PACE: Poisoning Attacks on Learned Cardinality Estimation

JINTAO ZHANG, Tsinghua University, China

CHAO ZHANG?, Tsinghua University, China

GUOLIANG LI*, Tsinghua University, China
CHENGLIANG CHAL, Beijing Institute of Technology, China

Cardinality estimation (CE) plays a crucial role in database optimizer. We have witnessed the emergence of
numerous learned CE models recently which can outperform traditional methods such as histograms and
samplings. However, learned models also bring many security risks. For example, a query-driven learned CE
model learns a query-to-cardinality mapping based on the historical workload. Such a learned model could
be attacked by poisoning queries, which are crafted by malicious attackers and woven into the historical
workload, leading to performance degradation of CE.

In this paper, we explore the potential security risks in learned CE and study a new problem of poisoning
attacks on learned CE in a black-box setting. There are three challenges. First, the interior details of the CE
model are hidden in the black-box setting, making it difficult to attack the model. Second, the attacked CE
model’s parameters will be updated with the poisoning queries, i.e., a variable varying with the optimization
variable, so the problem cannot be modeled as a univariate optimization problem and thus is hard to solve by
an efficient algorithm. Third, to make an imperceptible attack, it requires to generate poisoning queries that
follow a similar distribution to historical workload. We propose a poisoning attack system, PACE, to address
these challenges. To tackle the first challenge, we propose a method of speculating and training a surrogate
model, which transforms the black-box attack into a near-white-box attack. To address the second challenge,
we model the poisoning problem as a bivariate optimization problem, and design an effective and efficient
algorithm to solve it. To overcome the third challenge, we propose an adversarial approach to train a poisoning
query generator alongside an anomaly detector, ensuring that the poisoning queries follow similar distribution
to historical workload. Experiments show that PACE reduces the accuracy of the learned CE models by 178X,
leading to a 10X decrease in the end-to-end performance of the target database.

CCS Concepts: « Information systems — Data management systems.
Additional Key Words and Phrases: Poisoning Attacks, Learned Models, Cardinality Estimation

ACM Reference Format:

Jintao Zhang, Chao Zhang, Guoliang Li, and Chengliang Chai. 2024. PACE: Poisoning Attacks on Learned
Cardinality Estimation. Proc. ACM Manag. Data 2, 1 (SIGMOD), Article 37 (February 2024), 27 pages. https:
//doi.org/10.1145/3639292

1 INTRODUCTION

Learned cardinality estimation. Cardinality estimator is a vital component of the database query
optimizer. In recent years, learned cardinality estimation (CE) methods [6, 9, 15, 17, 19, 44, 45, 48,
51, 52, 54] have attracted significant attention due to their higher performance than traditional

*Chao Zhang and Guoliang Li are the corresponding authors.

Authors’ addresses: Jintao Zhang, Tsinghua University, China, zjt21@mails.tsinghua.edu.cn; Chao Zhang, cycchao@tsinghua.
edu.cn, Tsinghua University, China; Guoliang Li, liguoliang@tsinghua.edu.cn, Tsinghua University, China; Chengliang
Chai, ccl@bit.edu.cn, Beijing Institute of Technology, China.

This work is licensed under a Creative Commons Attribution International 4.0 License.
BY

© 2024 Copyright held by the owner/author(s).
2836-6573/2024/2-ART37
https://doi.org/10.1145/3639292

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 37. Publication date: February 2024.

HTTPS://ORCID.ORG/0009-0001-6114-9429
HTTPS://ORCID.ORG/0000-0002-8924-7629
HTTPS://ORCID.ORG/0000-0002-1398-0621
HTTPS://ORCID.ORG/0000-0001-8080-5594
https://doi.org/10.1145/3639292
https://doi.org/10.1145/3639292
https://orcid.org/0009-0001-6114-9429
https://orcid.org/0000-0002-8924-7629
https://orcid.org/0000-0002-1398-0621
https://orcid.org/0000-0001-8080-5594
https://orcid.org/0000-0001-8080-5594
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3639292

37:2 Jintao Zhang, Chao Zhang, Guoliang Li, and Chengliang Chai

A Database CE Model Performance | End to End Performance
E= Before Poisoned E= Before Poisoned
Update BX® After Poisoned B2 After Poisoned
. . @ 3000 7
Poisoning 3000 2658 2412 s
Queries S 2000 2000
()

’ Poisoned

M CE Model

Fig. 1. A example of a poisoning attack on a learned cardinality estimator.

Execution Tim
=
o
o
o

estimation methods such as histograms and sampling. However, learning-based models incur the
risks of being attacked as the training data could be poisoned to degrade the estimation performance.
In this work, we take query-driven cardinality estimation models [6, 17, 19, 36], which are trained
by fitting a set of training queries to their true cardinalities, as examples to study how to attack
learned CE models by crafting poisoning queries. We discuss the attacks on data-driven CE models
in Section 8.

Motivation. Nowadays, learned query-driven CE models have been deployed in real commercial
systems [24, 25, 55, 56], such as Microsoft Scope [47], Amazon Redshift AutoWLM [38], GaussDB (for
openGauss) [7, 28]. Normally, machine learning models in online systems likely update themselves
for maintaining high accuracy when some new training data are arrived [14, 29, 47]. Similarly,
query-driven CE models update themselves incrementally with newly executed queries [40, 46, 47].
This mechanism presents an opportunity for malicious people to craft some poisoning queries to
attack the CE model, degrading the performance of the query optimizer. Unfortunately, existing
studies primarily focus on improving the performance of CE models while neglecting their potential
vulnerabilities to poisoning attacks. To the best of our knowledge, this is the first work that studies
the poisoning attack on learned CE models.

Real scenarios of poisoning attacks in the context of databases. Let us consider two motivating
examples, an "internal” case (Case 1) and an "external" case (Case 2). The attackers in both cases
have the incentives to poison a DB model.

CasE 1 (MaLicious EMPLOYEE). Suppose a scenario where an employee feels dissatisfied due to the
unfair treatment or a notice of dismissal by his/her company. Since the company has a learning-based
database used in production, s/he decides to perform a hidden act of retaliation. However, due to the
company’s strict permission policies, s/he has no deletion privilege and has only privilege of executing
SELECT SQL queries for operation and maintenance. To this end, s/he decides to attack the company’s
database with poisoning queries.

CasE 2 (MaLicious CoMPETITOR). Consider a situation where a cloud vendor wants to beat its
competitor in order to get better reputation. This cloud vendor deliberately rents a cloud database from
its competitor and crafts malicious poisoning queries to attack the database’s cardinality estimator
in order to undermine the performance of the rented cloud database by poisoning attack. In this case,
the cloud vendor not only has a strong incentive to carry out the attack but also has the authority to
execute SQL queries on the target database.

In addition, it’s worth noting that previous research, such as that conducted by [20], has explored
the issue of poisoning attacks on internal learned models in databases. Their study focused on
poisoning attacks on learned indexes in a white box setting. In contrast, we study the poisoning
attack in a black box setting (lack of all information about the target model), and there are more

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 37. Publication date: February 2024.

PACE: Poisoning Attacks on Learned Cardinality Estimation 37:3

applications in realistic scenarios. In conclusion, we believe that the poisoning attacks on learned
databases are a crucial topic that deserves more in-depth study.

Poisoning attack on learned CE. Considering a CE model used for estimating cardinalities of a
given set of testing queries. The problem objective is to craft a small set of poisoning queries that,
once used to update the CE model, would result in the model’s lowest average estimation accuracy
on the given test workload. As shown in Figure 1, suppose Alice intends to attack the cardinality
estimator in the database. She can craft some poisoning queries and execute them, causing the
cardinality estimator in the database to be updated with these queries. As a result, for a same set of
test queries, the average Q-error of the estimator increased from 11.1 to 2658, and the end-to-end
execution time of the database increased from 560 seconds to 2412 seconds.

Challenges. There are three challenges in poisoning attack on learned CE models in a black-box
setting. First, the black-box setting of learned models prevent us learning how to generate poisoning
queries by the updating direction of the CE model’s interior parameters. Second, even under a
white-box attack setting, efficiently solving the problem is difficult due to the updating of the CE
model’s parameters with the poisoning queries. In other words, a parameter of the optimization
objective is changing with the optimization variable. Third, there may be a significant divergence
between the distribution of the poisoning queries and the historical workload, which could be easily
detected [21]. Therefore, we need to generate queries that not only have poisoning effectiveness
but also follow a similar distribution to the historical workload.

Our approach. To address these challenges, we propose a poisoning attack system PACE that
can attack learned query-driven cardinality estimators in a black-box setting. To address the first
challenge, we propose a method for speculating the model type of the black box by comparing
the similarities of the black-box model and candidate models’ performance, followed by training a
surrogate model based on the speculated model type. This enables us to convert the black-box attack
into a near-white-box attack. To address the second challenge, we propose to model the poisoning
problem as a bivariate (i.e., poisoning queries and the CE model’s parameters) optimization problem,
and to achieve the optimization objective efficiently, we design an effective algorithm that utilizes a
progressive update strategy to avoid unnecessary updates. To address the third challenge, we train
an anomaly detector that can identify anomaly queries. We then employ an adversarial approach
to train a poisoning query generator alongside the detector, ensuring that the distribution of the
poisoning queries is similar to that of the historical workload.

Contributions: We make the following contributions.

(1) We study a new problem of poisoning attacks on learned cardinality estimation models in a
black-box setting.

(2) We propose a method of speculating and training a surrogate model to transform black-box
attack into a near-white-box attack.

(3) We model the poisoning problem as a bivariate optimization problem, and design an algorithm
that utilizes a progressive update strategy to achieve the optimization objective efficiently.

(4) We propose an adversarial approach to train a poisoning query generator alongside a trained
anomaly detector, ensuring that poisoning queries follow a similar distribution to historical work-
load.

(5) We conducted extensive experiments, showing that our method reduces the accuracy of the
learned CE models by 178, leading to a 10X decrease in the end-to-end performance of the database.
And PACE surpasses a basic algorithm by improving training efficiency by 9.7, and enhances the
normality of poisoning queries by 72%.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 37. Publication date: February 2024.

37:4 Jintao Zhang, Chao Zhang, Guoliang Li, and Chengliang Chai

Table 1. Notations.

Notation Description Notation Description
f, () Black-box model L Loss function of CE model
£ Surrogate model L Loss function of f;(+)
S,) Poisoned model x Encoding of a query
D Anomaly detector Ly Loss function of D
Diest Testing workload X, Poisoning queries
Z Gaussian noise G Poisoning query generator

2 PRELIMINARIES
2.1 Query-driven Cardinality Estimation

We focus on poisoning attacks over query-driven cardinality estimators [6, 17, 19, 36]. Given
a set of queries Q = {qo,q1, - , qn} With their cardinalities Y = {yo,y1, - ,yn}, query-driven
cardinality estimators will represent each query as a vector x. Then the training data of a query-
driven cardinality estimator will be a set of pairs (x, y). Finally, it learns a mapping from the query
representations to the true cardinalities, which is regarded as a regression problem.

Formally, given a training workload Dy, = {Q, Y}, and a loss function £, a query-driven CE
model f,,(x) is trained by an empirical risk minimization [43] strategy, and finally the optimal
parameter wy, of CE model f(-) is obtained:

wp € arg min Z L(fw(x),y) (1)

v (x’ y)eDtrain

where L is Q-error [33] loss, a most commonly used loss function in cardinality estimation.
L(fw(x),y) = %, where f,,(x) is the estimated cardinality of a query and y is the ground
truth. f,,(x) and y are both greater than 0, because the last activation layer of the CE model limits
the normalized value of f,,(x) in (0, 1), and queries with y = 0 will be eliminated during the training

phase. This problem is usually solved by gradient descent [37].

2.2 Threat Model

Adversary’s goal: The attacker’s objective is to craft poisoning queries X, that can decrease
the estimation accuracy of the target cardinality estimation model f,,(-) if it is updated us-
ing X,,. The estimation accuracy refers to the Q-error [33] of f,,(-) on a given test set Dycg,
Z(X,y)EDtest Q-error(fw(x)’ y)

Adversary’s knowledge: We focus on black-box attacks where the attackers cannot acquire the
model type and specific parameters w of the cardinality estimation model, and cannot get access to
the data of the database and the training queries of the cardinality estimation model. The attackers
can only obtain the database schema information to craft legal queries.

Adversary’s capacity: Attackers are able to get the true labels Y (i.e., cardinalities) of crafted
queries by executing COUNT(*) SQLs and can inject poisoning queries as the training queries of
the cardinality estimation model. Moreover, attackers can obtain the estimated cardinalities f,,, (x)
of the cardinality estimation model using the “Explain” command.

Attack evaluation metrics. We use four metrics as follows: (1) Q-error [33] is a metric for
evaluating the accuracy of a cardinality estimation model. (2) E2E latency is used to quantify
the end-to-end latency of query response in a database when utilizing a cardinality estimation
model. (3) Train_Time is used to evaluate the training time of the poisoning queries generation
algorithm. (4) Divergence is used to evaluate the normality of the poisoning queries distribution.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 37. Publication date: February 2024.

PACE: Poisoning Attacks on Learned Cardinality Estimation 37:5

Specifically, we use Jensen-Shannon Divergence [30] between the encodings of poisoning and
historical queries. The higher the Q-error and EZE latency are, the more effective the attack is. The
lower the Train_Time of the algorithm and the Divergence are, the more successful the attack is.

2.3 Problem Definition

Poisoning Query Generation Problem. The studied problem can be formally defined as follows:
Given a trained black-box CE model f,,, (-), a testing workload Dy.g. The studied problem is to craft
a small poisoning workload X, that can decrease the CE model’s estimation accuracy if f,,, (-) is
updated to pr (+) using X,,. The objective is to maximize the estimation error of pr (+) over Dyegt:

Xy e argmax|F (X)) = > L(fu,(0),y))
“p (%,Y) €Djest
In this work, we leverage the gradient information of the CE models with respect to the poisoning
queries to carry out our attacks. This methodology supports attacking all query-driven CE models
that are based on neural networks.

2.4 Related Work

In the field of artificial intelligence security, many works [3, 5, 31, 34, 49, 50, 58] attack machine
learning models by tampering with the features or labels of the training data. These works typically
adopt a white-box setting, meaning that the type and parameters of the victim model are known.
In the field of databases, [20] studied the problem of a poisoning attack on learned indices in a
white-box setting. However, in a real-world system, the learned model is essentially a black box to
potential attackers, meaning that both the training data and the learned model itself are entirely
inaccessible. Furthermore, even under a white-box setting, attacking the learned CE model remains
challenging. First, existing works are unsuitable to attack learned CE models. For instance, [20] only
considers the linear regression model. And most works [3, 5, 31, 34, 49, 50, 58] can only produce
poisoning samples of fixed dimension (e.g., fixed-size images). However, queries in learned CE
models exhibit diverse join patterns that require specific treatment. Second, learned models in
real-world scenarios are evolving, so it is necessary to craft poisoning queries efficiently. Otherwise,
the attack could be obsolete. Third, to make an imperceptible attack, the poisoning queries should
follow a similar distribution to the historical workload, otherwise it could be easily detected [21].

3 PACE FRAMEWORK

We first provide an overview of PACE in Section 3.1. Then, we describe the acquisition of surrogate
CE model in Section 3.2 and poisoning query generation in Section 3.3. Finally, we introduce how
to use PACE to attack the CE estimator in Section 3.4.

3.1 Overview

System Workflow. As shown in Figure 2, the workflow of the PACE can be summarized into three
stages.

(a) Surrogate model acquisition. To cope with the black-box CE model, we propose to simulate
the black-box model with a surrogate CE model f;(-) by observing the input (queries) and output
(estimated cardinalities) of the black-box model.

(b) Poisoning Data Generator. Given the surrogate model f;(-) which is a white-box model to us,
we treat the attack on f;(-) as an attack on the original black-box model f;,, (-) so that the parameter
wj, can be regarded as visible. To achieve the optimization goal in Equation 2, we deploy a generator
to generate poisoning queries. The basic idea is to train the generator G with the objective of

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 37. Publication date: February 2024.

37:6 Jintao Zhang, Chao Zhang, Guoliang Li, and Chengliang Chai

(a) Surrogate Model Training

ot] (7
o S

Black-Box Model

Imitator | Surrogate Model

(b) Generator and Detector Training

Trained
| Historical Workload | I Unsupervised Training Anomaly
Undato aus Detector
: 2 e
Attack
> > ies —>|
o g Queries f s .
Gaussian =“Generator Estimation ErrorT
Noise Update
(c) Attacking 3 Estimation Error
. Attack
g > Queries

Fig. 2. System overview. (§3)

maximizing the estimation error of the poisoned surrogate model f,,, (-). At the same time, to avoid
generating queries that are rather different from the historical workload, the generator will also
fight against an anomaly detector that can detect abnormal queries compared to historical queries.
(c) Attacking. The generated poisoning queries will be executed in the database, and the black-box
CE model will be updated based on these queries, leading to larger estimation error.

3.2 Surrogate CE Model Acquisition

The key for simulating a model is its type (CNN, RNN, etc.) and parameters. To derive a surrogate
model f;(-) according to the black-box f,,, (), we first speculate the type of f,,, (), followed by
acquiring the parameters via training with the output from f,,, (-).

Specifically, we train six CE models [6, 17, 19, 36] that contain all types of query-driven models
based on neural networks (See subsection 7.1). Next, we test these models as well as f,,, (-) over
some crafted queries. Finally, we select the model type that performs most similarly (including the
accuracy and efficiency) to fi,, (+).

For the parameters of f;(-), given the model type, an intuitive solution is to take the query
encoding x with the estimated result f,,, (x) of the black-box model as input, and trains a surrogate
model according to a loss function like L(f;(x), fi, (x)) such that f;(-) will be close to f, (-).
Unfortunately, solely relying on the output of the f,,, (-) can lead to poor generalization performance
on unseen queries. To overcome this problem, we incorporate the ground-truth labels into the
training process of model f;,, (), which can help f;(-) to imitate f,,, (-) better because f,,, () also
contains the information of these labels. Therefore, we propose to use both outputs of f,,, (-) and
the ground-truth labels as training examples. As a result, the trained surrogate model f;"(-) has
a better generalization performance in imitating f,,, (-). The details are introduced in Section 4.
The experimental results (See Section 7.4) indicate that, the parameters of the surrogate model are
highly similar to that of the black box model after the simulation process, meaning that attacking
£ () is almost equivalent to attacking f,,, (-).

Remark. Our method can be easily extended to support new CE models. When a new CE model
needs to be considered, we only need to expand the k candidate models to k + 1 candidate models.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 37. Publication date: February 2024.

PACE: Poisoning Attacks on Learned Cardinality Estimation 37:7

3.3 Generator and Detector Training

We propose a generation-based approach to produce the poisoning queries. To generate diverse
queries, we take random Gaussian noise as input for the generator. In particular, the poisoning
workload X, can be generated by feeding Gaussian noise set Z = {Z|Z ~ N (0, 1) } to the generator
G as follows.
Xp =G(Z) ®3)
Consequently, our goal becomes how to train the generator G to generate poisoning queries
that can maximize the loss of the poisoned CE model f,,, (-). Therefore, the optimization objective
in Equation 2 is as follows:

argmax F(G(Z) = >, L(fu,(x),y) (4)
g (x, y) €Dxest
where w,, is the surrogate model’s parameters updated with X,.

We propose an efficient algorithm to iteratively train the generator following three steps: (1) We
use the generator G to generate a number of poisoning queries X,. (2) X, is temporarily used to
update f"(-) to obtain w,. (3) We update the generator to get closer to the optimization objective in
Equation 4. By repeating the above three steps, f;"(-) is iteratively attacked, and thus the objective
value F () becomes larger. Finally, we stop training until the convergence i.e., ¥ (-) is reached.

To ensure that the generated queries don’t significantly deviate from the historical queries,
we build a Variational Auto Encoder (VAE) [1] based anomaly detector D to counterbalance the
generator. Specifically, we use some historical queries in the database to train the anomaly detector
according to a reconstruction loss L;. After training, a query will be deemed abnormal if its
reconstruction error, as detected by D, exceeds a certain threshold. Then, every time the poisoning
queries are generated in the training phase, D will be triggered to detect abnormal queries among
them. Finally, to prevent generating abnormal queries, the generator G is updated based on the
reconstruction loss L, associated with these abnormal queries. More details will be introduced in
Section 6.

3.4 Attacking

Given a batch of Gaussian noise Z, the trained poisoning query generator G will output a batch
of poisoning queries X,,. Then we can run those queries in the target database. Afterward, the
cardinality estimator f,,, (-) in the database will use these queries and their true cardinalities to
update itself. Eventually, the cardinality estimator could be poisoned and may not be able to
accurately estimate the given testing workload.

(a) Black-box Model Speculating §4.1 (b) Surrogate Model Training §4.2 (d) Poisoning Query Generator Training §5.3,6.2

Y — Poisoned
Speculated P — y —
—_— J Model
Q-error, Latency f‘*' ’ Model Type m N f“’P e " f: ’
Train L(fs(2), fu, (2)) Progressive| 7 S
Y

@] Most similar)| calculate Update

Similarity Comparison

Testing | Test
Workload

Training

Queries Q-Error Loss *ﬂ(fm,, () Digest)

A Generation Surrrogate
Q000" Mgdel @ Update for Poisoning (7]
fe L(f(x).v) Gl isoni
White-Box Queri
g P > X ueries
Testing Workload | Test | Candidate Models (c) Anomaly Detector Training §6.1 G a Query P N |
Generation — i Generatol nomaly
© fs(l) } o fs(k) D H @ | Reconstructed oise Z A il Detector
[} - Encoder @ Decoder |t Workload X}, Update
o Train = e Caloul for Normality
[RN, alculate E
1# columns, ! Training Workload Historical Anomaly?Deteclor L, La(z,D(z)) (@ X,
:f ranges Generation Workload | Update o | Reconstruction Loss | | Reconstruction Loss |<—| Abnormal Queries

Fig. 3. Training workflow of PACE.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 37. Publication date: February 2024.

37:8 Jintao Zhang, Chao Zhang, Guoliang Li, and Chengliang Chai

4 SURROGATE CE MODEL ACQUISITION

First, we introduce how to speculate the model type in Section 4.1. Next, in Section 4.2, we introduce
the strategy of training a white-box model to substitute the black-box model.

4.1 Model Type Speculating of the Black Box

Key idea. Before training a model, it is usually necessary to determine the model type. The reason
is that the performance could be quite different even for a same task when using different model
types. In our case, we aim to train a white-box model to replace a black-box model. To ensure that
they perform similarly, it is essential for them to have the same model type. Therefore, the first step
in acquiring a surrogate model is to speculate the type of the black-box model. We compare the
performance similarity between the black-box model and the candidate models on a test workload
with a specific distribution, and select the model type of the most similar candidate model.

To this end, we first assume k different model types as candidates. Then we propose to pick one
from the k types as the type of f,,, (-). At a high level, we pick the type comparing the performance
of the k models with that of f,,, (-), based on a set Q of generated queries. Intuitively, given these
queries, if one of the k models performs the most similarly to f,,, (-), they are likely to be with the
same type. But note that queries in Q should have diverse properties (e.g., the column number), to
test the performance variations across different model types. Because when queries have different
column numbers and predicate range sizes, the estimated accuracy and latency are much different
on different model types. As proposed in [40, 46], (i) the accuracy of MSCN decreases less than FCN
when the column number increases. (ii) the accuracy of FCN will be lower than other types when
the range of filter predicates is too large or too small, (iii) the inference latency of RNN will increase
as the number of columns increases.

Specifically, we first assume the k models with different types as candidates, each of which is
trained by a batch of randomly generated training queries. Second, considering the diverse property
discussed above, we generate n; test queries by varying the number of columns and the range
size of filter predicates in queries. Third, we test the k candidate models fi(-),- - -, fx(-) and the
black-box model f,,, (-) over these queries, and then compute the mean of Q-error and estimation
latency of the k + 1 models for n; test queries, producing k + 1 vectors 5y, - - - , S, S with 2 X n,
dimensions. Finally, we calculate the cosine similarity between s1, - - - , § and S, and pick the type
with the highest similarity as the speculated type. That is, the speculated type is the same as the
model type of fi-(-), where i* conforms to the following equation:

- >
Si*Sp

®)

i* = argmax Cosine(s;,Sp) = ———
e Go38) = Rl R

4.2 Training Strategy

Key idea. After determining the model type, the next step is to train the model parameters. The
objective of this task is to enable the white-box model to perform as closely as possible to the black-
box model, which requires both models to predict similar outputs for any given input. We utilize
not only the estimated cardinalities of the black-box model, but also the ground-truth cardinalities
as supervisory information in training the surrogate model. In this way, the surrogate model can
achieve strong generalization performance in imitating the black-box model.

A natural approach to training the surrogate model is to use the output of the black-box model
as a supervisory information. This can be achieved by initializing the surrogate model with the
speculated model type, and generating a batch of training queries X. The surrogate model f;(-) can
then be trained by imitating the output of the black-box model f,,, (x) on X, where the training

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 37. Publication date: February 2024.

PACE: Poisoning Attacks on Learned Cardinality Estimation 37:9

loss is defined as follows:

LX) = Y LIAE), fi, (x) (©)
xeX

Considering that the black-box model f,,, (+) is trained with true cardinalities in the database as
supervision, so f,,, (-) contains the information of true cardinalities. By incorporating the ground-
truth labels Y of X the surrogate model can learn to better capture the underlying relationships
between queries and their true cardinalities, leading to improved generalization performance in
imitating f,,, (x). To this end, we propose a training method that can utilize the information not
only from f,,, (x) but also Y and achieve a smaller imitation error. The loss function is as follows:

L(XY) = Z (L), fu, () + L(f(x),) ™)
xeX,yeY
The former term L(f;(x), fi, (x)) can make f;(-) imitate the f,,, (-) well. And the latter item
L(f;(x),y) enables the f;(-) generalizable for unseen queries.
Remark. For the hyperparameters of the surrogate model, we design a default set of parameters,
and we will analyze the impact of the inconsistency of hyperparameters in Section 7.

5 POISONING QUERY GENERATION

We first present a high level idea of the training process of the poisoning query generator in
Section 5.1. Afterward, we describe the query representation process and the structure of our
poisoning query generator in Section 5.2. Finally, we propose an efficient algorithm for training the
poisoning query generator in Section 5.3.

5.1 High Level Idea

In order to obtain the diverse poisoning queries, we employ a generator to learn the distribution of
poisoning queries and subsequently generate them. As is common in generative networks [8, 32],
we provide the generator with Gaussian-distributed noise as input, enhancing its ability to output
a variety of queries. Essentially, we enable the generator to learn and transform this Gaussian
distribution into the distribution of poisoning queries. Two crucial aspects merit attention. Firstly,
to enable the generation of poisoning queries with diverse join patterns, we design a join predicate
generator, which creates valid join patterns, then pass them to the predicate generator as a part of
input. Secondly, we train the generator using the estimation error of the attacked surrogate model,
which serves as the overall objective function.

As shown in Figure 3(d), during each step of the training process of the generator, we feed
Gaussian noise to the generator, which outputs poisoning queries (@)-@). These poisoning queries
are used to update the surrogate model (@-@), and we use maximizing the estimation error of
the updated surrogate model as the objective function (€-@P). Since the whole process from the
generation of poisoning queries by the generator to the updating of the white-box alternative
model is derivable, we use a gradient descent method to update the generator.

5.2 Generator Design

For poisoning queries, we leverage a neural network-based generator to generate them. In this
part, we first introduce how we represent a query. After that, we give the detailed structure of the
poisoning query generator.

Query Representation. Because most of the current learned CE methods only support SPJ
queries, we focus on the generation of SPJ poisoning queries. Formally, consider a database with
n tables {T, ..., T;, ..., T,} and m attributes {A}, ...,A{, ..., A}. Since the cardinality of a SQL query
Q can be determined by two parts, namely the join predicate J =>< {T;} and selection conditions

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 37. Publication date: February 2024.

37:10 Jintao Zhang, Chao Zhang, Guoliang Li, and Chengliang Chai

Possible Join Patterns: [O O O] [O O O] [O O O] . . JE | max(Ti.4) = 50 | Denormalize
LADLBDC - Join 8 Ljoin|@| [“in(r;)= 0
domloss Ly . (©) @| [sEzecr counte
' i R = o 1 1, 1s
Gaussian i an WHERE Tyid = Ty.id
Noise [v T, Mask @ T|AND 5 < T1A < 10+
® AND 10 < T5.C < 30;
- " T3 Lower Bound Generator E) ® (Poisoning Query)
Ljoin
maz(T3.C) = 100
Select| Tsel
" T Condition min(Z;.C) =0

Fig. 4. Process of generating a poisoning query. (§5.2)

S= a{lb{ < A{ < ubf }. Where lbf and ub{ represent the normalized upper and lower bounds of
the filtering predicate on the attribute A{ . The representation process for a query Q = (J,S) into a
vector x involves several steps. First, the join predicate J undergoes binary encoding to produce
n-dimensional x,;,, which consists of 0 and 1, where 1 means that the corresponding table lies in J,
and 0 otherwise. Second, the selection condition S is encoded into a vector x,; with a dimension of
2 X m, containing the normalized upper and lower bounds (Ib}, ub%, <, 1B, ubl) of the filtering
predicates corresponding to the m attributes. In cases where S does not contain a certain attribute
A{ , the corresponding upper and lower bounds [lb{ , ub{] should be [0,1]. Finally, the representation
result x is obtained by concatenating xjo;n, and x;,;.

Generator Structure. To guarantee the diversity (i.e., considering various join combinations of
tables) and correctness (i.e., ensuring that the upper bound is greater than the lower bound for each
filter predicate) of the generated poisoning queries, we design a generator with three sub-generators
based on deep neural networks.

Figure 4 depicts the process of generating a poisoning query, which is composed of 3 generators:
the join predicate generator G;, the lower bound generator G;, and the range size generator G,. The
G, sub-generator is responsible for generating various feasible join predicates for the poisoning
queries to ensure the diversity. The G; and G, sub-generators are combined to generate the lower
and upper bounds of the predicates of poisoning queries (the upper bound equals the lower bound
plus the range size) according to the join predicates provided by G; to ensure the correctness.
Design of G;. To ensure the diversity of the joins, we feed a Gaussian noise z into G}, and it
outputs a vector x7,;, of length n, indicating which tables are in the join predicate. The last layer
of Gj is set as a sigmoid activation layer [10] to restrict the values in x7;, between 0 and 1, and
the value greater than 0.5 indicates that the corresponding table is in the join predicate, otherwise,
it is not. After that, to ensure the correctness of the join predicates, we check whether the join
predicate represented by x7;, conforms to the join schema of the target dataset. If it is not satisfied,
the Gaussian noise is regenerated and a new x7,,, is output. Otherwise, values greater than 0.5 in
x}oin are set to 1 and the rest are set to 0 to obtain the binary vector xjo;,. To enhance the ability of
G| to capture correct join predicates, we construct a cross-entropy loss function £; to train G;:

n
L (Koin Xjoin) = = Y Kinli] 10g(xjoin i) ®

i=1
Design of (G, G,). To generate predicates, a combination of Gaussian noise z and binary join
vector xjoin is taken as the input of G; and G,, allowing for the generation of diverse predicate
upper and lower bounds with the specific join predicate. To guarantee the correctness of the
generated predicates, the upper and lower bounds of the predicates for each attribute are not
directly generated, as this could result in invalid queries with lower bounds greater than the upper

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 37. Publication date: February 2024.

PACE: Poisoning Attacks on Learned Cardinality Estimation 37:11

bounds. Instead, G; generates the lower bounds of the predicates, and G, generates range size. The
final layer of both G; and G, utilizes a sigmoid activation function to normalize the lower bounds
and range size of the predicates between 0 and 1. Then we can ensure that the upper bounds are
greater than the lower bounds because the upper bounds are calculated by adding the lower bounds
and range size. Then the x.; can be obtained by a masking process according to x;,i,. That is, if a
table is not in the xjo;,, then the lower and upper bounds of the corresponding attributes are set to
0 and 1.

Finally, we can concatenate xo;, and xs.; to obtain the representation x of a poisoning query Q.
And this representation can be easily transformed into a query according to the process of x — Q.
Summarization. G; transforms the Gaussian distribution into the correct join predicates. G; and
G, transform the Gaussian distribution into selection predicates with poisoning effectiveness.

5.3 Generator Training

In this part, we discuss the methodology of training the generator. At a high level, the generator
produces a batch of poisoning queries, which are utilized to update the surrogate model, and then
use the estimation error of the updated model to guide the training of the generator (i.e., solving
Equation 4). We first analyze the updating process of the surrogate model to determine its poisoned
parameters. Next, we specify our objective function and propose a basic algorithm to train the
generator. Due to the high time complexity of the algorithm, we finally propose an algorithm to
improve efficiency.

CE model updating. The surrogate model retains existing parameters wj, initially, updates itself
on the poisoning queries for a small number (K) of iterations, and ultimately updates its parameters
to wff . The update process for one iteration can be formulated as:

¢ = w;_l - aVW;-l Z L (fw;-l (x), y), wg =w)

(xy)e(G(2),Y)p)
Where w; denotes parameter at the e—th iteration during the update process, and e € [0,K]. «

Wp

represents the learning rate. wg = wj, means the parameters of the black-box model are initially wy.
Objective function. Once the parameters of the black-box model have been updated to w}f after
the K-step update process, our goal is to maximize the objective function ¥ by optimizing the
parameters of the generator G = G}, Gr, Gr:

argmax 7 (G(Z),Y,, lef) = Z L (fwg (x), y) (10)
G={G;.Gr.Gi} (%,y) €Dtest
Since wff varies with G as described in Equation 9, it is non-trivial to solve this optimization

problem.

LEMMA 1 (BIVARIATE OPTIMIZATION). The problem of poisoning query generation is a bivariate opti-
mization problem that includes two variables, query generator G and poisoned model wy,. Particularly,
Wy, is changing with G when maximizing the objective function.

Analysis. In the optimization objective as represented in Equation 10, our goal is to maximize
the function value # by optimizing G. However, due to the updating process of the CE model
on generated queries, w,, is changing with G according to Equation 9. Therefore, the objective
function must take into account the changing of w, when optimizing G.

Convergence analysis. Generally, a non-convex optimization problem is guaranteed to converge
only if its objective function has the property of Lipschitz continuous gradient [2]. However, since

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 37. Publication date: February 2024.

37:12 Jintao Zhang, Chao Zhang, Guoliang Li, and Chengliang Chai

M, A0
\\\\ \\\L \\\\
\ \\\ : \\\ \\ *
\ 1 > K
s s Wy
D p
|
(b) Optimized Algorithm
0 M/K steps MO M(K—1) A g
'@~ Gr g kG
O \\\ o N 1 AN \\\ \\ I;'_l \\\ \K*
wp one step wp (3) wp wp

Fig. 5. Analysis of the generator training. (§5.3)

this optimization objective includes a generative neural network and an update process of a CE
model, the difficulty of expressing and deducing the large volume of parameters with mathematical
formulas poses a notable challenge to prove the convergence from a mathematical perspective. In
practice, such problems can typically be optimized to converge using the gradient descent method;
namely, we can continually calculate the gradient of G for , and modulate G one step according to
the gradient. In addition, to prevent the objective function from converging into a local optimum, we
have used large steps in the case of small gradients for escaping from the local optimum. From the
perspective of experimental verification, we will report the convergence curves of our optimization
problem in Section 7.9.

Basic algorithm of solving equation 10. As shown in Figure 5 (a), a feasible solution is proposed
as follows:

(1) Initialize G to Gy, generate poisoning queries, and @ then update the parameters of the surrogate

model to wff .
(2) Treat wff in the objective function as constants, and @ update G, to G¥ through the strategy

of gradient descent until the objective function converges for the current w}f . We assume that this
update process takes M steps.
(3) Obtain new poisoning queries by current G*. Then @ initialize w, as wy, and @ obtain new

w{f by going through the process as shown in Equation 9 for K steps.

(4) Repeat (2) and (3) until the objective function converges.

" However, the shortcoming of this solution is that the algorithm complexity is high. Assuming
that (2) and (3) need to be repeated n, (n, > 1) times, then at each iteration of (2) and (3), wy, is
updated for K steps under the current G instead of the optimal G, and G is also updated by M steps
under the current w}f instead of the poisoned wf by optimal G. This leads to that a large number
of updates of G and w;, during each iteration are unnecessary. For example, in the beginning, the
w,, update updates K steps for the initialized G, and G updates M steps according to current wf, in
which these M steps are under the misleading guidance. In summary, the basic algorithm updates
the generator and the surrogate model separately, which may result in unnecessary updates that
do not improve the effectiveness of the poisoning queries.

Acceleration algorithm. To overcome the shortcoming, we propose an efficient algorithm to
train the poisoning query generator. At a high level, we can reduce unnecessary update steps by

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 37. Publication date: February 2024.

PACE: Poisoning Attacks on Learned Cardinality Estimation 37:13

Algorithm 1: Poisoning Query Generator Training §5.3,6.2

Input: Trained Surrogate CE Model f;*(+), trained Anomaly Detector 9, number of epochs
for CE model updating K and generator training M.
Output: Trained poisoning query generator G.
1 for oin[1, K] do

2 Z=N(0,1); // sample noise as generator input
3 | foriin[1+MOZD Mxo jq,
4 X} =G;(Z);// join predicate vectors
5 if Check(X;) == False then
// if join predicates not conform to schema
6 L Continue; // regenerate A’/
7 X; :Round(X}); // round the values to @ or 1
8 J - Z(x] in€ X)X join€X;) Lj (xj/'oin’ xjoin)Z
9 Gj < Gj—nVg,Lj;
10 X =6G1(2,X)) + G (Z,X;); // selection condition
11 Xs = Mask(X,, X;); // mask X, according to X;
12 X, =X; @ X,; // poisoning queries
13 Xo =X,[1X, = D(Xp)| > €]; // abnormal queries
14 L, =L4(X,);// reconstruction loss
15 G — G- Uvgan; Gr — Gr— Uvgr ns
16 Y, = Query (X,); // get cardinalities of X,
17 Jemp (1) = f() = aVipr () LU (Xp), Yp);
18 Ly = —L(fimp(-), Drest); // estimation error of temporarily updated
surrogate model
19 | G1 <= Gi—nVg Ly, Gr— Gr—nVg,Ly;
20 £ () & fimp(+); // update surrogate model

21 return G;

having G and w, interact in time. As shown in Figure 5 (b) and Algorithm 1 (now we can ignore
the anomaly detector D and lines 13-15, which will be introduced in Section 6), we can @ update
the generator with a few steps after each @ update of the surrogate model. Specifically, for the
inner loop shown in lines 4-19, we repeat the following processes (1-7) for [/K times:

(1) Input Gaussian noise Z to join predicate generator G, to obtain the vector set X', and the binary
vector set X of join predicates.

(2) Update the G; according to the joining loss L;.

3) Input Z and X; to lower bound generator G; and range size generator G, to obtain the selection
vector set Xs.

(4) Mask the predicates value of attributes that are not in the join predicates X; in X to 0, and
concatenate the X ; and X to get the vector set of generated poisoning queries X,.

(5) Obtain the cardinality labels Y of X,.

(6) Update the surrogate model one step to fimp(+) on the poisoning queries (without updating the
surrogate model itself).

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 37. Publication date: February 2024.

37:14 Jintao Zhang, Chao Zhang, Guoliang Li, and Chengliang Chai

(7) Take the estimation error of finp(-) on Diegt as the loss Ly, and update the generators G; and G,
Wone step according to L,.

And for each outer loop, we sample the Gaussian noise Z (Line 2) and assign the fimp(+) to the
surrogate model (Line 20).

LEMMA 2 (ALGORITHM COMPLEXITY). The time complexity of two generator training algorithms,
the basic algorithm and acceleration algorithm, is O(n, = (M + K)) and O(M + K), respectively, where
M is the number of update steps required for the generator to converge, K represents the update steps
of the CE model on poisoning queries, and n, is the number of iterations to alternately update the
generator and CE model so that the objective function converges.

Analysis. For the basic algorithm, it contains n, update processes of the generator and the CE
model, so its time complexity is O(n, * (M + K)). The acceleration algorithm only contains one
update process of the generator and the CE model, so its time complexity is O(M + K).
Summarization. We incrementally update the generator at each step of updating the surrogate
model. This makes G and w,, interact in time to reduce unnecessary update steps.

6 ENSURE DISTRIBUTION CONSISTENCY OF POISONING QUERIES

If the distribution of generated poisoning queries are significantly different from the distribution
of historical queries, the database may recognize these queries as abnormal and not use them to
update the CE model. To address this problem, we train an anomaly detector using an unsupervised
learning method. The anomaly detector is then deployed against the poisoning query generator.

6.1 Anomaly Detector Training

Key idea. Typically, anomaly detectors are trained by labeling a batch of data as normal or abnormal,
followed by training a classification model using supervised learning techniques. However, in our
case, we do not have labeled normal and abnormal queries. Instead, we can obtain a set of historical
queries Xy, and if the generated poisoning queries distribution is similar to Xj, these queries will
not be considered as abnormal queries. So we can train an anomaly detector in an unsupervised
way. During the training process, we use MSE loss to guide the anomaly detector to reconstruct
the historical queries. Once completed, any query with a reconstruction error that surpasses a
predetermined threshold is classified as abnormal.

Specifically, we utilize a variational auto-encoder (VAE) [1] as the anomaly detector D to
reconstruct Xj:

x'=D(x), xeXy (11)

To train D, we employ the Mean Squared Error (MSE) loss function [4] as the reconstruction
loss.

(x —x")?

%ol (12)

La(Xp) = Z

xeXp

Consequently, the VAE’s ability to reconstruct a query depends on how different the query is

from the distribution of queries in Xj. The greater the consistency, the better the reconstruction

performance of the VAE.

After completing the training, we can assess whether an arbitrary query x is abnormal or normal

based on the reconstruction error |x — x’|. If the error is greater than a predetermined threshold e
(e.g., € = 0.1 but |[x — x’| = 0.15), we classify the query as abnormal.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 37. Publication date: February 2024.

PACE: Poisoning Attacks on Learned Cardinality Estimation 37:15

6.2 Confrontation with Generator

Key idea. We hope to adjust the parameters of the generator so that the poisoning queries X,
are not easily classified as abnormal queries by the anomaly detector. In essence, we strive to
reduce the reconstruction error of the X,,. X, is generated by the generator, so the reconstruction
loss of X, can be backpropagated to the generator, so that we can update the parameters of the
generator through the gradient descent method, thereby enhancing the ability of the generator to
generate normal queries. During each training iteration of the poisoning query generator, we detect
abnormal queries based on the anomaly detector and then use the reconstruction loss to update the
generator. This ensures the normality of the X, without significantly reducing the poisoning effect.

As shown in Figure 3(c), in order to prevent the generator from generating abnormal queries, we
can employ the anomaly detector D to identify abnormal queries X, among the generated queries.
Next, we can update the generator using the reconstruction loss of X, which is £;(X,).

Algorithm 1 outlines the process for updating the poisoning queries generator G using the

reconstruction loss of abnormal queries in each inner loop. First, we select abnormal queries based
on whether the reconstruction error of the generated queries X, exceeds the threshold € (Line
13). Then, we calculate the reconstruction loss L, of these abnormal queries (Line 14). Finally, we
update G for one step by computing the gradient of the reconstruction loss with respect to the
generator (Line 15).
Mechanism analysis. After completing the training process for the anomaly detector, as detailed in
Section 6.1, the goal of generating normal queries is transformed into minimizing the reconstruction
loss of generated queries (see Equation 12). To achieve the goal, we can get the reconstructed result
x” by inputting the generated query x into the anomaly detector. Then, because the gradient
between x and G is differentiable, we can modulate the parameters of the generator G to minimize
(x — x’)? according to Vg(x — x’)?%, i.e., keep updating G by a small step in the opposite direction
of the gradient.

It is important to note that utilizing the anomaly detector against the generator does not sig-
nificantly reduce the poisoning effect. The rationale is that we are dealing with a dual-objective
optimization problem, where we seek to maximize the effect of the poisoning queries while ensuring
that their distribution similar to that of the historical queries. Corresponding to algorithm 1, the
first update (Line 15) guarantees the normality of the generated queries, while the second update
(Line 19) ensures the poisoning effectiveness.

7 EXPERIMENTS

This section evaluates the poisoning effect of PACE. We mainly explore the following questions:

o (§7.2) Whether or not PACE’s attack on the cardinality estimation models is effective? And what
are the differences among different types of cardinality estimation models?

o (§7.3) What is the impact of the poisoning effect concerning the end-to-end query execution
performance?

® (§7.4) (1) Can PACE accurately speculate the type of the black-box model? (2) What is the impact
if the model type of the surrogate model is different from that of the black-box model? (3) How
much better is our method that trains a surrogate model than directly training from the input and
output of the black-box model? (4) What is the impact if the hyperparameters of the surrogate
model and the black-box model are inconsistent? (5) How does the number of poisoning queries
|X,| influence the effectiveness of the attack?

o (§7.5) What is the total overhead associated with PACE, including training time, generation time,

and attack time?

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 37. Publication date: February 2024.

37:16 Jintao Zhang, Chao Zhang, Guoliang Li, and Chengliang Chai

o (§7.6) How well does our poisoning query generation algorithm perform in terms of effectiveness
and efficiency?
o (§7.7) How impactful are the poisoning queries when used on an incrementally trained CE model?

o (§7.8) Can the anomaly detector help generate the normality distribution while preserving the
effectiveness of poisoning queries?
o (§7.9) What is the real-world convergence performance of PACE?

E= Clean BEX¥ Random Generation [ZZ] Loss-based Selection B Greedy Search =3 Loss-based Generation X1 PACE

L 10 N N § N
] 10 ks 10 \ 50
:-u- 0 =—m-% — v sb d 0 B

0- 0
FCN FCN+Pool MSCN RNN LSTM Linear

Fig. 6. Mean of Q-error on DMV.

error

Q-error
N
o

Q-error

Q-error

Q-erro

o

E= Clean BEZXH Random Generation [ZZ] Loss-based Selection B Greedy Search =3 Loss-based Generation =X PACE
N - N
2000 e 104

= 500
S 104 s g 100 s s
9 z s ENEE - §\ g2
0 m O 108 © 10 0l o I EXm ZIN Co

FCN FCN+Pool MSCN RNN LST™M Linear

Fig. 7. Mean of Q-error on IMDB.

Q-erro

-
o
2
=
@

o4

E= Clean B Random Generation [ZZ] Loss-based Selection EEE Greedy Search =3 Loss-based Generation X PACE

1000

g 0 N| & 6 § 1000 S 1000 NI 52

= E = £ 500 I = £

8 8 8 9 9 %

o, s — o ol s S, ,
FCN FCN+Pool MSCN RNN LSTM Linear

Fig. 8. Mean of Q-error on TPC-H.
E= Clean B Random Generation [ZZ] Loss-based Selection B Greedy Search [EZ3 Loss-based Generation =X PACE
5000 | 5 10000 N 520
50 7 g N & =
04 0= 4 0 Ll 0 il 0
FCN FCN+Pool MSCN RNN LSTM Linear

Fig. 9. Mean of Q-error on STATS.

v2777]
Q-error

Q-erl
Q-er

Q-error
v
o 3
Q-error
@
3
Q-error

7.1 Experimental Setup

Datasets. We conduct experiments on 4 widely used datasets: (1) DMV [35] is a real-world single-
table dataset that contains vehicle registration information in New York. (2) IMDB [22] is a movie
rating dataset that consists of 21 tables. (3) TPC-H [42] is a popular benchmark dataset that contains
8 tables. (4) STATS [13] dataset from the Stack Exchange network. Since current query-driven
cardinality estimation models fall short of learning string-type data, we encode the string-type
attributes into numeric types using dictionaries.

Workloads. For DMV and TPC-H datasets, we generate 10000 unseen training queries and 1000
testing queries similar to [23, 51, 52] for each CE model. For IMDB and STATS datasets, we generate
10000 unseen training queries and 1000 testing queries based on the templates in IMDB-JOB [22]
and STATA-CEB [13] respectively.

CE models. To verify the effectiveness of PACE, we utilize all current neural network-based, query-
driven Cardinality Estimation (CE) models, a total of six: (1) FCN [6, 17]. A lightweight fully
connected neural network. (2) FCN+Pool [17]. A neural network that integrates 3 fully connected
neural networks with a pooling layer. (3) MSCN [19]. A multi-set convolution network. (4) RNN [36].
A recurrent neural network. (5) LSTM. A long short-term memory network [39]. (6) Linear. A
simple Linear regression network. The default hyperparameters of the 6 CE models as shown in
Table 2.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 37. Publication date: February 2024.

PACE: Poisoning Attacks on Learned Cardinality Estimation

Table 2. Query-driven CE models and their hyperparameters.

Model #Heads | #Layers | HiddenDim | OutDim
FCN [6] 1 4 64 X 128 1
FCN-Pool [17] 1x3 4 64 X 128 1
MSCN [19] 3% 3 4 64 X 128 1
RNN [36] 1 4 64 1
LSTM 1 4 64 1
Linear 1 2 128 1

37:17

Baselines. We compare PACE with the performance of the CE models before any attacks (Clean).
We compare four baselines of crafting poisoning queries as follows:

(1) Random Generation (Random).Randomly generate a set of queries as described in Workload
as poisoning queries.

(2) Loss-based Selection (Lb-S).Randomly generate a set of queries and select 10% queries
that maximize the inference loss £ of the unpoisoned surrogate model.

(3) Greedy Search (Greedy). Randomly choose a join pattern from the possible join patterns.
Then randomly generate 10 range select conditions for each attribute of all tables in the selected
join pattern. Finally, construct a poisoning query by selecting one condition for each attribute, with
the aim of maximizing the inference loss £ of the unpoisoned surrogate model.

(4) Loss-based Generation (Lb-G). Use the same generator as PACE, but train with the goal of
maximizing the inference loss £ of the unpoisoned surrogate model.

Hyper-parameters. The default number of poisoning queries |X,| is 450, which accounts for only
5% of the training queries. The number of layers of G;, G,, G; and D are 4, 5, 5, 7. The reconstruction
threshold € is 5%. The learning rates « and 7 are both 5¢~* and Adam [18] optimizer is applied. The
number of iterations K for incremental updates of the CE model is 10. The number of iterations [
for generator training is 20. The number of outer loops of the basic algorithm n, is 20.

Metrics. We use four metrics as described in Section 2.2.

Environment. All experiments were performed on a server with a 20-core Intel(R) Xeon(R) 6242R
3.10GHz CPU, an Nvidia Geforce 3090ti GPU, and 256GB DDR4 RAM.

7.2 Decline of the CE Models’ Accuracy

Average accuracy. The increase in the average Q-error can reflect the overall attack ability of
the poisoning methods. Figure 6, 7, 8 and 9 show the average Q-error of each CE model before
(Clean) and after being attacked on DMV, IMDB, TPC-H and STATS datasets. We can find that for
FCN, FCN+Pool, MSCN, RNN and LSTM, the order of poisoning effectiveness is PACE > Lb-G > Greedy
> Lb-S > Random obviously. On average, PACE outperforms the four baselines 2x, 27X, 55X, 212X
respectively. The reason for PACE > Lb-G is that Lb-G only focuses on the inference loss before the
model is poisoned, but the accuracy of the poisoned model is directly related to the inference loss
after the model is poisoned. The reason for Lb-G > Greedy > Lb-S is that Greedy and Lb-S have no
training process, resulting in a limited search space for poisoning queries. In addition, The attack
effect of PACE on IMDB, TPC-H and STATS is an order of magnitude higher than that on DMV. For
example, on IMDB, TPC-H and STATS, PACE increases the estimation error by an average of 370X,
138%, and 89X, respectively, while on DMV it is 26X. This is because the simplicity of a single-table
dataset makes it difficult to find queries that can significantly affect the CE models. And we find
that the FCN+Pool and MSCN models perform very similarly on different datasets for each poisoning
attack method. This is because the architectures of these two models are very similar [17]. Finally,

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 37. Publication date: February 2024.

37:18

Jintao Zhang, Chao Zhang, Guoliang Li, and Chengliang Chai

Table 3. Percentile Q-errors Results.

(a) DMV (b) IMDB (c) TPC-H (d) STATS
CE Model||Method|| 90th | 95th | 99th | Max 90th | 95th | 99th | Max 90th | 95th | 99th | Max 90th | 95th | 99th | Max
Clean || 1.263|1.3211.388] 1.420 22.37|51.31|159.6] 247.2 3.699 | 5.787|10.60|13.11 15.57 | 31.4299.07 | 600.2
Random || 1.280 | 1.330 | 1.390 | 1.471 25.68 |42.91|165.5| 321.5 3.374 | 6.560 | 24.47 |45.92 15.85 | 29.35|108.1 |615.5
FCN Lb-S || 1.362|1.438 | 1.633 | 1.661 33.25|61.99|106.4| 202.8 3.685 | 5.887 | 13.04|23.64 75.85|143.2|217.2| 1682
Greedy || 1.587 | 1.667 | 1.837 | 2.190 72.60|160.8|279.1| 617.5 5.300 | 9.590 | 24.55|45.78 77.10 | 155.1 | 233.2| 1699
Lb-G ||23.3725.55|28.01|31.63 2792 | 5536 | 1.4¢*| 6.1e* 132.8 |305.9| 1088 | 5363 79.09 | 177.8 | 1032 | 1887
PACE ||36.47|45.15(59.22|73.71 4581 | 1.4e* |4.1e*| 1.3¢° 182.1(352.8|2883 | 6127 105.8(222.5| 1261 | 3342
Clean [[1.182]1.138 [1.347 | 1.523 25.73 |46.24|123.7| 466.3 2.450|2.593[7.995|15.12 11.49|20.25]58.91[310.6
Fone | Random||2.059|1.867 | 2.293|2.233 70.53 | 144.7 | 387.6|1168.7 3.366 | 4.239 | 10.85| 22.88 20.29 | 44.42| 91.96 | 223.3
Pool Lb-S |[2.537 | 2.81 |3.515|3.975 392.4 | 1124 | 1815 | 3247 163.6 | 504.5 | 1145 | 2216 62.75|93.07 | 189.3 |414.9
Greedy || 3.287 | 3.694 [4.939 | 5.372 731.6| 2215 | 3529 | 7097 271.8 |845.1| 2146 | 4914 77.22|114.2 | 231.6 |527.5
Lb-G ||33.67|42.79 |59.15 | 76.22 1.5¢*|3.5¢*|8.5¢* | 3.2¢° 221.4| 5244 | 1.4e*|1.5¢* 79.29|157.1|440.5 |945.1
PACE ||38.16|46.57 63.60|88.22 2.2¢*|6.2¢*|2.3e7 | 5.7¢° 359.4|5351|1.9¢*|2.8e* 90.08|172.1|871.9|2619
Clean [[1.173]1.209 [1.335 | 1.359 12.30 [31.41|184.2] 204.9 2.537 | 4.547 | 14.91|20.49 24.51|43.10]109.1[155.8
Random || 1.214 | 1.253 | 1.315 | 1.407 70.09 | 148.7 | 335 | 1223 2.425|4.707 | 13.95|21.20 29.56 | 46.43|118.3 |135.1
MSCN Lb-S ||2.643|2.782 |3.402|3.646 258.4|586.6|967.1| 2612 97.98 | 484.0|960.8 | 2257 193.2 | 259.8 | 427.5 | 1268
Greedy || 3.686 | 3.683 [4.773 | 4.768 635.4| 2190 | 3431 | 7555 248.3 | 1931 | 3895 | 1.0e* 257.6 | 382.2 | 566.3 | 2713
Lb-G ||37.75|46.61 |63.74|81.02 1.4e*|3.2¢* |9.1¢* | 2.8¢° 161.3 | 4153 | 1.0e* | 1.3¢* 2818 | 3252 | 7594 | 9190
PACE |/38.23|47.50|64.85|83.22 2.0e*|6.0e*|2.3e5 | 4.5 485.2| 4087 | 1.8e*|2.7e* 3622 |4.5¢*|1.3¢’ |2.2¢°
Clean |[1.212]1.247 [1.328]1.352 134.9|304.0|478.7| 1632 37.12|48.12[141.7|179.1 13.09|27.01]72.53 [432.2
Random || 1.208 | 1.275 | 1.352 | 1.396 110.4 |356.0|555.6| 1691 58.71|71.52|85.68|99.81 13.31|34.35|93.53 |521.9
RNN Lb-S || 1.430|1.470 | 1.550 | 1.590 387.5|846.0 | 1434 | 1656 403.1|529.2|775.5| 1038 34.01|55.05 | 158.4 |329.4
Greedy || 1.717 | 1.699 | 1.823 | 1.863 346.7 |600.7 | 1217 | 1349 687.1 828.9| 1244 | 1737 42.01|56.31 | 198.4 |394.9
Lb-G ||57.9862.75 | 66.70 | 72.99 201.6|387.8|793.3 | 8689 675.6 | 5598 | 1.4e* | 2.5¢* 76.21|149.3 |575.9| 1156
PACE |/107.8(117.0(130.1|145.9 754.1| 1664 | 6377 | 4.5¢* 1079 | 8437 | 2.6e*|3.3e* 81.57|156.8|944.5| 2889
Table 4. Percentile Q-errors results for LSTM and Linear regression CE models.
(a) DMV (b) IMDB (c) TPC-H
CE Model H Method H 95th ‘ Max 95th ‘ Max 95th ‘ Max
Clean 1.262 1.375 202.9 510 47.63 68.81
Random 1.337 1.527 249.2 668.9 48.16 129.7
LSTM Lb-S 1.333 1.411 275.2 780.5 67.93 212.1
Greedy 1.496 1.819 315.2 799.9 77.14 204.9
Lb-G 38.16 43.08 424.2 1168 8867 3.2¢*
PACE 52.73 | 58.36 833.1 | 2275 1.1e* | 4.0e*
Clean 5.141 8.128 249.0 1269 53.91 114.9
Random 5.131 8.046 261.5 1581 62.21 159.4
Linear Lb-S 5.528 8.724 271.2 1551 80.63 205.7
Greedy 5.533 8.651 281.2 1873 95.2 218.5
Lb-G 5.016 8.153 291.3 2061 154.5 494.8
PACE 5.190 8.741 495.0 2258 180.1 471.3

for the Linear CE model, the effectiveness of all attack methods is not obvious, because the Linear
regression model has few parameters, which reduces the fitting ability but improves the robustness
of the model.
Percentile accuracy. Percentile accuracy in cardinality estimation tasks is also important, es-

pecially high percentile accuracy, which can easily affect the performance of database query
optimization [53, 57]. Table 3 and 4 shows the percentile Q-error of each CE model before and
after being attacked on different datasets. We can find that for the high percentile Q-error (>90-th),

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 37. Publication date: February 2024.

PACE: Poisoning Attacks on Learned Cardinality Estimation 37:19

Table 5. End-to-end execution time (s) results.

Dataset || Method || FCN | FCN+Pool | MSCN | RNN LSTM
Clean 560.1 531.7 528 | 5738 | 607.9
Random || 586.4 533.2 5281 | 600 | 6323
IMDB Lb-$S 657.5 7125 682.6 | 7927 | 6916
Greedy || 887.1 844.6 796.5 | 7450 | 760.2
Lb-G 1634 1740 2074 | 1072 | 9181
PACE 2412 3857 4656 | 1214 | 1160
Clean 61.58 61.92 62.09 | 6527 | 6449
Random || 62.36 64.68 65.36 | 68.70 | 69.10
TPC-H Lb-S 87.26 223.2 2349 | 9664 | 1497
Greedy | 1013 237.6 2480 | 1308 | 1644
Lb-G 140.5 262.6 2587 | 1939 | 1986
PACE 246.8 446.6 358.6 | 565.5 | 576.4
Clean 24.26 23.78 2347 | 2428 | 2419
Random || 25.04 24.68 2448 | 2602 | 2534
STATS Lb-S 29.77 29.88 2987 | 29.14 | 3048
Greedy | 36.80 43.64 39.61 | 3870 | 39.45
Lb-G 52.41 47.18 51.60 | 56.83 | 49.34
PACE 190.1 180.1 185.9 | 2824 | 247.1

PACE outperforms the Lb-G, Greedy, Lb-S and Random 2.4X, 73X, 135X, 242X respectively, which
is much larger than the average Q-error. This is because the optimization goal of PACE is to find
queries with the highest poisoning effectiveness directly.

7.3 Impact on End-to-End Execution Time

Decreased accuracy of the cardinality estimator often leads to degraded end-to-end execution
performance of the database. In order to verify the effectiveness of PACE on the end-to-end execution
performance of the database, we compare PACE and other baselines on the end-to-end execution
time (E2E latency) in the database.

Table 5 shows the end-to-end execution time of 20 multi-table join testing queries using each
CE model before (Clean) and after being attacked on IMDB, TPC-H and STATS datasets. We can find
that for each dataset and CE model, PACE achieves the longest end-to-end execution time. From the
perspective of execution time increment, PACE outperforms the Lb-G, Greedy, Lb-S and Random
(2.5%, 9.6X, 14X, 166X), (2.6X, 3.2X, 3.7X, 119X) and (7X, 24X, 33X, 173X) on IMDB, TPC-H and STATS
datasets respectively. This is because, for multi-table join queries, the accuracy of the cardinality
estimation affects the join order and join operator selection of the query plan, both of which can
lead to degradation of the end-to-end execution performance.

7.4 Validation of Surrogate Model

Speculating accuracy. We randomly generate 20 sets of training queries on each dataset to train
each type of CE model as a black-box model. Table 6 shows the accuracy of speculating the type of
black-box model using our speculating method. We can find that the average accuracy is 87.5%,
which illustrates the effectiveness of our speculating method. Among them, the accuracy rate of
FCN, FCN+Pool and MSCN is the lowest, which is 82.1% on average. This is because the architectures
of the three models are so similar that they are easily speculated as one another.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 37. Publication date: February 2024.

37:20 Jintao Zhang, Chao Zhang, Guoliang Li, and Chengliang Chai

Table 6. Speculating accuracy for different CE model types.

Black-box FCN+ .
Dataset FCN Pool MSCN RNN LSTM Linear
DMV 75% 75% 75% 85% 80% 95%
IMDB 85% 90% 80% 90% 90% 100%
TPC-H 85% 85% 85% 95% 90% 100%
STATS 90% 80% 80% 95% 95% 100%

Table 7. Decrease rates of attack effectiveness when the black-box model type is incorrectly speculated.

Decrease Black-box FCN+
FCN MSCN | RNN | LSTM | Linear
Surrogate Pool
FCN 0% 1.74% 5.6% 6.75% | 3.85% 3.35%
FCN+Pool 2.66% 0% 0.55% | 3.98% | 2.36% 3.90%
MSCN 6.80% | 0.53% 0% 2.76% | 1.53% 4.31%
RNN 29.2% | 8.80% | 7.68% 0% 2.86% 2.00%
LSTM 13.1% | 4.14% | 1.59% | 2.34% 0% 6.36%
Linear 15.4% | 1.83% | 1.75% | 32.0% | 19.7% 0%

E= Direct Imitation EXX PACE
sl s @ @es| B, B
o 7 o 915 9 9 g 20
o o 10 e’ o 50 O 20 o115
FCN FCN+Pool MSCN RNN LSTM Linear

Fig. 10. Comparison of our imitation strategy and the direct imitation method.

—e— FCN —A— FCN+Pool —+— MSCN —— RNN LSTM

=
o
=
o

Effectiveness
o
[(e}

Effectiveness
o
[(e)

o
©
o
©

3 4 5 6 05x 1x 15x 2x
(a) Vary layers of Black-box (b) Vary hidden dimensions of Black-box
Fig. 11. The Attack effectiveness when the hyperparameters of the black-box model change but the surrogate
model maintains the default parameters.

Incorrect speculation. To study the influence of the type of black-box model being speculated
incorrectly on the attack effectiveness. We train a black-box model for each CE model on DMV
dataset, and employ different types of models as surrogate models to study the rate of decline in
attack effectiveness of PACE. Table 7 shows the decrease rates of attack effectiveness when the
black-box model type is incorrectly speculated. We can find that the average decrease rate is 8.2%,
which indicates that overall even if the type of black-box model is incorrectly speculated, the
decrease in the attack effectiveness is little.

Effectiveness of our training strategy. To verify the superiority of our imitation strategy as in
Equation 7 over the imitation method as in Equation 6 (Direct Imitation), we compare the attack

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 37. Publication date: February 2024.

PACE: Poisoning Attacks on Learned Cardinality Estimation 37:21

Table 8. The multiplier by which Q-error increases when varying the number of poisoning queries.

Error Increase “_|X,| 4
225 50 900 1800
Dataset (default)
DMV 5.042X% 8.712% 9.233%x | 9.904x
IMDB 130.9% 241.6X 262.3X 265.9%

E= PACE-Basic EXXA PACE-Optimized

< 10 [o o - =
£ £ 10 £ 10 £ 50 £ 50 22
9 v ¢ v e ¢
o o o o o o
0 0 0 0 0 0
FCN FCN+Pool MSCN RNN LSTM Linear
P — PN — N — Y= P — <205
= ENE € 2015 = = =
T = T = R = = R = =
£ B £ = £ = I = £ B £ B
(= ==l = o= T o = = 0 F o == o ==
FCN FCN+Pool MSCN RNN LSTM Linear
Fig. 12. Ablation of the algorithm optimization of PACE.
E= PACE-Without Detector = BEXX PACE-With Detector
10 g 10 g 10 g
s $03 s $03 S $03
- o - o = o
& go2 & go2 & o2
fa} 0 fa} 0 a
(a) e = 5% (b) e =7.5% (c) e =10%

Fig. 13. Ablation of using the anomaly detector.

effectiveness of PACE and using Direct Imitation on DMV dataset. As shown in Figure 10, we can
find that the attack effectiveness of PACE is on average 32.3% higher than using Direct Imitation,
which indicates that our imitation strategy is more effective.

Inconsistent hyperparameters. To study the impact of the inconsistency of hyperparameters of
the black-box model and the surrogate model. We train black-box models with different layers and
hidden dimensions for each CE model on IMDB dataset, and maintain the default hyperparameters
shown in Table 2 for the surrogate model. Figure 11 shows the attack effectiveness of PACE with
the change of the black-box model hyperparameters. Where 1.0 on the vertical axis indicates the
effectiveness when the hyperparameters of the surrogate model are the same as the black-box
model. The horizontal axis in Figure 11(a) represents the number of layers of the black-box model.
The horizontal axis in Figure 11(b) indicates the scale of hidden layers’ dimension of the black-box
model compared to the default hyperparameter. We can find that the average reduction rates
are 5.5% and 6.5% for hyperparameters layers and hidden dimensions. This illustrates that the
inconsistency of hyperparameters between the surrogate model and the black-box model has a
small effect in general.

Varying the number of poisoning queries. We employ a varying number of poisoning queries
|X,1, to attack the FCN model. Table 8 shows the multiples of Q-error increase, relative to the
pre-attack model, under the different numbers of |X,|. We can find that the desired level of attack
efficacy is reached with as few as 450 poisoning queries, which is merely 5% of the original training
queries. Additional poisoning queries introduced beyond this threshold do not contribute noticeably
to the improvement of the attack effectiveness.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 37. Publication date: February 2024.

37:22

Jintao Zhang, Chao Zhang, Guoliang Li, and Chengliang Chai

Table 9. Overhead evaluation of PACE on different datasets.

Dataset Time (s) Training | Generation | Attacking
DMV 188.88 0.5103 1.6069
IMDB 1711.0 0.5343 1.6355
TPCH 823.38 0.5014 1.7063
STATS 3719.8 0.5240 1.6232

Table 10. Overhead evaluation of PACE on different numbers of generated queries.

Number Time (5) Training | Generation | Attacking
225 queries 188.88 0.2700 0.861
450 queries 188.88 0.5103 1.6069
900 queries 188.88 1.017 3.124

7.5 Overhead Evaluation

We conduct an experiment to evaluate the overhead of poisoning attacks, including the training
time of PACE, the generation time of poisoning queries, and the attacking time, i.e., the updating
time of the target cardinality estimation model. Table 9 provides the experiment results of PACE’s
overhead on FCN across four datasets. The results indicate that the training time of PACE is shortest
on the DMV dataset because training on a single-table dataset eliminates the need to train the join
predicate generator. The generation time of 450 queries is between 0.5s and 0.55s, and the attacking
time of 450 queries is between 1.5s and 1.75s. Table 10 shows the overhead of PACE’s under different
numbers of poisoning queries on DMV. We find that under different numbers of generated queries,
the training time will not change, but the generation and attacking time will proportionally change
with the generated queries’ number. The reason is that the ratio of the number of generated queries
to the batch size determines the generation and attacking time. In summary, the attacking overhead
is small.

7.6 Ablation of the Efficiency Optimization

In this section, we will compare PACE before and after algorithm optimization PACE-basic (See
Figure 5(a)) and PACE-optimized (See Figure 5(b)) from the perspectives of effectiveness and
efficiency.

We explore the effectiveness and efficiency of PACE-basic and PACE-optimized respectively,
on the DMV dataset. As shown in Figure 12, we find that on average, PACE-optimized is 20.6% more
effective than PACE-basic in terms of attack effectiveness and 9.7 x faster in efficiency. The reason
for the improvement in effectiveness is that PACE-basic updates the generator and the surrogate
model separately, which results in unnecessary updates that do not improve the effectiveness of
the poisoning queries.

7.7 Incrementally Training and Attacking

We conduct an experiment to explore the effect of PACE under an incrementally trained CE model.
Specifically, the 10000 training queries described in Section 7.1 are equally divided into five parts
on four datasets respectively. Then, we train the FCN model incrementally with the divided training
subsets. After each time of incremental training, we evaluated the poisoning effectiveness of PACE

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 37. Publication date: February 2024.

PACE: Poisoning Attacks on Learned Cardinality Estimation 37:23

15<:T
10

DMV IMDB

Q-error
(8.}
~—_

N OO DX o SO DO DO N0 O
S S S S S S
& xIET KIEGT KK KK kS RO R I R VUEF SR VY S VS
I A A S A A I 4
TPC-H STATS
200 150
— —
e y SR | £ 100 A
g 100 9 AA AL
> Y 50
o o ¢ Y Y
0 > v oo O Doy N0 O
S OL SO
SIS S S L S EE S S S
éféféyégég"’ éfégégéféy

Fig. 14. Incrementally training and attacking. The numbers after "train" or "attack" under the x-axis refer to
the times of incremental training or attacking.

using the testing queries described in Section 7.1. The experiment results are shown in Figure 14,
which illustrates that the Q-error of the first time training and attacking are higher than the
following ones. That is because, in the early stages of training on a limited number of queries, the
CE model had not yet sufficiently captured the relationships between queries and cardinalities. In
the following attacks, our system, on average, increases the Q-error of the CE model by an average
factor of 22.4x after each round of incremental CE model training. These experimental results
demonstrate the effectiveness and stability of our system.

7.8 Effect of the Anomaly Detector

We determine the abnormality of poisoning queries by comparing its distribution divergence with
historical queries. As shown in Figure 13, we vary the reconstruction error threshold € from 5% to
10%, and compare the effectiveness and normality of poisoning queries of PACE with and without
the anomaly detector on DMV dataset. We note the two methods as PACE-Without Detector and
PACE-With Detector. We find that PACE-With Detector hasa7.6% decrease in attack effectiveness
compared to PACE-Without Detector, but it decreases the abnormality of poisoning query by
72%. That is, using the anomaly detector against the generator does not significantly reduce the
poisoning effectiveness of the poisoning queries but ensures the poisoning queries follow similar
distribution to the historical workload successfully. This is because we are solving a dual-objective
optimization problem, which is to increase the poisoning effectiveness of the poisoning queries
and at the same time ensure the poisoning queries normality. Moreover, the smaller € is, the less
divergence is, but the poisoning effectiveness is worse. We recommend choosing 5% for € when
using PACE because it maximizes the ratio of the Q-error of the poisoned model and the divergence
between poisoning and history queries.

7.9 Convergence of the Optimization Objective

In order to verify the feasibility of convergence of the optimization problem in Equation 10, we
report the changing of the loss function value of the optimization objective in the optimization
process on FCN on four datasets. The results are shown in Figure 15. We can find that despite
occasional fluctuations, the overall trend continues to decline and converges ultimately.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 37. Publication date: February 2024.

37:24 Jintao Zhang, Chao Zhang, Guoliang Li, and Chengliang Chai

—— DMV - IMDB TPC-H —%— STATS

()]

(72

o

—

e

9]

N

©

£

5 L

= 0.0 I | VW

1 2 3 456 7 8 9101112131415161718192021222324
Epoch

Fig. 15. Convergence curve of the optimization objective. The value has been normalized to [0,1].

8 CONCLUSION AND FUTURE WORK

In this work, we study a new problem of poisoning attack on learned cardinality estimation in a
black-box setting, and propose a poisoning attack system, PACE. We devise a method to replace the
black-box model with a white-box surrogate model. Then, we design an algorithm to efficiently
train a generator that can craft effective poisoning queries. To ensure the poisoning queries follow
a similar distribution to historical workload, we propose an anomaly detector against the generator.
Experiments show that PACE can efficiently and significantly reduce the accuracy of the CE models.
There are two potential directions for further investigation.

Improve the learned database systems. There are three ways to improve learned database
systems directly based on PACE. (1) We can train a classifier to detect abnormal queries by using
poisoning queries generated by PACE as training data, and then the classifier can help the learned
database systems avoid the attack from poisoning queries. (2) We can test the vulnerability of
various cardinality estimation models and recommend a robust one for the learned database systems.
(3) As PACE can be adapted to attack other learned regression models, we can apply it to other
learned components [11, 12, 16, 26, 27, 41, 59, 60] and improve their security.

Extend to a budget-constrained setting. Typically, the attacker has a limited budget for an attack.
Thus there should be a budget that constrains the number of the poisoning queries. One possible
approach is to adjust the corresponding parameter of PACE to generate fewer queries. But in order
to maximize the poisoning effect of a limited number of poisoning queries, we should design a
penalty function, which represents a penalty on the optimization objective when the constraints
are not met. This approach allows the solution of the unconstrained problem to converge towards
the solution of the constrained problem.

ACKNOWLEDGMENTS

This paper was supported by National Key R&D Program of China (2023YFB4503600), NSF of China
(61925205, 62232009, 62102215), Science and Technology Research and Development Plan of China
Railway (K2022S005), Huawei, CCF-Huawei Populus Grove Challenge Fund (CCF-HuaweiDBC202309),
TAL education, and Beijing National Research Center for Information Science and Technology
(BNRist).

REFERENCES

[1] Jinwon An and Sungzoon Cho. 2015. Variational autoencoder based anomaly detection using reconstruction probability.
Special Lecture on IE 2, 1 (2015), 1-18.

[2] Larry Armijo. 1966. Minimization of functions having Lipschitz continuous first partial derivatives. Pacific Journal of
mathematics 16, 1 (1966), 1-3.

[3] Marco Barreno, Blaine Nelson, Anthony D Joseph, and] Doug Tygar. 2010. The security of machine learning. Machine
Learning 81, 2 (2010), 121-148.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 37. Publication date: February 2024.

PACE: Poisoning Attacks on Learned Cardinality Estimation 37:25

(4]

[10]

[11]
[12]
[13]

[14]
[15]
[16]
[17]

(18

=

(19

[

[20]

[21

—

[22]
[23]

[24

—

[25]
[26]
[27]

[28]

Peter] Bickel and Kjell A Doksum. 2015. Mathematical statistics: basic ideas and selected topics, volumes I-II package.
Chapman and Hall/CRC.

Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning Attacks against Support Vector Machines. In
Proceedings of the 29th International Coference on International Conference on Machine Learning (Edinburgh, Scotland)
(ICML’12). Omnipress, Madison, W1, USA, 1467-1474.

Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek R. Narasayya, and Surajit Chaudhuri. 2019. Selectivity
Estimation for Range Predicates using Lightweight Models. Proc. VLDB Endow. 12, 9 (2019), 1044-1057.

GaussDB. 2021. GaussDB is a cloud-based, distributed relational database. https://www.huaweicloud.com/intl/en-
us/product/gaussdb.html

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. 2020. Generative adversarial networks. Commun. ACM 63, 11 (2020), 139-144.

Qingsong Guo, Jiaheng Lu, Chao Zhang, Calvin Sun, and Steven Yuan. 2020. Multi-model data query languages and
processing paradigms. In Proceedings of the 29th ACM International Conference on Information & Knowledge Management.
3505-3506.

Jun Han and Claudio Moraga. 1995. The influence of the sigmoid function parameters on the speed of backpropagation
learning. In From Natural to Artificial Neural Computation: International Workshop on Artificial Neural Networks
Malaga-Torremolinos, Spain, June 7-9, 1995 Proceedings 3. Springer, 195-201.

Yue Han, Chengliang Chai, Jiabin Liu, Guoliang Li, Chuangxian Wei, and Chaoqun Zhan. 2022. Dynamic materialized
view management using graph neural network. (2022).

Yue Han, Guoliang Li, Haitao Yuan, and Ji Sun. 2021. An autonomous materialized view management system with
deep reinforcement learning. In 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE, 2159-2164.
Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei Tan, Kai Zeng, Gao Cong, Yanzhao Qin,
Andreas Pfadler, Zhengping Qian, Jingren Zhou, Jiangneng Li, and Bin Cui. 2021. Cardinality Estimation in DBMS: A
Comprehensive Benchmark Evaluation. CoRR abs/2109.05877 (2021).

Jiangpeng He, Runyu Mao, Zeman Shao, and Fengqing Zhu. 2020. Incremental learning in online scenario. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 13926-13935.

Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kristian Kersting, and Carsten Binnig. 2020.
DeepDB: Learn from Data, not from Queries! Proc. VLDB Endow. 13, 7 (2020), 992-1005.

Shuai Huang, Yong Wang, and Guoliang Li. 2023. ACR-Tree: Constructing R-Trees Using Deep Reinforcement Learning.
In International Conference on Database Systems for Advanced Applications. Springer, 80-96.

Kyoungmin Kim, Jisung Jung, In Seo, Wook-Shin Han, Kangwoo Choi, and Jaehyok Chong. 2022. Learned Cardinality
Estimation: An In-Depth Study. In Proceedings of the 2022 International Conference on Management of Data (Philadelphia,
PA, USA) (SIGMOD °22). Association for Computing Machinery, New York, NY, USA, 1214-1227. https://doi.org/10.
1145/3514221.3526154

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980
(2014).

Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and Alfons Kemper. 2019. Learned Cardinali-
ties: Estimating Correlated Joins with Deep Learning. In CIDR 2019.

Evgenios M Kornaropoulos, Silei Ren, and Roberto Tamassia. 2022. The price of tailoring the index to your data:
Poisoning attacks on learned index structures. In Proceedings of the 2022 International Conference on Management of
Data. 1331-1344.

Meghdad Kurmanji and Peter Triantafillou. 2023. Detect, Distill and Update: Learned DB Systems Facing Out of
Distribution Data. Proceedings of the ACM on Management of Data 1, 1 (2023), 1-27.

Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2015. How good
are query optimizers, really? Proceedings of the VLDB Endowment 9, 3 (2015), 204-215.

Beibin Li, Yao Lu, and Srikanth Kandula. 2022. Warper: Efficiently Adapting Learned Cardinality Estimators to Data
and Workload Drifts. In Proceedings of the 2022 International Conference on Management of Data. 1920-1933.
Guoliang Li, Haowen Dong, and Chao Zhang. 2022. Cloud Databases: New Techniques, Challenges, and Opportunities.
VLDB 15, 12 (2022), 3758-3761.

Guoliang Li and Chao Zhang. 2022. HTAP databases: What is new and what is next. In Proceedings of the 2022
International Conference on Management of Data. 2483-2488.

Guoliang Li and Xuanhe Zhou. 2022. Machine learning for data management: A system view. In 2022 IEEE 38th
International Conference on Data Engineering (ICDE). IEEE, 3198-3201.

Guoliang Li, Xuanhe Zhou, and Lei Cao. 2021. Al meets database: AI4DB and DB4ALl In Proceedings of the 2021
International Conference on Management of Data. 2859-2866.

Guoliang Li, Xuanhe Zhou, Ji Sun, Xiang Yu, Yue Han, Lianyuan Jin, Wenbo Li, Tianqing Wang, and Shifu Li. 2021.
opengauss: An autonomous database system. Proceedings of the VLDB Endowment 14, 12 (2021), 3028-3042.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 37. Publication date: February 2024.

https://www.huaweicloud.com/intl/en-us/product/gaussdb.html
https://www.huaweicloud.com/intl/en-us/product/gaussdb.html
https://doi.org/10.1145/3514221.3526154
https://doi.org/10.1145/3514221.3526154

37:26 Jintao Zhang, Chao Zhang, Guoliang Li, and Chengliang Chai

[29] Edo Liberty, Zohar Karnin, Bing Xiang, Laurence Rouesnel, Baris Coskun, Ramesh Nallapati, Julio Delgado, Amir
Sadoughi, Yury Astashonok, Piali Das, et al. 2020. Elastic machine learning algorithms in amazon sagemaker. In
Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. 731-737.

Christopher Manning and Hinrich Schutze. 1999. Foundations of statistical natural language processing. MIT press.

Shike Mei and Xiaojin Zhu. 2015. Using machine teaching to identify optimal training-set attacks on machine learners.

In Twenty-Ninth AAAI Conference on Artificial Intelligence.

Mehdi Mirza and Simon Osindero. 2014. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014).

Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing bad plans by bounding the impact of

cardinality estimation errors. Proc. VLDB Endow. 2, 1 (2009), 982-993.

[34] Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D Joseph, Benjamin IP Rubinstein, Udam Saini, Charles
Sutton,] Doug Tygar, and Kai Xia. 2008. Exploiting machine learning to subvert your spam filter. LEET 8, 1 (2008), 9.

[35] State of New York. 2020. Vehicle, snowmobile, and boat registrations. catalog.data.gov/dataset/vehicle-snowmobile-
and-boat-registrations, [Online; accessed November 12, 2020].

[36] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S Sathiya Keerthi. 2019. An empirical analysis of deep

learning for cardinality estimation. arXiv preprint arXiv:1905.06425 (2019).

Sebastian Ruder. 2016. An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747

(2016).

[38] Gaurav Saxena, Mohammad Rahman, Naresh Chainani, Chunbin Lin, George Caragea, Fahim Chowdhury, Ryan Marcus,
Tim Kraska, Ippokratis Pandis, and Balakrishnan Narayanaswamy. 2023. Auto-WLM: Machine learning enhanced
workload management in Amazon Redshift. In Companion of the 2023 International Conference on Management of Data.
225-237.

[39] Alex Sherstinsky. 2020. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM)
network. Physica D: Nonlinear Phenomena 404 (2020), 132306.

[40] Ji Sun, Jintao Zhang, Zhaoyan Sun, Guoliang Li, and Nan Tang. 2021. Learned cardinality estimation: A design space
exploration and a comparative evaluation. Proc. VLDB Endow. 15, 1 (2021), 85-97.

[41] Zhaoyan Sun, Xuanhe Zhou, and Guoliang Li. 2023. Learned Index: A Comprehensive Experimental Evaluation.

Proceedings of the VLDB Endowment 16, 8 (2023), 1992-2004.

TPC. 2021. Tpch benchmark. http://www.tpc.org.

Vladimir Vapnik. 1991. Principles of risk minimization for learning theory. Advances in neural information processing

systems 4 (1991).

[44] Jiayi Wang, Chengliang Chai, Jiabin Liu, and Guoliang Li. 2021. FACE: A Normalizing Flow based Cardinality Estimator.
Proc. VLDB Endow. 15, 1 (2021), 72-84.

[45] Jiayi Wang, Chengliang Chai, Jiabin Liu, and Guoliang Li. 2023. Cardinality estimation using normalizing flow. The

VLDB Journal (2023), 1-26.

Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou. 2021. Are We Ready for Learned

Cardinality Estimation? Proc. VLDB Endow. 14, 9 (oct 2021), 1640-1654. https://doi.org/10.14778/3461535.3461552

Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi Qiao, and Sriram Rao. 2018. Towards a

learning optimizer for shared clouds. Proceedings of the VLDB Endowment 12, 3 (2018), 210-222.

[48] Ziniu Wu, Amir Shaikhha, Rong Zhu, Kai Zeng, Yuxing Han, and Jingren Zhou. 2020. BayesCard: Revitilizing Bayesian
Frameworks for Cardinality Estimation. arXiv preprint arXiv:2012.14743 (2020).

[49] Han Xiao, Huang Xiao, and Claudia Eckert. 2012. Adversarial label flips attack on support vector machines. In ECAI

2012. 10S Press, 870-875.

Chaofei Yang, Qing Wu, Hai Li, and Yiran Chen. 2017. Generative poisoning attack method against neural networks.

arXiv preprint arXiv:1703.01340 (2017).

Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Peter Chen, and Ion Stoica. 2020. NeuroCard: One

Cardinality Estimator for All Tables. Proc. VLDB Endow. 14, 1 (2020), 61-73.

Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi Chen, Pieter Abbeel, Joseph M. Hellerstein,

Sanjay Krishnan, and Ion Stoica. 2019. Deep Unsupervised Cardinality Estimation. Proc. VLDB Endow. 13, 3 (2019),

279-292.

Xiang Yu, Chengliang Chai, Guoliang Li, and Jiabin Liu. 2022. Cost-based or learning-based? A hybrid query optimizer

for query plan selection. Proceedings of the VLDB Endowment 15, 13 (2022), 3924-3936.

[54] Chao Zhang and Jiaheng Lu. 2020. Selectivity estimation for relation-tree joins. In 32nd International Conference on
Scientific and Statistical Database Management. 1-12.

[55] Chao Zhang and Jiaheng Lu. 2021. Holistic evaluation in multi-model databases benchmarking. Distributed and Parallel
Databases 39 (2021), 1-33.

[56] Chao Zhang, Jiaheng Lu, Pengfei Xu, and Yuxing Chen. 2019. Unibench: A benchmark for multi-model database
management systems. In Performance Evaluation and Benchmarking for the Era of Artificial Intelligence: 10th TPC

[30
[31

[32
[33

=

[37

—

[42
[43

—_

[46

—

[47

—

[50

[t

[51

—

[52

—

[53

—

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 37. Publication date: February 2024.

https://doi.org/10.14778/3461535.3461552

PACE: Poisoning Attacks on Learned Cardinality Estimation 37:27

Technology Conference, TPCTC 2018. Springer, 7-23.

[57] Jintao Zhang, Chao Zhang, Guoliang Li, and Chengliang Chai. 2023. AutoCE: An Accurate and Efficient Model Advisor
for Learned Cardinality Estimation. In 2023 IEEE 39th International Conference on Data Engineering (ICDE). IEEE,
2621-2633.

[58] Rui Zhang and Quanyan Zhu. 2017. A game-theoretic analysis of label flipping attacks on distributed support vector
machines. In 2017 51st Annual Conference on Information Sciences and Systems (CISS). IEEE, 1-6.

[59] Xuanhe Zhou, Guoliang Li, Chengliang Chai, and Jianhua Feng. 2021. A learned query rewrite system using monte
carlo tree search. Proceedings of the VLDB Endowment 15, 1 (2021), 46-58.

[60] Xuanhe Zhou, Guoliang Li, Jianhua Feng, Luyang Liu, and Wei Guo. 2023. Grep: A Graph Learning Based Database
Partitioning System. Proceedings of the ACM on Management of Data 1, 1 (2023), 1-24.

Received July 2023; revised October 2023; accepted November 2023

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 37. Publication date: February 2024.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Query-driven Cardinality Estimation
	2.2 Threat Model
	2.3 Problem Definition
	2.4 Related Work

	3 PACE FrameWork
	3.1 Overview
	3.2 Surrogate CE Model Acquisition
	3.3 Generator and Detector Training
	3.4 Attacking

	4 Surrogate CE Model Acquisition
	4.1 Model Type Speculating of the Black Box
	4.2 Training Strategy

	5 Poisoning Query Generation
	5.1 High Level Idea
	5.2 Generator Design
	5.3 Generator Training

	6 Ensure Distribution Consistency of Poisoning Queries
	6.1 Anomaly Detector Training
	6.2 Confrontation with Generator

	7 Experiments
	7.1 Experimental Setup
	7.2 Decline of the CE Models' Accuracy
	7.3 Impact on End-to-End Execution Time
	7.4 Validation of Surrogate Model
	7.5 Overhead Evaluation
	7.6 Ablation of the Efficiency Optimization
	7.7 Incrementally Training and Attacking
	7.8 Effect of the Anomaly Detector
	7.9 Convergence of the Optimization Objective

	8 Conclusion and Future Work
	Acknowledgments
	References

