On the other hand, to efficiently compute F, we compute the eigenvectors from the block matrices

of𝑚×𝑚 matrix M′
as described in Section 4.2. In addition, as described in Section 4.3, we compute S̃

by skipping unnecessary distance computations and estimating lower bounding distances between

the data points and the prototypes. Note that, although we have the additional computation cost

for SVD, it is relatively short, as shown in Table 3. Besides, F-KMM++ can efficiently initialize the

prototypes, as shown in Table 3. In addition, F-KMM# can more efficiently initialize the prototypes

than F-KMM++, as shown in Table 3. This is because F-KMM# uses fewer prototypes than F-KMM++,

as shown in Table 4. Since F-KMM# uses fewer prototypes, it can more efficiently compute matrix

S̃, F, and A than F-KMM++, as shown in Table 3. As a result, F-KMM# is more efficient than F-KMM

and F-KMM++, as shown in Fig. 3. Furthermore, F-KMM-OD needs less computation time for matrix

S̃, F, and A than F-KMM# although it needs additional processing time to detect outliers, as shown

in Table 3. This is because it can reduce the number of data points needed to compute clusters by

effectively detecting outliers the same as DBSCAN, as shown in Table 5. Note that F-KMM# and

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 18. Publication date: February 2024.



18:22 Yasuhiro Fujiwara et al.

10
-1

10
0

10
1

10
2

10
3

BN AB FS FR SP KZ CV PK

N
u
m

b
e
r 

o
f 
e
ig

e
n
v
e
c
to

r 
c
o
m

p
u
ta

ti
o
n
s

F-KMM
Naive

Fig. 4. Number of eigenvector com-
putations.

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

BN AB FS FR SP KZ CV

W
a
ll 

c
lo

c
k
 t
im

e
 [
s
]

F-KMM
W/O skipping

Fig. 5. Effectiveness of skipping dis-
tance computations.

10
4

10
5

10
6

10
7

10
8

10
9

10
10

BN AB FS FR SP KZ CV PK

N
u
m

b
e
r 

o
f 
d
is

ta
n
c
e
 c

o
m

p
u
ta

ti
o
n
s F-KMM

W/O approximation

Fig. 6. Effectiveness of the approxi-
mation approach.

F-KMM-OD use the same number of prototypes to compute clusters, as shown in Table 4, since

they use the same algorithm (Algorithm 6) to compute the prototypes.

5.2 Eigenvector Computation
As shown in Section 4.2.2, we compute the largest eigenvalues and their eigenvectors of the

block matrices from the elements of diagonal matrix D to reduce the number of eigenvector

computations. In addition, we use the upper bounds of eigenvalues to reduce the number of the

power method computations. To show the effectiveness of these approaches, we evaluated the

number of eigenvector computations by the power method needed to obtain the 𝑐 eigenvectors.

Note that the proposed approach uses the power method to compute the eigenvectors only if 𝑏 < 𝑐

holds, as shown in Section 4.4. In this experiment, we compared the proposed approach to the naive

approach that computes the 𝑐 largest eigenvalues and their eigenvectors for each block matrix.

Fig. 4 shows the average of the numbers of eigenvector computations in the iterations that use the

power method where 𝑏 < 𝑐 . In this figure, “Naive” indicates the result of the naive approach.

Fig. 4 shows that our approach reduces the number of eigenvector computations by up to 94.8%

from the naive approach. Since the naive approach computes the 𝑐 eigenvectors for 𝑏 block matrices,

it must apply the power method 𝑏𝑐 times, although only 𝑐 eigenvectors are needed for computing

the clusters. On the other hand, our approach can obtain the 𝑏 eigenvectors from the elements of

matrix D from Lemma 4.3 without using the power method. Even if we need to compute the 𝑐 − 𝑏

eigenvectors by the power method, our proposal prunes unnecessary computations by exploiting

the upper bounding property of Lemma 4.5. Since our approach can effectively reduce the number of

eigenvector computations, it can efficiently obtain the 𝑐 largest eigenvalues and their eigenvectors.

5.3 Skipping Distance Computations
As mentioned in Section 4.3.1, if 𝑏 > 𝑐 , we directly compute distance 𝐷𝐹 [𝑖, 𝑗] by skipping the

computations of F to compute S̃ efficiently. To show the effectiveness of this approach, Fig. 5

plots the computation time taken to obtain S̃ for the case of 𝑏 > 𝑐 . In this figure, “W/O skipping”

represents the results of the approach that does not skip the computations of F; this approach
computes F even if 𝑏 > 𝑐 holds. We omit the experimental results for the Poker dataset, since 𝑏 > 𝑐

did not occur in any iteration.

Fig. 5 indicates that our approach can effectively reduce the computation time to obtain S̃.
Specifically, it reduced the computation time by up to 81.1% against the comparative approach. Since

the comparative approach does not use the skipping approach, it must compute F at𝑂 (𝑐 (𝑛+𝑚)) time.

In addition, this approach needs 𝑂 (𝑛𝑚𝑐) time to compute 𝐷𝐹 [𝑖, 𝑗] for the pairs of the data points
and the prototypes. However, if 𝑏 > 𝑐 , we do not need to compute F. Therefore, we can compute

𝐷𝐹 [𝑖, 𝑗] at 𝑂 (𝑛𝑚) time for the pairs of the data points and the prototypes from Equation (56).

Since we can skip the computations of F, our approach can more efficiently compute S̃ than the

comparative approach.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 18. Publication date: February 2024.



Efficient Algorithm for K-Multiple-Means 18:23

Table 6. Clustering performance of each approach [%].

Approach

NMI Purity

BN AB FS FR SP KZ CV PK BN AB FS FR SP KZ CV PK

F-KMM# 78.96 16.28 60.56 9.803 0.036 47.55 5.814 0.260 89.61 37.28 80.32 65.39 96.25 74.76 91.15 99.98

F-KMM++ 76.91 17.17 59.94 9.468 0.027 50.70 4.747 0.308 73.50 26.10 48.92 45.05 10.17 36.20 50.34 50.20

F-KMM 73.62 16.87 56.70 9.468 0.020 48.80 3.264 0.027 70.98 25.54 42.30 45.05 10.15 35.36 49.84 50.13

Original 73.62 16.87 56.70 9.468 0.020 48.80 3.264 0.027 70.98 25.54 42.30 45.05 10.15 35.36 49.84 50.13

Randomized 36.87 14.73 1.085 1.464 0.018 1.909 2.086 0.021 37.40 25.16 10.10 41.94 10.07 2.705 48.79 50.12

nKMM 81.46 4.772 48.08 4.182 0.030 28.68 4.483 0.020 79.31 18.29 21.67 42.24 10.09 14.53 49.04 50.12

GKM-MPC 51.07 9.804 44.98 1.114 0.019 40.12 17.04 0.013 60.29 19.94 48.81 41.71 10.46 37.45 54.50 50.56

F-KMM-OD 53.61 41.06 37.30 25.77 23.33 28.60 21.80 35.81 62.13 13.14 60.63 35.18 65.51 71.71 56.54 67.64

DBSCAN 33.01 40.26 24.08 24.40 24.07 25.28 27.42 10.68 59.28 27.87 74.55 40.15 64.69 79.97 15.03 88.01

5.4 Lower Bounding Similarity
As described in Section 4.3.2, we approximate the data points and the prototypes to compute the

lower bounding distances. We can efficiently compute the nearest prototypes using the lower

bounding distances since we can avoid computing the distances accurately. In this experiment, we

evaluated the number of accurate distance computations to show the effectiveness of this approach.

Fig. 6 shows the average of the numbers of the accurate distance computations to find the nearest

prototypes in the iterations. In this figure, “W/O approximation” is the result of the approach that

computes the accurate distances for all pairs.

As shown in Fig. 6, our approach reduced the number of accurate distance computations by up

to 96.6% against the comparative approach. Since the comparative approach computes accurate

distances for all the pairs, it needs 𝑂 (𝑛𝑚𝑑) time to compute the nearest prototypes of the data

points. On the other hand, our approach takes𝑂 (𝑛𝑚𝑑 ′) time to compute the lower bound distances

for all the pairs. However, since 𝑑 ′ ≪ 𝑑 , it can efficiently compute the lower bound distances for the

pairs. In addition, our approach can prune the accurate distance computations for unlikely pairs;

unlikely to be the nearest prototype. As shown in the figure, Kuzushiji-49 needs many distance

computations compared to the other datasets. This is because Kuzushiji-49 has more clusters than

the other datasets, as shown in Table 2. Since SVD represents the clusters using small numbers of

singular vectors, if data points have many clusters, the approximation error of SVD would increase;

it could be difficult to prune distance computations effectively. However, if data points have a

small number of clusters, we can effectively prune distance computations using the lower bound

distances, as shown in Fig. 6. As a result, the proposed approach can efficiently find the nearest

prototypes for each data point.

5.5 Clustering Performance
Since the original approach of K-Multiple-Means has the computational bottleneck of the iterative

SVD computations, computation time can be reduced by using randomized SVD [28]. However, this

approach sacrifices clustering performance to improve efficiency since it approximately computes

SVD. One major advantage of the proposed approach is that it is guaranteed to yield the same

clustering results as the original approach, as described in Section 4.4. In addition, as described

in Section 4.4.2, the proposed approach can improve clustering performance by initializing the

prototypes more effectively. Furthermore, we extended our approach to determine the number of

prototypes according to the data distribution in Section 4.4.2. Moreover, we extended our approach

to detect outliers the same as DBSCAN, as described in Section 4.4.2. Therefore, we compared our

approaches to DBSCAN. In this experiment, we evaluated NMI (Normalized Mutual Information)

and the purity of each approach. They are popular metrics of clustering performance [27]. NMI is a

normalization of the Mutual Information score of the clustering result, and purity is the fraction

of the majority class of the cluster relative to the size of the cluster. NMI and purity range from 0

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 18. Publication date: February 2024.



18:24 Yasuhiro Fujiwara et al.

to 1, and they have larger values as the clustering result better matches the ground truth. Table 6

shows NMI and purity of each approach. Note that we treated each outlier detected by DBSCAN

and F-KMM-OD as a single cluster in this experiment.

As shown in Table 6, the randomized SVD-based approach yields lower clustering performance

than the proposed approaches. Since the randomized SVD-based approach approximately computes

SVD, matrix F obtained by the approach is different from the original approach; it is not the optimal

solution for the problem of (5). As a result, since the distances between data points and prototypes

are computed from F, the randomized SVD-based approach erroneously computes the nearest

prototypes for each data point. Consequently, the randomized SVD-based approach and the original

approach yield different clustering results. On the other hand, we can accurately compute the

leading 𝑐 singular vectors from the eigenvectors of the block matrices. Therefore, we can exactly

compute matrix F. In addition, we can accurately compute the nearest prototypes by using the

lower bounding distances between the data points and the prototypes. Therefore, we can exactly

compute matrix S. Since matrix F and S obtained by our approach are the same as those by the

original approach, we can, unlike the randomized SVD-based approach, obtain the same clustering

results as the original approach. In addition, the clustering performance of the proposed approach

is competitive with recent multi-prototype clustering approaches since our approach can obtain

the same clustering result as the original approach.

Furthermore, as shown in Table 6, F-KMM++ is more accurate than F-KMM. This indicates

that we can improve clustering performance by effectively initializing the prototypes. Moreover,

F-KMM# can yield higher clustering accuracy than F-KMM++, as shown in Table 6. This is because

it effectively determines the prototypes according to the data distribution. The results in Table 6, as

well as Fig. 3 indicate that we can increase the efficiency and clustering performance of K-Multiple-

Means by determining the number of prototypes according to the data distribution. Besides, as

shown in Table 6, DBSCAN yields relatively different clustering accuracy from multi-prototype

clustering approaches. This is because we treated each outlier as a single cluster. As shown in

Table 6, F-KMM-OD is competitive with DBSCAN in terms of clustering accuracy. This is because

F-KMM-OD can effectively detect outliers similar to DBSCAN, as shown in Table 5. Note that

F-KMM-OD is significantly faster than DBSCAN, as shown in Fig. 3.

6 CONCLUSIONS
K-Multiple-Means is a simple but effective extension of K-means that represents each cluster via

multiple prototypes. However, it does not efficiently handle large-scale data since it needs to itera-

tively compute SVD on the similarity matrix of the bipartite graph. In this paper, we addressed the

problem of reducing the processing time of K-Multiple-Means. Our approach efficiently computes

the singular vectors from the eigenvectors of the block matrices obtained from the similarity matrix

between prototypes. Moreover, the proposed approach skips unnecessary distance computations

and estimates the lower bounding distances between the data points and the prototypes to improve

efficiency. Experiments showed that the proposed approach is significantly faster than the previous

approaches while still matching the clustering performance of K-Multiple-Means. In future work,

we will investigate how to improve clustering accuracy of the proposed approach. Although this

paper proposed to initialize prototypes using k-means++, which has been studied in discrete algo-

rithms, we plan to use the approaches studied for computational geometry [3, 15]. By improving

clustering accuracy as well as efficiency, we can provide an attractive alternative to the research

community for the extraction of clusters to gain insights into large-scale data.

ACKNOWLEDGMENT
This work was supported by JSPS KAKENHI Grant Number 22H03596.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 18. Publication date: February 2024.



Efficient Algorithm for K-Multiple-Means 18:25

REFERENCES
[1] David Arthur and Sergei Vassilvitskii. 2007. k-means++: The Advantages of Careful Seeding. In SODA. 1027–1035.
[2] Shenglan Ben, Zhong Jin, and Jingyu Yang. 2011. Guided Fuzzy Clustering with Multi-prototypes. In IJCNN. 2430–2436.
[3] Tuhin Kr. Biswas, Kinsuk Giri, and Samir Roy. 2023. ECKM: An Improved K-means Clustering Based on Computational

Geometry. Expert Syst. Appl. 212 (2023), 118862.
[4] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. 2000. LOF: Identifying Density-Based Local

Outliers. In SIGMOD. 93–104.
[5] Fan R. K. Chung. 1996. Spectral Graph Theory. American Mathematical Society.

[6] Thomas H. Cormen, Charles E. Leiserson Ronald L. Rivest, and Clifford Stein. 2022. Introduction to Algorithms. The
MIT Press.

[7] James W. Demmel. 2017. Applied Numerical Linear Algebra. Orient Blackswan.
[8] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. 2004. Kernel K-means: Spectral Clustering and Normalized Cuts. In

KDD. ACM, 551–556.

[9] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. 2007. Weighted Graph Cuts without Eigenvectors A Multilevel

Approach. IEEE Trans. Pattern Anal. Mach. Intell. 29, 11 (2007), 1944–1957.
[10] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A Density-Based Algorithm for Discovering

Clusters in Large Spatial Databases with Noise. In KDD. 226–231.
[11] Ky Fan. 1949. On a Theorem of Weyl Concerning Eigenvalues of Linear Transformations I. Proceedings of the National

Academy of Sciences 35, 11 (1949), 652–655.
[12] Yasuhiro Fujiwara, Yasutoshi Ida, Junya Arai, Mai Nishimura, and Sotetsu Iwamura. 2016. Fast Algorithm for the Lasso

based L1-Graph Construction. Proc. VLDB Endow. 10, 3 (2016), 229–240.
[13] Yasuhiro Fujiwara, Go Irie, Shari Kuroyama, and Makoto Onizuka. 2014. Scaling Manifold Ranking Based Image

Retrieval. Proc. VLDB Endow. 8, 4 (2014), 341–352.
[14] Yasuhiro Fujiwara, Makoto Nakatsuji, Hiroaki Shiokawa, Yasutoshi Ida, and Machiko Toyoda. 2015. Adaptive Message

Update for Fast Affinity Propagation. In KDD. ACM, 309–318.

[15] Kinsuk Giri and Tuhin Biswas. 2022. Applications of Computational Geometry in Clustering: A Review. 209–214.
[16] Mark A. Girolami. 2002. Mercer Kernel-based Clustering in Feature Space. IEEE Trans. Neural Networks 13, 3 (2002),

780–784.

[17] Pengwenlong Gu, Dingjie Zhong, Cunqing Hua, Farid Naït-Abdesselam, Ahmed Serhrouchni, and Rida Khatoun. 2021.

Scaling A Blockchain System For 5G-based Vehicular Networks Using Heuristic Sharding. In GLOBECOM. IEEE, 1–6.

[18] David A. Harville. 2008. Matrix Algebra From a Statistician’s Perspective. Springer.
[19] G. Karypis, Eui-Hong Han, and V. Kumar. 1999. Chameleon: Hierarchical Clustering Using Dynamic Modeling.

Computer 32, 8 (1999), 68–75.
[20] Xuelong Li, Yunxing Zhang, and Rui Zhang. 2023. Self-Weighted Unsupervised LDA. IEEE Trans. Neural Networks

Learn. Syst. 34, 3 (2023), 1627–1632.
[21] Jiye Liang, Liang Bai, Chuangyin Dang, and Fuyuan Cao. 2012. The K -Means-Type Algorithms Versus Imbalanced

Data Distributions. IEEE Trans. Fuzzy Syst. 20, 4 (2012), 728–745.
[22] Aristidis Likas, Nikos Vlassis, and Jakob J. Verbeek. 2003. The Global K-means Clustering Algorithm. Pattern Recognit.

36, 2 (2003), 451–461.

[23] Manhua Liu, Xudong Jiang, and Alex C. Kot. 2009. A Multi-prototype Clustering Algorithm. Pattern Recognit. 42, 5
(2009), 689–698.

[24] Ting Luo, Caiming Zhong, Hong Li, and Xia Sun. 2010. A Multi-prototype Clustering Algorithm Based on Minimum

Spanning Tree. In FSKD. 1602–1607.
[25] Baoze Ma and Tianqi Zhang. 2021. Underdetermined Blind Source Separation Based on Source Number Estimation

and Improved Sparse Component Analysis. Circuits Syst. Signal Process. 40, 7 (2021), 3417–3436.
[26] J. B. MacQueen. 1967. Some Methods for Classification and Analysis of MultiVariate Observations. In Proc. of the fifth

Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1. University of California Press, 281–297.

[27] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schuetze. 2008. Introduction to Information Retrieval.
Cambridge University Press.

[28] Per-Gunnar Martinsson and Joel A. Tropp. 2020. Randomized numerical linear algebra: Foundations and algorithms.

Acta Numer. 29 (2020), 403–572.
[29] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. 2001. On Spectral Clustering: Analysis and an Algorithm. In NIPS.

849–856.

[30] Feiping Nie, Cheng-Long Wang, and Xuelong Li. 2019. K-Multiple-Means: A Multiple-Means Clustering Method with

Specified K Clusters. In SIGKDD. 959–967.
[31] Feiping Nie, Xiaoqian Wang, Cheng Deng, and Heng Huang. 2017. Learning A Structured Optimal Bipartite Graph for

Co-Clustering. In NIPS. 4129–4138.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 18. Publication date: February 2024.



18:26 Yasuhiro Fujiwara et al.

[32] Feiping Nie, Xiaoqian Wang, and Heng Huang. 2014. Clustering and Projected Clustering with Adaptive Neighbors. In

KDD. 977–986.
[33] Feiping Nie, Xiaoqian Wang, Michael I. Jordan, and Heng Huang. 2016. The Constrained Laplacian Rank Algorithm

for Graph-Based Clustering. In AAAI. 1969–1976.
[34] Jörg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu. 1998. Density-Based Clustering in Spatial Databases:

The Algorithm GDBSCAN and Its Applications. Data Min. Knowl. Discov. 2, 2 (1998), 169–194.
[35] Bernhard Schölkopf, Alexander J. Smola, and Klaus-Robert Müller. 1998. Nonlinear Component Analysis as a Kernel

Eigenvalue Problem. Neural Comput. 10, 5 (1998), 1299–1319.
[36] Dennis Shasha and Yunyue Zhu. 2004. High Performance Discovery In Time Series: Techniques And Case Studies.

SpringerVerlag.

[37] Kevin Sheridan, Tejas G. Puranik, Eugene Mangortey, Olivia J. Pinon-Fischer, Michelle Kirby, and Dimitri N. Mavris.

2020. An Application of DBSCAN Clustering for Flight Anomaly Detection During the Approach Phase.
[38] Jianbo Shi and Jitendra Malik. 2000. Normalized Cuts and Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell.

22, 8 (2000), 888–905.

[39] J. Michael Steele. 2004. The Cauchy-Schwarz Master Class. Cambridge University Press.

[40] Chin-Wang Tao. 2002. Unsupervised Fuzzy Clustering with Multi-center Clusters. Fuzzy Sets Syst. 128, 3 (2002),

305–322.

[41] Ulrike von Luxburg. 2007. A Tutorial on Spectral Clustering. Stat. Comput. 17, 4 (2007), 395–416.
[42] Chang-Dong Wang, Jian-Huang Lai, Ching Y. Suen, and Jun-Yong Zhu. 2013. Multi-Exemplar Affinity Propagation.

IEEE Trans. Pattern Anal. Mach. Intell. 35, 9 (2013), 2223–2237.
[43] Chang-Dong Wang, Jian-Huang Lai, and Jun-Yong Zhu. 2010. A Conscience On-line Learning Approach for Kernel-

Based Clustering. In ICDM. 531–540.

[44] Lu Wang, Huidong Wang, and Chuanzheng Bai. 2021. A New Multi-Prototype Based Clustering Algorithm. In ICIST.
598–603.

[45] Yangtao Wang and Lihui Chen. 2016. K-MEAP: Multiple Exemplars Affinity Propagation With Specified K Clusters.

IEEE Trans. Neural Networks Learn. Syst. 27, 12 (2016), 2670–2682.
[46] David S. Watkins. 2010. Fundamentals of Matrix Computations. Wiley.

[47] S Wibisono, M Anwar, Aji Supriyanto, and I Amin. 2021. Multivariate Weather Anomaly Detection Using DBSCAN

Clustering Algorithm. Journal of Physics: Conference Series 1869 (2021), 012077.
[48] Jinglin Xu, Junwei Han, Kai Xiong, and Feiping Nie. 2016. Robust and Sparse Fuzzy K-Means Clustering. In IJCAI.

2224–2230.

[49] Lihi Zelnik-Manor and Pietro Perona. 2004. Self-Tuning Spectral Clustering. In NIPS. 1601–1608.
[50] Hongyuan Zha, Xiaofeng He, Chris H. Q. Ding, Ming Gu, and Horst D. Simon. 2001. Spectral Relaxation for K-means

Clustering. In NIPS. 1057–1064.
[51] Jingyuan Zhang. 2022. A New K-Multiple-Means Clustering Method. In KSEM. 621–632.

[52] Yiyi Zhang, Wang, Xujun Liang, Li, and Duan. 2020. Short-Term Wind Power Prediction Using GA-BP Neural Network

Based on DBSCAN Algorithm Outlier Identification. Processes 8 (2020), 157.

Received July 2023; revised October 2023; accepted November 2023

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 18. Publication date: February 2024.


	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Proposed Method
	4.1 Main Ideas
	4.2 Efficient Singular Vector Computation
	4.3 Efficient Similarity Matrix Computation
	4.4 Clustering Algorithm

	5 Experimental Evaluation
	5.1 Clustering Time
	5.2 Eigenvector Computation
	5.3 Skipping Distance Computations
	5.4 Lower Bounding Similarity
	5.5 Clustering Performance

	6 Conclusions
	References

