
Time Series Representation for Visualization in Apache IoTDB
LEI RUI, Tsinghua University, China
XIANGDONG HUANG, Tsinghua University, China
SHAOXU SONG∗, BNRist, Tsinghua University, China
YUYUAN KANG, University of Wisconsin-Madison, USA

CHEN WANG, Tsinghua University, China
JIANMIN WANG, BNRist, Tsinghua University, China

When analyzing time series, often interactively, the analysts frequently demand to visualize instantly large-

scale data stored in databases. M4 visualization selects the first, last, bottom and top data points in each pixel

column to ensure pixel-perfectness of the two-color line chart visualization. While M4 already shows its

preciseness of encasing time series in different scales into a fixed size of pixels, how to efficiently support

M4 representation in a time series native database is still absent. It is worth noting that, to enable fast writes,

the commodity time series database systems, such as Apache IoTDB or InfluxDB, employ LSM-Tree based

storage. That is, a time series is segmented and stored in a number of chunks, with possibly out-of-order

arrivals, i.e., disordered on timestamps. To implement M4, a natural idea is to merge online the chunks as

a whole series, with costly merge sort on timestamps, and then perform M4 representation as in relational

databases. In this study, we propose a novel chunk merge free approach called M4-LSM to accelerate M4

representation and visualization. In particular, we utilize the metadata of chunks to prune and avoid the costly

merging of any chunk. Moreover, intra-chunk indexing and pruning are enabled for efficiently accessing the

representation points, referring to the special properties of time series. Remarkably, the time series database

native operator M4-LSM has been implemented in Apache IoTDB, an open-source time series database, and

deployed in companies across various industries. In the experiments over real-world datasets, the proposed

M4-LSM operator demonstrates high efficiency without sacrificing preciseness.

CCS Concepts: • Information systems→ Database query processing.

Additional Key Words and Phrases: time series visualization, database query processing

ACM Reference Format:
Lei Rui, Xiangdong Huang, Shaoxu Song, Yuyuan Kang, Chen Wang, and Jianmin Wang. 2024. Time Se-

ries Representation for Visualization in Apache IoTDB. Proc. ACM Manag. Data 2, 1 (SIGMOD), Article 35

(February 2024), 26 pages. https://doi.org/10.1145/3639290

1 INTRODUCTION
Time series representation is a typical data mining task [18] that reduces the dimensionality while

still retaining its essential characteristics such as shape in visualization. M4 representation [25]

is known as an error-free method for visualizing time series in two-color (binary) line chart. It

∗
Shaoxu Song (https://sxsong.github.io/) is the corresponding author.

Authors’ addresses: Lei Rui, Tsinghua University, Beijing, China, rl18@mails.tsinghua.edu.cn; Xiangdong Huang, Tsinghua

University, Beijing, China, huangxdong@tsinghua.edu.cn; Shaoxu Song, BNRist, Tsinghua University, Beijing, China,

sxsong@tsinghua.edu.cn; Yuyuan Kang, University of Wisconsin-Madison, Madison, USA, yuyuan@cs.wisc.edu; Chen

Wang, Tsinghua University, Beijing, China, wang_chen@tsinghua.edu.cn; Jianmin Wang, BNRist, Tsinghua University,

Beijing, China, jimwang@tsinghua.edu.cn.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).

ACM 2836-6573/2024/2-ART35

https://doi.org/10.1145/3639290

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 35. Publication date: February 2024.

HTTPS://ORCID.ORG/0009-0004-0112-8329
HTTPS://ORCID.ORG/0000-0002-6868-4045
HTTPS://ORCID.ORG/0000-0002-9503-2755
HTTPS://ORCID.ORG/0000-0003-4734-4882
HTTPS://ORCID.ORG/0000-0003-1698-8992
HTTPS://ORCID.ORG/0000-0001-6841-7943
https://doi.org/10.1145/3639290
https://sxsong.github.io/
https://orcid.org/0009-0004-0112-8329
https://orcid.org/0000-0002-6868-4045
https://orcid.org/0000-0002-9503-2755
https://orcid.org/0000-0003-4734-4882
https://orcid.org/0000-0003-1698-8992
https://orcid.org/0000-0003-1698-8992
https://orcid.org/0000-0001-6841-7943
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3639290

35:2 Lei Rui et al.

(b)

(a) All 1000 pixel columns

a time span

(b) 3 pixel columns

Fig. 1. M4 representation for time series visualization

t

v D

C!

Ii

C"

C# C$

C%

(a) Input

{C ,C!,C",C#,C$}, {D&}, Ii

t

v

(b) M4

Ii

(c) M4-LSM

v

t
Ii

(d) Output

{G(Ti)|G {FP,LP,BP,TP}}

t

v

C"

C# C$

C%

Ii

D

C!

TP(C#)

Fig. 2. Two implementations in LSM-Tree store. The original M4 needs to load and merge all chunk data in
(b), while our M4-LSM may use directly the chunk metadata in (c).

encases time series in various scales into fixed-size pixels. For instance, Figure 1(a) shows the line

chart of 1.2 million data points time series in 1000 × 500 pixels. The time series is divided into 1000

time spans, corresponding to 1000 pixel columns. Figure 1(b) illustrates 3 time spans (pixel columns)

out of 1000. For each time span, M4 selects the first, last, bottom and top data points, denoted by

red dots in Figure 1(b). Pixels covered by the connecting lines of consecutive representation points

are colored in black for line chart visualization.

1.1 Motivation
Note that M4 is originally designed for visualizing time series data stored in relational databases,

reading data points ordered by time. Different from RDBMS, to enable fast writes, the commodity

time series database systems, such as Apache IoTDB [6] or InfluxDB [9], employ Log-Structured

Merge-Tree (LSM-Tree) [37] based storage. That is, time series is segmented and stored in a number

of chunks, denoted by rectangles in Figure 2(a). As shown, the data points in the same time period

may be stored in different chunks, owing to out-of-order arrivals [26]. Consequently, the data

points read from chunks may not be in the order of time either. How to efficiently support M4

representation in such time series native LSM-Tree based databases is still absent.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 35. Publication date: February 2024.

Time Series Representation for Visualization in Apache IoTDB 35:3

0.2 0.4 0.6 0.8 1.0
number of raw data points ×108

0.0

0.5

1.0

1.5

2.0

2.5
ti

m
e
 (

s
)

×102

(A)

(B)

(C)

(a) Total response time

without-M4

M4

M4-LSM

without-M4
(A)

M4
(B)

M4-LSM
(C)

0.0

0.5

1.0

1.5

2.0

2.5

ti
m

e
 (

s
)

×102

(b) Response time decomposition

server computation

communication

client rendering

Time (s) without-M4 (A) M4 (B) M4-LSM (C)

Server computation 112.85 34.31 2.75

Communication 138.15 2.42 2.37

Client rendering 14.02 0.38 0.48

Total response time 265.02 37.11 5.6

Fig. 3. Cost of visualizing time series from a database

A straightforward idea is to first merge online all the chunks as a whole series, and apply M4

representation over the data points ordered by time as in RDBMS [25]. This baseline implementation

could still be costly, by loading all chunks from disk, ordering data points by time, and scanning

the entire time series, as in Figure 2(b). Although M4 representation greatly reduces the time cost,

by avoiding transferring and rendering all the raw data points, as illustrated in Figure 3, the cost of

computing the representation points in the database server becomes the bottleneck (34.31s among

total 37.11s). In order to increase the productivity of a visualization system, it is always desired to

further reduce the response time [34].

1.2 M4-LSM Approach
In this study, we propose a novel chunk merge free approach M4-LSM in Section 3 to accelerate

the M4 representation. It considers inter-chunk pruning in Section 4 and accelerates intra-chunk

accessing in Section 5. (1) Note that the metadata of chunks can be used to avoid loading and

merging chunks. Intuitively, if the candidate points for the first, last, bottom and top representations

obtained from metadata are neither updated by other chunks nor deleted by delete operations,

we can directly return them as results. For example, in Figure 2(c), the candidate point TP(𝐶1)
for the TopPoint representation is obtained from chunk metadata and verified as the latest (i.e.,

neither updated nor deleted). Therefore, we can directly return TP(𝐶1) as the result of the TopPoint
representation and do not need to load and merge any chunk data. (2) Nevertheless, for those

chunks that cannot be pruned and need to access the raw data, we observe the regular intervals of

timestamps in time series and introduce a step regression for efficient indexing. Moreover, we use

a value regression function to prune the points that cannot be the top or bottom ones.

As shown in Figure 3, to visualize 100 million point time series, the database server computation

time is reduced from 34.31s of M4 to only 2.75s of M4-LSM, comparable to the communication

cost. It enables fast visualization of large-scale time series data, without sacrificing preciseness.

More extensive experiments over real-world datasets are reported in Section 8 to demonstrate the

efficiency of the chunk merge free operator M4-LSM.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 35. Publication date: February 2024.

35:4 Lei Rui et al.

1.3 System Deployment
The M4-LSM operator has been implemented in Apache IoTDB [42], an open-source LSM-Tree

database. It becomes a built-in function of the system, with the document available on the product

website [7]. The source code of M4-LSM has been committed to the GitHub repository of Apache

IoTDB by system developer [3]. The code and data of experiments are available in [4] to reproduce.

Remarkably, the system with the visualization function has been deployed and used in many

companies across various industries, including rail transit, steel manufacturing, aviation industry,

cloud service, and so on. For example, in fault diagnosis during train maintenance, our proposed

solution is used to visualize vibration signals at a frequency of about 100Hz in Grafana. In steel

manufacturing, domain experts inspect the visualized time series of temperatures to explore the

potential gaps among different stages. In the aviation industry, our proposed solution is used to

visualize and compare the performance metrics of different parts, with the data collection frequency

as high as 20kHz to 400kHz. In cloud service, our solution is employed to visualize multiple metrics

on the same dashboard for fault diagnosis of application performance. Please see Section 7 and [5]

for more details on use cases.

1.4 Contributions
We highlight the contributions in both research novelty and system deployment.

(1) We formalize the problem of accelerating M4 queries over the LSM-Tree based storage

(Section 3). The novel idea is to leverage metadata to prune chunks, with a candidate generation

and verification mechanism (Section 4). Moreover, we devise time and value specific regression

techniques to accelerate the access to chunks that cannot be pruned (Section 5).

(2) We present the deployment of the proposed M4-LSM approach in Apache IoTDB, without

merging any chunk (Section 6). We also introduce a specific application to illustrate the challenges

of visualizing large-scale time series, and how M4-LSM tackles the problem (Section 7).

(3) We conduct extensive experiments over real-world datasets (Section 8). The proposed M4-LSM

operator demonstrates high efficiency without sacrificing preciseness. It takes about 4 seconds to

represent a time series of 127 million points in 1000 pixel columns, enabling instant visualization

of the data in four years with a data collection frequency of every second.

2 PRELIMINARIES
We first introduce the M4 representation in Section 2.1, and then present LSM-Tree storage of time

series in Section 2.2. Table 1 lists the frequently used notations.

2.1 M4 Representation
Let 𝑇 = {P1, . . . P𝑛} = {(𝑡1, 𝑣1), . . . , (𝑡𝑛, 𝑣𝑛)} denote a time series with data points (time-value pairs)

in the increasing order of time [23], where (𝑡𝑖 , 𝑣𝑖) is the time-value pair of the 𝑖-th point P𝑖 . Following

the same line of [24, 25], we introduce M4 representation.

Definition 1 (M4 representation functions). Given a time series 𝑇 , the M4 representation

functions are as follows.

(1) FirstPoint representation function, denoted as FP : 𝑇 → 𝑃 , returns the point with the minimal time,

i.e., Pfirst ∈ {𝑃∗ ∈ 𝑇 | 𝑃 .𝑡 ≥ 𝑃∗ .𝑡,∀𝑃 ∈ 𝑇 }.
(2) LastPoint representation function, denoted as LP : 𝑇 → 𝑃 , returns the point with the maximal

time, i.e., Plast ∈ {𝑃∗ ∈ 𝑇 | 𝑃 .𝑡 ≤ 𝑃∗ .𝑡,∀𝑃 ∈ 𝑇 }.
(3) BottomPoint representation function, denoted as BP : 𝑇 → 𝑃 , returns any one of the points with

the minimal value, i.e., Pbottom ∈ {𝑃∗ ∈ 𝑇 | 𝑃 .𝑣 ≥ 𝑃∗ .𝑣,∀𝑃 ∈ 𝑇 }.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 35. Publication date: February 2024.

Time Series Representation for Visualization in Apache IoTDB 35:5

Table 1. Notations and explanations

Notation Explanation

𝑇 a time series

𝐺 a general notation of functions FP, LP, BP, and TP

[𝑡𝑞𝑠 , 𝑡𝑞𝑒) the time range of M4 representation

𝑤 the number of time spans in M4 representation

𝐼𝑖 the 𝑖-th time span of M4 representation, corre-

sponding to the 𝑖-th pixel column of line chart

𝑇𝑖 the subsequence of𝑇 that falls in the time span 𝐼𝑖

𝜅 the version number

𝐶𝜅
the chunk with version number 𝜅

𝐷𝜅
the delete operation with version number 𝜅

[𝑡𝑑𝑠 , 𝑡𝑑𝑒] the time range of the delete

C the set of all chunks for the given time series

D the set of all deletes for the given time series

𝑀 (C,D) the merge function

firstTime bottomTimetopTime lastTime

topValue

lastValue

firstValue

bottomValue

v

t

Ptop

Plast

Pfirst

Pbottom

Fig. 4. An example of four representation functions

(4) TopPoint representation function, denoted as TP : 𝑇 → 𝑃 , returns any one of the points with the

maximal value, i.e., Ptop ∈ {𝑃∗ ∈ 𝑇 | 𝑃 .𝑣 ≤ 𝑃∗ .𝑣,∀𝑃 ∈ 𝑇 }.

According to [25], the inter-column pixels are determined by both the times and values of the

first and last points, while the inner-column pixels only rely on the values of the bottom and top

points. In this sense, any point with the minimal (or maximal) value may sever as BP (or TP) from

the visualization-driven perspective.

Example 1. Given a time series 𝑇 in Figure 4, the four representation functions FP(𝑇), LP(𝑇),
BP(𝑇) and TP(𝑇) return four representation points Pfirst = (firstTime, firstValue), Plast = (lastTime,

lastValue), Pbottom = (bottomTime, bottomValue) and Ptop = (topTime, topValue), respectively, marked

with bold red dots. The minimal bounding rectangle of𝑇 is also plotted in the figure. Note that the four

representation points contain more information than the minimal bounding rectangle (i.e., firstValue

and lastValue).

Below, we use 𝐺 ∈ {FP, LP, BP, TP} as a general notation of the four representation functions.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 35. Publication date: February 2024.

35:6 Lei Rui et al.

t

v

κ

D�

C�

C

(a) Three-dimensional

t

v

C

D!

C"

(b) Two-dimensional

Fig. 5. Schematic diagrams of chunks and deletes

Definition 2 (M4 representation qery). Given a time series 𝑇 , query time range [𝑡𝑞𝑠 , 𝑡𝑞𝑒),
and the number of time spans𝑤 , the M4 representation query uses the derived time spans

𝐼𝑖 = [𝑡𝑞𝑠 +
𝑡𝑞𝑒 − 𝑡𝑞𝑠
𝑤

∗ (𝑖 − 1), 𝑡𝑞𝑠 +
𝑡𝑞𝑒 − 𝑡𝑞𝑠
𝑤

∗ 𝑖), 𝑖 = 1, . . . ,𝑤

to group time series 𝑇 into𝑤 time series subsequences

𝑇𝑖 = {𝑃 | 𝑃 ∈ 𝑇, 𝑃 .𝑡 ∈ 𝐼𝑖 }, 𝑖 = 1, . . . ,𝑤

and apply the four representation functions on each subsequence

{𝐺 (𝑇𝑖) | 𝐺 ∈ {FP, LP, BP, TP}}, 𝑖 = 1, . . . ,𝑤 . (1)

2.2 LSM-Tree based Storage of Time Series
To enable fast writes, each time series is stored as a set of chunks (containing inserts and append-

only updates) together with a set of deletes (containing append-only deletes), in the LSM-Tree store.

That is, time series data are not readily available without applying such updates and deletes.

2.2.1 Elements of LSM-Tree Storage. A version number 𝜅 is a global incremental number assigned

to each chunk or delete to distinguish the append order of updates and deletes. The larger the 𝜅 is,

the later the operation applies.

Definition 3 (Chunk). A chunk is a segment of time series that is read-only on disk, denoted by

𝐶𝜅
, where 𝜅 is the version number.

When the memory component of the LSM-Tree meets the flush trigger condition (such as

reaching a threshold size), the time series in memory is flushed to a new location on disk, i.e., a

chunk. Each chunk maintains its own metadata, i.e.,

{𝐺 (𝐶𝜅) | 𝐺 ∈ {FP, LP, BP, TP}}.
We say a timestamp 𝑡 is covered by a chunk 𝐶𝜅

, denoted by 𝑡 ⊨ 𝐶𝜅
, if there exists a point ∃𝑃 ∈ 𝐶𝜅

such that 𝑡 = 𝑃 .𝑡 .

Definition 4 (Delete). A delete 𝐷𝜅
specifies a time range to delete in the time series, where 𝜅 is

the version number.

By default, we denote [𝑡𝑑𝑠 , 𝑡𝑑𝑒] as the time range of delete 𝐷𝜅
, where 𝑡𝑑𝑠 and 𝑡𝑑𝑒 are the left and

right endpoints of the range, respectively. We say a timestamp 𝑡 is covered by a delete 𝐷𝜅
, denoted

by 𝑡 ⊨ 𝐷𝜅
, if 𝑡𝑑𝑠 ≤ 𝑡 ≤ 𝑡𝑑𝑒 .

Example 2. Figure 5 gives two ways to better understand the relationship between chunks and

deletes. Figure 5(a) shows a three-dimensional space composed of time, value and version number. A

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 35. Publication date: February 2024.

Time Series Representation for Visualization in Apache IoTDB 35:7

version plane is plotted as a gray translucent rectangle, corresponding to a unique version number.

Each chunk or delete is drawn on its own version plane, where 𝐶1
and 𝐶3

are represented by their

minimum bounding rectangles and 𝐷2
is represented by the slashed region covering its delete time

range. Figure 5(b) collapses the version dimension, stacking chunks and deletes in the two-dimensional

time-value space. From the version numbers of 𝐶1
, 𝐷2

, 𝐶3
and the relationship between their time

ranges, we know that (1) 𝐶1
, 𝐷2

and 𝐶3
are flushed to disk in turn; (2) 𝐶3

might contain some updates

to 𝐶1
; and (3) 𝐷2

only works on 𝐶1
but not 𝐶3

, because 𝐶3
has a larger version number than 𝐷2

.

2.2.2 Merge Function. To get the time series with only the latest points, we formally define the

merge function as follows.

Definition 5 (Merge function). Given a set of chunks C and a set of deletes D, the merge

function𝑀 (C,D) returns the time series

𝑀 (C,D) = {𝑃 ∈ 𝐶𝜅 | 𝑃 .𝑡 ⊭ 𝐶𝜅1 , 𝑃 .𝑡 ⊭ 𝐷𝜅2 , 𝜅 < 𝜅1, 𝜅 < 𝜅2, (2)

𝐶𝜅 ∈ C,𝐶𝜅1 ∈ C ∪ {𝐶∞}, 𝐷𝜅2 ∈ D ∪ {𝐷∞}}

where 𝐶∞
is an empty chunk with the largest version number, and 𝐷∞

is an empty delete with the

largest version number.

That is, the point 𝑃 in the merged time series is from some chunk 𝐶𝜅 ∈ C such that 𝑃 .𝑡 is not

covered by any 𝐶𝜅1 ∈ C ∪ {𝐶∞} or 𝐷𝜅2 ∈ D ∪ {𝐷∞} whose version number is higher than 𝜅.

3 M4-LSM APPROACH
In this section, we give an overview of M4-LSM, an efficient approach to perform M4 representation

on LSM-Tree storage.

3.1 Problem Statement
With the M4 representation query on time series and the LSM-Tree storage of time series introduced

in Section 2, we now combine them to give the formal definition of the problem of performing M4

representation on LSM-Tree storage.

Definition 6 (M4 representation on LSM-Tree storage). For a time series 𝑇 with a set of

chunks C and a set of deletes D, given the query parameters of time range 𝑡𝑞𝑠 , 𝑡𝑞𝑒 and the number of

time spans𝑤 , the problem is to compute {𝐺 (𝑇𝑖) | 𝐺 ∈ {FP, LP, BP, TP}}, 𝑖 = 1, . . . ,𝑤 , where

𝑇𝑖 = {𝑃 | 𝑃 ∈ 𝑇, 𝑃 .𝑡 ∈ 𝐼𝑖 }, 𝑇 = 𝑀 (C,D),

𝐼𝑖 = [𝑡𝑞𝑠 +
𝑡𝑞𝑒 − 𝑡𝑞𝑠
𝑤

∗ (𝑖 − 1), 𝑡𝑞𝑠 +
𝑡𝑞𝑒 − 𝑡𝑞𝑠
𝑤

∗ 𝑖).

It is worth noting that loading chunks from disk and merging them is costly, not only for the

heavy cost of I/O but also for the decompression of data [44]. Therefore, we devise novel techniques

to avoid merging chunks, reduce chunks to load, and speed up chunk access, for accelerating M4

representation over LSM storage.

To begin with, M4-LSM considers the M4 time span as virtual deletes. As in Definition 2, 𝐼𝑖 is the 𝑖-

th time span used to divide time series in the M4 representation query. For a time series subsequence

𝑇𝑖 , 𝐼𝑖 actually functions as a delete ruling out points that fall outside 𝐼𝑖 . Therefore, we transform 𝐼𝑖
into two virtual deletes {𝐷∞

𝑖 (1) , 𝐷
∞
𝑖 (2) } with the following delete time ranges, respectively,

(−∞, 𝑡𝑞𝑠 +
𝑡𝑞𝑒 − 𝑡𝑞𝑠
𝑤

∗ (𝑖 − 1)), [𝑡𝑞𝑠 +
𝑡𝑞𝑒 − 𝑡𝑞𝑠
𝑤

∗ 𝑖, +∞).

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 35. Publication date: February 2024.

35:8 Lei Rui et al.

These two delete time ranges form the complement of 𝐼𝑖 . Also note that the version number is

infinity, larger than that of any chunk or delete. Thus as shown in Figure 2, given the set of chunksC,
the set of deletes D and the M4 time span 𝐼𝑖 as input, M4-LSM deals with the problem of computing

{𝐺 (𝑀 (C,D′
𝑖)) | 𝐺 ∈ {FP, LP, BP, TP}},

where D′
𝑖 = {𝐷∞

𝑖 (1) , 𝐷
∞
𝑖 (2) } ∪ D, having 𝑇𝑖 = 𝑀 (C,D′

𝑖). For simplicity, we omit 𝑖 in D′
𝑖 in the rest of

the paper when no ambiguity.

Algorithm 1:M4-LSM algorithm

Input: Time series T , query range [𝑡𝑞𝑠 , 𝑡𝑞𝑒), the number of time spans𝑤

Output: {𝐺 (𝑇𝑖) | 𝐺 ∈ {FP, LP, BP, TP}}, 𝑖 = 1, . . . ,𝑤

1 determine all time spans I𝑖 by [𝑡𝑞𝑠 , 𝑡𝑞𝑒) and𝑤
2 read the metadata of all chunks C of time series T in the time range [𝑡𝑞𝑠 , 𝑡𝑞𝑒)
3 read all deletes D of time series T in the time range [𝑡𝑞𝑠 , 𝑡𝑞𝑒)
4 for each time span I𝑖 do
5 union the virtual deletes of I𝑖 with D into D′

6 for 𝐺 ∈ {FP, LP, BP, TP} do
7 while 𝐺 (𝑇𝑖) is not computed do
8 generate the candidate point P𝐺 in C for 𝐺 (Section 4.1)

9 verify candidate P𝐺 (Sections 4.2 and 4.3) with (CT) checking if P𝐺 is overwritten

(Section 5.1)

10 if P𝐺 is not the latest (Propositions 1 and 2) then
11 if chunk lazy loading applies then
12 Update chunk metadata without loading chunk data (Sections 4.2 and 4.3)

13 else
14 if 𝐺 ∈ {FP, LP} then
15 Update chunk metadata for delete using (GT) in Section 5.1

16 else
17 Update chunk metadata for delete or update using (MV) in Section 5.2

18 else
19 set 𝐺 (𝑇𝑖) = P𝐺

20 return {𝐺 (𝑇𝑖) | 𝐺 ∈ {FP, LP, BP, TP}}, 𝑖 = 1, . . . ,𝑤

3.2 Solution Overview
Algorithm 1 shows an overview of M4-LSM. The key observation is that we do not need to load

and merge chunks if a point can simply be retrieved from the chunk metadata. For example, in

Figure 2(c), the representation result of TP(𝑇𝑖) is TP(𝐶1), because TP(𝐶1) has the maximal value and

TP(𝐶1) is the latest, i.e., neither deleted nor updated. Thereby, for each time span I𝑖 , it iteratively

generates the candidate point P𝐺 from chunk metadata (line 8) as in Section 4.1, and verifies whether

P𝐺 is the latest (line 9) as in Sections 4.2 and 4.3 for each representation function G. If the candidate

point is non-latest, i.e., being deleted or updated, we employ the chunk lazy loading strategy in

line 11 to update chunk metadata before entering the next round of candidate generation and

verification. That is, instead of eagerly loading the chunk to recalculate immediately the chunk

metadata under deletes or updates, the idea is to bound chunk metadata by the delete time range as

in Section 4.2, or verify first the candidates of other chunks as in Section 4.3.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 35. Publication date: February 2024.

Time Series Representation for Visualization in Apache IoTDB 35:9

C�

D

t

v

Ii

C!
C"

C#

C$

(a) Input

C�

C

D!

t

v

Ii

C"

C#

C$

(b) Candidate generation

C

C!

D"

t

v

Ii

C#

C$

C%

(CT)

(c) Candidate verification

C

C!

D"

t

v

Ii

C#

C$

C%
(GT)

(MV)

(d) Chunk lazy loading to update
chunk metadata

Fig. 6. Example of Algorithm 1 steps. (a) Input of each iteration includes chunk metadata, deletes and the
time span. (b) Candidates (red dots) are generated from the chunk metadata in Section 4.1. (c) Candidate
verification is performed to verify whether the candidate points are invalid (hollow dots) in Sections 4.2 and
4.3. Chunk access operation (CT) checks if a data point exists at a given timestamp in Section 5.1. (d) If the
candidate point is invalid, new candidates are generated. (GT) gets the closest data point after/before a given
timestamp in Section 5.1. (MV) gets the undeleted data point with the minimal/maximal value in Section 5.2.

Both candidate verification and generation may need to access specific data points in chunks, if

they cannot be pruned by metadata. Simply scanning chunks is obviously costly. Note that when a

chunk is loaded in memory, its points are sorted by timestamps. Hence, the data read operation (CT)

in line 9 checks if a data point exists at a given timestamp, while (GT) in line 15 gets the closest data

point after/before a given timestamp, in an array of sorted timestamps in Section 5.1. Moreover,

(MV) in line 17 gets the undeleted data point with the minimal/maximal value in Section 5.2.

Figure 6 is an example of the algorithm steps. It shows an overview of the inter-chunk prun-

ing process in Section 4. Moreover, we also illustrate the steps where the intra-chunk accessing

operations (CT), (GT) and (MV) in Section 5 are applied.

4 INTER-CHUNK PRUNING
In this section, we introduce how M4-LSM utilizes chunk metadata to avoid merging chunks

and prune chunks to load. To compute 𝐺 (𝑀 (C,D′)) for representation function 𝐺 , M4-LSM first

generates the candidate point from the precomputed chunk metadata (introduced in Section 2.2.1).

Next, it performs the candidate verification to check whether the candidate point is the latest or

not. If it is the latest, M4-LSM outputs it as the representation result; otherwise, M4-LSM applies a

lazy loading strategy to load chunks and update chunk metadata, preparing for the next iteration of

the candidate generation and verification. It is worth noting that updates of sensor reading values

rarely occur in IoT scenarios. That is, most data points should be the latest, and the iteration is

expected to terminate shortly. The candidate generation is described in Section 4.1. The candidate

verification for FP/LP and BP/TP representation functions are presented in Section 4.2 and Section

4.3 respectively, as they require different candidate verification rules and chunk loading strategies.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 35. Publication date: February 2024.

35:10 Lei Rui et al.

t

v

Ii

C

D!

C"

C#

(a) FP candidate verification

t

v

Ii

C

C!

C"
C#

C$

(b) TP candidate verification

Fig. 7. (a) FP(𝐶2) (red dot) is non-latest under delete 𝐷3. (b) TP(𝐶3) (red dot) is non-latest under updates
from 𝐶4 and 𝐶5.

4.1 Candidate Generation
M4-LSM first retrieves the candidate point P𝐺 for the representation function 𝐺 from the metadata

of all chunks in C. For each 𝐺 , let the points suggested by the metadata of all chunks in C be

P𝐺 = {𝐺 (𝐶𝜅) | 𝐶𝜅 ∈ C},𝐺 ∈ {FP, LP, BP, TP}.

Among them, we need to find those points satisfying the representation condition, i.e.,

P′𝐺 = {𝑃∗ ∈ P𝐺 | 𝑃∗ .𝑡 ≤ 𝑃 .𝑡,∀𝑃 ∈ P𝐺 },𝐺 = FP

P′𝐺 = {𝑃∗ ∈ P𝐺 | 𝑃∗ .𝑡 ≥ 𝑃 .𝑡,∀𝑃 ∈ P𝐺 },𝐺 = LP

P′𝐺 = {𝑃∗ ∈ P𝐺 | 𝑃∗ .𝑣 ≤ 𝑃 .𝑣,∀𝑃 ∈ P𝐺 },𝐺 = BP

P′𝐺 = {𝑃∗ ∈ P𝐺 | 𝑃∗ .𝑣 ≥ 𝑃 .𝑣,∀𝑃 ∈ P𝐺 },𝐺 = TP

Finally, the point with the largest version number in P′
𝐺
is the candidate point 𝑃𝐺 ,

P𝐺 = argmax

P∈P′
𝐺

P .𝜅,

where P .𝜅 is the version number of chunk C
𝜅
that P belongs to. To sum up, the candidate point is

the one with the largest version number from the metadata satisfying the representation condition.

4.2 FP/LP Candidate Verification
We now verify whether the candidate point 𝑃𝐺 is valid as the result of𝐺 (𝑀 (C,D′)) for𝐺 ∈ {FP, LP}.

Proposition 1 (Latest candidate point for FP/LP). For 𝐺 ∈ {FP, LP}, if P𝐺 .𝑡 is not covered by
any delete 𝐷𝜅

in D′
with a larger version number 𝜅 than P𝐺 .𝜅, i.e.,∧

𝐷𝜅 ∈D′∧𝜅>P𝐺 .𝜅

P𝐺 .𝑡 ⊭ 𝐷
𝜅 ,

then the candidate point P𝐺 is the latest, and the result of 𝐺 (𝑀 (C,D′)).

Lazy Load. When P𝐺 is verified to be non-latest, i.e., overlapped in time by some later appended

deletes, M4-LSM does not eagerly load chunk 𝐶𝜅
to which P𝐺 belongs and recalculate its metadata

under deletes. Instead, it updates FP(𝐶𝜅).𝑡 = 𝑡𝑑𝑒 or LP(𝐶𝜅).𝑡 = 𝑡𝑑𝑠 by the delete time range [𝑡𝑑𝑠 , 𝑡𝑑𝑒].
The updated time interval of 𝐶𝜅

, [FP(𝐶𝜅).𝑡, LP(𝐶𝜅).𝑡], might not be tight but can be used to prune

𝐶𝜅
from being loaded. For example, if any other chunk has its first point earlier than FP(𝐶𝜅).𝑡 (or

at FP(𝐶𝜅).𝑡 with a larger version number than 𝜅), then𝐶𝜅
does not need to be loaded thus far. If no

such chunks exist, the load of 𝐶𝜅
happens in the next iteration of candidate generation. The chunk

data are read by operation (GT) and accelerated by the time indexing in Section 5.1.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 35. Publication date: February 2024.

Time Series Representation for Visualization in Apache IoTDB 35:11

Example 3. Take Figure 7(a) as an example, where𝐺 = 𝐹𝑃 ,C = {𝐶1,𝐶2,𝐶4} andD′ = {𝐷∞
𝑖 (1) , 𝐷

∞
𝑖 (2) }∪

{𝐷3}. Firstly, M4-LSM retrieves the candidate point P𝐺 = 𝐹𝑃 (𝐶2) (denoted by the red dot) from

P′
𝐺
= {𝐹𝑃 (𝐶1), 𝐹𝑃 (𝐶2)}. Next, M4-LSM verifies P𝐺 as non-latest because 𝑃𝐺 .𝑡 is covered by 𝐷

3
. With

the lazy loading strategy, M4-LSM updates the time interval of 𝐶2
to be [𝐷3 .𝑡𝑑𝑒 , 𝐿𝑃 (𝐶2).𝑡] without

eagerly loading the chunk data. Likewise, the time interval of𝐶1
is updated as [𝐷3 .𝑡𝑑𝑒 , 𝐿𝑃 (𝐶1).𝑡]. The

next iteration of candidate generation and verification starts by finding 𝐹𝑃 (𝐶4) as the new candidate

point and ends by outputting the verified latest 𝐹𝑃 (𝐶4) as the representation result, without loading

𝐶1
and 𝐶2

.

4.3 BP/TP Candidate Verification
Next, we verify whether the candidate point 𝑃𝐺 is valid as the result of𝐺 (𝑀 (C,D′)) for𝐺 ∈ {BP, TP}.
Note that FP/LP can be verified by only checking the deletes in Proposition 1. The reason is that

for FP/LP, all candidates in P′
𝐺
are at the same time, and thus the candidate point 𝑃𝐺 with the

largest version number from P′
𝐺
will never be updated. However, this is not the case for BP/TP

candidate verification. In addition to deletes, we need to further consider whether BP/TP candidates

are updated by other chunks.

Proposition 2 (Latest candidate point for BP/TP). For𝐺 ∈ {BP, TP}, if P𝐺 .𝑡 is not covered
by any chunk in C with a larger version number than P𝐺 .𝜅 and P𝐺 .𝑡 is not covered by any delete in D

′

with a larger version number than P𝐺 .𝜅, i.e.,

(
∧

𝐶𝜅 ∈C∧𝜅>P𝐺 .𝜅

P𝐺 .𝑡 ⊭ 𝐶
𝜅) ∧ (

∧
𝐷𝜅 ∈D′∧𝜅>P𝐺 .𝜅

P𝐺 .𝑡 ⊭ 𝐷
𝜅),

then the candidate point P𝐺 is the latest, and the result of 𝐺 (𝑀 (C,D′)).
To verify whether the candidate P𝐺 is the latest, M4-LSM first checks whether the time of

P𝐺 overlaps with the later appended chunks or deletes (i.e., chunks and deletes with larger ver-

sion numbers than P𝐺 .𝜅). Referring to Proposition 2, there are three cases to consider. (1) If P𝐺

is not in the time interval of any later appended chunks or deletes, i.e., (∧𝐶𝜅 ∈C∧𝜅>P𝐺 .𝜅 P𝐺 .𝑡 ∉

[𝐹𝑃 (𝐶𝜅).𝑡, 𝐿𝑃 (𝐶𝜅).𝑡]) ∧ (∧𝐷𝜅 ∈D′∧𝜅>P𝐺 .𝜅 P𝐺 .𝑡 ⊭ 𝐷
𝜅), then P𝐺 is the latest and M4-LSM finishes

the computation by returning P𝐺 . (2) If P𝐺 is indeed in the time range of some later appended

deletes, similar to the FP/LP verification in Section 4.2, P𝐺 is non-latest as it is deleted. (3) If P𝐺

is in the time interval of some later appended chunks, then P𝐺 might be the latest and needs

further verification. The reason is that within the chunk time interval does not necessarily mean

the point is overwritten (i.e., updated). That is, P𝐺 .𝑡 ∈ [𝐹𝑃 (𝐶𝜅).𝑡, 𝐿𝑃 (𝐶𝜅).𝑡] does not necessarily
mean P𝐺 .𝑡 ⊨ 𝐶

𝜅
. The chunk data need to be read for verification by operation (CT) and accelerated

by the time indexing technique in Section 5.1.

Lazy Load. If P𝐺 is found non-latest owing to some later appended deletes or updates, the

corresponding chunk does not need to be loaded eagerly, as we can further verify the remaining

points in P′
𝐺
\ {P𝐺 } for BP/TP. M4-LSM iterates this verification process until a candidate point P𝐺

is verified to be the latest, or all points in P′
𝐺
are non-latest. In the latter case, M4-LSM loads all

the corresponding chunks to which the points in P′
𝐺
belong and recalculates their metadata under

deletes or updates. Afterwards, M4-LSM starts the next new iteration of generating and verifying

candidate points, as described in Sections 4.1 and 4.3. Again, the chunk data are read by operation

(MV) and accelerated by the point pruning technique in Section 5.2.

Example 4. Take Figure 7(b) as an example, where 𝐺 = TP , C = {𝐶1,𝐶2,𝐶3,𝐶4,𝐶5} and D′ =
{𝐷∞

𝑖 (1) , 𝐷
∞
𝑖 (2) }. M4-LSM retrieves the candidate point P𝐺 = TP (𝐶3) (denoted by the red dot) from

P′
𝐺
= {TP (𝐶1), TP (𝐶3)}. M4-LSM then reads the later appended overlapping chunks (i.e., 𝐶4

and 𝐶5
)

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 35. Publication date: February 2024.

35:12 Lei Rui et al.

to check whether they contain any point that overwrites P𝐺 . Assume that the read of 𝐶4
and 𝐶5

does

find a point that overwrites the current candidate point P𝐺 = TP (𝐶3). With the lazy loading strategy,

M4-LSM considers the remaining points in P′
𝐺
= {TP (𝐶1), TP (𝐶3)} except the non-latest TP (𝐶3), and

assigns TP (𝐶1) as the new candidate point for verification. Because TP (𝐶1) is the latest, M4-LSM

outputs TP (𝐶1) as the result of TP (𝑀 (C,D′)).

5 INTRA-CHUNK ACCESSING
In this section, we introduce the intra-chunk indexing and pruning techniques to speed up the

chunk data accessing operations used in M4-LSM. It accelerate the three types of chunk data read

operations (CT), (GT) and (MV) for verifying and generating candidates in Section 4. Machine

learning techniques [45] are incorporated into M4-LSM. For example, we learn the step regression

for time indexing in Section 5.1. It predicts the position of the target timestamp in the sorted array.

Moreover, we use the error-bounded value regression for point pruning in Section 5.2. It bounds

prediction error and thus can be used to prune points that cannot be top/bottom ones.

5.1 Time Index With Step Regression
In the following, we observe the regular intervals of timestamps and introduce a step regression

for efficient indexing on timestamps and accelerating data read operations (CT) and (GT).

Definition 7 (Time index). Given a chunk 𝐶𝜅 = {𝑃1, . . . , 𝑃 |𝐶𝜅 | } in the increasing order of time,

and a lookup timestamp 𝑡∗,

(CT) to check if a data point exists at 𝑡∗, the time index returns TRUE if 𝑡∗ ∈ {𝑃1 .𝑡, . . . , 𝑃 |𝐶𝜅 | .𝑡}, FALSE
otherwise;

(GT-1) to get the position of the closest data point after 𝑡∗, the time index returns argmin𝑗 {𝑃 𝑗 .𝑡 |
𝑃 𝑗 .𝑡 > 𝑡

∗, 𝑃 𝑗 ∈ 𝐶𝜅 };
(GT-2) to get the position of the closest data point before 𝑡∗, the time index returns argmax𝑗 {𝑃 𝑗 .𝑡 |
𝑃 𝑗 .𝑡 < 𝑡

∗, 𝑃 𝑗 ∈ 𝐶𝜅 }.

timestamp

1

200

400

600

800

1000

p
o
s
it

io
n

t1t2 t3 t4 t5t6 t7 t8

(a) BallSpeed dataset

timestamp
t1 t2

(b) MF03 dataset

timestamp
t1 t2 t3 t4

(c) Train dataset

timestamp
t1 t2 t3 t4

(d) Steel dataset

Fig. 8. Example of timestamp-position steps

Different from the existing learned indexes on an arbitrary cumulative distribution function

(CDF) [29, 30, 35], we notice the distinct step features on timestamp-position relationships. Figure

8 illustrates the timestamp-position maps extracted from four real-world datasets. The steep part of

the step, e.g., [𝑡1, 𝑡2) in Figure 8(c), stems from the fact that sensor devices usually collect data with

a preset frequency, while the flat part, e.g., [𝑡2, 𝑡3) in Figure 8(c), reflects occasional gaps due to

issues such as transmission interruption [19]. Therefore, we introduce the step regression function

to model such timestamp-position steps. Intuitively, a step regression function has two alternating

segments, tilt and level, corresponding to a fixed positive slope and a slope of zero, respectively.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 35. Publication date: February 2024.

Time Series Representation for Visualization in Apache IoTDB 35:13

5.1.1 Step Regression. Given a set of split timestamps S = {𝑡1, . . . , 𝑡𝑚},𝑚 ≥ 2 in the increasing

order of time, the range [𝑡1, 𝑡𝑚] is split into𝑚 − 1 segments, i.e., [𝑡𝑖 , 𝑡𝑖+1) for 1 ≤ 𝑖 ≤ 𝑚 − 2, and

[𝑡𝑚−1, 𝑡𝑚]. For a chunk 𝐶𝜅
, we denote 𝑡1 = 𝐹𝑃 (𝐶𝜅).𝑡 and 𝑡𝑚 = 𝐿𝑃 (𝐶𝜅).𝑡 .

Definition 8 (Step regression). The step regression function 𝑓 : [𝐹𝑃 (𝐶𝜅).𝑡, 𝐿𝑃 (𝐶𝜅).𝑡] →
[1, |𝐶𝜅 |] models the map from the timestamp of a data point to its relative position in the chunk,

𝑓 (𝑡) = 1𝐴𝑜
(𝑡) × K × 𝑡 +

𝑚−1∑︁
𝑖=1

1𝐴𝑖
(𝑡) × 𝑏𝑖 , 𝑡 ∈ [𝑡1, 𝑡𝑚],

where K is the fixed positive slope and the intercepts are determined by S = {𝑡1, . . . , 𝑡𝑚},

𝑏1 = 1 − K × 𝑡1, 𝑏𝑚−1 =

{
|𝐶𝜅 | − K × 𝑡𝑚, if𝑚 − 1 is odd,

|𝐶𝜅 |, if𝑚 − 1 is even,

𝑏𝑖 =

{
𝑏𝑖−2 − 𝐾 × (𝑡𝑖 − 𝑡𝑖−1), if 𝑖 is odd, 2 ≤ 𝑖 ≤ 𝑚 − 2,

K × 𝑡𝑖 + 𝑏𝑖−1, if 𝑖 is even, 2 ≤ 𝑖 ≤ 𝑚 − 2,

𝐴𝑖 =

{
[𝑡𝑖 , 𝑡𝑖+1), if 1 ≤ 𝑖 ≤ 𝑚 − 2,

[𝑡𝑚−1, 𝑡𝑚], if 𝑖 =𝑚 − 1,

𝐴𝑜 =
⋃

𝑛∈N+∧2𝑛−1<𝑚
𝐴2𝑛−1,

and 1𝐴 (𝑡) is an indicator function with intervals 𝐴 such that

1𝐴 (𝑡) =
{
1, if 𝑡 ∈ 𝐴,
0, if 𝑡 ∉ 𝐴.

The function is a variation of the canonical form 𝑘 × 𝑡 + 𝑏. Note that the first segment is tilt

by default. The first and last points in the chunk always have the minimal and maximal output

positions, respectively.

Proposition 3 (FP/LP position). The step regression function of a chunk𝐶𝜅
always has 𝑓 (𝐹𝑃 (𝐶𝜅).𝑡) =

1 and 𝑓 (𝐿𝑃 (𝐶𝜅) .𝑡) = |𝐶𝜅 |.

Example 5. To model the data in Figure 8(c), the step regression function has slope K = 1/50 and
split timestamps S = {𝑡1, 𝑡2, 𝑡3, 𝑡4} = {1591728185786, 1591728196886, 1591728205098, 1591728243948 },

𝑓 (𝑡) =

1/50 × 𝑡 − 31834563714.72, if 𝑡 ∈ [𝑡1, 𝑡2),
223, if 𝑡 ∈ [𝑡2, 𝑡3),
1/50 × 𝑡 − 31834563878.96, if 𝑡 ∈ [𝑡3, 𝑡4] .

The first point has 𝑓 (1591728185786) = 1 and the last point has 𝑓 (1591728243948) = 1000.

Given K and S, the step regression function is fully determined. In the following, we provide a

heuristic method to learn the parameters K and S of the step regression function.

5.1.2 Learning Slope K . Referring to the regular data collection frequency, the slope K is estimated

by the median of slopes given by each pair of consecutive points, i.e.,

K = 1/median({𝑃 𝑗+1 .𝑡 − 𝑃 𝑗 .𝑡 | 𝑃 𝑗 , 𝑃 𝑗+1 ∈ 𝐶𝜅 }) .

Example 6. Figure 9 plots the deltas of timestamps extracted from the data in Figure 8(c). The

timestamp delta for the 𝑗-th data point 𝑃 𝑗 is 𝑃 𝑗+1 .𝑡 − 𝑃 𝑗 .𝑡 , where 1 ≤ 𝑗 ≤ 999. The median of the

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 35. Publication date: February 2024.

35:14 Lei Rui et al.

1 200 400 600 800 999

position

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

d
e
lt

a
 o

f
ti

m
e
s
ta

m
p
s
 (

s
)

P223

P224

(a) Deltas of timestamps given by each pair
of consecutive points

MEAN

3-sigma(MEAN,SD)

0
.0

0
.4

0
.8

1
.2

1
.6

2
.0

2
.4

2
.8

3
.2

delta of timestamps (s)

101

102

103

c
o
u
n
t

997

2

P223

P224

(b) Distribution of the deltas of timestamps

MEDIAN

MEAN

3-sigma(MEAN,SD)

Fig. 9. An example for learning parameters

timestamp delta is 50ms, denoted by the dotted line in Figure 9(b), i.e., mostly collecting data in every

50ms. The slope is K = 1/50.

5.1.3 Learning Split Timestamps S. The idea is to first select changing points in the chunk based

on statistics, then calculate the intercept for each segment of the step regression function, and

finally derive the split timestamps by intersecting two adjacent segments.

Select Changing Points P𝑠 . Changing points are selected by applying the 3-sigma rule on the

deltas of timestamps. As illustrated in Figure 9(a), whenever the delta changes from below the

threshold to above the threshold or vice versa, the pivot data point is selected as a changing point.

Formally, we have

P𝑠 = {𝑃 𝑗 |𝑃 𝑗 .𝑡 − 𝑃 𝑗−1.𝑡 ≤ 𝜇 + 3𝜎, 𝑃 𝑗+1.𝑡 − 𝑃 𝑗 .𝑡 > 𝜇 + 3𝜎, 𝑃 𝑗−1, 𝑃 𝑗 , 𝑃 𝑗+1 ∈ 𝐶𝜅 }∪
{𝑃 𝑗 |𝑃 𝑗 .𝑡 − 𝑃 𝑗−1.𝑡 > 𝜇 + 3𝜎, 𝑃 𝑗+1 .𝑡 − 𝑃 𝑗 .𝑡 ≤ 𝜇 + 3𝜎, 𝑃 𝑗−1, 𝑃 𝑗 , 𝑃 𝑗+1 ∈ 𝐶𝜅 },

where

𝜇 = mean({𝑃 𝑗+1 .𝑡 − 𝑃 𝑗 .𝑡 | 𝑃 𝑗 , 𝑃 𝑗+1 ∈ 𝐶𝜅 }), 𝜎 = std({𝑃 𝑗+1.𝑡 − 𝑃 𝑗 .𝑡 | 𝑃 𝑗 , 𝑃 𝑗+1 ∈ 𝐶𝜅 }) .

Example 7 (Example 6 continued). Only two data points, 𝑃223 and 𝑃224, have their deltas of

timestamps larger than the threshold 𝜇 + 3𝜎 . As a result, the set of changing points is P𝑠 = {𝑃223, 𝑃225}.

Calculate Intercepts 𝑏𝑖 . Next, we calculate the intercept for each segment. With |P𝑠 | changing
points, we know that the step regression function has |P𝑠 | +1 segments. In other words,𝑚 = |P𝑠 | +2.
According to Proposition 3, the first and the last segments of the step regression function should

have 𝑓 (𝐹𝑃 (𝐶𝜅) .𝑡) = 1 and 𝑓 (𝐿𝑃 (𝐶𝜅).𝑡) = |𝐶𝜅 |, respectively. Therefore, 𝑏1 and 𝑏𝑚−1 are calculated
as defined in Section 5.1.1, i.e.,

𝑏1 = 1 − K × 𝐹𝑃 (𝐶𝜅).𝑡, 𝑏𝑚−1 =

{
|𝐶𝜅 | − K × 𝐿𝑃 (𝐶𝜅).𝑡, if𝑚 − 1 is odd,

|𝐶𝜅 |, if𝑚 − 1 is even.

For the other𝑚 − 3 segments, let the 𝑖-th segment have 𝑓 (𝑃 𝑗 .𝑡) = 𝑗 , where 𝑃 𝑗 is the (𝑖 − 1)-th point

in P𝑠 , 2 ≤ 𝑖 ≤ 𝑚 − 2. Then the intercept 𝑏𝑖 for the 𝑖-th segment is determined by

𝑏𝑖 =

{
𝑗 − K × 𝑃 𝑗 .𝑡, if 𝑖 is odd,

𝑗, if 𝑖 is even.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 35. Publication date: February 2024.

Time Series Representation for Visualization in Apache IoTDB 35:15

Derive Split Timestamps S. Finally, the split timestamps S = {𝑡1, . . . , 𝑡𝑚} derived by intersecting

two adjacent segments are

𝑡𝑖 =

𝐹𝑃 (𝐶𝜅) .𝑡, if 𝑖 = 1,

(𝑏𝑖−1 − 𝑏𝑖)/K, if 𝑖 is odd, 2 ≤ 𝑖 ≤ 𝑚 − 1,

(𝑏𝑖 − 𝑏𝑖−1)/K, if 𝑖 is even, 2 ≤ 𝑖 ≤ 𝑚 − 1,

𝐿𝑃 (𝐶𝜅).𝑡, if 𝑖 =𝑚.

5.2 Point Pruning with Value Regression
In the following, we introduce point pruning for obtaining the bottom and top points by the data

read operation (MV). Referring to Proposition 2, for𝐺 ∈ {BP, TP}, there are two cases for a candidate
point P𝐺 to be verified as non-latest. That is, P𝐺 may be deleted by some later appended deletes, or

be overwritten by some later appended updates. We unify the two cases into deletes on P𝐺 and

formalize the data read operation (MV) as follows.

Definition 9 (BP/TP recalculation). For 𝐺 ∈ {BP, TP}, given the set of chunks C, the set of
deletesD′

, and the chunk𝐶𝜅
where the non-latest candidate point 𝑃𝐺 belongs as input, the recalculation

of the chunk metadata is to compute 𝐺 (𝑀 ({𝐶𝜅 },D′′)), where
D′′ = D′ ∪ {𝐷∞

P𝐺
| 𝐶𝜅 ∈ C, 𝜅 > P𝐺 .𝜅, P𝐺 .𝑡 ⊨ 𝐶

𝜅 }
and 𝐷∞

P𝐺
denotes the delete with delete time range [P𝐺 .𝑡, P𝐺 .𝑡] and version number of infinity.

A straightforward idea is to iterate over all points in the chunk and apply deletes along the

way to find the point with the min/max values. We propose to use value regression to prune the

impossible positions for minimum/maximum. The regression model should have deterministic

error bound guarantees [31, 48] for pruning.

Definition 10 (Value regression). The value regression function 𝑔 : [1, |𝐶𝜅 |] → R models the

map from the relative position of a data point in the chunk to its value, having

𝑔(𝑗) − 𝜖 ≤ 𝑃 𝑗 .𝑣 ≤ 𝑔(𝑗) + 𝜖, 𝑗 = 1, ..., |𝐶𝜅 |,
where 𝜖 is the deterministic error bound.

For simplicity, we denote the lower and upper bounds for the value of the 𝑗-th data point as

𝐿𝐵(𝑗) = 𝑔(𝑗) − 𝜖 and𝑈𝐵(𝑗) = 𝑔(𝑗) + 𝜖 , respectively. Then, we have the following for pruning.

Proposition 4 (Point pruning). Given a data point 𝑃𝑐 ∈ 𝐶𝜅
that satisfies 𝑃𝑐 .𝑡 ⊭ 𝐷

𝜅 ,∀𝐷𝜅 ∈ D′′
,

for any data point whose lower bound is larger than 𝑈𝐵(𝑐), its value must be greater than that of

𝐵𝑃 (𝑀 ({𝐶𝜅 },D′′)) and thus can be pruned when recalculating 𝐵𝑃 . Likewise, for any data point whose

upper bound is smaller than 𝐿𝐵(𝑐), its value must be smaller than that of𝑇𝑃 (𝑀 ({𝐶𝜅 },D′′)) and thus
can be pruned when recalculating 𝑇𝑃 .

Example 8. Take Figure 10 as an example. The value regression function 𝑔(𝑗) is composed of 18

linear segments and 19 segment points. For 𝐺 = TP, suppose that the candidate point 𝑃𝐺 at the 𝑘-th

position of the chunk is overwritten by some later appended chunks. Therefore, we have 𝑃𝑘 .𝑡 ⊨ 𝐷
∞
P𝐺
. To

recalculate TP, we first find the segment point (𝑐, 𝑔(𝑐)), which is the point with the maximal value

among all non-deleted segment points. Then, according to Proposition 4, we take 𝐿𝐵(𝑐), the lower bound
of 𝑃𝑐.𝑣 , as the pruning threshold. Next, the pruning intervals of positions that satisfy𝑈𝐵(𝑗) < 𝐿𝐵(𝑐)
can be calculated analytically by comparing the linear segments with the threshold. The three regions

indicating pruning intervals are colored in green in the figure. Finally, we only need to iterate over the

non-pruned positions for recalculating TP as defined in Definition 9.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 35. Publication date: February 2024.

35:16 Lei Rui et al.

j

v

k

LB(c)

c

ε
ε g(j)

UB(j)

LB(j)

Fig. 10. Example of pruning points in green by the error bounds of value regression

Data

SeriesReader

MergeReader

SeriesRawDataBatchReader

UDFM4

M4M4-LSM

MFGroupByExecutor

DataReaderMetadataReader

ChunkData

ChunkData

ChunkMetadata

ChunkMetadata

...

TsFiles

TsFile.mods

Delete

Delete
...

Fig. 11. System deployment in Apache IoTDB

6 SYSTEM DEPLOYMENT
This section describes the system deployment of M4-LSM in Apache IoTDB [6]. The document of

the M4 function is available on the product website [7]. The source code has been committed to the

GitHub repository of Apache IoTDB by system developer [3]. An overview of the deployment is

shown in Figure 11. Let us first introduce some interfaces of the system in Section 6.1, upon which

deployment is conducted in Section 6.2.

6.1 System Overview
As illustrated in Figure 11, the storage of data in Apache IoTDB consists of TsFiles, carrying

ChunkData and ChunkMetadata, as well as TsFile.mods recording the delete operations. Note

that these delete operations will not be applied to modify the read-only TsFiles until the files are

compacted for a new one, which is a typical strategy in LSM-Tree store.

The system’s built-in SeriesReader contains MetadataReader, DataReader and MergeReader.
MetadataReader and DataReader are responsible for loading chunk metadata, chunk data, and

delete data from disks, while MergeReader merges the chunks with possible overlapping time

intervals and data overwrites referring to the version numbers. Of course, the delete operations are

also applied if any, to form a whole time series.

6.2 Deployment Details
We first implement the original M4 method [25] in Apache IoTDB for comparison. It reads the

assembled time series directly from the system built-in SeriesRawDataBatchReader, and performs

the representation computation on the time series. Note that ChunkMetadata is not accessed in the

original M4 design.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 35. Publication date: February 2024.

Time Series Representation for Visualization in Apache IoTDB 35:17

Source Layer

Gateways Trains

Storage Layer

Apache Kafka

Application Layer

Python Grafana

(a) System deployment

0.2 0.4 0.6 0.8 1.0
number of raw data points×108

101

102

ti
m

e
 (

s
)

Grafana

Python

Grafana with M4-LSM

Python with M4-LSM

(b) Visualization performance

Fig. 12. Case study of time series visualization

00:0
0

04:0
0

08:0
0

12:0
0

16:0
0

2000

2020

2040

2060

2080

2100

2120

v
o
lt

a
g
e
 (

V
)

(a) M4 visualizes 8 million points (1 day time series)
in 5s

02/0
1

02/0
4

02/0
7

02/1
0

02/1
3

0

500

1000

1500

2000
v
o
lt

a
g
e
 (

V
)

(b) M4-LSM visualizes 130 million points (15 days
time series) in 4s

Fig. 13. Train voltage monitoring fails to discover the ad-hoc transmission error by visualizing only one day
data with M4 in (a), but successfully identifies it in 02/13 by M4-LSM returning 15 days data with a similar
query time in (b)

We implement a new MFGroupByExecutor for M4-LSM. Rather than reading the system assem-

bled time series, the M4-LSM implementation directly uses MetadataReader and DataReader. In
this way, ChunkMetadata helps in pruning ChunkData, which saves both IO and computation costs.

Note that MFGroupByExecutor does not use MergeReader, i.e., merge free.

7 APPLICATION STUDY
In the intelligent operation and maintenance system of urban rail vehicles, Apache IoTDB manages

the sensor data collected in trains. Each train has tens of thousands of sensors installed, measuring

current, voltage, pressure, speed, acceleration, temperature, and so on. Twenty trains on an urban

rail line generate about 48TB time series data each year. Figure 12(a) presents an overview of system

deployment in the company. Note that directly visualizing such a huge volume of data is impractical.

As shown in Figure 12(b), it fails to visualize a time series with more than 20 million points in

Grafana (with out-of-memory error) for fault diagnosis by domain experts. Python takes more than

265 seconds for 100 million points, which is also unacceptable in exploratory data analysis.

Unfortunately, existing time series visualization techniques such as M4 [25] cannot meet the

efficiency requirement either. In the following, we present four tasks in the application to illustrate

the challenges and how our proposal M4-LSM tackles the problem.

Task 1: Train Voltage Monitoring. Regular visual inspection is conducted on voltage to examine

occasional behaviors. M4 can visualize the data in about one day as shown in Figure 13(a), with an

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 35. Publication date: February 2024.

35:18 Lei Rui et al.

06:0
0

08:0
0

10:0
0

12:0
0

14:0
0

16:0
0

18:0
0

0

1

2

3

4

5

6

fl
u
id

 p
re

s
s
u
re

 (
M

P
a
)

(a) M4 visualizes 8 million points (12 hours time
series) in 5s

09/2
2

09/2
3

09/2
4

09/2
5

09/2
6

09/2
7

09/2
8

09/2
9

0

1

2

3

4

5

6

fl
u
id

 p
re

s
s
u
re

 (
M

P
a
)

(b) M4-LSM visualizes 120 million points (7 days
time series) in 4s

Fig. 14. Cutting fluid pressure diagnosis of a true anomaly at time 11:00 fails in (a) by comparing limited
data, but succeeds with M4-LSM in (b) by contrasting with other spikes

100 120 140 160 180 200

time (s)

−1.0

−0.5

0.0

0.5

1.0

n
o
rm

a
li
z
e
d
 a

c
c
e
le

ra
ti

o
n

(a) M4 visualizes 1.2 million points (2 mins time
series) in 5s

20 40 60 80 100

time (min)

−1.0

−0.5

0.0

0.5

1.0
n
o
rm

a
li
z
e
d
 a

c
c
e
le

ra
ti

o
n

(b) M4-LSM visualizes 60 million points (1.6 hours
time series) in 4s

Fig. 15. Track irregularity diagnosis fails to identify the false anomaly at time 172s by comparing limited
data in (a), but succeeds in (b) by visualizing similar large pulses in the past with M4-LSM

acceptable processing time of 5s. In contrast, our more efficient M4-LSM visualizes more data in 15

days with the same processing time in Figure 13(b). As shown, there is an irregular shift on voltage

found in 02/13 (caused by ad-hoc erroneous transmission from another train). It is missed by M4

which visualizes only the data in the past day, given the requirement of short processing time.

Task 2: Cutting Fluid Pressure Diagnosis. High-pressure jet cutting fluid is used in railway equip-

ment and spare parts processing factories. When some anomaly occurs, the domain experts need to

visualize and inspect the historical pressure data, to diagnose whether it is caused by normal tool

changing or cutting fluid leaking. Again, the diagnosis query needs to respond in about 5 seconds,

to ensure the work efficiency of domain experts. With such a time limit, as shown in Figure 14(b),

our proposal M4-LSM can present the historical data in the past 7 days, and successfully illustrate

that the spike in 09/28 is very different from those in 09/22 and 09/23. Domain experts highly

suspect that it is caused by cutting fluid leaking rather than normal tool changing. Unfortunately,

given the 5-second query response time, the original M4 can only visualize the historical data in 12

hours as illustrated in Figure 14(a). With such limited information, the domain experts are not able

to diagnose whether it is a true anomaly occurring at noon on 09/28.

Task 3: Track Irregularity Diagnosis. Vehicle vertical acceleration is monitored for track irregular-

ity inspection. Figure 15(a) visualizes the acceleration time series for 2 minutes, returned by M4

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 35. Publication date: February 2024.

Time Series Representation for Visualization in Apache IoTDB 35:19

2021-0
8

2021-1
0

2021-1
2

2022-0
2

2022-0
4

2022-0
6

2022-0
8

0.0

0.2

0.4

0.6

0.8

1.0

n
o
r
m

a
li
z
e
d
 c

r
a
c
k
 w

id
t
h

(a) M4 visualizes 315 million points (10 time series)
in 1min

2021-0
8

2021-1
0

2021-1
2

2022-0
2

2022-0
4

2022-0
6

2022-0
8

0.0

0.2

0.4

0.6

0.8

1.0

n
o
r
m

a
li
z
e
d
 c

r
a
c
k
 w

id
t
h

(b) M4-LSM visualizes 1.6 billion points (50 time
series) in 1min

Fig. 16. Track crack width analysis fails to find a clear pattern by visualizing only 10 time series with M4 in a
minute, but succeeds by M4-LSM showing 50 time series at a time

Table 2. Dataset summary

Dataset Source Entire time range # Points

BallSpeed M4 paper [25] 71 minutes 7,193,200

MF03 M4 paper [25] 28 hours 10,000,000

Train IoTDB customer [10] 5 months 127,802,876

Steel IoTDB customer [10] 7 months 314,572,100

in 5 seconds. While regular pulses are observed, there is a large pulse at around 172s. With such

limited data, domain experts cannot diagnose whether it is normal. Given a similar query time

limit, our more efficient M4-LSM visualizes the data for 1.6 hours, and finds that the large pulse

occurs regularly in about every 2 minutes. The regular pulses in Figure 15(a) and (b) are owing to

different types of rail joints, in about every 100 and 1k meters, respectively, in the railway.

Task 4: Track Crack Width Analysis. In railway track health monitoring, track crack width is

analyzed. Domain experts need to visualize together multiple time series of monitored cracks, in

order to find patterns. Figure 16(a) plots the DenseLines [36, 49] of 10 time series returned by M4 at

a time, within the required response time of 1 minute. Unfortunately, no clear pattern is observed

with such a limited number of crack time series. In contrast, Figure 16(b) visualizes 50 time series by

our M4-LSM, with a similar response time. As shown, most cracks (in dark green) become larger in

width from 2021-12 (winter). However, the crack widths do not drop significantly even in 2022-04,

which needs further investigation of other factors like local temperature, track material types, etc.

8 EXPERIMENTS
In the experiments, we compare M4-LSM with the original M4 algorithm [25] implemented in

Apache IoTDB. The experiments are conducted on a machine running Ubuntu 20.04.3 with 32GB

DDR Memory, Intel Core i7 CPU @ 2.50GHz.

Table 2 gives a summary of the four real-world datasets used in experiments. BallSpeed dataset

is a 71-minute soccer monitoring data collected by a speed sensor in a soccer ball at the frequency

of 2000Hz [8]. MF03 dataset is a 28-hour manufacturing equipment monitoring data collected by

sensor MF03 (i.e., Electrical Power Main Phase 3) at around 100Hz frequency [2]. Train dataset is

a 5-month train monitoring data collected by a vibration sensor at around 20Hz frequency. Steel

dataset is 7-month steel production monitoring data collected by a vibration sensor at around 20Hz

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 35. Publication date: February 2024.

35:20 Lei Rui et al.

100 101 102 103 104

w

0

1

2

3

4

ti
m

e
 (

s
)

(a) BallSpeed dataset

100 101 102 103 104

w

1

2

3

4

5

6

ti
m

e
 (

s
)

(b) MF03 dataset

100 101 102 103 104

w

0

10

20

30

40

50

ti
m

e
 (

s
)

(c) Train dataset

100 101 102 103 104

w

0

20

40

60

80

ti
m

e
 (

s
)

(d) Steel dataset

M4 M4-LSM

Fig. 17. Varying the number of time spans𝑤

102 103

query time range (s)

0

1

2

3

4

ti
m

e
 (

s
)

(a) BallSpeed dataset

103 104 105

query time range (s)

1

2

3

4

5

ti
m

e
 (

s
)

(b) MF03 dataset

106 107

query time range (s)

10

20

30

40

50
ti

m
e
 (

s
)

(c) Train dataset

106 107

query time range (s)

0

20

40

60

80

ti
m

e
 (

s
)

(d) Steel dataset

M4 M4-LSM

Fig. 18. Varying query time range 𝑡𝑞𝑒 − 𝑡𝑞𝑠

frequency. While BallSpeed and MF03 are used in the original M4 paper [25], the large scale Train

and Steel datasets are provided by real customers of Apache IoTDB and available in [10].

8.1 Experiments with Varying Parameters
8.1.1 Varying the Number of Time Spans 𝑤 . This experiment evaluates one of the M4 query

parameters, the number of spans𝑤 , corresponding to the number of pixel columns in a line chart. It

usually ranges from 10 to 10,000, e.g., a typical 4K monitor has at most 3,840 pixel columns. Figure

17 shows the representation query latency of M4 and M4-LSM under different𝑤 on four datasets.

The query time costs of M4 under different𝑤 are almost constant. It is because M4 loads all the

chunks anyway, irrelevant of𝑤 . The query latency of M4-LSM increases as𝑤 increases. The reason

is that as 𝑤 increases, the length of a single M4 time span

𝑡𝑞𝑒−𝑡𝑞𝑠
𝑤

decreases, given a fixed query

time range length 𝑡𝑞𝑒 − 𝑡𝑞𝑠 . Consequently, the number of chunks, which are split by the M4 time

spans and thus loaded from disk by M4-LSM, tends to increase. It takes about 4s for M4-LSM to

represent a time series of 127 million points in 1000 pixel columns.

8.1.2 Varying Query Time Range. We now consider another M4 query parameter, the query time

range length. While different datasets have various data collection frequencies and total time ranges

as shown in Table 2, a typical time series of 1 million points contains the data collected in two

weeks with a data collection frequency of every second, often competent in visual analysis. The

M4 representation query latencies of M4 and M4-LSM under different query time range lengths on

four datasets are shown in Figure 18.

With the increase of the query range length, the time costs of M4 and M4-LSM increase to

varying degrees. The increase of M4 is significant, because as more chunks are involved in the

longer query time range, more disk I/O and CPU costs are spent to load and merge these chunks.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 35. Publication date: February 2024.

Time Series Representation for Visualization in Apache IoTDB 35:21

20 40 60 80
overlap percentage

0.5

1.5

2.5

3.5

4.5

ti
m

e
 (

s
)

(a) BallSpeed dataset

20 40 60 80
overlap percentage

2

3

4

5

6

ti
m

e
 (

s
)

(b) MF03 dataset

20 40 60 80
overlap percentage

10

20

30

40

50

60

ti
m

e
 (

s
)

(c) Train dataset

20 40 60 80
overlap percentage

20

40

60

80

100

120

ti
m

e
 (

s
)

(d) Steel dataset

M4 M4-LSM

Fig. 19. Varying chunk overlap percentage

0 20 40 60 80
delete percentage

0.5

1.5

2.5

3.5

4.5

ti
m

e
 (

s
)

(a) BallSpeed dataset

0 20 40 60 80
delete percentage

2

3

4

5

6

ti
m

e
 (

s
)

(b) MF03 dataset

0 20 40 60 80
delete percentage

10

20

30

40

50
ti

m
e
 (

s
)

(c) Train dataset

0 20 40 60 80
delete percentage

20

40

60

80

ti
m

e
 (

s
)

(d) Steel dataset

M4 M4-LSM

Fig. 20. Varying percentage of chunks with deletes

The query latency of M4-LSM also increases but in a much slower way. The reason is that as the

query time range length increases, the proportion of chunks split by M4 time spans decreases.

While the chunks split by M4 time spans still need to be loaded, most other chunks can be pruned

by the candidate generation and verification framework.

8.1.3 Varying Chunk Overlap Percentage. In addition to M4 representation query parameters, how

the data are written (updated and deleted) will affect the LSM-Tree storage, and thus the query

performance. One of the key issues is chunks overlapping in time intervals, incurring costly chunk

loading and merging. In this experiment, we propose to write the points in different orders, leading

to various chunk overlap rates. The M4 representation query latencies of M4 and M4-LSM under

different percentages of overlapping chunks are illustrated in Figure 19.

The latency of M4 increases as the overlap percentage increases. This is because merging more

overlapping chunks needs more CPU cost, although the I/O cost does not change. The query latency

of M4-LSM is almost constant, owing to the merge free strategy. No chunks need loading as long

as the candidate point is not in the time interval of any later appended chunks or deletes. The CPU

cost of candidate verification for BP/TP is saved with the time index.

8.1.4 Varying Delete Percentage. How the data are deleted also affects the LSM-Tree storage and

thus theM4 representation query. In this experiment, we evaluate the frequency of delete operations.

Figure 20 shows the M4 representation query latencies of M4 and M4-LSM under different delete

percentages on four datasets.

The query latency of M4 is almost constant despite the increasing number of deletes, thanks to

the CPU-efficient delete sort operation [1] inherent in IoTDB. The overall time cost of M4-LSM is

small. This is because the number of deleted candidate points is limited, given that the delete time

range of each delete is small compared to the chunk time interval length.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 35. Publication date: February 2024.

35:22 Lei Rui et al.

0 20 40 60 80 100
update percentage

2

3

4

5

6

7

ti
m

e
 (

s
)

(a) BallSpeed dataset

0 20 40 60 80 100
update percentage

2
3
4
5
6
7
8
9

ti
m

e
 (

s
)

(b) MF03 dataset

0 20 40 60 80 100
update percentage

0

20

40

60

80

100

ti
m

e
 (

s
)

(c) Train dataset

0 20 40 60 80 100
update percentage

0
20
40
60
80

100
120
140

ti
m

e
 (

s
)

(d) Steel dataset

M4 M4-LSM

Fig. 21. Varying update percentage

105 106

query time range (s)

0

1

2

3

4

5

6

u
p
d
a
te

 c
o
u
n
t

×104

(a) Update count

105 106

query time range (s)

0.5

1.0

1.5

2.0

2.5

3.0

3.5
ti

m
e
 (

s
)

(b) Query time

M4

M4-LSM

Fig. 22. Varying query time range 𝑡𝑞𝑒 − 𝑡𝑞𝑠 on CQD1 (a dataset with real updates)

8.1.5 Varying Update Percentage. We vary the frequency of update operations to evaluate the im-

pact on query performance. The update operation is implemented by adding a normally distributed

random value with a mean of 0 to the original value. As shown in Figure 21, M4-LSM still has much

better time performance than M4, under a large number of overwrites. It means more overlapped

chucks as illustrated in Figure 7 in Example 4. The improvement is thus not surprising referring to

Figure 19 on chunk overlap.

8.1.6 VaryingQuery Time Range on the Dataset with Real Updates. We consider a dataset CQD1

with updates from real usage. The time series records the average length of all the observations

in every 500 milliseconds. Note that 16% observations are delayed [43]. Thereby, the computed

average length of the corresponding time slot needs to be updated when the delayed observations

finally arrive. Figure 22(a) shows the number of updated points in various query time ranges. Our

M4-LSM still has significantly better time performance than the original M4, as in Figure 22(b),

when there are more updated points. The reason is that M4-LSM is chunk merge free, without

merging chunks with updates.

8.2 Applications to Other Visualizations
8.2.1 Apply to MinMax Representation. According to [17, 41], we further implement LTTB [40]

and MinMax [25] in Apache IoTDB, and compare M4-LSM with them. Moreover, since M4 returns

the first/last/bottom/top points, our approach can be naturally applied to MinMax visualization

by returning only bottom/top points. Thus, we also conduct experiments to demonstrate how the

proposed approach improves MinMax visualization, namely MinMax-LSM.

The visualization quality (i.e., DSSIM) comparison results in Figure 23(a) show that M4-LSM is as

precise as M4, with DSSIM always equal to 1, meaning perfect (error-free) visualization. This is not

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 35. Publication date: February 2024.

Time Series Representation for Visualization in Apache IoTDB 35:23

102 103

w

0.95

0.96

0.97

0.98

0.99

1.00

D
S
S
IM

(a) DSSIM

102 103

w

100

101

102

103

104

ti
m

e
 (

s
)

(b) Query time

M4 M4-LSM MinMax MinMax-LSM LTTB

Fig. 23. Comparing M4-LSM with baselines in terms of DSSIM and query time. A fair comparison is achieved
by ensuring that all methods return the same number of points.

2010 2012 2014 2016
year

200

400

600

800

c
lo

s
in

g
 p

ri
c
e

(a) DenseLines of 45 time series

0 10 20 30 40
number of time series

0
1
2
3
4
5
6
7

ti
m

e
 (

s
)

×102

(b) Cost of visualizing time series (DenseLines) from a database

DenseLines

DenseLines-M4

DenseLines-M4-LSM

Fig. 24. Apply M4-LSM to DenseLines visualization

surprising because M4-LSM returns exactly the same query results as M4. Similarly, MinMax-LSM

is as precise as MinMax, but with DSSIM smaller than 1. The experimental results of query time are

reported in Figure 23(b). As shown, our proposed M4-LSM has high efficiency without sacrificing

perfect preciseness. Moreover, MinMax-LSM, with our proposed techniques applied as aforesaid,

shows clearly lower time cost than the original MinMax.

8.2.2 Apply to DenseLines Visualization. In addition to line charts, M4 can also be used to maintain

the visual integrity of density-based visualizations such as DenseLines [36, 49], which use the

same rendering mechanism. Thereby, M4-LSM can naturally accelerate DenseLines visualization by

enabling faster M4 query processing. In this experiment, we evaluate the efficiency improvement of

DenseLines visualization on large-scale time series stored in Apache IoTDB. Figure 24(a) presents

an example of DenseLines, visualizing 45 stock time series together. The results in Figure 24(b) are

generally similar to those in Figure 3(a). Without applying M4, the original DenseLines is extremely

costly. By integrating our proposal, DenseLines-M4-LSM shows significantly lower time costs.

9 RELATEDWORK
While visualizing time series is highly demanded, e.g., finding interesting patterns [33, 47], the

time series database native representation operator for visualization is surprisingly absent.

9.1 Representing Time Series for Visualization
A number of time series representations have been proposed after decades of research, including

sampling [13], Discrete Fourier Transform (DFT) [11], Discrete Wavelets Transform (DWT) [12],

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 35. Publication date: February 2024.

35:24 Lei Rui et al.

Singular Value Decomposition (SVD) [28], Piecewise Aggregate Approximation (PAA) [27], Sym-

bolic Aggregate approXimation (SAX) [32, 39], piecewise polynomials [31], and shapelet-based

representations [20, 46]. In terms of visualization tasks, Park et al. [38] develop a visualization-aware

sampling layer between the visualization client and the database backend to speed up queries for

the scatterplots and map plots. In contrast, M4 [24, 25], as an in-DB data reduction method, is

designed for the line chart, which is more suitable for the visualization of time series. Since M4

shows zero pixel error in two-color (binary) line visualization, which is impossible with other data

reduction techniques such as MinMax, we focus on M4 representation in time series databases.

9.2 LSM-Tree based Storage
Log-Structured Merge Tree (LSM-Tree) [37] is widely adopted as a storage backend by state-of-

the-art key-value stores [21] including time series databases. This is because LSM-Tree meets the

performance requirement of both high-throughput writes and fast point reads of key-value stores.

Research on LSM-Tree storage has flourished in recent years. For example, Idreos et al. [22] propose

a unified design space spanning LSM-Trees, B-trees, Logs, etc., and optimize the design of these

data structures to improve the performance of NoSQL storage systems [14–16]. These lines of

work are orthogonal to our work, as our focus is on the optimization of the (M4) query execution

algorithm in the LSM-Tree systems.

10 CONCLUSIONS
M4 representation [25] has been found error-free in two-color line visualization of time series

data. The method however is originally designed for relational databases, without considering

the disordered points in the LSM-Tree storage, which is widely adopted in the commodity time

series database systems. In this paper, we present M4-LSM without merging any chunk in the

LSM-Tree store. Metadata are utilized to prune chunks, which do not contain representation points

for sure. To access data points in chunks that cannot be pruned, we observe the regular intervals

of timestamps and introduce a step regression for efficient indexing. Moreover, we use a value

regression function to prune the points that cannot be the top or bottom ones. The method has been

deployed in Apache IoTDB, an open-source LSM-Tree time series database [42], and used in many

companies across various industries, including rail transit, steel manufacturing, aviation industry,

cloud service, etc. Extensive experiments over real-world datasets demonstrate that M4-LSM takes

about 4 seconds to represent a time series of 127 million points in 1000 pixel columns, enabling

instant visualization of data in four years with a data collection frequency of every second.

However, our approach cannot directly accelerate the time series visualizations like Largest-

Triangle-Three-Buckets (LTTB) [40, 41]. This is because LTTB selects in each group the point with

the largest effective triangle area. Therefore, such triangle representations require maintaining

different statistics to avoid merges. We leave this extension as future work. As discussed in [24],

visualization-driven data aggregation queries for scatter plots select the last record per pixel. Since

M4 aggregation for line charts is at the pixel column level, M4-LSM cannot be directly used for

scatter plots. We leave the extension of our techniques to support scatter plots also as future work.

ACKNOWLEDGMENTS
Thiswork is supported in part by theNational Key Research andDevelopment Plan (2021YFB3300500),

the National Natural Science Foundation of China (62072265, 62021002, 62232005, 92267203), and

Beijing National Research Center for Information Science and Technology (BNR2022RC01011).

Shaoxu Song (https://sxsong.github.io/) is the corresponding author.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 35. Publication date: February 2024.

https://sxsong.github.io/

Time Series Representation for Visualization in Apache IoTDB 35:25

REFERENCES
[1] https://cwiki.apache.org/confluence/display/IOTDB/Query+Fundamentals.

[2] https://debs.org/grand-challenges/2012/.

[3] https://github.com/apache/iotdb/tree/research/M4-visualization.

[4] https://github.com/thssdb/M4-LSM.

[5] https://github.com/thssdb/M4-LSM/blob/supplement/supplement.pdf.

[6] https://iotdb.apache.org.

[7] https://iotdb.apache.org/UserGuide/V1.1.x/Operators-Functions/Sample.html#m4-function.

[8] https://www.iis.fraunhofer.de/en/ff/lv/dataanalytics/ek/download.html.

[9] https://www.influxdata.com/.

[10] https://www.kaggle.com/datasets/xxx123456789/exp-datasets.

[11] R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient similarity search in sequence databases. In D. B. Lomet, editor,

Foundations of Data Organization and Algorithms, 4th International Conference, FODO’93, Chicago, Illinois, USA, October

13-15, 1993, Proceedings, volume 730 of Lecture Notes in Computer Science, pages 69–84. Springer, 1993.

[12] K. Chan and A. W. Fu. Efficient time series matching by wavelets. In M. Kitsuregawa, M. P. Papazoglou, and C. Pu,

editors, Proceedings of the 15th International Conference on Data Engineering, Sydney, Australia, March 23-26, 1999, pages

126–133. IEEE Computer Society, 1999.

[13] G. Cormode, M. N. Garofalakis, P. J. Haas, and C. Jermaine. Synopses for massive data: Samples, histograms, wavelets,

sketches. Found. Trends Databases, 4(1-3):1–294, 2012.

[14] N. Dayan, M. Athanassoulis, and S. Idreos. Monkey: Optimal navigable key-value store. In S. Salihoglu, W. Zhou,

R. Chirkova, J. Yang, and D. Suciu, editors, Proceedings of the 2017 ACM International Conference on Management of

Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017, pages 79–94. ACM, 2017.

[15] N. Dayan and S. Idreos. Dostoevsky: Better space-time trade-offs for lsm-tree based key-value stores via adaptive

removal of superfluous merging. In G. Das, C. M. Jermaine, and P. A. Bernstein, editors, Proceedings of the 2018

International Conference on Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, pages

505–520. ACM, 2018.

[16] N. Dayan and S. Idreos. The log-structured merge-bush & the wacky continuum. In P. A. Boncz, S. Manegold,

A. Ailamaki, A. Deshpande, and T. Kraska, editors, Proceedings of the 2019 International Conference on Management of

Data, SIGMOD Conference 2019, Amsterdam, The Netherlands, June 30 - July 5, 2019, pages 449–466. ACM, 2019.

[17] J. V. D. Donckt, M. J. V. D. Donckt, M. Rademaker, and S. V. Hoecke. Data point selection for line chart visualization:

Methodological assessment and evidence-based guidelines. CoRR, abs/2304.00900, 2023.

[18] P. Esling and C. Agón. Time-series data mining. ACM Comput. Surv., 45(1):12:1–12:34, 2012.

[19] C. Fang, S. Song, and Y. Mei. On repairing timestamps for regular interval time series. Proc. VLDB Endow., 15(9):1848–

1860, 2022.

[20] J. Grabocka, N. Schilling, M. Wistuba, and L. Schmidt-Thieme. Learning time-series shapelets. In S. A. Macskassy,

C. Perlich, J. Leskovec, W. Wang, and R. Ghani, editors, The 20th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014, pages 392–401. ACM, 2014.

[21] S. Idreos and M. Callaghan. Key-value storage engines. In D. Maier, R. Pottinger, A. Doan, W. Tan, A. Alawini, and

H. Q. Ngo, editors, Proceedings of the 2020 International Conference on Management of Data, SIGMOD Conference 2020,

online conference [Portland, OR, USA], June 14-19, 2020, pages 2667–2672. ACM, 2020.

[22] S. Idreos, N. Dayan, W. Qin, M. Akmanalp, S. Hilgard, A. Ross, J. Lennon, V. Jain, H. Gupta, D. Li, and Z. Zhu.

Design continuums and the path toward self-designing key-value stores that know and learn. In 9th Biennial

Conference on Innovative Data Systems Research, CIDR 2019, Asilomar, CA, USA, January 13-16, 2019, Online Proceedings.

www.cidrdb.org, 2019.

[23] S. K. Jensen, T. B. Pedersen, and C. Thomsen. Time series management systems: A survey. IEEE Trans. Knowl. Data

Eng., 29(11):2581–2600, 2017.

[24] U. Jugel. Visualization-driven data aggregation: rethinking data acquisition for data visualizations. PhD thesis, Technical

University of Berlin, Germany, 2017.

[25] U. Jugel, Z. Jerzak, G. Hackenbroich, and V. Markl. M4: A visualization-oriented time series data aggregation. Proc.

VLDB Endow., 7(10):797–808, 2014.

[26] Y. Kang, X. Huang, S. Song, L. Zhang, J. Qiao, C. Wang, J. Wang, and J. Feinauer. Separation or not: On handing

out-of-order time-series data in leveled lsm-tree. In 38th IEEE International Conference on Data Engineering, ICDE 2022,

Kuala Lumpur, Malaysia, May 9-12, 2022, pages 3340–3352. IEEE, 2022.

[27] E. J. Keogh, K. Chakrabarti, M. J. Pazzani, and S. Mehrotra. Dimensionality reduction for fast similarity search in large

time series databases. Knowl. Inf. Syst., 3(3):263–286, 2001.

[28] F. Korn, H. V. Jagadish, and C. Faloutsos. Efficiently supporting ad hoc queries in large datasets of time sequences. In

J. Peckham, editor, SIGMOD 1997, Proceedings ACM SIGMOD International Conference on Management of Data, May

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 35. Publication date: February 2024.

https://cwiki.apache.org/confluence/display/IOTDB/Query+Fundamentals
https://debs.org/grand-challenges/2012/
https://github.com/apache/iotdb/tree/research/M4-visualization
https://github.com/thssdb/M4-LSM
https://github.com/thssdb/M4-LSM/blob/supplement/supplement.pdf
https://iotdb.apache.org
https://iotdb.apache.org/UserGuide/V1.1.x/Operators-Functions/Sample.html#m4-function
https://www.iis.fraunhofer.de/en/ff/lv/dataanalytics/ek/download.html
https://www.influxdata.com/
https://www.kaggle.com/datasets/xxx123456789/exp-datasets

35:26 Lei Rui et al.

13-15, 1997, Tucson, Arizona, USA, pages 289–300. ACM Press, 1997.

[29] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The case for learned index structures. In G. Das, C. M.

Jermaine, and P. A. Bernstein, editors, Proceedings of the 2018 International Conference on Management of Data, SIGMOD

Conference 2018, Houston, TX, USA, June 10-15, 2018, pages 489–504. ACM, 2018.

[30] Y. Li, Z. Wang, B. Ding, and C. Zhang. Automl: A perspective where industry meets academy. In F. Zhu, B. C. Ooi, and

C. Miao, editors, KDD ’21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event,

Singapore, August 14-18, 2021, pages 4048–4049. ACM, 2021.

[31] C. Lin, E. Boursier, and Y. Papakonstantinou. Plato: Approximate analytics over compressed time series with tight

deterministic error guarantees. Proc. VLDB Endow., 13(7):1105–1118, mar 2020.

[32] J. Lin, E. J. Keogh, L. Wei, and S. Lonardi. Experiencing SAX: a novel symbolic representation of time series. Data Min.

Knowl. Discov., 15(2):107–144, 2007.

[33] C. Liu, K. Zhang, H. Xiong, G. Jiang, and Q. Yang. Temporal skeletonization on sequential data: patterns, categorization,

and visualization. In S. A. Macskassy, C. Perlich, J. Leskovec, W. Wang, and R. Ghani, editors, The 20th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014,

pages 1336–1345. ACM, 2014.

[34] Z. Liu and J. Heer. The effects of interactive latency on exploratory visual analysis. IEEE Trans. Vis. Comput. Graph.,

20(12):2122–2131, 2014.

[35] R. Marcus, A. Kipf, A. van Renen, M. Stoian, S. Misra, A. Kemper, T. Neumann, and T. Kraska. Benchmarking learned

indexes. Proc. VLDB Endow., 14(1):1–13, 2020.

[36] D. Moritz and D. Fisher. Visualizing a million time series with the density line chart. CoRR, abs/1808.06019, 2018.

[37] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil. The log-structured merge-tree (lsm-tree). Acta Informatica,

33(4):351–385, 1996.

[38] Y. Park, M. J. Cafarella, and B. Mozafari. Visualization-aware sampling for very large databases. In 32nd IEEE

International Conference on Data Engineering, ICDE 2016, Helsinki, Finland, May 16-20, 2016, pages 755–766. IEEE

Computer Society, 2016.

[39] J. Shieh and E. J. Keogh. isax: indexing and mining terabyte sized time series. In Y. Li, B. Liu, and S. Sarawagi, editors,

Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas,

Nevada, USA, August 24-27, 2008, pages 623–631. ACM, 2008.

[40] S. Steinarsson. Downsampling time series for visual representation. Master’s thesis, University of Iceland, 2013.

[41] J. Van Der Donckt, J. Van der Donckt, E. Deprost, and S. Van Hoecke. Plotly-resampler: Effective visual analytics for

large time series. In 2022 IEEE Visualization and Visual Analytics (VIS), pages 21–25. IEEE, 2022.

[42] C. Wang, J. Qiao, X. Huang, S. Song, H. Hou, T. Jiang, L. Rui, J. Wang, and J. Sun. Apache iotdb: A time series database

for iot applications. Proc. ACM Manag. Data, 1(2):195:1–195:27, 2023.

[43] W. Weiss, V. J. E. Jiménez, and H. Zeiner. A dataset and a comparison of out-of-order event compensation algorithms.

In M. Ramachandran, V. M. Muñoz, V. Kantere, G. B. Wills, R. J. Walters, and V. Chang, editors, Proceedings of the 2nd

International Conference on Internet of Things, Big Data and Security, IoTBDS 2017, Porto, Portugal, April 24-26, 2017,

pages 36–46. SciTePress, 2017.

[44] J. Xiao, Y. Huang, C. Hu, S. Song, X. Huang, and J. Wang. Time series data encoding for efficient storage: A comparative

analysis in apache iotdb. Proc. VLDB Endow., 15(10):2148–2160, 2022.

[45] H. Yang, J. Fang, M. Cai, and Z. Cai. A prefetch-adaptive intelligent cache replacement policy based on machine

learning. J. Comput. Sci. Technol., 38(2):391–404, 2023.

[46] L. Ye and E. J. Keogh. Time series shapelets: a new primitive for data mining. In J. F. E. IV, F. Fogelman-Soulié, P. A.

Flach, and M. J. Zaki, editors, Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, Paris, France, June 28 - July 1, 2009, pages 947–956. ACM, 2009.

[47] H. Yu, X. Guo, X. Luo, W. Bian, and T. Zhang. Construct trip graphs by using taxi trajectory data. Data Sci. Eng.,

8(1):1–22, 2023.

[48] D. Zhang, M. Ding, D. Yang, Y. Liu, J. Fan, and H. T. Shen. Trajectory simplification: An experimental study and quality

analysis. Proc. VLDB Endow., 11(9):934–946, 2018.

[49] Y. Zhao, Y. Wang, J. Zhang, C. Fu, M. Xu, and D. Moritz. Kd-box: Line-segment-based kd-tree for interactive exploration

of large-scale time-series data. IEEE Trans. Vis. Comput. Graph., 28(1):890–900, 2022.

Received July 2023; revised October 2023; accepted November 2023

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 35. Publication date: February 2024.

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 M4-LSM Approach
	1.3 System Deployment
	1.4 Contributions

	2 Preliminaries
	2.1 M4 Representation
	2.2 LSM-Tree based Storage of Time Series

	3 M4-LSM Approach
	3.1 Problem Statement
	3.2 Solution Overview

	4 Inter-Chunk Pruning
	4.1 Candidate Generation
	4.2 FP/LP Candidate Verification
	4.3 BP/TP Candidate Verification

	5 Intra-Chunk Accessing
	5.1 Time Index With Step Regression
	5.2 Point Pruning with Value Regression

	6 System Deployment
	6.1 System Overview
	6.2 Deployment Details

	7 Application Study
	8 Experiments
	8.1 Experiments with Varying Parameters
	8.2 Applications to Other Visualizations

	9 Related Work
	9.1 Representing Time Series for Visualization
	9.2 LSM-Tree based Storage

	10 Conclusions
	Acknowledgments
	References

