
SWIX: A Memory-e�icient Sliding Window Learned Index

LIANG LIANG∗ and GUANG YANG∗, Imperial College London, UK

ALI HADIAN, Imperial College London, UK

LUIS ALBERTO CROQUEVIELLE, Imperial College London, UK

THOMAS HEINIS, Imperial College London, UK

Data stream processing systems enable querying over sliding windows of streams of data. E�cient index

structures for the streaming window are a crucial building block to enable querying the sliding window for

operations such as aggregation and joins. This paper proposes SWIX, a novel memory-e�cient learned index

for sliding windows. Unlike conventional learned indexes that rely on tree structures to achieve logarithmic

query cost, SWIX has a �at structure that uses substantially less memory and enables e�cient query execution

while having a low cost for index maintenance when inserting (and retraining). SWIX dynamically adapts

itself to the real-time distribution shifts of data streams.

SWIX outperforms existing indexes in terms of query execution time and memory footprint for workloads

characterized by very frequent updates. Our results show that SWIX has a signi�cantly smaller memory

footprint than conventional, streaming, and learned indexes, using only 22% to 42% of the size compared to

state-of-the-art approaches, yet outperforming them by up 1.2× to 1.6× on average (and up to 52×) in terms

of query time, making it a space- and time-e�cient method for indexing data streams. For concurrent learned

indexes, Parallel SWIX can achieve up to 3.45× throughput with only 34% of memory consumption.

CCS Concepts: • Information systems→ Data structures.

Additional Key Words and Phrases: learned index, �at structure, lightweight structure, parallel structure,

streaming processing, window-based query, automatic tuning, update heavy

ACM Reference Format:

Liang Liang, Guang Yang, Ali Hadian, Luis Alberto Croquevielle, and Thomas Heinis. 2024. SWIX: A Memory-

e�cient Sliding Window Learned Index. Proc. ACM Manag. Data 2, 1 (SIGMOD), Article 41 (February 2024),

26 pages. https://doi.org/10.1145/3639296

1 INTRODUCTION

Processing data streams has become increasingly important as large-scale online services continue

to grow [1, 37]. In a streaming environment, systems face signi�cant challenges due to the amount

of data and the speed at which it arrives. Large-scale stream processing systems thus require

e�cient data structures and algorithms to be able to process data in real time and make timely

decisions.

Streaming systems manage a �nite amount of the most recent data in a sliding window. This

works like a queue that captures new records as they arrive and removes older ones to avoid

over�owing memory. For example, a network tra�c monitoring system can use a sliding window

∗Both authors contributed equally to this research.

Authors’ addresses: Liang Liang, liang.liang20@imperial.ac.uk; Guang Yang, guang.yang15@imperial.ac.uk, Imperial

College London, London, UK; Ali Hadian, ali.hadian@gmail.com, Imperial College London, UK; Luis Alberto Croquevielle,

a.croquevielle22@imperial.ac.uk, Imperial College London, UK; Thomas Heinis, t.heinis@imperial.ac.uk, Imperial College

London, UK.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs Interna-

tional 4.0 License.

© 2024 Copyright held by the owner/author(s).

ACM 2836-6573/2024/2-ART41

https://doi.org/10.1145/3639296

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 41. Publication date: February 2024.

HTTPS://ORCID.ORG/0000-0002-4566-6178
HTTPS://ORCID.ORG/0000-0001-6456-9077
HTTPS://ORCID.ORG/0000-0003-2010-0765
HTTPS://ORCID.ORG/0009-0002-0101-4431
HTTPS://ORCID.ORG/0000-0002-7470-2123
https://doi.org/10.1145/3639296
https://orcid.org/0000-0002-4566-6178
https://orcid.org/0000-0001-6456-9077
https://orcid.org/0000-0003-2010-0765
https://orcid.org/0009-0002-0101-4431
https://orcid.org/0000-0002-7470-2123
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3639296

41:2 Liang Liang et al.

to keep track of recent tra�c data for real-time monitoring and analysis. Stream processing systems

need to be able to e�ciently search through the records in a sliding window, such as by IP address

or packet ID.

Managing a sliding window is challenging as it requires handling frequent updates and e�cient

search through the records. In a non-streaming system, records are inserted, deleted, and searched

based on the primary key. However, in a window-based stream processing system, data arrives and

expires based on timestamps and is searched using the primary key, which is typically a unique

identi�er, such as a record ID. Therefore, streaming data structures must be able to handle frequent

updates based on timestamps and search e�ciently over records.

Several indexes have been suggested for Index-based window processing (IBWP), particularly

for streaming joins [35]. Their design uses multiple data structures optimized for read and update

performance. The drawback of these designs is the extensive memory overhead from storing

multiple data structures, such as a large and a small B-tree, to handle the sliding window. An

alternative approach is to use learned indexes, which exploit patterns in data distribution to predict

the location of the records [23]. While some learned indexes [9, 11, 45] support updates and achieve

speedup over conventional indexes, they do not achieve the same level of compactness compared

to conventional indexes. These existing learned indexes cannot handle streaming updates, where

updates are based on a non-indexed time dimension, without external structures or extensive scans.

FLIRT [44], the only streaming learned index, is designed to update and query solely based on the

time dimension. This requires the primary keys to be time-ordered.

In this paper, we develop a novel memory-e�cient updatable learned index for IBWP in streaming

workloads. Our main design goal is to create substantially more compact data structures than

traditional or learned indexes while providing similar or better query performance compared to

existing approaches. To achieve this, our design is based on a �at two-layer data structure that

reduces the height of the index compared to tree-based structures, thereby reducing redundancy in

the index. The �at structure also allows the index to use parallelism to enhance performance. To

handle updates e�ciently, we dynamically scale the data structure according to the data distribution

to achieve fast read performancewhileminimizing thememory overhead. Additionally, we implicitly

delete old data from the index while searching and updating the index to ensure compactness.

The result is SWIX, the Sliding Window Learned IndeX, a two-layer lightweight learned index

that can e�ciently manage IBWP workloads under very high update rates, commonly found in

streaming applications, and supports parallelism. The �at structure ensures compactness while

reducing traversal and rebalancing time costs in IBWP. SWIX uses a novel underlying data struc-

ture SWarray, combining the location prediction of learned indexes with dynamic restructuring

mechanisms to compact the index during updates. Speci�cally, SWarray expands when the index

ingests new data from the stream and shrinks when discarding old data. The expansion mechanism

generates space for insertions, while the shrinkage mechanism ensures the compactness of the

array. An online auto-tuning algorithm controls the expansion and shrinkage to optimize the array

under changing data distributions and query workloads without additional space overheads. SWIX

uses a bulk-load algorithm to cold-start the index while the optimal con�guration is still unknown

to the auto-tuner. Finally, we introduce Parallel SWIX, which supports parallel reads and updates

through data partitioning.

The remainder of this paper is organized as follows. We motivate our work in Section 2. The

design choices of SWIX are in Section 3, followed by an explanation of the operations in Section 4.

We then present Parallel SWIX in Section 5. An experimental evaluation shows results and analysis

in Section 6. Finally, we present the related work in Section 7 and conclude in Section 8.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 41. Publication date: February 2024.

SWIX: A Memory-e�icient Sliding Window Learned Index 41:3

Time

...
Stream

Source

ti ti+10 ti+20 ti+W

Ti mest amp Key (I ndexed) Payl oad

.

2023- 12- 22 18: 20 123 . . .

2023- 12- 22 18: 23 321 . . .

.

2023- 12- 22 18: 46 5 . . .

2023- 12- 22 18: 50 999000666 . . .

At t he moment (t i + W)
t i = " 2023- 12- 22 18: 20"

W = 30(mi ns)

Arriving
tuple

Expiring
tuple Dequeue

Del et e

Enqueue

I nser t

Lookup

K0

...

Indexing Met a/ Seg I nf o
Model s
Bookkeepi ngs

Met a I nf o

Seg I nf o Seg I nf o Seg I nf o

T T T T T T T T
B0

K1
... KM-1

Index = 0 1 ... M-1

T T T T

Index = 0 S0-1

k0,0 k0,S -1
0

...

...

...

...

...

...
BM-1

SWmeta

SWseg

...

Ki TStarting Key of

segement i
ki,j

Key stored in

seg i at index j

Timestamp or

empty flag
Bi

...

Buffer of

segement i

SWIX
IBWP(a)

(b)

Fig. 1. (a) IBWP and (b) SWIX Structure.

2 MOTIVATION

2.1 Index-Based Window Processing (IBWP)

Figure 1a illustrates a sliding window and di�erent operations in IBWP. The system receives records

from a stream and stores the most recent ones in the sliding window. Due to memory constraints,

an IBWP system keeps the latest records in the past, time units (e.g., seconds) from the stream,

where, is the window frame. Alternatively, the window can be de�ned with a �xed number

of tuples, commonly known as the tuple-based window. Although they have di�erent primary

characteristics, both paradigms use timestamps/tuples to ensure data validity.

The sliding window is a queue, where new records are enqueued to the window and older

records are dequeued and deleted. The system also supports looking up records in the window

using a primary key. This problem setting generalizes the approach in FLIRT [44], where keys are

sequential and data is deleted from the front and inserted at the back. In contrast, SWIX aims to

handle a generalized IBWP workload, where insertions and deletions occur anywhere within the

index (where the index is key-sorted and not time-sorted).

Existing methods for indexing IBWP workloads are either ine�cient in terms of memory usage

or update/search performance. Current streaming indexes are agnostic to the data distribution

and hence do not exploit it to reduce the index size. Equally, learned indexes that exploit the

data distribution to reduce index size are not e�cient in supporting updates in IBWP workloads

(enqueue and dequeue) which are frequently performed as the window slides over the data stream.

To support updates, existing updatable learned indexes include many redundancies in their design,

so they have to sacri�ce space to ensure e�cient queries.

0 100 200 300 400
Memory Overhead %

101

103

La
te

nc
y

(
s)

AlexB+TreeSWIXIMTree
PGM

Queue

w/ Secondary Index

0 100 200 300 400
Memory Overhead %

101

103 AlexB+Tree

SWIXIMTree

PGM

Queue

w/o Secondary Index

Fig. 2. Design tradeo� for indexing streaming data.

2.2 The Trade-o� Between Latency and Memory

Figure 2 illustrates the trade-o� between latency and memory overhead of existing methods

and SWIX. We compare the state-of-the-art (with and without secondary indexes) and SWIX,

considering the lookup time and memory overhead of each index. FLIRT [44] is not included as

it does not support random updates. The latency consists of the time for enqueue, dequeue, and

search, with equal ratios for each operation.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 41. Publication date: February 2024.

41:4 Liang Liang et al.

Indexes that are not designed for data streams, such as the B+tree and learned indexes (such as

PGM [11] and ALEX[9]), require a secondary index to achieve low latency for IBWP workloads.

The secondary index provides a timestamp-to-key mapping to identify which keys to delete from

the primary index. Without a secondary index, these indexes have high latency from scanning the

index for the expired records (Figure 2-right). However, using a secondary index results in a large

combined memory overhead of about 3× the data size (Figure 2-left). Therefore, traditional and

learned indexes are not e�cient for streaming workloads, as they are either ine�cient in terms of

memory consumption or query execution time.

Queues are very lightweight and e�cient for enqueue and dequeue operations. Note that the

queue is time-sorted, hence, search operations require linear searching through all the records as

the primary keys are unsorted. In this regard, SWIX aims to provide an e�cient trade-o� between

memory consumption and speed. We consider IMTree [35], a streaming index, to be the main rival

for our method. However, IMTree is based on B+Trees, which results in a much higher memory

overhead compared to SWIX.

3 SWIX DESIGN

SWIX is a space- and time-e�cient learned index for update-heavy streaming workloads. SWIX

takes advantage of several key insights, including a two-layer structure, a piecewise linear learned

model, a con�gurable mechanism for optimizing search and update performance, an online auto-

tuner for adapting to changing distributions, and a parallel framework for scalability.

3.1 Design considerations

To create a space- and time-e�cient updatable learned index for streaming settings, we explore

using a �at structure to reduce index size. This is in contrast to most updatable learned indexes [9,

11, 13, 26, 35, 40] as well as B+Trees, which use tree structures. They are ine�cient for streaming

workloads due to the redundancy in hierarchical tree structures. For example, in a B+Tree, the

number of redundant keys is =/(23), where = is the data size and 23 is the branching factor. As

the branching factor of a tree structure increases, the tree becomes shallower, and the memory

overhead diminishes. This is illustrative of all indexes using a tree structure, and not only the case

for B+Trees. For SWIX, we use a �at structure with only two levels. As mentioned, this reduces the

memory overhead by lowering the number of redundant keys. In Section 9, we show theoretical

evidence that two levels are su�cient to get a signi�cant speed-up over traditional indexes like

B+Tree. Moreover, adding more levels does not necessarily result in lower search times, especially if

the data distribution is hard to learn. Hence, we prioritize the memory advantages of a �at structure

over the uncertain gains in latency of adding more levels. While FLIRT [44] also uses a two-level

design, it only handles changes in the front and back of the index as it assumes the key equals the

timestamp. On the other hand, SWIX handles data distribution shifts appearing in di�erent parts of

the index simultaneously and is more general-purposed.

Designing SWIX to have fewer levels means increasing the number of elements in each node,

whichmakes it challenging to e�ciently search through each node. To address this, we use piecewise

linear functions, which can give low prediction error and thus allow for time-e�cient lookup over

a space-e�cient �at data structure. Piecewise linear functions are also lightweight to retrain, and

the prediction error is controlled by the number of functions (segments).

An additional challenge for managing a sliding window is that updates in the data stream can

reduce prediction accuracy due to shifts, known as drifts in data distribution. Therefore, periodic

retraining is necessary to ensure the accuracy of the model. In SWIX, we reduce the impact of

drifts by using more space. While ALEX [9] has a slightly similar approach of smoothing out the

data distribution by reserving gaps between data (preventing the predictive model from mapping

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 41. Publication date: February 2024.

SWIX: A Memory-e�icient Sliding Window Learned Index 41:5

adjacent inserted keys to the same position). We believe that using a static number of gaps results

in undue space overhead. Instead, SWIX uses the data distribution to dynamically generate (or

remove) gaps on an ad-hoc basis.

We implement the dynamic mechanism with an online auto-tuner based on the cost model

that monitors the data distribution and self-con�gures the index to be memory e�cient while

guaranteeing the speedup comparable to existing learned indexes.

To further improve the performance of SWIX, we parallelize SWIX into distinct partitions to

support parallel reading, writing, and retraining. Unlike current scalable learned indexes [26, 40],

which are based on a concurrent design, SWIX reduces the workload in each core and allows for

di�erent parts of SWIX to update and retrain simultaneously without locking.

3.2 SWIX Structure

The structure of SWIX is shown in Figure 1b. SWIX uses SWarray, a novel base structure that

combines a linear prediction model for e�cient querying and a dynamic expanding/shrinking

mechanism (see Section 4) for e�cient updates while remaining lightweight and accurate. SWarray

uses a continuous memory layout to ensure data locality and scan performance. Furthermore,

SWarray implicitly discards expired data without requiring a secondary index.We optimize SWarray

for common workloads on each level:

3.2.1 SWseg. SWseg is optimized for handling keys on the lower layer of the index. In terms of

notation used in tree structures, SWseg can be thought of as a leaf node. As SWsegs are frequently

updated, we expand SWarray when needed to generate gaps for insertion. The number of gaps

depends on the current data distribution and is controlled by the auto-tuner. We use the existing

trained model to allocate gaps based on where the model predicts empty spaces. If neighboring

keys are closer together (in terms of range), they are predicted closer to each other. Hence, the

potential for inserting other keys between the neighboring keys is lower, which results in fewer

gaps. Conversely, if the two keys are further away from each other, the potential for intermediate

keys is much higher. We use the trained model to compact and encapsulate these relationships to

save training time. Furthermore, we argue that it is di�cult to predict the position of gaps when

the distribution shifts. Rather than increasing the number of gaps (which increases space overhead),

SWIX opts to reduce the number of gaps and uses a cache-e�cient bu�er as "universal" gaps to

absorb updates in dense areas. We implement the bu�er using a simple sorted array with a �xed

length, which can be updated with any standard array procedures. The bu�er also absorbs the

accuracy loss from drifts by storing inserted keys without increasing the error bound. We limit the

bu�er size and compact any expired key from the bu�er to ensure memory e�ciency. Neighboring

pointers connect segments together to improve range scan performance.

3.2.2 SWmeta. SWmeta is optimized for the upper level, and its main task is to manage the

SWsegs (corresponds to the root node in a tree structure). The meta-node stores the starting key

of each segment. Therefore, the entire meta-node consists of redundant keys to improve the time

performance. Updates in SWmeta are infrequent and only occur when one or more segments are

retrained. Hence, the main objective of the meta-node is to ensure compactness while maintaining

good search performance to locate corresponding SWsegs. For this reason, we can avoid the use of

a bu�er. SWmeta stores a bitmap1 to all segments to allow them to retrain together as a form of

merge mechanism to prevent segments from fragmenting.

1The bitmap is a compact representation of an array of booleans, storing each boolean as a bit. Implementation-wise, our

bitmap uses a C++ vector of 64-bit unsigned integers. The size of the bitmap is ceil(number of items/64).

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 41. Publication date: February 2024.

41:6 Liang Liang et al.

716

300 440 625

Index = 0 1

1. Lookup

900

y = 0.01x - 2.68

3 4 5 6

652 688 694 729 795 769 779

... ...

y = 0.06x - 40.49

Index = 0 1 3 4 5 6

Key = 700 (Ear l i est val i d t i mest amp = 2)

7 8 9 10

1. 1 Pr edi ct = 4
& Cor r ect 4+r i ght Er r

1. 2 Pr edi ct = 5
& Cor r ect

630

1. 3 Sear ch Buf f er

 5- l ef t Er r

2. I nser t Key = 700 wi t h t i mest amp 102

2. 2 Shi f t

2. 1 I nser t ed i ndex
(by l ookup) = 4

45 88 23 54 68 92 42 1

660
89

1. 3. 1
Expi r e

2. 3 I nser t

...

E

EE

16

700 102

Fig. 3. Example of search and insertion. The lookup for key 700 employs two predict-correct steps to find

its segment layer position. However, because the key isn’t present in the segment, the bu�er is searched.

Simultaneously, the invalid data (key 630) is implicitly expired. To insert the key, we determine its position

in the segment layer and insert the data according to the current state of the segment.

4 SWIX OPERATIONS

4.1 Search

The core procedure to look up a key is a predict-correct process: (1) predicting the position and (2)

correcting the error. This procedure is �rst performed in SWmeta to identify the segment that may

store the key before proceeding to locate the key with the same procedure in SWseg. The bu�er is

searched (using binary search) if no key is found in the segment’s SWarray. For range queries, we

start with a point lookup for the range’s lower bound. Once we reach the segment level, we scan

through the segments via neighbor pointers until we reach the range’s upper bound. An example

is illustrated in Figure 3.

We optimize the correction step to use bounded exponential search, although any "last-mile

search" algorithm can be used. Search bounds ensure the worst-case search performance of the

correction step and give SWIX an analytical search cost. To ensure search performance when the

search bounds expand with insertions, SWIX opts to use exponential search over binary search as

insertions are prioritized to be placed close to their predicted positions (details in Sections 4.2.1).

We optimize for streaming updates by erasing invalid data during searches and scans (highlighted

in red in Figure 3). This eliminates the cost of explicit deletion and the need for any external

structures. Once invalid data (e.g., expired keys) are found, we convert them to gaps in SWarray

and erase them in the bu�er. To ensure memory e�ciency, we compact the segment (via retraining)

when they reach the maximum number of gaps unique to each segment (50% of the initial segment

size). If the entire segment consists of invalid data, SWmeta �ags the segment as a gap.

4.2 Updates

Updates come in the form of insertions (enqueue) and deletions (dequeue). As updates mainly a�ect

SWseg, we dynamically change the size of the SWseg and the number of gaps according to the data

distribution. To reduce prediction errors from drifts, we limit the error in SWseg and use the bu�er

to absorb error caused by distribution change. The e�ect of updates has a lagging e�ect on SWmeta

as the segments naturally bu�er the changes.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 41. Publication date: February 2024.

SWIX: A Memory-e�icient Sliding Window Learned Index 41:7

BSeg

Key

I nser t Shi f t

Key

I nser t

I nser t

Key

Shift distance > |B|
Sear ch

Append

Key

Exceed limit

Append

(a)

(b)

(c)

(d)

(e)

Legend: Non-empty

slot
Empty

Slot
New Empty

Slot
Searched

Insertion Pos

Real
Insertion Pos

Shift

Key

Sear ch

Fig. 4. Insertion strategies for each insertion situation.

4.2.1 Insertion. The insertion procedure starts with a lookup to �nd the insertion position. The

procedure is shown in blue in Figure 3, followed by di�erent insertion strategies in Figure 4. We

insert to the found position if it is a gap (Figure 4a). Otherwise, we insert the key by shifting

neighboring keys to the closest gap position to keep the key as close to the prediction position as

possible (Figure 4b). This gives us a more e�cient exponential search. We account for the accuracy

penalty from shifting by incrementing the error in the shift direction. We limit the number of shifts

to 30% of the SWseg size (each segment has a unique size) to prevent the accuracy from degrading.

Once we exceed this limit, data is inserted into the bu�er.

We optimize for the update performance by reducing memory reallocation cost by limiting shift

distance to bu�er length. Therefore, in the worst case, our insertion cost equals the bu�er size �.

If the shift distance is longer than the bu�er length, we insert the key into the bu�er (Figure 4c).

Additionally, we support extrapolation insertions, where the insertion in the form of appends may

lie outside the segment range (Figure 4d). To avoid over-expanding and generating excessive gaps,

we insert the key into the bu�er (Figure 4e) if the gaps exceed the maximum gap threshold (50% of

the initial segment size). Once the bu�er reaches capacity, the segment is �agged for retraining.

4.2.2 Deletion. Invalid data is implicitly erased during search, scan, and insertion. SWIX uses a

timestamp threshold to determine if data has expired. The current timestamp is compared to the

threshold for data validity. SWIX can also support tuple-based windows (mentioned in Section 2.1)

by using the tuple’s sequence order as timestamps. For example, the sequence order for = data

would be {0,1,...,=-1}, where = is greater than window size, . The current time is =-1 and the latest

valid timestamp is equal to ((=−1) −,). To explicitly delete, SWIX �rst follows a lookup procedure,

before the found data is converted to a gap in SWarray or erased from the bu�er. If a segment

expires, we �ag its position in SWmeta as a gap.

4.3 Bulk-load

The rationale of the bulk-load algorithm is to segment the data such that the error is minimized

when the data distribution is unknown (cold starts). Since we use linear models, the segmentation

should try to make the data distribution as linear as possible. We propose a second derivative

segmentation algorithm using a top-down approach, shown in Algorithm 1. The objective is to �nd

optimal split points such that each segment is linearly predictable while minimizing the number

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 41. Publication date: February 2024.

41:8 Liang Liang et al.

Algorithm 1 Segmentation Algorithm for Bulk-load

1: procedure Split_Second_Derivative()

2: Input: : collection of keys, where | | is the number of keys.

3: Output: (?;8C : collection of index in to split.

4:
32 (?>B)
3 (:)2 ← second derivative for G = [:0, : | |−1], ~ = [0, | | − 1]

5: while # < #CℎA4Bℎ>;3 do

6: pos = max(3
2 (?>B)
3 (:)2)

7: if pos = 0 then

8: break

9: end if

10: (?;8C .push_back(pos)

11:
32 (?>B)
3 (:)2 [pos] = 0

12:
32 (?>B)
3 (:)2 .penalize_neighbors(pos)

13: end while

14: end procedure

of segments to reduce the memory overhead of SWmeta. The insight is that second derivatives

capture abrupt distribution changes in a function. Splitting segments at maximums can e�ectively

reduce the errors in each segment.

2nd SplitPoint

1st SplitPoint

penalizeRadius = 3

Set to 0 Set to 0

penalizeRadius = 3

Potential 3rd

SplitPoint

31

40

15Potential 4th

SplitPoint

8

Best-fit LineSplit PointKey-Pos Mapping Second Derivative

Fig. 5. The second derivative segmentation algorithm.

We illustrate the algorithm with an example in Figure 5. The algorithm �rst recursively locates

positions with the highest second derivatives (shown by the red y-axis). We neglect neighboring

points to prevent the segments from being too short. For example, we neglect the point with the

second highest second derivative (39) as it is too close to the 1st split point. The algorithm stops at

a maximum of #CℎA4Bℎ>;3 segments. We use 0.01% of the data size = as the default #CℎA4Bℎ>;3 , this

was heuristically shown to minimize the number of segments while ensuring the average accuracy.

We set an early-stop condition if all remaining second derivatives have similar values to reduce

further memory consumption (e.g., if all remaining second derivatives are zero, then one segment

is su�cient to model the remaining data with minimal error).

4.4 Retraining

For existing learned indexes, retraining aims to correct the prediction error due to distribution

changes. For example, ALEX [9] corrects the prediction model and resizes itself to be 60% full,

similar to rebalancing a node in a B+Tree. For the goal of space- and time-e�ciency, SWIX minimize

the size of the index for the current data distribution along with correcting for any prediction errors.

We do not have set bounds on how full or empty a node has to be, but rather extend and shrink

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 41. Publication date: February 2024.

SWIX: A Memory-e�icient Sliding Window Learned Index 41:9

1. Tr i ger Ret r ai n 2. Sear ch f or Rendezous
Bat ch Ret r ai n

SWmeta

3. Mer ge & Fl i t er

4. Segment & Bui l d Model

5. Updat e Met a
SWsegs :

New SWsegs

BSeg

Fig. 6. The rendezvous batch retraining process.

SWarray according to the distribution. For example, we allow more densely packed SWarray when

the distribution is uniform and allow for more gaps when the distribution becomes non-linear.

SWIX’s auto-tuner monitors changes in distribution and adjusts the nodes while retraining.

4.4.1 Retraining SWseg. Retraining the SWseg corrects for prediction errors and merges the bu�er

with SWarray. To prevent fragmenting the segments during retraining, SWIX introduces rendezvous

batch retraining using a bottom-up approach, shown in Figure 6. It is a data distribution aware

segmentation algorithm where neighboring segments are retrained together. This approach reduces

the average error in each segment compared to splitting a full segment in half or merging two

half-empty segments.

When a segment triggers a retrain (step 1), we �nd all neighboring segments that also need

retraining (step 2). We merge and �lter all retraining segments (step 3) before locating the optimal

split points with a one-pass segmentation algorithm to �nd positions with abrupt changes (step 4).

We split based on a tol parameter representing each segment’s tolerable error. tol controls the size

and number of gaps in each segment and is adjusted by the auto-tuner.

To avoid memory overhead from data fragmentation, we do not retrain a segment if no neighbor-

ing segments need retraining. This allows them to wait for their neighbors and prevents fragmenting

single segments. However, the second time a segment needs retraining, we force retraining to

ensure the accuracy of the SWseg.

4.4.2 Retraining SWmeta. Based on a bottom-up approach, modi�cations on SWsegs during re-

training need to be propagated to SWmeta to maintain consistency (step 5 in Figure 6). This involves

deleting old segments and inserting new ones. Old segments are marked as expired in the SWmeta,

while insertions use the algorithm described in Section 4.2.1. The SWmeta retrain procedure mirrors

steps 3-4 in Figure 6, except for the merge process in step 3 (no bu�er in SWmeta) and segmenting

process in step 4 (no segments needed).

We apply a more relaxed retrain condition to SWmeta because insertions into SWmeta are

relatively infrequent and are mostly replacements rather than new insertions. Therefore, SWmeta

is allowed to extend and generate more space for insertions more freely by scaling the prediction

model. This also limits the shift distance, which reduces the shift cost. We retrain SWmeta when

the gaps exceed 20% of the meta size to prevent excessive gaps from extensions and deletions. The

retraining algorithm then corrects the prediction error and compacts SWmeta by initializing the

number of gaps to be 5% of the SWmeta size after retraining.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 41. Publication date: February 2024.

41:10 Liang Liang et al.

4.5 Analytical Evaluation and Auto-tuner

4.5.1 Analytical Cost Model.

�(, �-




log(n<4C0) + log(nB46) �(

�(+ U� ��

VB46 ((8 + #) + V<4C0# �'

(1)

SWIX is designed as a memory-e�cient structure that executes operations e�ciently. We provide

an analytical evaluation of SWIX’s operations, including search (�(), insert (��) and retrain (�'),

from an execution time cost perspective. The evaluation helps us locate optimizations and o�ers

insight into increasing the adaptability of the index when faced with drifts during execution. We

now explain the underlying intuition behind each component.

The search cost combines two components: SWmeta search and an associated SWseg search.

Given that the search is an error-based operation, the search cost is bounded by n<4C0 (meta error)

and nB46 (segment error). Generally, these have a negative correlation. To illustrate, to get nB46 small

the number of segments may need to increase, thereby potentially raising n<4C0 . Both errors are

in�uenced by the tol parameter, so choosing tol appropriately is crucial to achieve optimal search

performance.

Apart from the cost of searching for the insertion position, the main insertion cost is derived

from the maximum shift distance encountered when gaps are not available to place the data. SWIX

uses a bu�er to compensate and facilitate the update costs by limiting the maximum shift cost to

the bu�er length � in SWseg. Therefore, the insertion cost is constrained by �. Given that the bu�er

size remains constant to optimize cache e�ciency, U is the ratio of the number of keys that fail to

be inserted into the predicted location. U is controlled by tol, where larger values of tol reduce the

failure rate and the likelihood of shifts, impacting the insertion performance.

The implicit deletion strategy amortizes the deletion cost across other operations. For explicit

deletes, the cost would be the same as the lookup. Any gaps, generated by training or deleting, will

be purged from the index during retraining operations. Speci�cally, the purging cost is included in

the scan cost during merging & �ltering (step 3 in Figure 6). The retrain cost includes the SWseg

and SWmeta retrain, which are bounded by their size, respectively. After SWseg retrains, the newly

formed segment(s) are inserted into SWmeta. The insertion cost is the number of segments (#) as

the update requires shifting the entire SWmeta from start to end in the worst case. As the frequency

of segment retraining (VB46) increases, so do the insertions into SWmeta. As SWmeta is updated

more often, the frequency of meta retraining (V<4C0) also increases, which in return increases the

overall retrain cost. VB46 , the size of segment 8 ((8) and the number of segments (#) are all in�uenced

by tol. E.g., a smaller tol leads to an increased number of smaller SWsegs, thereby increasing the

likelihood of VB46. Conversely, a larger tol would have the opposite e�ect.

The evaluation based on the cost model of SWIX shows that the tuning tol is crucial as it a�ects

all operation performance. Optimizing tol on the �y is therefore critical to ensuring competitive

performance when dealing with dynamic workloads and changing distributions.

4.5.2 Auto-tuner. To capture how di�erent internal states a�ect the performance of the index in

terms of tol, we derive a simple heuristic model, where each element in the cost model represents the

cost of an operation. Speci�cally, we carry out multiple experiments with a variety of datasets and

index con�gurations to explore the relationship between tol and the actual performance (time cost).

We monitor the actual states from di�erent operations, such as search, scan, and shift distances.

We use the Akaike Information Criterion (AIC) [2] as a metric to determine the signi�cance of

states through step-wise selection. The aim of using AIC is to select a model that best captures the

underlying pattern with the least complexity, ensuring robustness in performance predictions. This

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 41. Publication date: February 2024.

SWIX: A Memory-e�icient Sliding Window Learned Index 41:11

involves a process of iteratively adding and removing states for comparison. The primary states

we select include average search distances (SWseg & SWmeta), neighbor traversals, and length of

merge and retrain. We formulated a heuristic model by �tting these states into a linear model as

follows:

� = FB1 log((40A2ℎ<4C0 + (40A2ℎB46) +FB2tol
+FB2%CA +FA (!4=6Cℎ<4A64 + !4=6CℎA4CA08=)

(2)

Where,FB1,FB2,FB2 ,FA are the weights for characterizing the signi�cance of the search (B1 & B2),

scan (B2), and retrain (A) operations to the overall cost, respectively. The weights are found by

adjusting and comparing the model prediction with the actual performance measurements. For the

search cost, the (40A2ℎ<4C0, (40A2ℎB46 are the exponential search length in the meta and segment,

respectively. Additionally, tol also a�ects the search cost as it is proportional to the initial error

of each segment after retraining. We use the average number of sibling traversals %CA to capture

the scan cost during range queries. For insertions, the insertion cost itself is related to the shift

distance. It is controlled by the bu�er length �, which unsurprisingly the AIC process shows no

correlation with tol. Lastly, !4=6Cℎ<4A64 , !4=6CℎA4CA08= represents the total merge and retrain length,

respectively. The total length accounts for the number of retrains (which we seek to minimize).

These states can serve as the bridge between tol and performance so that we can adjust the tol

to in�uence these states and consequently optimize performance during the run-time. The tuning

algorithm starts with a default tol and adjusts it based on a tuning rate. The auto-tuner monitors the

states and estimates the time cost based on the current state measurements, which saves overheads

from adding timers. We tune the tol once we reach the tuning rate by adding/subtracting tol with

the tuning step. The tuning process is inspired by the gradient descent process, where we perturb

tol in one direction and record its change in cost over updates. If the cost reduces, we carry on

in the same direction, otherwise, we move in the opposite direction. We use step decay to reduce

oscillations between two tol values. If the minimum changes due to distribution shifts, we increase

the stride of the tuning step if it continuously moves in one direction.

Partial Concurrent

...

Thd0

Update
Queue

Thd1 Thd2 Thdn

Partition1 Partition2 ... Partitionn

Task Queue

Thd0 Thd1 Thd2 Thd...

Thd...

Thdn

T0: Met a Updat e

T1: Updat e Done

Concurrent

Thd0 Thd1 Thd2 Thd... Thdn

T0: Met a Ret r ai n

T1: Model Load

T2: Repar t i t i on

T3: Ret r ai n Done

Critical

Critical

(a)

(b) (c)

Fig. 7. Parallel SWIX: (a) Overall structure. (b) Synchronization of meta update. (c) Synchronization of meta

retrain.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 41. Publication date: February 2024.

41:12 Liang Liang et al.

5 PARALLEL SWIX

SWIX supports concurrency with minimal modi�cations. Parallel SWIX is designed to run in

parallel where each thread performs operations simultaneously on a subset of data.

5.1 Parallel SWIX Structure

As Figure 7a shows, the main thread Cℎ30 manages the whole SWmeta and each of the remaining

worker threads handles a number of segments. The number of segments in each partition is static,

however, the number of data in each partition varies as the segment size is non-static. We ensure

the error is similar between partitions as SWIX’s performance is error-dependent rather than

size-dependent. Therefore, load-balancing is ensured by having uniform errors across partitions.

Cℎ30 handles all cross-partition modi�cations and orchestrates the worker threads during updating,

retraining, and re-partitioning of SWmeta. SWIX’s structure is inherently suited for parallelization.

Parallel SWIX partitions the data for di�erent threads. We add concurrency control measures to

avoid race conditions while minimizing the synchronization cost. Segments are connected within

each partition and disconnected between threads to prevent concurrent data access. Each thread

except Cℎ30 will have a task queue from the dispatcher and works asynchronously to increase

throughput. Cℎ30 uses a queue to receive update requests from the rest of the threads.

5.2 Parallel Search

Searching is done asynchronously. The core search procedure follows that of the predict-correct

process of SWIX. All threads receive the same search query. Each thread checks if the error bound

of the prediction overlaps with its partition. If so, it runs the correction process. If multiple threads

overlap with the error bound, we reduce the search space by con�ning each thread to search within

its partition. Therefore the search cost in SWmeta for each thread is at most$ (log(min(n<4C0, %)))
, and the cost of the consecutive predict-correct process in SWseg is $ (log nB46). Where, n<4C0 and

nB46 are the meta and segment errors respectively. % is the partition size.

For point queries, only one thread will �nd the result. However, for range queries, several threads

may be involved as the result may span across multiple partitions. In this case, one of the threads

will �nd the lower-bound of the range, and other threads that contain records between the lower

bound and upper bound of the range perform a scan through their partition. We stop when reaching

the upper-bound. The �nal results are aggregated asynchronously 2.

5.3 Parallel Updates

Inserting keys into segments is asynchronous and involves a parallel look-up followed by a serial

insertion at the segment level. The insertion cost in each thread is$ (log(min(n<4C0, %)) + log nB46 +
U�), where � is the bu�er length. Deletion is done implicitly during other operations.

5.4 Concurrent Retraining

Retraining Parallel SWIX is similar to SWIX, but Parallel SWIX assigns the retraining of each

segment to its corresponding thread.

5.4.1 Retraining SWseg. Once a segment triggers a retrain, the thread tries to �nd neighboring

segments to retrain together, similar to SWIX’s rendezvous retrain strategy (Section 4.4). We only

allow batch retraining within the same partition to avoid additional synchronization. Each thread

retrains its segments asynchronously.

2Depending on the query, we aggregate the results using a thread-safe (e.g., C++ atomic) variable for count queries and use

a pre-allocated array of pointers if keys are to be returned. Speci�cally, the size of the array is the =D<14A > 5 CℎA403B - 1,

where each thread asynchronously returns the result.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 41. Publication date: February 2024.

SWIX: A Memory-e�icient Sliding Window Learned Index 41:13

Index Type Index Metrics

SYN REAL

lognormal normal udense usparse books fb osm wiki

AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX

No Index Queue
 Overhead (%) n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Latency (?s) 2857.8 5664.1 2794.4 5537.4 2809.8 5568.9 2793.1 5534.1 2790.6 5532.4 2817.2 5583.9 2807.4 5562.4 2840.7 5630.4

Alogrithmic
Index

B+Tree
 Overhead (%) 72.2 130.7 67.1 130.5 66.9 130.5 72.3 130.7 72.2 130.7 66.9 130.5 67.1 130.5 66.9 130.5

Latency (?s) 27.1 268.2 26.3 259.1 27.7 274.1 27.0 266.2 27.1 265.9 26.5 261.4 26.2 255.3 26.9 265.94

Streaming
Index

IMTree
 Overhead (%) 35.2 54.8 35.2 54.8 35.2 54.8 35.2 54.8 35.2 54.8 35.2 54.8 35.2 54.8 35.2 54.8

Latency (?s) 25.3 246.9 24.9 242.5 24.7 240.1 24.6 239.9 24.6 240.8 24.4 238.6 25.7 252.7 24.5 238.0

Updatable

Learned
Index

PGM
 Overhead (%) 124.9 143.8 124.8 143.8 124.4 142.0 124.5 142.0 125.0 144.6 125.4 144.0 125.3 143.4 125.0 144.2

Latency (?s) 32.6 315.6 33.1 321.0 32.3 312.8 32.4 312.7 32.6 316.0 33.3 323.3 33.5 323.7 32.7 315.6

ALEX
 Overhead (%) 45.6 56.7 43.4 55.3 55.9 64.1 55.9 64.1 56.0 64.1 50.0 53.1 102.8 111.3 40.5 47.3

Latency (?s) 19.4 188.8 18.6 180.8 28.0 282.0 20.1 195.7 24.7 245.1 32.2 317.3 31.4 310.2 24.7 247.1

Streaming

Learned
Index

SWIX
 Overhead (%) 7.0 6.3 7.2 6.5 6.8 6.1 7.0 6.2 6.8 6.1 32.4 48.9 39.1 56.3 14.3 19.0

Latency (?s) 19.2 186.5 19.6 190.9 18.8 182.4 18.5 179.0 18.3 176.8 25.0 245.0 26.0 252.6 22.8 224.2

Fig. 8. Memory overhead C>C0; B8I4−30C0 B8I4
30C0 B8I4

and latency C>C0; C8<4
C>C0; D?30C4B

for each experiment se�ing excluding

the ordered workload. Note: MAX for the memory overhead is measured when the total memory consumption

(C>C0; B8I4) is at its largest and can be smaller than the AVG.

Following the SWseg retrain, SWmeta needs to insert the newly formed SWseg(s) that have been

split and delete old SWseg(s). The local thread �ags the expired SWsegs for deletion. Insertion

is tricky because the nearest gap might be in another partition. Therefore, the thread �rst looks

for gaps within its own partition. If it �nds any, it inserts into SWmeta without synchronization.

Otherwise, it �ags the insertion position and delegates the insertion task to thread Cℎ30 through

the meta update queue and moves on to the next task. Synchronization is unavoidable if the thread

needs to access the segment before thread Cℎ30 completes the insertion. In this case, it waits until

Cℎ30 �nishes the insertion before proceeding.

Once the meta thread �nds the nearest gap, it synchronizes all threads that overlap the shift

distance before shifting the segments toward the gap position. The synchronization is shown in

Figure 7b, where the insertion position is located in Cℎ31. The meta thread locates the gap and

blocks Cℎ32 before blocking Cℎ31 for shifting.

Synchronization is also needed when inserting segments at the partition boundaries. For example,

a segment can be inserted either at the end of Cℎ31 or the beginning of Cℎ32. In this case, thread

Cℎ30 handles the insertion and chooses the position that minimizes shifting. Then, it blocks the

thread that owns that position.

5.4.2 Retraining SWmeta. Retraining SWmeta requires stopping and synchronizing all threads,

as illustrated in Figure 7c. To reduce the critical section and prevent long stalls, Cℎ30 retrains the

model on a snapshot and lets other threads run without blocking. After the model is trained, Cℎ30
blocks all threads, creates a new SWmeta, and redistributes the segments.

6 EXPERIMENTAL EVALUATION

The experiments evaluate SWIX’s auto-tuner, and error distribution, before comparing SWIX’s per-

formance against the competitors, including serial and concurrent indexes under various streaming

parameters and workloads. The highlights are as follows:

• We verify the e�ectiveness of the auto-tuner and show it can optimize tol for di�erent distribu-

tions.

• For a default IBWP workload, the memory size of SWIX is, on average, 22.22% of a B+Tree,

42.79% of an IMTree, 12.06% of a PGM-Index, and 25.91% of ALEX.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 41. Publication date: February 2024.

41:14 Liang Liang et al.

• At the same time, SWIX attains a speed up of 1.30× speedup over B+Tree, 1.20× over IMTree,

1.59× over PGM-Index, 1.19× over ALEX and 136.55× over Queue.

• For a concurrent workload, Parallel SWIX uses 41% and 34% of the memory consumption of

FINEdex and XIndex, while achieving up to 1.90× and 3.45× more throughput for update-heavy

workloads, respectively.

6.1 Experimental Setup

SWIX is implemented in C++. Experiments are conducted using the gcc compiler on a 16-core

machine with Intel E5-2690@2.60GHz and 64GB of RAM running Ubuntu 14.04.

6.1.1 Dataset. We use four synthetic datasets (lognormal, normal, uniform dense (udense) and

uniform sparse (usparse)) and four real-world datasets (books, fb, wiki and osm) from the SOSD

benchmark [21]. The datasets contain 1-dimensional values used as keys in the primary index.

We generate the timestamps3 to evaluate arrival/departure from two distributions for di�erent

workloads (Details in Section 6.1.3). We can evaluate the index performance under di�erent data

distributions with these datasets. Synthetic datasets tend to have locally linear distributions, while

real-world datasets show much more non-linear behavior. We show the two representative datasets

(udense, and osm) in the comparative analysis due to the space limit. udense has a uniform local and

global distribution, while osm is non-uniform in both local and global data distribution. Results

containing all datasets are summarized in Figure 8 and the detailed plots can be found here4.

6.1.2 Baseline. The baseline includes an array-based queue, STX B+Tree [4], STX B+Tree imple-

mentation of IMTree [35], the Dynamic PGM-Index [11, 14], ALEX [9, 31], and FLIRT4 [44]. To

enable a fair comparison, we parameter sweep the fanout (B+Tree) and error parameter (PGM-

Index) in a range from 4 to 4096 and report the lowest latency results for each experiment. The

size of the IMTree insertion tree is 0.15=, following [35]. For concurrent learned indexes, we use

XIndex [39, 40], FINEdex [26, 38], and PPFlirt as the baselines. PIMTree [35] is not included as no

open-source implementation is available.

We add a secondary index to B+Tree, PGM-Index, ALEX, XIndex, and FINEdex for handling

IBWP workloads (see Section 2.2). The secondary index includes a mapping from timestamp to key

in a sorted queue. We did not include the memory and search cost of the secondary index in the

experiment to be fair to the baselines.

6.1.3 Workload. We simulate an IBWP workload with a sliding time window. The window length

, is the time frame for which data exist in the window, and the data size = is the number of data

in the window. Data does not have to enter the window at every timestamp, and multiple data can

arrive at the same time. Therefore, = correlates to, but may �uctuate over time.

For the default workload, the window length is 10" , and we perform 40" updates to the window

length5. The keys are shu�ed to ensure random updates. Each update moves the window by one

step and triggers a search query. The default workload uses a range query with a scan range of

1000 keys. To unify the data size, we assume that the initial window before updates has one data

at every timestamp such that = =, = 10" . During the updates, the timestamps are uniformly

distributed such that the average data size is equal to the time frame.

We test the arrival/departure rates for the skewed workload by generating timestamps from

a normal distribution # (`, f2) with varying values of f2. Smaller variances result in data burst,

3Streaming benchmarks YSB [6] and Stock [46] showcase how streaming systems schedule di�erent arrival and departure

rates. We omit these benchmarks because the timestamps are uniformly distributed.
4https://github.com/SWIXProject/SWIX
5" denotes millions, denotes thousands.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 41. Publication date: February 2024.

https://github.com/SWIXProject/SWIX

SWIX: A Memory-e�icient Sliding Window Learned Index 41:15

16 64
25

6
10

24
40

96

2.1

2.4

2.7

3.0

La
te

nc
y

(
s)

SY
N

lognormal

16 64
25

6
10

24
40

96
2.0

2.2

2.4

2.6 udense

16 64
25

6
10

24
40

96

tol

2.0
2.2
2.4
2.6

La
te

nc
y

(
s)

RE
AL

books

16 64
25

6
10

24
40

96

tol

0

150

300

450 osm

Static Latency
Auto-tuner Latency

84
90
96
102

84
90
96
102

Fo
ot

pr
in

t (
M

B)

84
90
96
102
108

96

104

112

120

128

Fo
ot

pr
in

t (
M

B)

Static Footprint
Auto-tuner Footprint

Fig. 9. Comparison between auto-tuned and static tol.

while larger variances spread the timestamps more evenly. Therefore, in the skewed workload, =

varies with f2, while, remains constant.

6.1.4 Performance Metrics. Wemeasurememory usage in"� which include the index and data size.

Time performance is measured as latency in `B and throughput in >?B/B using a Read Time-Stamp

Counter (RDTSC). RDTSC instructions minimize the overhead for time measurements, accounting

for less than 5% overhead [20, 46]. Latency and throughput are reported for one window slide,

which includes both time for search and update.

6.2 Detailed Analysis

6.2.1 Evaluation of Auto-tuner. To verify the e�ectiveness of the auto-tuner, we run SWIX with

static values of tol (ranging from 16 to 4096), and compare it with auto-tuned tols. For the auto-

tuner, we tune the index once whenever 10% of the window has slidden. The results are shown

in Figure 9. Synthetic datasets are displayed in the top row, and real datasets are at the bottom.

The latency is in blue (left ~-axis), and memory usage is in orange (right ~-axis). The auto-tuner

results are shown as horizontal solid lines. Memory usage and latency look convex when varying

tol, which suggests there is a minimum. The near-optimal latency performance validates the ability

of the heuristic model to capture time cost and supports the use of the auto-tuner. Since we use a

lightweight auto-tuner to reduce computational costs (latency), the auto-tuner could yield a high

index size for datasets with strong nonlinearities (osm), as our heuristic does not put any constraint

on memory footprint. For osm, in particular, it tends to trade o� space for time by generating a

large number of smaller segments to reduce the accuracy penalties. Nonetheless, one can reduce

the memory overhead using constrained optimization and add a memory constraint to limit the

memory footprint. This approach can reduce the index size for highly non-linear data but increases

the latency.

6.2.2 Evaluation of Segment Error. Figure 10 depicts the average segment error (¯nB46) with updates.

For udense, errors are balanced. However, for local non-linear CDFs (osm) segments are extended

to generate gaps for insertions, which lead to more rightward shifts as gaps are located towards

the right end during extensions. ¯nB46’s damped cosine wave pattern demonstrates the auto-tuner’s

ability to optimize model accuracy. It also explains the memory consumption of osm, where the

auto-tuner generates more segments to reduce prediction error.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 41. Publication date: February 2024.

41:16 Liang Liang et al.

0.0 0.5 1.0
(M) Updates

1000

1500

2000

se
g

udense
Left seg

Right seg

0.0 0.5 1.0
(M) Updates

200

400
osm

Left seg

Right seg

Fig. 10. nB46 evolution over updates.

6.3 Comparative Analysis

We compare SWIX with baselines across diverse stream characteristics and workloads, summarized

in Figure 8. The fastest index per dataset is colored in dark green, and those with the lowest memory

overhead are in light green. SWIX generally has the lowest memory overhead, except for osm

(where all learned indexes underperform). Notably, SWIX is memory-e�cient with large datasets,

as its overhead at MAX often matches or even beats the AVG overhead.

Generally, tree structures are memory-intensive, as evidenced by the B+Tree. Interestingly,

although IMTree employs two trees, it reduces memory usage by decreasing the tree height of

the B+Tree. The static search tree achieves near-complete compaction (99% occupancy), while

the smaller insertion tree has a 71% occupancy, it still outperforms a single B+Tree with 63%

occupancy. Learned models can condense data which signi�cantly reduces the tree structures’

memory overhead, as exempli�ed by ALEX. However, using numerous sub-indexes to further

reduce the height of trees, as seen in the PGM-Index’s log-merge tree design, increases memory

overhead. SWIX, on the other hand, truncates tree height to two without having multiple sub-

indexes and leverages learned models to compact the top layer, thereby considerably cutting down

memory usage. However, the ability of the learned model to compact the data hinges on the data

distribution, as exhibited by the �uctuating overhead for di�erent datasets.

Similar to the memory �ndings, learned indexes do not perform particularly well with real-world

datasets, especially osm and fb when the distribution is hard to learn, making them highly data-

dependent. In contrast, B+Tree and IMTree are data distribution agnostic (as expected). Interestingly,

out of the three learned indexes, PGM-Index is shown to be distribution independent, which suggests

that log-merge tree structure can e�ectively bu�er distribution changes. ALEX uses a cost model

to determine when to split a node, but its main ine�ciency is with the split mechanisms. ALEX

expands nodes to be 60% full (40% are gaps), to reduce retraining costs. This is memory ine�cient for

internal nodes, as it expands the number of pointers without changing the number of child nodes.

Nodes are also allowed to split downwards, which generates more internal nodes and increases the

height of the tree. In contrast, SWIX only has one internal node (SWmeta) and only allows at most

20% of SWmeta to contain gaps (compacted to 5% when retrained). Furthermore, ALEX splits a

full data node in half, which disregards the distribution in the segments and may result in data

fragmentation (space and time ine�cient). SWIX opts to retrain the segments together to avoid

data fragmentation and merge segments to ensure the size of the SWmeta node. Therefore, SWIX

has the lowest memory overhead and very competitive performance in real and synthetic data. The

results also suggest that the two-layer structure does not compromise the speed up from learned

models.

In the following sections, we analyze the performance under stream characteristics (window

lengths, scan range, and arrival rates) and workloads on the two representative datasets.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 41. Publication date: February 2024.

SWIX: A Memory-e�icient Sliding Window Learned Index 41:17

0 50 100 150
Footprint (MB)

1

2

3

La
te

nc
y

(
s)

5
6

7

5
6

7

5

6

7

5
6

7

56

7

udense

0 50 100 150
Footprint (MB)

1

2

3

5
6

7

5
6

7

5

6

7

5
6

7

5
6

7
osm

B+Tree IMTree PGM Alex SWIX

0 201.0

1.5

5

6

5
6

5

5
6

5 6
0 201.0

1.5
5

6

5
6

5
55

6

(a) Time (`B) and space (MB) trade-o� of di�erent window sizes.

100 125 150
Footprint (MB)

5

10

La
te

nc
y

(
s)

12
3

4

12
3

4

1
2
3

4

1
2
3

4

12
3

4

udense

100 120 140 160
Footprint (MB)

5

10

12
3

4

12
3

4

1
2
3

4

1
2
3

4

12
3

4 osm

(b) Time (`B) and space (MB) trade-o� of di�erent scan ranges.

Fig. 11. Analysis of di�erent window sizes and scan ranges.

6.3.1 Window Length. We vary the window length from 100 to 100" in Figure 11a to repre-

sent varying data sizes. The numbers in the �gures represent the exponents of window lengths

(105, 106, 107). The main highlight is that SWIX achieves the highest performance-to-memory, ev-

idenced by being closest to the bottom left corner of the �gure. For larger, , the advantage of

SWIX is more noticeable compared with other learned indexes.

SWIX performs very well in both space and time for easier-to-learn distributions (udense) (shown

in Figure 9). For udense, the average segment exponential search length increases by 1.36× with
increasing window length. The number of segments increases by roughly 4.85×; this is marginal

compared to the data size increases of 100×. The increase in latency over data sizes is due to the

retrain length increasing by 34×, as more data needs to be merged and retrained. The auto-tuner

aims to minimize the latency and does not cap the memory constraint. Therefore, it generates more

segments which drastically increases space over data size: a 63× increase in segments from a,

of 105 to 107 for osm. Furthermore, the average segment exponential search length increases by

1.66×, a 22% increase compared to udense, as variation due to non-linear data distribution is more

prominent at larger, .

The baselines do not scale well with increasing data size. The B+Tree, IMTree, and PGM-Index

are not dependent on data distribution, while ALEX su�ers from hard-to-learn data distributions.

For osm, ALEX generates 657 model/internal nodes when the window length is 100" , which creates

a very deep structure. In contrast, the B+Tree only has 232 internal nodes. ALEX not only su�ers

for osm, it unexpectedly underperforms when the CDF is entirely uniform (udense). For udense,

ALEX is structurally two-layered. This allows for a direct comparison between SWIX and ALEX,

where SWIX is shown to be smaller and faster.

In summary, SWIX’s space and performance are shown to be an error-bounded problem rather

than a space-bounded one, which means it can scale exponentially with easily-to-learn distributions.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 41. Publication date: February 2024.

41:18 Liang Liang et al.

6.3.2 Scan Range. We simulate short and long-range queries by varying the scan range from 101

to 104 (Figure 11b). For most indexes, only time e�ciency depends on the scan range, evidenced

by the vertical lines. This experiment shows the limitations of implicit deletes: memory overhead

increases with shorter-range scans as fewer keys are traversed in the segment. Again, this is more

prominent for hard-to-learn datasets (osm). Regardless, SWIX is still the most space e�cient. As for

baselines, IMTree and B+Tree are independent of data distribution. B+Tree di�ers in size for each

scan range because we use parameter sweep to optimize the fanout for latency. PGM-Index and

ALEX are shown to be memory ine�cient despite the fact that they are learned indexes, which

shows that their design is focused on speed rather than size.

1 4 9 inf2
1

2

La
te

nc
y

(
s)

×10 6 udense

1 4 9 inf2
1.5
2.0
2.5

×10 6 osm

0 50 100
0

100

Fo
ot

pr
in

t (
M

B)
2

=
1

0 50 100
0

100

0 50 100 150

50

100

Fo
ot

pr
in

t (
M

B)
2

=
9

0 50 100 150

50

100

0 50 100 150
(M) Updates

50

100

Fo
ot

pr
in

t (
M

B)
2

=
in
f

0 50 100 150
(M) Updates

0

200

B+Tree IMTree PGM Alex SWIX Queue

Fig. 12. Latency (`B) and Index footprint (MB) for di�erent degrees of f2 in timestamps.

6.3.3 Skewness in Timestamp. Streaming indexes must handle e�cient data bursts, which cause

the data size to change rapidly. During data bursts, the data size quickly expands as the insertion

rate surpasses the expiration rate. The data size then reduces after the burst with more deletions.

We simulate di�erent arrival/departure rates with the procedure described in Section 6.1.3. f2 is

varied from 1 to inf, where smaller f2 represents a sharp data burst and f2 = inf means uniform

timestamps. We present the results in Figure 12. The top row shows time e�ciency against f2. The

bottom three rows show a temporal view of the memory footprint over updates for f2 = 1, 9, inf.

Note that ALEX fails to run for memory test for osm when f2 = 4, 9. We have shown in Section 6.3.1

that the auto-tuner can scale well with data sizes. This evaluation highlights the auto-tuner’s ability

to scale with changing index size during runtime, evidenced by SWIX’s low memory overhead and

latency.

The experiment highlights the smooth memory pro�le of SWIX during size transitions, even for

extremely sharp data bursts, which also explains why MAX overhead is close to the AVG overhead

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 41. Publication date: February 2024.

SWIX: A Memory-e�icient Sliding Window Learned Index 41:19

in Figure 8. This is attributed to the �exible structure that adjusts the size of SWarray and the

number of gaps according to data distribution, which greatly reduces wasted space. This design

is very di�erent from the baselines, which use prede�ned structures. B+Tree rebalances the node

when it is 50% empty and 100% full. PGM-Index and IMTree have saw-teeth spikey patterns because

they batch the expiry operations. Therefore, if the merge criteria are not met, expired data will not

be erased, making the index less compact. This e�ect can be seen from the tail pattern from the

low-variance �gures (second row). ALEX bounds the number of gaps between 20% and 40%. The

lagging/step-wise e�ect is seen most prominently in ALEX, where it tends to reserve more space

when data size increases and does not immediately compact the index. It also tends to reserve too

much space as shown in the spike in f2 = inf case. In terms of speedup, ALEX can achieve higher

speedup compared to SWIX at the expense of memory, however, both su�er from hard-to-learn

datasets (osm).

udense osm udense osm udense osm0

100

200

300

400

La
te

nc
y

(
s)

Update Heavy Balance Search Heavy
B+Tree
IMTree
PGM
Alex
SWIX

(a) Varying read-to-write ratio.

10 100 1000 10 100 1000Scan Range=

2

4

6

La
te

nc
y

(
s)

udense osm
B+Tree
IMTree
PGM

Alex
SWIX
FLIRT

(b) Ordered data.

Fig. 13. Comparison of learned indexes on di�erent workloads.

6.3.4 R-W Workload. We investigate the time performance of SWIX under di�erent read-to-write

ratio (RW ratio) in Figure 13a. We omit the memory overhead for the RW ratio workload since

they are identical to the previous analysis. We show three workloads (from left to right): an update-

heavy workload with a 1:10 RW ratio, a balanced workload with a 1:1 RW ratio, and a search-heavy

workload with a 10:1 RW ratio. Since each one has di�erent numbers of reads and writes, we keep

the updates constant at 400" as the anchor. Therefore, the read-heavy workload will have 10×
more search operations than the balanced case. SWIX achieves the average best time e�ciency

performance across workloads, especially in the search-heavy case. The performance is dominated

by the search time as the ~-axis is higher for the read-heavy workload. The search performance

bene�ts from the learned model, while the update performance bene�ts from the dynamic SWarrays.

Although SWIX is updatable for a learned index, it cannot outperform IMTree for the update-heavy

workload, as the tree design is very e�cient for insertion with no retraining. The trade-o� is a

slower search time since IMTree must search two trees with no models.

6.3.5 Ordered Workload. We show the performance of the ordered workload in Figure 13b. The

datasets are sorted and updates are in the form of appends, mimicking that of FLIRT. PGM-Index

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 41. Publication date: February 2024.

41:20 Liang Liang et al.

performs much better for this workload and shows competitive performance across datasets.

Since data is appended in order, the keys expire from the largest sub-index and are inserted into

the smallest sub-index, which allows PGM-Index to function like a queue and e�ciently delete

entire sub-indexes during merges. ALEX’s strategy of expanding the root node before recursively

expanding the last node is not shown to be e�cient. SWIX performs much better in this situation

by expanding the relevant segment without accuracy penalties. However, SWIX still su�ers for

osm, as the auto-tuner tries to balance the performance for the entire index and cannot focus only

on the distribution changes occurring in the last segment. FLIRT performs well across datasets,

especially when the match rate is small. FLIRT’s design ensures the error in each segment, thereby

bounding the last-mile search. This results in superior lookup performance even for osm, evidenced

by the e�ciency at small scan ranges. However, this also means FLIRT generates more small-sized

segments, reducing the scan performance as more pointers are traversed.

The memory overhead for osm are 62.2% for SWIX, 87.3% for ALEX, 119.3% for PGM-Index,

100.4% for B+Tree, 46.2% for IMtree and 22.9% for FLIRT6. For non-ordered data optimized indexes,

the memory usage increased across the board compared to Figure 8 except for the PGM-Index. This

supports the observation above, where the PGM-Index can e�ciently function like a queue. FLIRT,

which functions as a learned queue, unsurprisingly achieves the lowest memory overhead as it

is optimized for this workload, uses a two-layer design, and does not have any gaps or bu�ers.

SWIX and other indexes with mechanism to support random insertions clearly is not suited for

this workload. Speci�cally, SWIX’s implicit deletion strategy su�ers as not all searches will be at

the beginning of the index, causing lingering expired data to persist.

4 8 12 4 8 12 4 8 12#Thd=

2

4

6

TP
 (O

ps
/s

)

×106
Update Heavy Balance Search Heavy

Parallel SWIX FINEDEX XINDEX

0

200

400

M
em

or
y

(M
B)

(a) Varying read-to-write ratio.

4 8 12 4 8 12 4 8 12#Thd=

2
4
6

TP
 (O

ps
/s

)

×106
Update Heavy Balance Search Heavy

Parallel SWIX FINEDEX XINDEX PPFLIRT

0

200

400

M
em

or
y

(M
B)

(b) Ordered data.

Fig. 14. Comparison of parallel learned indexes on di�erent workloads. Bars represent throughput (TP, le�

y-axis), while the dashed line indicates memory usage in MB (right y-axis).

6FLIRT’s overhead is calculated over a 1D dataset as FLIRT does not store the key and timestamp separately.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 41. Publication date: February 2024.

SWIX: A Memory-e�icient Sliding Window Learned Index 41:21

6.4 Parallel Learned Indexes

We evaluate the scalability (in terms of throughput) and memory usage in Figure 14a for varying RW

ratios. The memory usage of the three parallel indexes is shown in dashed lines and corresponds to

the right y-axis. We show the data size with a red dashed line for comparison.

A key di�erence between Parallel SWIX and the baselines is the concurrent design. XIndex and

FINEdex opt for a concurrent design where threads freely access the index, while we opt for a

parallel design where threads handle a subset of the index. The advantage of a parallel design is

that each thread has to process less data. Therefore, Parallel SWIX performs much better than the

concurrent indexes for low thread counts. To fully take advantage of parallelism, the workload

should ideally be isolated to each partition as with updates, where we can achieve much higher

throughput compared to concurrent designs in the update-heavy �gure. However, if the workload

covers multiple partitions, such that multiple threads have to do the same work (e.g., range queries),

the e�ciency of a parallel design decreases. This can be seen in the search-heavy �gure, where

FINEdex scales much better compared to SWIX.

Comparing the design between the indexes, Parallel SWIX is shown to be extremely memory

e�cient compared to the other two baselines, with memory usage only slightly higher than that of

data size (similar to SWIX in Figures 12). While all three indexes have two layers, FINEdex uses a

B-Tree to store the prediction models in the root layer. At the leaf level, it keeps modi�ed B-trees

(with an 82% occupancy) to keep data stored without bu�ers. Keeping the leaf level sorted improves

search performance for range queries shown by the search-heavy and balanced workloads. Both

SWIX and XIndex keep the data unsorted and have to search the data array and the bu�er for the

results, which reduces search time, especially with longer scan ranges. However, using a bu�er is

more update-friendly.

Lastly, we evaluate the performance of Parallel SWIX in an append workload in Figure 14b.

XIndex and FINdex su�er from this workload as their design requires a lot of synchronization as

threads are waiting in line to access the �rst and last segments for updates. Again, PPFlirt achieves

the lowest memory usage, as it is optimized for this workload and behaves like a queue. It is shown

to perform especially well with search-heavy workloads, as it keeps the data sorted and does not

have gaps. Similar to Parallel SWIX, PPFlirt uses a parallel design which takes full advantage of

this workload where updates are isolated in the front and back partitions. However, PPFlirt su�ers

from update-heavy workloads as the dequeue and enqueue threads move between threads which

requires synchronization. Parallel SWIX does not require any synchronization during updates

unless there are changes to the SWmeta.

In summary, for a general workload, Parallel SWIX achieves the lowest memory usage and

competitive performance against FINEdex and XIndex. The parallel design is able to reduce the

work in each thread. However, it struggles when multiple threads must execute the same task. For

an append workload, Parallel SWIX is able to achieve competitive performance for update-heavy

workloads against PPFLirt, with the cost of extra memory usage.

7 RELATED WORK

7.1 Traditional In-memory Indexes

Classical in-memory indexes include hash tables, B+Trees [13, 25], skiplists [36, 42], and tries [5, 24].

Most databases use B+Tree and its variants [13, 24, 25] as the de-facto standard, which can handle

both point and range queries [10]. Tree-based index structures such as B+trees take considerable

memory as they tend to be generic and do not consider the data distribution. Therefore, their

performance can degrade substantially on large datasets due to pointer chasing, which incurs

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 41. Publication date: February 2024.

41:22 Liang Liang et al.

multiple cache misses [13]. Additionally, traditional indexes are not e�cient for enqueue-dequeue

operations in IBWP workloads, as they are not designed for such patterns of updates.

7.2 Learned Indexes

Learned indexes [23] build models to capture the Empirical Cumulative Distribution Function

(ECDF) of the indexed key. To look up a key, the index predicts the physical location of the records.

Much work has been done on learned indexes for both single-dimensional data [9, 11, 12, 17, 18, 22]

and multi-dimensional data [15, 19, 27, 32, 33].

Learned indexes can use di�erent predictive models, including linear and non-linear models [30].

Experiments have shown, however, that simple linear models are e�ective for most real-world

datasets [21, 29]. As a result, most learned indexes use linear spline models and organize records

into linearly-predictable segments.

For workloads involving updates, it is crucial that the learned index can e�ciently be updated

after the model has been trained. A number of learned indexes have been suggested to handle

updates, including PGM [11], ALEX [9], and others [7, 16, 26, 28, 34, 40, 41, 45, 47]. However,

no existing learned index can process IBWP workloads without external structures or additional

lookups, which substantially increases the memory footprint.

Moreover, the choice of the higher-level structure plays a key role in the performance of the

learned index structure. Read-only indexes such as RMI [23, 30] and RadixSpline [22] use array-

based contiguous memory blocks to access data at the cost of being read-only. To tackle this

issue, updateable learned indexes such as ALEX [9] use hierarchical tree-based structures to

allow manipulation of part of the index without having to retrain the entire model. In terms of

segmentation, existing works either are based on a top-down approach (e.g., ALEX [9] and RMI [23])

or a bottom-up approach (e.g., PGM [11] and FITing-Tree [12]). SWIX adopts the top-down approach

for bulk-load and the bottom-up approach for retraining.

7.3 Stream Indexes

Some index structures are speci�cally designed for particular operations on data streams, such as

streaming joins [35, 43]. For example, IMTree [35] is an index based on B+Trees used for streaming

joins. IMTree keeps track of the keys and timestamps and deletes expired keys periodically when

merging B+Trees. As mentioned, the only learned index suggested for streaming data is FLIRT [44].

To the best of our knowledge, there is no streaming index that is speci�cally designed for IBWP or

can be used e�ciently for IBWP workloads.

8 CONCLUSIONS

In this paper, we present SWIX, an e�cient index for data stream processing based on learned

indexes. SWIX is a dynamic, lightweight, parallelizable learned index built upon a �at structure,

o�ering an e�cient solution for data stream management. As the experimental evaluation shows,

SWIX and Parallel SWIX achieve considerably improved memory saving while maintaining compet-

itive performance across di�erent datasets and workloads compared to existing streaming indexes

and updatable learned indexes. Although SWIX is speci�cally designed to be e�cient for IBWP

workloads, it can also be used as a general-purpose, memory-e�cient index for update-heavy

workloads, as we demonstrate this by evaluating SWIX with various read-to-write ratios. This

paper not only showcases the prowess of SWIX but also suggests a shift in design paradigms, where

we must consider the importance of space e�ciency as current design considerations value speed

over time. SWIX takes a di�erent approach to consider space as a priority to show the potential of

a �at structure in learned indexes (not a trivial task, especially with updates).

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 41. Publication date: February 2024.

SWIX: A Memory-e�icient Sliding Window Learned Index 41:23

9 THEORETICAL ANALYSIS OF SEGMENT COUNT IN FLAT LEARNED INDEXES

To better understand SWIX’s performance, we want a theoretical estimation of the prediction error

of piecewise linear models. Theorem 9.3 provides this estimation, stating that the (expected) error

scales as $ (=0.75/# 2), where = is the number of keys, # the number of segments, and the constant

factor � depends on the linearity of the data. If the gaps between the keys tend to be similar, �

(and the prediction error) should be small.

This scaling law gives theoretical insights into the performance of a �at index structure such as

SWIX. As in Section 4.5, denote by n<4C0 and nB46 the prediction errors at the meta and segment level,

respectively. By Theorem 9.3, we can estimate n<4C0 = $ (# 0.75/12) and n<4C0 = $ (=0.75/# 2). Hence,
the search time is dominated by log2 n<4C0 + log2 nB46 = log2 (n<4C0nB46) = $ (log2 (=0.75/# 1.25)).

If the constant factor � is small, this represents a signi�cant speed up when compared to binary

search and even indexes like B+Tree, whose search time is $ (log2 =). This is re�ected in the

experiments with synthetic datasets, where SWIX achieves very low search latency. In the context

of well-behaved data, it is not necessary to go beyond SWIX’s two layer structure.

For complicated datasets like osm, a �at structure still makes theoretical sense. Suppose we

add a new layer to SWIX, between the top and bottom layers, alongside a piecewise linear model

with #̃ < # segments. By the scaling law for the error, search time would now be dominated by

$ (log2 (=0.75/# 1.25#̃ 1.25)). This is better asymptotically than the case with two layers. However,

each new layer introduces a constant factor � , which can be large for the case of real datasets.

Hence, more layers do not necessarily improve search latency. Given this, we prioritize for SWIX

the advantages of a two layer structure, such as a more compact index.

We now provide a proof of Theorem 9.3. We take the assumption that the keys -1, . . . , -=
constitute an independent random sample from an underlying distribution with �nite variance f2.

We denote by - (8) the 8-th lowest value. Using a well-known result, we can bound the expected

sample range.

Lemma 9.1. Let '= = - (=) − - (1) . Then E
[√
'=

]
≤
√
f

4
√
2=.

Proof. Since the square root is a concave function, by Jensen’s inequality we know that

E
[√
'=

]
≤

√
E ['=]. It is also known that E ['=] ≤ f

√
2=, see for example the discussion af-

ter Theorem 5.5.2 in [8]. The result follows from these two facts. □

We use the scaled values /8 = (- (8) − - (1))/'= . Also, for any 8 = 1, . . . , = − 1, we de�ne the gaps
Δ/8 = /8+1 − /8 and Δ-8 = - (8+1) − - (8) . We also assume the {-8 } are integers and come from

a discrete distribution, which is reasonable in practice. Hence, we have Δ-8 ≥ 1, which means

Δ/8 ≥ 1/'= and we get the following.

Fact 9.2. It holds that
∑=−1
8=1

1
Δ/8
≤ (= − 1)'= ≤ ='= .

To analyze the error, we do not focus on the {-8 }. Instead, we consider the equivalent problem
of learning the empirical distribution of the {/8 }. Speci�cally, consider any twice-di�erentiable

function � : [0, 1] → [0, 1] that interpolates the points (/8 , 8/=). Notice that � captures the empirical

cumulative distribution of the {/8 }, since � (/8) = 8/= for all 8 . Now, denote by �̃ an approximation

of � , such that �̃ is a piecewise function consisting of # segments, each a polynomial of degree 1.

The predicted index for a key -8 would be =�̃ (/8). The average prediction error is then

Y =
1

=

=−1∑

8=1

��8 − =�̃ (/8)
��
=

=−1∑

8=1

����
8

=
− �̃ (/8)

���� =
=−1∑

8=1

��� (/8) − �̃ (/8)
�� ,

where we are summing to = − 1 instead of = for technical reasons (the di�erence is negligible). Now,

the following holds.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 41. Publication date: February 2024.

41:24 Liang Liang et al.

Theorem 9.3. Under the conditions stated in this section, it holds

E [Y] ≲
4
√
2

2

√
f

120

(∫ 1

0

|� ′′ (I) |2/53I
)5/2

=3/4.

Proof. Squaring both sides in the de�nition of Y we get

Y2 =

(
=−1∑

8=1

��� (/8) − �̃ (/8)
��
)2

=

(
=−1∑

8=1

��� (/8) − �̃ (/8)
��
√

Δ/8

Δ/8

)2

Applying Cauchy–Schwarz inequality

≤
=−1∑

8=1

��� (/8) − �̃ (/8)
��2 Δ/8

=−1∑

8=1

1

Δ/8
.

Approximating the Riemann sum by its integral, we get the approximate inequality

Y2 ≲

∫ 1

0

��� (I) − �̃ (I)
��2 3I

=−1∑

8=1

1

Δ/8
.

Taking square roots at both sides of this inequality and using the result from [3] to bound the

integral, we get

Y ≲
1

2

1
√
120

(∫ 1

0

|� ′′ (I) |2/53I
)5/2

√√√
=−1∑

8=1

1

Δ/8
.

We bound
√∑=−1

8=1
1

Δ/8
using Fact 9.2, apply expected value at both sides, and bound E

[√
'=

]
using

Lemma 9.1 to get the result. □

A few technical considerations are necessary, like the error of approximating the Riemann sum

by its integral. We do not go into these details for lack of space, but stress the main idea: the error

decreases as 1/# 2, increases as =0.75, and there is a proportionality constant � depending on the

regularity of the data. If the data looks close to linear for large stretches, |� ′′ (I) |2/5 and its integral

should be small, making � small.

ACKNOWLEDGMENTS

This work was partially funded by the National Agency for Research and Development (ANID) /

Scholarship Program / DOCTORADO BECAS CHILE/2023 - 72230222.

REFERENCES

[1] Ajay Acharya and Nandini S. Sidnal. 2016. High Frequency Trading with Complex Event Processing. In 2016 IEEE 23rd

International Conference on High Performance Computing Workshops (HiPCW). 39–42. https://doi.org/10.1109/HiPCW.

2016.014

[2] Hirotugu Akaike. 1974. A new look at the statistical model identi�cation. IEEE transactions on automatic control 19, 6

(1974), 716–723.

[3] Daniel Berjón, Guillermo Gallego, Carlos Cuevas, Francisco Morán, and Narciso García. 2015. Optimal piecewise linear

function approximation for GPU-based applications. IEEE transactions on cybernetics 46, 11 (2015), 2584–2595.

[4] bingmann. 2019. STX-BTree. https://github.com/bingmann/stx-btree Last Accessed: 2023-12-28.

[5] Robert Binna, Eva Zangerle, Martin Pichl, Günther Specht, and Viktor Leis. 2018. HOT: a height optimized Trie index

for main-memory database systems. In Proceedings of the International Conference on Management of Data (SIGMOD).

ACM, 521–534.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 41. Publication date: February 2024.

https://doi.org/10.1109/HiPCW.2016.014
https://doi.org/10.1109/HiPCW.2016.014
https://github.com/bingmann/stx-btree

SWIX: A Memory-e�icient Sliding Window Learned Index 41:25

[6] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas Graves, Mark Holderbaugh, Zhuo Liu, Kyle

Nusbaum, Kishorkumar Patil, Boyang Jerry Peng, et al. 2016. Benchmarking streaming computation engines: Storm,

�ink and spark streaming. In 2016 IEEE international parallel and distributed processing symposium workshops (IPDPSW).

IEEE, 1789–1792.

[7] Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian Kroth, Andrea Arpaci-Dusseau, and Remzi

Arpaci-Dusseau. 2020. From wisckey to bourbon: A learned index for log-structured merge trees. In OSDI. 155–171.

[8] Herbert A David and Haikady N Nagaraja. 2004. Order statistics. John Wiley & Sons.

[9] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li, Hantian Zhang, Badrish Chandramouli,

Johannes Gehrke, Donald Kossmann, David Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned

Index. In Proceedings of the International Conference on Management of Data (SIGMOD) (Portland, OR, USA). 969–984.

[10] Adam Dziedzic, Jingjing Wang, Sudipto Das, Bolin Ding, Vivek R Narasayya, and Manoj Syamala. 2018. Columnstore

and B+ tree-Are Hybrid Physical Designs Important?. In Proceedings of the International Conference on Management of

Data (SIGMOD). 177–190.

[11] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index: a fully-dynamic compressed learned index with

provable worst-case bounds. Proceedings of the VLDB Endowment (PVLDB) 13, 8 (2020).

[12] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and Tim Kraska. 2019. FITing-Tree: A Data-

aware Index Structure. In Proceedings of the International Conference on Management of Data (SIGMOD). 1189–1206.

[13] Goetz Graefe et al. 2011. Modern B-tree Techniques. Foundations and Trends in Databases 3, 4 (2011), 203–402.

[14] gvinciguerra. 2023. PGM-Index. https://github.com/gvinciguerra/PGM-index Last Accessed: 2023-12-28.

[15] Ali Hadian, Behzad Gha�ari, Taiyi Wang, and Thomas Heinis. 2021. COAX: Correlation-Aware Indexing on Multidi-

mensional Data with Soft Functional Dependencies. arXiv preprint arXiv:2006.16393 (2021).

[16] Ali Hadian and Thomas Heinis. 2019. Interpolation-friendly B-trees: Bridging the Gap Between Algorithmic and

Learned Indexes. In Proceedings of the International Conference on Extending Database Technology (EDBT).

[17] Ali Hadian and Thomas Heinis. 2020. MADEX: Learning-augmented Algorithmic Index Structures. In Proceedings of

the International VLDB Workshop on Applied AI for Database Systems and Applications (AIDB).

[18] Ali Hadian and Thomas Heinis. 2021. Shift-Table: A Low-latency Learned Index for Range Queries using Model

Correction. In Proceedings of the International Conference on Extending Database Technology (EDBT).

[19] Ali Hadian, Ankit Kumar, and Thomas Heinis. 2020. Hands-o� Model Integration in Spatial Index Structures. In

Proceedings of the International VLDB Workshop on Applied AI for Database Systems and Applications (AIDB).

[20] Intel. 1997. Read Time-Stamp Counter. https://c9x.me/x86/html/�le_module_x86_id_278.html Last Accessed: 2023-10-

14.

[21] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper, Tim Kraska, and Thomas Neumann.

2019. SOSD: A Benchmark for Learned Indexes. NeurIPS Workshop on Machine Learning for Systems (2019).

[22] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper, Tim Kraska, and Thomas Neumann.

2020. RadixSpline: A Single-Pass Learned Index. In Proceedings of the International SIGMOD Workshop on Exploiting

Arti�cial Intelligence Techniques for Data Management (aiDM).

[23] Tim Kraska, Alex Beutel, Ed H Chi, Je�rey Dean, and Neoklis Polyzotis. 2018. The case for learned index structures. In

Proceedings of the International Conference on Management of Data (SIGMOD). 489–504.

[24] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix tree: ARTful indexing for main-memory

databases. In Proceedings of the IEEE International Conference on Data Engineering (ICDE). 38–49.

[25] Justin J Levandoski, David B Lomet, and Sudipta Sengupta. 2013. The Bw-Tree: A B-tree for new hardware platforms.

In Proceedings of the IEEE International Conference on Data Engineering (ICDE). 302–313.

[26] Pengfei Li, Yu Hua, Jingnan Jia, and Pengfei Zuo. 2021. FINEdex: a �ne-grained learned index scheme for scalable and

concurrent memory systems. Proceedings of the VLDB Endowment 15, 2 (2021), 321–334.

[27] Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. 2020. LISA: A Learned Index Structure for Spatial Data. In

Proceedings of the International Conference on Management of Data.

[28] Anisa Llavesh, Utku Sirin, Robert West, and Anastasia Ailamaki. 2019. Accelerating B+tree Search by Using Simple

Machine Learning Techniques. In Proceedings of the 1st International VLDBWorkshop on Applied AI for Database Systems

and Applications (AIDB).

[29] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra, Alfons Kemper, Thomas Neumann,

and Tim Kraska. 2020. Benchmarking learned indexes. Proceedings of the VLDB Endowment (PVLDB) 14, 1 (2020), 1–13.

[30] Ryan Marcus, Emily Zhang, and Tim Kraska. 2020. CDFShop: Exploring and Optimizing Learned Index Structures. In

Proceedings of the International Conference on Management of Data (SIGMOD). 2789–2792.

[31] microsoft. 2022. ALEX. https://github.com/microsoft/ALEX Last Accessed: 2023-12-28.

[32] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020. Learning Multi-dimensional Indexes. In

Proceedings of the International Conference on Management of Data (SIGMOD).

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 41. Publication date: February 2024.

https://github.com/gvinciguerra/PGM-index
https://c9x.me/x86/html/file_module_x86_id_278.html
https://github.com/microsoft/ALEX

41:26 Liang Liang et al.

[33] Varun Pandey, Alexander van Renen, Andreas Kipf, Ibrahim Sabek, Jialin Ding, and Alfons Kemper. 2020. The Case for

Learned Spatial Indexes. In Proceedings of the International VLDB Workshop on Applied AI for Database Systems and

Applications (AIDB).

[34] Naufal Fikri Setiawan, Benjamin IP Rubinstein, and Renata Borovica-Gajic. 2020. Function Interpolation for Learned

Index Structures. In ADC.

[35] Amirhesam Shahvarani and Hans-Arno Jacobsen. 2020. Parallel Index-based Stream Join on a Multicore CPU. In

Proceedings of the International Conference on Management of Data (SIGMOD). Association for Computing Machinery,

New York, NY, USA, 2523–2537.

[36] Stefan Sprenger, Ste�en Zeuch, and Ulf Leser. 2016. Cache-sensitive skip list: E�cient range queries on modern cpus.

In Proceedings of the International Workshop on Data Management on New Hardware (DaMoN). Springer, 1–17.

[37] Hari Subramoni, Fabrizio Petrini, Virat Agarwal, and Davide Pasetto. 2010. Streaming, low-latency communication

in on-line trading systems. In International Symposium on Parallel Distributed Processing, Workshops and Phd Forum

(IPDPSW). 1–8.

[38] Chuzhe Tang. 2022. FINEdex. https://github.com/iotlpf/FINEdex Last Accessed: 2023-12-28.

[39] Chuzhe Tang. 2022. XIndex. https://ipads.se.sjtu.edu.cn:1312/opensource/xindex Last Accessed: 2023-12-28.

[40] Chuzhe Tang, Youyun Wang, Zhiyuan Dong, Gansen Hu, Zhaoguo Wang, Minjie Wang, and Haibo Chen. 2020. XIndex:

a scalable learned index for multicore data storage. In Proceedings of the 25th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming. 308–320.

[41] Jiacheng Wu, Yong Zhang, Shimin Chen, Jin Wang, Yu Chen, and Chunxiao Xing. 2021. Updatable learned index with

precise positions. arXiv preprint arXiv:2104.05520 (2021).

[42] Zhongle Xie, Qingchao Cai, HV Jagadish, Beng Chin Ooi, and Weng-Fai Wong. 2017. Parallelizing skip lists for

in-memory multi-core database systems. In Proceedings of the IEEE International Conference on Data Engineering (ICDE).

IEEE, 119–122.

[43] Yu Ya-xin, Yang Xing-hua, Yu Ge, and Wu Shan-shan. 2006. An Indexed Non-equijoin Algorithm Based on Sliding

Windows over Data Streams. Wuhan University Journal of Natural Sciences 11, 1 (2006), 294–298.

[44] Guang Yang, Liang Liang, Ali Hadian, and Thomas Heinis. 2023. FLIRT: A Fast Learned Index for Rolling Time frames.

In Proceedings of the International Conference on Extending Database Technology (EDBT). 234–246.

[45] Jiaoyi Zhang and Yihan Gao. 2022. CARMI: A Cache-Aware Learned Index with a Cost-Based Construction Algorithm.

Proc. VLDB Endow. 15, 11 (jul 2022), 2679–2691. https://doi.org/10.14778/3551793.3551823

[46] Shuhao Zhang, Yancan Mao, Jiong He, Philipp M Grulich, Ste�en Zeuch, Bingsheng He, Richard TB Ma, and Volker

Markl. 2021. Parallelizing Intra-Window Join on Multicores: An Experimental Study. In Proceedings of the 2021

International Conference on Management of Data. 2089–2101.

[47] Wenshao Zhong, Chen Chen, Xingbo Wu, and Song Jiang. 2021. REMIX: E�cient Range Query for LSM-trees. In

USENIX Conference on File and Storage Technologies (FAST). 51–64.

Received July 2023; revised October 2023; accepted November 2023

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 41. Publication date: February 2024.

https://github.com/iotlpf/FINEdex
https://ipads.se.sjtu.edu.cn:1312/opensource/xindex
https://doi.org/10.14778/3551793.3551823

	Abstract
	1 Introduction
	2 Motivation
	2.1 Index-Based Window Processing (IBWP)
	2.2 The Trade-off Between Latency and Memory

	3 SWIX Design
	3.1 Design considerations
	3.2 SWIX Structure

	4 SWIX Operations
	4.1 Search
	4.2 Updates
	4.3 Bulk-load
	4.4 Retraining
	4.5 Analytical Evaluation and Auto-tuner

	5 Parallel SWIX
	5.1 Parallel SWIX Structure
	5.2 Parallel Search
	5.3 Parallel Updates
	5.4 Concurrent Retraining

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Detailed Analysis
	6.3 Comparative Analysis
	6.4 Parallel Learned Indexes

	7 Related Work
	7.1 Traditional In-memory Indexes
	7.2 Learned Indexes
	7.3 Stream Indexes

	8 Conclusions
	9 Theoretical Analysis of Segment Count in Flat Learned Indexes
	Acknowledgments
	References

