
PreVision: An Out-of-Core Matrix Computation System with
Optimal Buffer Replacement
KYOSEUNG KOO, Seoul National University, Korea
SOHYUN KIM, Seoul National University, Korea
WONHYEON KIM, Seoul National University, Korea
YOOJIN CHOI, Seoul National University, Korea
JUHEE HAN, Seoul National University, Korea
BOGYEONG KIM, Seoul National University, Korea
BONGKI MOON, Seoul National University, Korea

Large-scale matrix computations have become indispensable in artificial intelligence and scientific applications.

It is of paramount importance to efficiently perform out-of-core computations that often entail an excessive

amount of disk I/O. Unfortunately, however, most existing systems do not focus on disk I/O aspects and

are vulnerable to performance degradation when the scale of input matrices and intermediate data grows

large. To address this problem, we present a new out-of-core matrix computation system called PreVision. The
PreVision system can achieve optimal buffer replacement by leveraging the deterministic characteristics of

data access patterns, and it can also avoid redundant I/O operations by proactively evicting the pages that are

no longer referenced. Through extensive evaluations, we demonstrate that PreVision outperforms the existing

out-of-core matrix computation systems and significantly reduces disk I/O operations.

CCS Concepts: • Information systems → Record and buffer management; Database query processing.

Additional Key Words and Phrases: future log of references, array, matrix computation

ACM Reference Format:
Kyoseung Koo, Sohyun Kim, Wonhyeon Kim, Yoojin Choi, Juhee Han, Bogyeong Kim, and Bongki Moon. 2024.

PreVision: An Out-of-Core Matrix Computation System with Optimal Buffer Replacement. Proc. ACM Manag.
Data 2, 1 (SIGMOD), Article 42 (February 2024), 25 pages. https://doi.org/10.1145/3639297

1 INTRODUCTION
The ability to handle large-scale matrix computations becomes increasingly crucial for artificial

intelligence and scientific applications. Many solutions have already been proposed for matrix

computations, which range from easy-to-use packages to sophisticated distributed systems. While

easy-to-use packages such as NumPy [16] and SciPy [44] are widely used for simple computational

tasks on a standalone workstation, distributed systems such as SystemDS [9] and SciDB [39] focus

mainly on parallelizing large-scale workloads over many computing nodes.

Large-scale matrix computation tasks such as PageRank [30] may suffer from an excessive

amount of disk I/O operations, when large input matrices should be loaded into memory by each

update iteration. The problem can become dire if a large quantity of intermediate data is produced,

Authors’ addresses: Kyoseung Koo, koo@dbs.snu.ac.kr, Seoul National University, Seoul, Korea; Sohyun Kim, chloek409@

dbs.snu.ac.kr, Seoul National University, Seoul, Korea; Wonhyeon Kim, dnjsgus@dbs.snu.ac.kr, Seoul National University,

Seoul, Korea; Yoojin Choi, cyj@dbs.snu.ac.kr, Seoul National University, Seoul, Korea; Juhee Han, juheehan@dbs.snu.ac.kr,

Seoul National University, Seoul, Korea; Bogyeong Kim, bgkim@dbs.snu.ac.kr, Seoul National University, Seoul, Korea;

Bongki Moon, bkmoon@snu.ac.kr, Seoul National University, Seoul, Korea.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).

ACM 2836-6573/2024/2-ART42

https://doi.org/10.1145/3639297

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 42. Publication date: February 2024.

https://doi.org/10.1145/3639297
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3639297

42:2 Kyoseung Koo et al.

spilled out to disk, and reloaded to memory for further processing repeatedly. A vicious pattern like

this happens more often than not in matrix computations (e.g., non-negative matrix factorization

(NMF) [23]). Most of the existing distributed systems, however, do not address disk I/O challenges

and are hardly optimized for out-of-core matrix computations, let alone those easy-to-use packages

with limited support for out-of-core computations. For example, SystemDS and MLlib [28] rely on

Spark [46], which spills data produced from a stage to disk for the next stage. NumPy, one of the

popular easy-to-use packages, uses a naive data layout to store matrices on disk, contributing to

inefficient data access for computations. Disk I/O is still a costly operation and accounts for a large

portion of processing time for matrix computation tasks.

A new trend in query planning further aggravates the disk I/O problem. Traditionally, relational

database management systems adopt a tree-structured query plan for its simplicity of expressing a

relational algebra query. On the other hand, queries are now modeled as a directed acyclic graph

(DAG) more often than before particularly for tasks requiring multiple accesses to the same data

source [9, 46]. In a DAG query plan, the output produced by an operator can be fed into one or

more operators as input. Consequently, the same output may have to be reproduced repeatedly for

multiple consuming operators. A common approach to avoiding such redundant computation is to

materialize the output data at least partially. For instance, Spark provides a function persist() to

avoid the repeated computation of a Resilient Distributed Dataset (RDD). The materialized data

will inevitably add to the working set of a DAG query plan, which lowers the buffer hit ratio and

increases disk I/O operations.

Buffer replacement algorithms have been studied extensively for the past decades because they

play a critical role in reducing disk I/O operations [21, 26, 27, 29]. Among those, an optimal buffer

replacement algorithm OPT [26] is known to be infeasible to implement in most practical scenarios

due to its reliance on the knowledge of future events. When it comes to an out-of-core matrix

computation, however, it is not impossible to accurately predict the entire sequence of data chunks
to be accessed. Consider a large disk-resident matrix stored as a group of tiles of varying shapes

and sizes [38]. With those tiles as the unit of paging between memory and disk, the entire sequence

of tile accesses can be predicted at the planning stage of a given query by taking advantage of the

deterministic nature of matrix computation algorithms [42].

This paper presents PreVision, a data processing system designed for large out-of-core matrix

computations. For a given matrix computation task modeled as a DAG query plan, PreVision can

make use of the optimal buffer replacement algorithm by leveraging the entire page access pattern

that can be accurately predicted for the DAG query plan. Besides, PreVision takes a proactive

approach to buffer replacement by preemptively evicting data no longer referenced in the future.

By immediately evicting data once they become known to be referenced no longer, PreVision can

effectively increase the utilization and the hit ratio of the buffer pool.

The contributions of this work are as follows:

• We have developed an optimal buffer replacement algorithm for a DAG-structured query

plan. Optimal buffer replacement becomes feasible at the nominal cost of run-time analysis

that produces the future log of references for a given DAG query plan.

• We propose a preemptive eviction strategy that eagerly victimizes data no longer referenced.

The future log is used to detect such data so that they can be evicted from the buffer pool

immediately.

• We present the implementation details of PreVision focusing on the buffer management issues

such as variable-length page allocation, a few design decisions for the buffer manager, and a

disk-resident file format.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 42. Publication date: February 2024.

PreVision: An Out-of-Core Matrix Computation System with Optimal Buffer Replacement 42:3

• We demonstrate experimentally that PreVision outperforms existing open-source solutions

for large-scale matrix computation tasks. The experimental results corroborate the efficacy

of the I/O mitigation methods of PreVision.

This paper is organized as follows. In Section 2, we describe how a DAG query plan is executed

in detail and introduce the future log of references that can be created by analyzing a given query

plan. Section 3 and Section 4, respectively, depict how the OPT buffer replacement algorithm can

be applied and how data with no future reference can be evicted preemptively using the future log.

The implementation details of PreVision are presented in Section 5, and the extensive evaluation

with detailed analysis is presented in Section 6. The previous studies related to this paper are

summarized in Section 7. Lastly, we conclude this work in Section 8.

2 LOOKING INTO THE FUTURE
In a matrix computation, the shapes of intermediate and output matrices can be predicted accurately.

Besides, the blockmatrix algorithms [42] generally have deterministic data access patterns. Consider

for example a matrix multiplication 𝑀 × 𝑁 that is performed by a block matrix multiplication

algorithm. The shape of the output matrix is immediately determined by the number of rows in

matrix𝑀 and the number of columns in matrix 𝑁 . The matrix multiplication algorithm accesses

the row tiles of the matrix 𝑀 and the column tiles of the matrix 𝑁 to produce output tiles. The

order of tile pairs to multiply is fixed, and the entire sequence of tile accesses by this algorithm can

be predicted accurately. In comparison with a relational join operation, the data access pattern by a

block matrix algorithm can be more deterministic for input, intermediate, and output matrices.

A matrix computation task may have more than one operator in its DAG query plan. By analyzing

the dependency among the operators in the query plan, PreVision selects an order of operators that

will be carried out by the executor. By leveraging the fact that both the tile access pattern by an

individual operator and the execution order of the operators are deterministic, the query planner

of PreVision constructs a tile reference sequence by simulating the query plan. The constructed

reference sequence is stored in a future log and passed to the buffer manager before the execution

of the query plan begins.

This section presents the overview of query execution steps taken by PreVision for a matrix

computation task (in Section 2.1). It then describes how individual operators in a DAG-structured

query plan are executed and how a future log is constructed by simulating a given query plan in

detail with concrete examples (in Section 2.2 and Section 2.3).

2.1 Overview of PreVision
The overall steps of query processing by PreVision is illustrated in Fig. 1. PreVision supports the

Array data type and provides a set of Application Programming Interfaces (APIs) for linear algebra

functions. The Array data type represents disk-resident arrays and temporary arrays produced by

the linear algebra functions. A user task is typically expressed by a series of linear algebra functions,

and it is activated by invoking the compute() function. The activated user task is submitted to

PreVision as a query, for which the query planner constructs a DAG-structured query plan. The

query planner performs query rewrites if necessary, builds a future log, and passes it to the buffer

manager.

The query plan is then executed by the query executor, which works with the buffer manager to

access array data and perform computations on the array data. The buffer manager adopts the OPT

buffer replacement algorithm by leveraging the future log, enables an 𝑂 (1) time victim selection

when the buffer pool is full, and evicts obsolete data preemptively so that the buffer pool will not

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 42. Publication date: February 2024.

42:4 Kyoseung Koo et al.

Query Planner

Query Executor

DAG Query Plan

Arrays
in PreVision file format

Disk

Tile Request

Disk I/O

I/O Manager

Buffered Tile

I/O Request

X = open_array("X")
Xt = transpose(X)
XtX = matmul(Xt, X)
compute(XtX)

User written code
𝑋!𝑋

User

MAT
MUL

OPEN

.+=

= T

PreVision
Query

Buffer Pool

Buffer Manager TRANS

Future Log

Fig. 1. Overview of PreVision

be polluted by them. The I/O manager deals with all read and write operations for disk-resident

arrays stored in the file format defined by PreVision.
PreVision splits an array into a group of tiles so that it can take block matrix approaches [42]

with those tiles to perform matrix computations. The buffer manager treats the tiles as the unit

of buffering like pages. Unlike fixed-length pages, however, tiles can be of different shapes and

lengths. Tiles of the same shape may differ in size due to different densities of the tiles.

2.2 Executing a DAGQuery Plan
In PreVision, a query plan is represented as a directed acyclic graph (DAG). A DAG query plan

is composed of nodes and edges, and each node represents an operation and each edge indicates

the direction of data flow from one node to another. The source and destination of an edge are

called a producer node and a consumer node, respectively. A node designated by a user with the

compute() function is referred to as an output node. For example, in Fig. 1, the query plan of a

matrix computation task 𝑋𝑇𝑋 involves three nodes, namely OPEN, TRANS, and MATMUL. The OPEN
node represents an operation that fetches a disk-resident array 𝑋 . The TRANS and MATMUL nodes
are responsible for a transposition operation and a matrix multiplication operation, respectively.

The query plan also involves three directed edges, namely OPEN → TRANS, OPEN → MATMUL, and
TRANS→ MATMUL. The first two edges indicate that the same producer node OPEN feeds two consumer

nodes TRANS and MATMUL with an array it fetches from disk. The MATMUL is designated as an output

node as it returns the result of the task to the user.

The query executor of PreVision creates an iterator for each node in the query plan. Each iterator

includes a common function called getPos() to fetch a tile. A tile request is made by invoking

the getPos() function with the coordinates of the tile. While a query is being processed, each

iterator maintains a Boolean state for each tile it is responsible for to indicate whether the tile has

been computed or not. When a request is made for a tile already computed and marked as true, the

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 42. Publication date: February 2024.

PreVision: An Out-of-Core Matrix Computation System with Optimal Buffer Replacement 42:5

𝐵!,!# 𝐵!,$#

𝐵$,!# 𝐵$,$#
𝐴!,! 𝐴!,$

𝐶!,! 𝐶!,$

𝐶$,$𝐶$,!
①

⑥

④

②

Caller

⑦

Matrix C

Matrix BTMatrix A

𝐵!,! 𝐵!,$

Matrix B

③

⑤

(a) Calculating 𝐶0,0.

𝐵!,!# 𝐵!,$#

𝐵$,!# 𝐵$,$#𝐴$,! 𝐴$,$

𝐶!,! 𝐶!,$

𝐶$,$𝐶$,!
①

②

Caller

Matrix C

Matrix BTMatrix A

Matrix B

③

④

⑤

(b) Calculating 𝐶1,0.

Fig. 2. The tile access pattern of 𝐴𝐵𝑇 for 2 × 2 tiled matrices

iterator returns the computed tile without redoing the computation. Redundant computations can

be avoided this way.

PreVision initiates the processing of a query by requesting tiles from the iterator of the output

node in the query plan. The iterator of the output node then sends requests for all the necessary

tiles to the iterators of corresponding producer nodes. This operation is propagated recursively

down to all the relevant descendent nodes of the query plan.

Example 1. Fig. 2 illustrates how PreVision performs a matrix computation task𝐶 = 𝐴𝐵𝑇 , where 𝐴,
𝐵 and 𝐶 are 2 × 2 tiled matrices. In the figure, each arrow shows the flow of data between nodes and is
annotated with a circled number to indicate the order of execution.
When the first output tile 𝐶0,0 is requested by the executor of PreVision, the iterator of the output

node makes tile requests to initiate a matrix multiplication as the requested tile 𝐶0,0 is not computed
yet. Since 𝐶0,0 = 𝐴0,0𝐵

𝑇
0,0 +𝐴0,1𝐵

𝑇
1,0, the iterator first attempts to fetch 𝐴0,0 and 𝐵𝑇0,0. Fetching 𝐴0,0 and

𝐵𝑇
0,0 is done by sending a tile request to the iterator of 𝐴 and sending another tile request to the iterator

of 𝐵𝑇 . While fetching 𝐴0,0 can be done immediately by its iterator (1○), the iterator of 𝐵𝑇 has to send
yet another tile request to the iterator of 𝐵 (2○) to initiate a matrix transposition. Upon completion of
the matrix transposition, the iterator of 𝐵𝑇 returns the 𝐵𝑇

0,0 tile to the iterator of 𝐶 (3○). The iterator
of 𝐶 then carries out a matrix multiplication with the 𝐴0,0 and 𝐵𝑇0,0 tiles. To perform the next matrix
multiplication 𝐴0,1𝐵

𝑇
1,0, the iterator of 𝐶 requests the 𝐴0,1 and 𝐵𝑇1,0 tiles from its descendent iterators

(4○, 5○, and 6○) in the similar way. Finally, when both 𝐴0,0𝐵
𝑇
0,0 and 𝐴0,1𝐵

𝑇
1,0 become available, the

iterator of 𝐶 computes the 𝐶0,0 tile and returns it to the user (7○). All these steps are summarized in
Fig. 2a.
The iterator of 𝐶 repeats the same steps to compute 𝐶1,0. Note, however, that the iterator of 𝐵 may

not have to be involved in the computation of 𝐶1,0, because 𝐵𝑇0,0 and 𝐵
𝑇
1,0, which are necessary for 𝐶1,0,

have already been computed by the iterator of 𝐵𝑇 . The two transposed tiles can simply be passed from
it to the iterator of 𝐶 without making any new request to the iterator of 𝐵 (2○ and 4○). These steps are
summarized in Fig. 2b. □

2.3 Constructing a Future Log
The future log is implemented as a hash table. A hash element is created for each tile referenced by

a given query. Each hash element contains (1) the metadata of a tile, (2) a list of reference events,

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 42. Publication date: February 2024.

42:6 Kyoseung Koo et al.

Hash TableFuture Log

…

key: 𝐵!,!#
events: [1, 3, 21]
ptr:

key: 𝐶!,!
events: [4, 9]
ptr:

Fig. 3. An example of a future log

and (3) a pointer to the next reference event. The metadata of a tile is used as a hash key in the hash

table. Since a tile can be referenced more than once, a list of reference events is stored in the hash

element, and each of the reference events is essentially a logical timestamp of the corresponding

reference. See Fig. 3 for an example of a future log.

The reference events can be obtained by the query planner of PreVision simulating the given

query. The query planner initializes a logical clock to zero when it begins traversing the query plan.

Following the prescribed execution procedure, when the query planner detects a buffer request for

a tile, it appends the current timestamp of the logical clock to the list of events in the corresponding

hash element. If the tile has not been referenced before and the hash element is not found in

the future log, the planner creates a new hash element and adds it to the future log by using the

metadata of the tile as a hash key. It then increments the logical clock by one. Since the logical

clock never decrements, the list of events of a tile is sorted in the ascending order of timestamps.

Example 2. Fig. 3 illustrates the future log entries of the 𝐵𝑇
0,0 and 𝐶0,0 tiles described in Example 1.

Suppose that the query planner begins simulating the query plan by applying a matrix transposition
operation to the 𝐵0,0 tile. The 𝐵0,0 tile will be the first one to be requested, which is then followed
by an empty tile for 𝐵𝑇

0,0 that will store the transposed tile. Thus, a hash element for 𝐵0,0 is created
and inserted into the future log with a timestamp zero, and another hash element for 𝐵𝑇

0,0 is created
and inserted into the future log with a timestamp one. When 𝐴0,0, 𝐵𝑇0,0, and 𝐶0,0 are referenced next
by the matrix computation task in Example 1, two new hash elements are created for 𝐴0,0 and 𝐶0,0,
and three new reference events with timestamps two, three, and four, respectively, are added to their
corresponding hash elements in the future log. The simulation continues in this manner adding more
hash elements and reference events to the future log until the query plan is traversed completely. Fig. 3
shows just a few reference events of the 𝐵𝑇

0,0 and 𝐶0,0 tiles. □

The future log is usually small enough to fit in memory. For example, when PreVision performed

a logistic regression (LR) task for a 100 × 1 tall-skinny tiled matrix with three iterations, the future

log was no more than 300 kilobytes in size. (See Section 6 for the details of the task.)

3 OPTIMAL TILE REPLACEMENT
The buffer manager of PreVision runs the OPT buffer replacement algorithm with a future log

provided by the query planner. The optimal buffer replacement is achieved by evicting a buffer

frame for replacement the next reference of which is the farthest into the future. Each tile cached

in the buffer pool is associated with the timestamp of the next reference (denoted by next_ts). The
next reference can be retrieved from the future log.

For the fast selection of a victim, all the cached tiles are maintained in a doubly linked skip

list [32] in the increasing order of their next_ts values. A victim selection can be done in 𝑂 (1) time

because an unpinned tile with the greatest next_ts value is always found at the tail end of the skip

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 42. Publication date: February 2024.

PreVision: An Out-of-Core Matrix Computation System with Optimal Buffer Replacement 42:7

Hash Entry

key: 80000000x100_dense {37, 0}
events: [742, 760, 3053, 3071,

5364, 5382, 7675,
7693, 9618]

ptr:

Skip List

Future Log
760

1002
2321

3053

4. Insert back

2. Update ptr

1. Remove from the list
3053

3. Retrieve next_ts from the log

Fig. 4. An example of list update process for a buffer hit

list. In general, if a large number of pinned tiles had to be skipped, the victim selection time could

indeed exceed 𝑂 (1) time. However, this does not happen with PreVision which executes only a

single operation at a time. The number of pinned tiles is always a constant, which is the number of

operand and output tiles for an operator being executed.

The timestamps of future references are determined by a logical clock that ticks once every tile

reference. Thus the next_ts values of all cached tiles are greater than or equal to the current clock

at any moment in time. This also implies that, on a buffer hit, the next tile to reference is always

at the head of the skip list. When this tile is actually referenced, it is removed from the skip list

and is inserted back with a renewed next_ts value. On a buffer miss, the buffer manager loads the

referenced tile from disk, sets the next_ts value of the tile by accessing the future log, and inserts

the tile to the skip list. Fig. 4 illustrates the steps of a list update operation when a buffer hit occurs.

In the future log, there is a hash element for each tile to be referenced. The hash element of a

tile stores a list of reference events in chronological order. To determine the next_ts value of a tile
quickly, the hash element of the title includes 𝑝𝑡𝑟 pointing to the next reference event. The pointer

𝑝𝑡𝑟 advances by a slot within the list after each reference. When there is no more event left in the

hash element, the pointer 𝑝𝑡𝑟 is set to NULL, and the next_ts is set to infinity.

Whenever a tile is referenced, the buffer manager updates the next_ts value for the referenced
tile, and the new next_ts value can be obtained in 𝑂 (1) time by following the ptr in the event

list of the hash element. The buffer manager then inserts the tile into the skip list, which takes

time logarithmic to the size of the skip list. Overall, each tile reference requires 𝑂 (𝑙𝑜𝑔𝑁) time for

maintaining the skip list, where 𝑁 is the number of tiles in the skip list. Although the overhead

may seem high, it is negligible considering the dominant I/O cost required for out-of-core matrix

computations and 𝑁 being typically quite small. In our experiment, 𝑁 did not exceed 100 while an

LR task was carried out. (See Section 6 for details.)

Example 3. Fig. 4 shows how the skip list and the future log are updated when a buffer hit occurs
by a tile reference. The tile reference can be considered a replay of a query simulation preserved in
the future log. Thus, for example, when the logical clock of the buffer pool strikes 760, a tile with
next_ts value 760 is referenced. Assuming that the tile is cached in the buffer pool, the buffer manager
temporarily removes the tile from the skip list and searches for the next reference event from the future
log by advancing the ptr in the tile’s hash element. Since the next event (or its timestamp) is 3053, the
ptr advances from the current event 760 to the next event 3053. Then, the buffer manager updates the
next_ts value of the tile to 3053 and inserts the tile back into the skip list. In the case of a buffer miss
where the tile with next_ts value 760 does not exist in the skip list, the procedure of removing the tile
from the skip list is replaced with the procedure of loading the tile from the disk. □

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 42. Publication date: February 2024.

42:8 Kyoseung Koo et al.

Optimality. The OPT buffer replacement algorithm is known to be optimal for a fixed number of

fixed-length buffer frames [6]. However, the optimality of the algorithm is not guaranteed when

dealing with variable-length buffer frames. Since the tiles of PreVision are not of the same length,

adopting the OPT algorithm does not always guarantee the optimal buffer replacement. Nonetheless,

the OPT algorithm still yields higher buffer hit ratios than LRU-K [29] and Most Recently Used

(MRU) algorithms do. The impact of the OPT algorithm will be discussed more in Section 6.4.

Conditional Control Flow. One of the challenges arising in query processing is the potential data

dependency. For instance, the termination condition of an iterative algorithm needs to be evaluated

every iteration, and the subsequent operations will remain undecided until the evaluation of the

termination condition is complete. PreVision attempts to break the data dependency by separating

a query into two subqueries, one for the computation of prerequisite values and the other for the

rest of the computation. While this strategy may lead to an increased query planning overhead,

the increased overhead has only a negligible effect on the query performance. We will discuss the

performance impact of the query planning in Section 6.4.

Applicability. The proposed method for tile replacement is based on the future log and tailored

for processing a single query at a time. Following the sequential execution model described in

Section 2, the tile access pattern is predicted at the planning stage of an individual query. If multiple

queries are processed concurrently, the optimality of tile replacement is not guaranteed because

the chronological order of the reference events of a certain tile is not deterministic. Consequently,

a list of reference events saved in the future log may not be the same as the sequence of actual

references, and the optimal selection protocol can be violated. Note that, however, out-of-core

matrix computations can still take advantage of the optimal tile replacement of PreVision, because
they are often adopted in a long-running data analytic application administered as a sole task.

4 PREEMPTIVE EVICTION
In a DAG-structured query plan, intermediate data produced by an operator may be consumed

by one or more operators. Unless all the consuming operators are perfectly synchronized with a

producing operator, some or all intermediate data from the producing operator will have to be

materialized and preserved on disk until they are no longer needed. Once the intermediate data

are materialized, they can be accessed by any operator. They can be cached in the buffer pool in

the same way as the disk-resident matrices are done in the database. In the presence of multiple

consuming operators accessing the same intermediate data, it is difficult for the buffer manager

to predict when the data will no longer be accessed and need not be cached in the buffer pool.

Consequently, the intermediate data tend to stay in the buffer pool longer than they should and

lower the buffer hit ratio.

To address this problem of obsolete intermediate data lingering in the buffer pool, PreVision
adopts a preemptive eviction strategy. As tiles are the unit of paging, the buffer manager evicts tiles

eagerly as soon as it determines they are of no more use. The buffer manager can identify obsolete

tiles in the buffer pool by analyzing the reference events stored in the future log. When a tile is

referenced by the last event in the future log, the next_ts of the tile is set to infinity. When such a

tile is unpinned, it can be immediately evicted from the buffer pool (without being flushed to disk).

Example 4. Consider the computation of 𝐶1,0 = 𝐴1,0𝐵
𝑇
0,0 +𝐴1,1𝐵

𝑇
1,0 for the matrix computation task

described in Example 1. Since the 𝐵𝑇
0,0 and 𝐵

𝑇
1,0 tiles are obtained while 𝐶0,0 and 𝐶0,1 are computed,

the executor does not need to access the 𝐵 matrix to compute 𝐶1,0. Thus, the computation of 𝐶1,0 only
requires four tiles, namely, 𝐴1,0, 𝐵𝑇0,0, 𝐴1,1, and 𝐵𝑇1,0. The left and right sides of Fig. 5, respectively, show
the future log records of the 𝐴1,0, 𝐵𝑇0,0, and 𝐶1,0 tiles before and after these tiles are referenced. When

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 42. Publication date: February 2024.

PreVision: An Out-of-Core Matrix Computation System with Optimal Buffer Replacement 42:9

key: 𝐶!,#
events: [22, 25]
ptr:

key: 𝐴!,#
events: [20, 26]
ptr:

key: 𝐵#,#$
events: [1, 3, 21]
ptr:

key: 𝐶!,#
events: [22, 25]
ptr:

key: 𝐴!,#
events: [20, 26]
ptr:

key: 𝐵#,#$
events: [1, 3, 21]
ptr: NULL

Fig. 5. Changes of future log entries after buffer requests

𝐴1,0 is referenced at the logical clock 20, the ptr field of its future log record advances to the next slot in
the list of reference events so that ptr points to 26 instead of 20. The next_ts value of the tile is also
updated from 20 to 26. When 𝐵𝑇

0,0 is referenced at the logical clock 21, the ptr field of its future log
record is set to NULL because there is no more future reference left in the list. Its next_ts value is set to
infinity to indicate that 𝐵𝑇

0,0 will no longer be referenced. Similarly to 𝐴1,0, when 𝐶1,0 is referenced at
the logical clock 22, its ptr field advances from 22 to 25, and the next_ts value is set to 25.
The 𝐴1,0 and 𝐵𝑇0,0 tiles are unpinned when the matrix multiplication operation is completed. Since

the next_ts value of 𝐵𝑇
0,0 is infinity, the buffer manager immediately evicts the tile without flushing

the content to disk. As a result, 𝐵𝑇
0,0 causes a disk write only if it is evicted (or materialized) after the

transposition of 𝐵0,0. □

5 IMPLEMENTATION DETAILS
This section presents the rationale behind the design choices and the implementation details of

PreVision. We begin with memory management in Section 5.1 and then discuss I/O management in

Section 5.2.

5.1 Memory Management
5.1.1 Dynamic Memory Allocator. The buffer manager of PreVision deals with tiles of varying

shapes and sizes, each of which is loaded into a contiguous memory chunk for higher memory

bandwidth. The buffer manager relies on its dedicated dynamic memory allocator to manage the

system memory effectively for the variable-length memory chunks. The allocator is capable of

allocating memory chunks of different sizes and supports a few primitives similar to the standard

malloc() and free() functions for the buffer manager.

The memory allocator sets aside all the memory available to itself at the initialization. On a

request from the buffer manager, the memory allocator attempts to find a contiguous memory chunk

from its memory pool by applying the best-fit allocation algorithm. The 𝑂 (𝑁) time complexity of

the algorithm is relatively high, but it helps minimize fragmentation by finding the most suitable

chunk in the memory pool. Note that the operating system can be entrusted with the task of

handling memory fragmentation as well as memory allocation. However, that approach would

incur a large number of system call invocations and hence degradation in performance. Thus, we

opt for a dedicated memory allocator for the PreVision buffer manager.

The memory allocator is tightly integrated with the buffer manager. A tile eviction from the

buffer pool is triggered by the memory allocator when a chunk request from the buffer manager

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 42. Publication date: February 2024.

42:10 Kyoseung Koo et al.

Index Skip List

Future Log

Dynamic Memory Allocator

Pointer to physical data

2. Allocating and loading

3. Insertion

4. Skip list procedure 5. Return1. Request

A tile key Requested tile

Fig. 6. Processing a tile request on a buffer miss

cannot be fulfilled because there is not enough free space in the memory pool. This eviction process

may have to be repeated by the buffer manager until the allocator secures a contiguous memory

chunk large enough to accommodate the request.

5.1.2 Unified Buffer Pool. Most database systems manage buffer frames in multiple pools. For

example, Oracle keeps cached pages in a few separate buffer pools by the sizes of pages, and SciDB

maintains a buffer pool for persistent arrays separately from another buffer pool for temporary

arrays [39]. In contrast, PreVision uses a single unified buffer pool to manage tiles of all sizes

for higher utilization of memory. It is particularly relevant in matrix computation tasks, where

the volume of intermediate arrays cached in the buffer pool tends to fluctuate rapidly over time.

Consequently, a separate buffer pool for the intermediate arrays would be underutilized, and the

overall utilization of memory would also be degraded.

5.1.3 Tile Identification. The buffer manager uses tile keys as a means of identification of tiles. A

tile key consists of the name of an array and the coordinates of a tile, and it is included in each

tile as metadata. When the buffer manager receives a request for a tile, it can retrieve a future log

record of the tile using its tile key. Note that tile keys are created not only for persistent arrays but

also for temporary (or intermediate) arrays. The names of temporary arrays are coined internally

and used in their tile keys.

5.1.4 Handling a Tile Request. When it receives a tile request, the buffer manager searches the

buffer pool index for the tile key to determine whether the requested tile is cached in the buffer

pool. If the tile exists in the buffer pool, the buffer manager applies the update procedure to the

skip list as described in Section 3. Otherwise, the buffer manager determines whether the request

is for a new tile or a persistent copy of the requested tile on disk. In both cases, the buffer manager

passes the request to the memory allocator so that an empty memory chunk is allocated for the

tile. Additionally, in the latter case, the buffer manager works with the I/O manager to load the

disk-resident copy into the empty memory chunk. When the copy of the tile is loaded, the buffer

manager adds the memory chunk with loaded data into the buffer pool, updates the buffer pool

index, and applies the update procedure to the skip list. Fig. 6 illustrates processing a tile request

on a buffer miss.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 42. Publication date: February 2024.

PreVision: An Out-of-Core Matrix Computation System with Optimal Buffer Replacement 42:11

D
yn

am
ic

 M
em

or
y

A
llo

ca
to

r
Buffer Pool

Data File

DiskMemory

attrtype: double
arraysize: 1000x1000
tilesize: 100x100

…

__temparr_9.tilestore (directory)

…

Schema File

Index File

Index
Module

Schema
Module

I/O Manager

Writer Write

Reader Read

Index
R/W

Schema
R/W

Fig. 7. An overview of the I/O management

5.1.5 Tile Format. Depending on its sparsity, a tile, either memory-resident or disk-resident, is

represented by a single vector or a group of three vectors. A dense tile includes a single vector

that stores the cell values sequentially in row-major order. A sparse tile includes three vectors,

namely, a data vector, an index vector, and a pointer vector, following the compressed sparse row

(CSR) format [37]. The data vector stores non-zero cell values, and the index vector stores column

indices of these cell values. The pointer vector stores the offsets of rows to the data vector and the

index vector.

5.2 I/O Management
5.2.1 Array File Format. A disk-resident array is composed of a schema file, a data file, and an

index file. A schema file stores metadata of an array such as the dimension and size of the array

itself and the individual tiles in the array. A data file is segmented such that each tile is stored

separately and contiguously in a segment. By storing tiles contiguously in segments, PreVision can

take advantage of sequential disk I/O and achieve higher disk throughput. An index file contains a

hash table that stores an element for each tile, and the hash element of a tile contains the offset and

length of the corresponding segment. The index file is responsible for retrieving the metadata of a

given tile quickly.

The data file is prone to having a bloated size because it may suffer from fragmentation caused by

variable-length segments. PreVision performs a file-collapsing operation to return fragmented disk

spaces to the operating system when the fragmentation ratio of a file exceeds a certain threshold.

The operation keeps the physical size of an array to an appropriate level without copying the tile

data.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 42. Publication date: February 2024.

42:12 Kyoseung Koo et al.

5.2.2 I/O Operations. The I/O manager supports simple read, write, and file-collapsing operations

that are performed as follows. Fig. 7 shows the overview of the I/O operations as well as the array

file format of PreVision.

Read. A read operation is initiated by checking the index file to determine whether the requested

tile is in the array. If the tile exists in the array, the I/O manager obtains the offset and length of the

tile from the metadata stored in the index file and loads the tile data from the segment to the buffer

pool.

Write. When a new tile is added to an array, the I/O manager simply appends a new segment

created for the new tile to the end of the data file. A new hash element is also created for the new

tile and added to the index file. When an existing tile is updated, the I/O manager compares the

size of the existing tile and the size of the updated one. If the updated tile is larger than the existing

one, then the segment of the existing tile is invalidated and a new segment for the updated tile is

appended to the data file. If the updated tile is no larger than the existing one, then the updated tile

is overwritten to the existing segment. The index is updated accordingly to reflect the changes.

When an existing tile is updated, file fragmentation may occur due to the invalidated segment in

the former case and the unused portion of the segment in the latter case. Thus, the file-collapsing

operations need to be performed occasionally. Note that the addresses of buffer frames are aligned

to 512-byte offsets for all the tiles so that every disk I/O operation can bypass the operating system

page cache via Direct IO.

File Collapsing. When the degree of file fragmentation exceeds a certain threshold, the I/Omanager

initiates a file-collapsing operation. The I/O manager examines the index file to locate the region of

fragmentation within each array file. If fragmentation is detected, the fragmented region is returned

to the operating system by invoking a tool for allocating space for a file (e.g., fallocate() of Linux
with the FALLOC_FL_COLLAPSE_RANGE flag up). A file-collapsing operation may change the offsets

of segments, so the I/O manager updates the index entries of the affected segments if necessary.

6 EVALUATION
To demonstrate the effectiveness of PreVision, we conducted extensive experiments that were

focused on answering the following questions.

• How well does PreVision perform matrix computation workloads in comparison with other

solutions? (Section 6.2)

• How effective is the preemptive eviction in reducing disk I/O? (Section 6.3)

• How well does the OPT buffer replacement algorithm work? What is the overhead associated

with that? (Section 6.4)

We first outline the workloads and the computing platform used for the evaluation in Section 6.1.

Then, we present the evaluation results and address the questions in Section 6.2 through Section 6.4.

6.1 Experimental Settings
To assess the target systems for matrix computation, three representative workloads were cho-

sen: logistic regression (LR) with batch gradient descent [41], non-negative matrix factorization

(NMF) [23], and PageRank [30].
1
We used the SLAB linear algebra benchmark [41] for the LR

and NMF tasks. We also generated several synthetic datasets for both in-memory and out-of-core

computation scenarios to better understand the effect of disk I/O on the overall performance of

the target systems. Specifically, all the synthetic matrices were tall-and-skinny with 100 columns

1
The parameters chosen for the tasks are 𝛼=0.0000001 for LR, rank=10 for NMF, and damping factor=0.85 for PageRank.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 42. Publication date: February 2024.

PreVision: An Out-of-Core Matrix Computation System with Optimal Buffer Replacement 42:13

Label Dimension Size in GB
10M 10M × 100 8GB

20M 20M × 100 16GB

40M 40M × 100 32GB

80M 80M × 100 64GB

(a) Synthetic Dense

Label Dimension Non-zeros Size in GB
0.0125 400M × 100 500M 11GB

0.025 400M × 100 1B 19GB

0.05 400M × 100 2B 35GB

0.1 400M × 100 4B 67GB

(b) Synthetic Sparse

Label Dimension Non-zeros Size in GB
Enron 37K × 37K 368K 0.006GB

Epinions 76K × 76K 509K 0.009GB

LiveJournal 4.8M × 4.8M 69M 1.1GB

Twitter 62M × 62M 1.5B 24GB

(c) PageRank

Table 1. Dataset Description

System Spark (MLlib) SystemDS PostgreSQL MADlib NumPy Dask SciDB OpenBLAS

Version 3.3.2 3.1.0 12.14 1.12.0 1.22.4 2022.6.0 19.11 0.3.0

Table 2. System Versions

containing double-precision values. The number of rows in the dense matrices was one of 10

million, 20 million, 40 million, and 80 million. That is, the dimension of a dense matrix was one of

10
7 × 100, (2 · 107) × 100, (4 · 107) × 100, and (8 · 107) × 100. For sparse matrices, the number of

rows was fixed to 400 million with varying densities. The population of non-zero cells in the sparse

matrices follows a uniform distribution. Table 1a and Table 1b summarize the specifics of the dense

and sparse synthetic matrices, respectively.

For the PageRank task, we selected four real-world graph datasets: Enron, Epinions, and Live-

Journal from Stanford Network Analysis Project [24], and Twitter [22]. Each dataset is transformed

into a sparse adjacency matrix. Table 1c shows the specifics of the sparse matrices. The first three

real-world datasets are relatively small, and the target systems can perform the PageRank task with

the entire dataset loaded in memory. On the other hand, the Twitter dataset is too large to fit in

memory, and the memory consumed by the task exceeds the memory budget slightly, which results

in disk spills during computation. Note that the target systems may adopt different metadata or

formats for sparse matrices (e.g., Compressed Sparse Column format for MLlib and Coordinate List

format for MADlib), so they may differ from one another in the actual memory consumption.

All experiments were carried out with native binary input data for each target system. For the

systems using tiled arrays, the SLAB and PageRank matrices were partitioned into 100 × 1 tiles and

10 × 10 tiles, respectively. In the case of SciDB, each side of a chunk for each array was configured

to 1000 since SciDB did not allow for a size greater than 1024 in the matrix multiplication. When

executing the LR and NMF tasks, the same synthetic matrices were fed to the target systems so

that interference from using input matrices with different random values could be eliminated.

We used a machine running Ubuntu 18.04.5 equipped with an Intel i7-9700K CPU, 32GB DRAM

memory and a 1TB Samsung 860 Pro SSD. We conducted every run for evaluation following the

steps below.

(1) Clean the OS page cache and the buffer pools of each target system to ensure a cold start.

(2) Run a task with disk-resident arrays on each target system; input arrays are loaded to memory

and part or all of them may be spilled to disk.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 42. Publication date: February 2024.

42:14 Kyoseung Koo et al.

(3) Write the output to disk.

Each run was allowed for ten hours and was terminated forcefully at timeout.

6.2 Comparison with Existing Systems
We selected the following six target systems for comparsionwith PreVision: SystemDS [9], MLlib [28],

MADlib [17], SciDB [39], NumPy [16], and Dask [36]. We did not include SciPy [44], Tensorflow [1]

and PyTorch [31] because they did not support out-of-core computation. The versions of target

systems for evaluation are provided in Table 2. Every system capable of leveraging OpenBLAS

routines was configured to make use of those routines. Except for the parallelism evaluation

described in Section 6.2.3, each target system was configured to be single-threaded with a single

worker for a fair evaluation. The memory budget for each system was configured to 30GB, which

was sufficient to keep many tiles simultaneously.

For SystemDS and MLlib, Spark was configured to run with a driver process and a single executor

process. We did not isolate JVM processes to a specific core in order to prevent performance

degradation caused by garbage collection or just-in-time compilation. We tested a few memory

configurations to discover a specific memory budget for each driver and executor that delivers the

best performance. PostgreSQL, which MADlib runs on, recommends configuring the shared buffer

size to 40% of the total memory [14]. So, we allocated 12GB to the shared buffer and reserved 18GB

for MADlib and the OS page cache. We also created indexes for all the tables used by MADlib.

NumPy was set up to utilize memory-mapped arrays to enable out-of-core computation. Since

a NumPy operation returns an in-memory array by default, we created a memory-mapped array

manually (with the out keyword argument) for each intermediate array and returned it as output

from each operation.

6.2.1 Varying Data Size. The scalability of the target systems was evaluated with both synthetic

and real-world datasets. All three matrix computation tasks are based on iterative algorithms, and

the number of iterations was fixed to three in this experiment. This was a very small number

of iterations but was still sufficient to observe meaningful differences among the target systems.

Sparse NMF tasks were omitted in this experiment because the intermediate matrices of NMF tasks

were dense and the dense matrix computation became a dominant factor in the processing time.

Dense LR and NMF. Dense LR and NMF experiments are presented in Fig. 8a and Fig. 8b, respec-

tively. PreVision outperformed the other systems in most cases, except for LR results with the 10M

and 20M datasets. In such cases, PreVision showed slightly slower performance than NumPy. This

was due to the small-sized intermediate arrays generated in each iteration of the LR task, which

prevented any disk spills. Consequently, PreVision did not have a significant advantage over NumPy

in this scenario. Meanwhile, PreVision incurred some overheads such as future log generation and

skip list update, contributing to the slower execution times.

SystemDS presented comparable performances in both the LR and NMF with the 10M and 20M

datasets. Although PreVision had better performance, both SystemDS and PreVision exhibited similar

tendencies regarding the matrix size. However, the SystemDS’s elapsed time spiked in both LR

and NMF tasks with the 40M and 80M datasets. This was due to SystemDS starting to use Spark

instruction when the dataset size exceeded the memory budget. The system inserted a checkpoint

instruction that makes an RDD for the input matrix persist, which consumed a significant amount

of time.

MLlib exhibited poor performance since it caused significant disk I/O. Whenever a Spark stage

was completed, MLlib spilled processed data into the disk and loaded spilled data for proceeding

with another stage. Dask had slower performance compared to NumPy in LR experiments, while

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 42. Publication date: February 2024.

PreVision: An Out-of-Core Matrix Computation System with Optimal Buffer Replacement 42:15

PreVision
SystemDS

MLlib
MADlib

SciDB
NumPy

Dask

10M 20M 40M 80M
The Number of Rows

100

101

102

103

104

105

El
ap

se
d

Ti
m

e
(s

)

ou
t-

of
-m

em
or

y
er

ro
r

ou
t-

of
-m

em
or

y
er

ro
r

ou
t-

of
-m

em
or

y
er

ro
r

ou
t-

of
-m

em
or

y
er

ro
r

(a) Dense LR

10M 20M 40M 80M
The Number of Rows

100

101

102

103

104

105

El
ap

se
d

Ti
m

e
(s

)

ou
t-

of
-m

em
or

y
er

ro
r

ou
t-

of
-m

em
or

y
er

ro
r

ou
t-

of
-m

em
or

y
er

ro
r

ou
t-

of
-m

em
or

y
er

ro
r

(b) Dense NMF

0.0125 0.025 0.05 0.1
Density

100

101

102

103

104

105

El
ap

se
d

Ti
m

e
(s

)

tim
eo

ut

tim
eo

ut

tim
eo

ut

ou
t-

of
-m

em
or

y
er

ro
r

ou
t-

of
-m

em
or

y
er

ro
r

(c) Sparse LR

Enron Epinions Livejournal Twitter
Dataset Label

100

102

104

106

108

El
ap

se
d

Ti
m

e
(m

s)

ou
t-

of
-m

em
or

y
er

ro
r

(d) PageRank

Fig. 8. Performance of the target systems

it slightly outperformed NumPy in NMF experiments. The main reason for this was the Dask

scheduling. Dask employed its own scheduling method which tends to use last-used chunks, giving

Dask a better buffer hit ratio. Meanwhile, the NMF tasks caused a huge volume of intermediate data.

The better hit ratio in these experiments saved a huge volume of disk I/O for intermediate data.

On the other hand, Dask showed worse performances in LR experiments because of its scheduling

overhead as well as much smaller volumes of intermediate data.

A notable observation was that both SciDB and MADlib failed with the 40M and 80M datasets.

The SciDB’s gemm() operator relied on ScaLAPACK [7], assuming that all data were loaded on

distributed memory. When the gemm() started, SciDB attempted to convert operand matrices to

ScaLAPACK data format. In the failed cases, the sizes of such data were larger than the memory

budget, causing an out-of-memory error. In the case of MADlib, the PostgreSQL executor crashed

when attempting matrix multiplication. MADlib operations consumed lots of memory, so the

operating system killed the executor. We observed the same result even when we reduced the buffer

size of PostgreSQL.

Sparse LR. As shown in Fig. 8c, PreVision outperformed the other systems in LR experiments with

sparse datasets. MADlib was time-outed with the 0.025, 0.05 and 0.1 matrices since running times

exceeded 10 hours. SciDB was killed in both the 0.05 and 0.1 experiments by the operating system

due to its memory overuse. The sparse matrix multiplication operator of SciDB (i.e., spgemm())
attempted to load the whole row chunks of a left-handed side array and the whole column chunks

of a right-handed side array for computing a single result chunk. When SciDB computes the

multiplication result of a wide-short matrix and tall-skinny matrix in LR tasks, the operator used

lots of memory, activating the out of memory killer.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 42. Publication date: February 2024.

42:16 Kyoseung Koo et al.

PreVision
SystemDS

NumPy
Dask

SciDB
MADlib

MLlib

5 10 15 20 25 30
The Number of Iterations

101

102

103

104

105

El
ap

se
d

Ti
m

e
(s

)

(a) NMF 10M

5 10 15 20 25 30
The Number of Iterations

101

102

103

104

105

(b) PageRank Twitter

Fig. 9. Elapsed times with a varying number of iterations

1 2 3 4 5 6 7 8
Parallelism

101

102

103

104

El
ap

se
d

Ti
m

e
(s

)

(a) NMF 10M

1 2 3 4 5 6 7 8
Parallelism

101

102

103

104

105

(b) Sparse LR 0.0125

Fig. 10. Elapsed times with a varying degree of parallelism

PageRank. Fig. 8d presents elapsed times for running PageRank in each system. PreVision out-

performed the others in every case. SystemDS running on the Twitter dataset encountered an

out-of-memory error due to its overuse of memory. MADlib showed comparable performances

to MLlib in the Enron and Epinions experiments, while it had slower performances with the

LiveJournal and Twitter datasets.

6.2.2 Varying Number of Iterations. To observe the performance trends on a long-term basis,

we ran the tasks on the target systems with a varying number of iterations from one to 32. The

elapsed times taken by each system for the NMF (10M) and PageRank (Twitter) tasks are shown in

Fig. 9. As is shown in the figure, the elapsed times of all systems increased linearly to the number

of iterations. The differences among them were in the rate (or slope) of changes as well as the

absolute amount of elapsed times. PreVisionwas the best performer with respect to both the rate and

absolute amount. SystemDS experienced the same out-of-memory error as before in the PageRank

experiment. MADlib was timed out and terminated in the PageRank experiment with nine or more

iterations. Similar trends were observed in experiments with other datasets.

6.2.3 Varying Degree of Parallelism. We evaluated the target systems with different degrees of

parallelism. The NMF 10M and LR 0.0125 tasks were chosen for this experiment because they

were more CPU-intensive than the other tasks. The parallel execution of the target systems was

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 42. Publication date: February 2024.

PreVision: An Out-of-Core Matrix Computation System with Optimal Buffer Replacement 42:17

configured as follows. We ran SciDB and MADlib with a varying number of workers. For NumPy

and PreVision, we changed the number of threads for a single operation because these systems ran

in the operator-at-a-time mode. For SystemDS and MLlib, we changed the number of threads for a

single worker because this setup yielded the best performance.

Fig. 10 shows the elapsed times of the target systems. Although PreVision did not achieve enough

speedup after the degree of parallelism reached four, it still outperformed the other target systems

consistently in all test cases. SciDB experienced an out-of-memory error while processing some of

the LR 0.0125 tasks.

6.3 Effects of Preemptive Eviction
We conducted another experiment to demonstrate the effectiveness of preemptive eviction. PreVision
with the getPos function executes a matrix computation task on a per-tile basis. For the matrix

computation task 𝐶 = 𝐴𝐵𝑇 , given in Example 1, a matrix multiplication for an output tile can be

interleaved with a matrix transposition for another output tile. To accurately evaluate the effect

of preemptive eviction on the I/O performance, we ran PreVision with and without preemptive

eviction in the interleaved execution mode and non-interleaved (or blocking) execution mode. In the

blocking execution mode, an operator waits until all the child operators complete their execution

and produce the entire sets of output tiles. Note that NumPy works this way in the blocking mode.

Read Write

getPos
w/ PE

getPos
w/o PE

blocking
w/ PE

blocking
w/o PE

0

50

100

150

200

250

I/O
 V

ol
um

e
(G

B
)

(a) LR

getPos
w/ PE

getPos
w/o PE

blocking
w/ PE

blocking
w/o PE

0

200

400

600

800

(b) NMF

Fig. 11. The I/O volumes with execution modes and preemptive eviction (PE)

Fig. 11 presents I/O volumes for each version when running LR and NMF tasks with the 80M dense

matrix. The getPos with preemptive eviction showed the minimum disk I/O volumes compared to

the other versions. We observed two interesting points. First, the versions with preemptive eviction

showed significantly lower disk writes compared to the versions without preemptive eviction.

Especially, in cases except for the blocking with preemptive eviction in NMF, disk writes occurred

only for the output arrays. Second, the getPos versions presented tremendously lower disk read

volumes than the blocking versions. This was mainly due to the better temporal locality of the

getPos execution mode.

Fig. 12 illustrates the tile access patterns of the input matrix 𝑋 when running LR with the

getPos and blocking modes. Fig. 12a and Fig. 12c represent the access patterns during the entire

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 42. Publication date: February 2024.

42:18 Kyoseung Koo et al.

0 1000 2000 3000
Logical Timestamp

0

25

50

75

100
Li

ne
ar

iz
ed

 T
ile

 C
oo

rd
in

at
e

(a) Tile references with getPos

0 20 40 60 80 100
Logical Timestamp

0

2

4

6

8

10

(b) Zoomed-in view for getPos

0 1000 2000 3000
Logical Timestamp

0

25

50

75

100

Li
ne

ar
iz

ed
 T

ile
 C

oo
rd

in
at

e

(c) Tile references with blocking

0 20 40 60 80
Logical Timestamp

0

10

20

30

(d) Zoomed-in view for blocking

Fig. 12. Tile references in the LR task

computation, while Fig. 12b and Fig. 12d show zoomed-in views within the black rectangles on the

left. The blocking mode accessed tiles in sequential order, whereas the getPos mode repeatedly

accessed the same tile coordinates before accessing the other coordinates. Since the experiment

with the 80M input matrix 𝑋 was out-of-core computation, this temporal locality provided the

buffer manager with more opportunities for the buffer hit, resulting in reduced read I/O volume for

the getPos mode.

…

X

w

Xw

𝑋!,!

1
1 + 𝑒!"#

	− 𝑦

logical transpose

d

1
1 + 𝑒!"#

… … … 𝑤 = 𝑤 − 𝛼 * 𝑋$
1

1 + 𝑒!"# 	− 𝑦

Fig. 13. Temporal locality in the LR task

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 42. Publication date: February 2024.

PreVision: An Out-of-Core Matrix Computation System with Optimal Buffer Replacement 42:19

Fig. 13 illustrates the situation in which an input tile was accessed repeatedly. To compute 𝑑 in

the LR equation, the 𝑑 iterator requested the 𝑋0,0 tile. Next, the 𝑑 iterator requested the right-hand

operand. Since this tile had not been computed yet, its iterator requested its operand tile. These

recursive requests continued until the 𝑋𝑤 iterator requested the 𝑋0,0 tile. That is, a buffer request

for 𝑋0,0 was made to compute 𝑋𝑤0,0, and it was repeatedly made to compute 𝑑 after the recursive

requests were completed. The time between these tile requests was short, increasing the likelihood

that the 𝑋0,0 tile would remain in the buffer pool.

6.4 Effects of Buffer Replacement
To evaluate the effectiveness of the OPT replacement algorithm and the overheads associated

with the skip list and future log, we compared OPT with two additional replacement algorithms,

LRU-𝐾 [29] and MRU. For LRU-𝐾 , 𝐾 was set to two for all tasks (i.e., LRU-2). Since the number of

buffer frames in the pool was relatively small compared with the traditional relational database

systems adopting small fixed-length pages (e.g., 8KB page size), the retained information period of

LRU-2 was ignored. Preemptive eviction was enabled for each replacement algorithm.

I/O List Maintenance Query Planning CPU

OPT MRU LRU-2
0

100

200

300

400

El
ap

se
d

Ti
m

e
(s

)

(a) LR

OPT MRU LRU-2
0

200

400

600

800

(b) NMF

Fig. 14. Performance of buffer replacement algorithms

Fig. 14 shows the elapsed times of executing the LR and NMF tasks on the 80M dense matrix with

each replacement algorithm. The I/O, List Maintenance, Query Planning, and CPU mean the sum

of read and write times, the time for skip list update and future log retrieval, the query planning

time including future log creation, and the computation time, respectively.

PreVision operating under the OPT replacement algorithm took the shortest elapsed times in both

the LR and NMF computations. Notably, the MRU algorithm showed almost the same performance

as OPT in the LR experiment. In this case, the input matrix 𝑋 required the most time to read.

As the input matrix was sequentially accessed as shown in Fig. 12a, sequential flooding of the

matrix occurred. In this situation, the best buffer replacement algorithm for the matrix is MRU [34],

leading to its near-comparable performance to OPT. In the NMF experiment, the elapsed time

of LRU-2 followed OPT’s elapsed time, whereas MRU showed poor performance. The time for

list maintenance and query planning was negligible in every case. In the LR task under OPT, for

instance, the overhead time was accounted for 13 milliseconds and 14 milliseconds, respectively.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 42. Publication date: February 2024.

42:20 Kyoseung Koo et al.

Table 3 presents buffer hit ratios for each task under the different replacement algorithms. In the

LR experiment, OPT achieved a lower hit ratio than MRU. This discrepancy was because PreVision
used variable-length buffer size to hold a tile, meaning that both buffer hits for a small tile and a

large tile were counted as one hit equally. In the NMF experiment, OPT demonstrated the best hit

ratio among the replacement algorithms.

Tasks OPT MRU LRU-2

LR 0.6 0.611 0.572

NMF 0.687 0.664 0.636

Table 3. Buffer hit ratios with different replacement algorithms

We also investigated the impact of the number of tiles and its associated overheads. The overheads

incurred by the future log and skip list are influenced by the number of tiles. Fig. 15 shows the

relationship between smaller tile sizes and the resulting elapsed times. The elapsed times of the

second-best performers mentioned in Section 6.2 are also displayed with black lines. Numbers in

the parentheses of the x-axis indicate the size of a single tile in the input matrix. The results indicate

that increasing the number of tiles led to longer elapsed times. However, PreVision consistently

outperformed the second-best performers.

Our experiment presents that the overheads of the future log and skip list had a trivial impact on

total elapsed times, regardless of the number of tiles. We argue that these overheads are negligible

since the default tile size of many data processing systems is typically larger than 20MB. Notably,

Spark defaults to a block size of 128 megabytes [13] and SciDB emphasizes that the block size

should be several megabytes at least [39].

100 200 400 800 1600 3200

The Number of Tiles (Tile Size)

0

200

400

600

800

1000

El
ap

se
d

Ti
m

e
(s

) NumPy

(640MB) (320MB) (160MB) (80MB) (40MB) (20MB)

Overhead

Overhead
Total

(a) LR tasks

100 200 400 800 1600 3200

The Number of Tiles (Tile Size)

0

1000

2000

3000

4000

5000

Dask

(640MB) (320MB) (160MB) (80MB) (40MB) (20MB)

Overhead

(b) NMF tasks

Fig. 15. Elapsed times with varying tile sizes

7 RELATEDWORK
BufferReplacementAlgorithm. TheMIN buffer replacement algorithm (or Belady’s algorithm) [5]

and the OPT buffer replacement algorithm [26] are theoretically optimal but they are known to be

infeasible to implement because they require knowledge of the future. Jain and Lin show how a

cache replacement algorithm can learn from Belady’s algorithm by applying it to past references

to inform future replacement decisions [20]. Simulating the OPT buffer replacement algorithm

has been studied to determine the performance measures and to characterize the buffer misses.

Mattson et al. introduce a stack algorithm that simulates the OPT buffer replacement by two-pass

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 42. Publication date: February 2024.

PreVision: An Out-of-Core Matrix Computation System with Optimal Buffer Replacement 42:21

buffer trace scans [26]. Sugumar et al. propose a more efficient MIN simulation scheme employing

a limited look-ahead scan and tree-based stack maintenance [40].

LRU, which selects the least recently used buffer frame as a victim for replacement, has been the

de facto standard buffer replacement algorithm for many database systems. In contrast, MRU selects

the most recently used buffer frame as a victim for replacement. MRU may not be effective for

random references but it can perform better than LRU for certain database workloads by preventing

sequential flooding [34]. The LRU-K algorithm selects a buffer frame having the greatest backward-

𝐾 distance as a victim for replacement [29]. The distance metric allows the algorithm to consider the

frequency of references rather than the recency of references. Such buffer replacement algorithms

as 2Q [21], ARC [27], and CAR [3] have also been proposed to overcome the disadvantages of LRU.

While the studies mentioned above assume that all buffer frames in the buffer pool have the

same size, another branch of research has considered variable-length buffer frames. The OPT

algorithm achieves optimal buffer replacement for fixed-length buffer frames by adopting a simple

eviction strategy that selects a buffer frame with the greatest forward distance. For variable-length

buffer frames, however, optimal caching is proven to be NP-hard [12]. Many heuristics have been

suggested to improve buffer replacement for variable-length buffer frames. One of the popular

heuristics is Belady-Size, which evicts a buffer frame with the greatest distance weighted by its

size [6]. The GreedyDual-Size-Frequency [2], Hyperbolic [8], and LHD [4] replacement algorithms

resort to multiple metrics, variable decaying priorities, and hit density, respectively, for victim

selection.

Systems for Matrix Computation. Spark [46] is one of the most widely used data processing

frameworks. A Spark query plan is split into stages, each of which is executed by Spark executors.

Spark spills every output produced from a stage to disk and reads spilled data back when it starts

processing another stage. MLlib [28] is a machine learning library built on top of Spark, and

operations in MLlib are composed of Spark operations. SystemDS [9] is another machine-learning

framework that leverages various back-ends. Some tasks are delegated to Spark when the standalone

mode of SystemDS cannot deal with the data volume. The buffer pool of SystemDS is enhanced to

link between its host program and Spark. This feature poses the challenge of detecting a buffered

object that is no longer needed due to the lazy evaluation of Spark. To work around it, SystemDS

recursively checks descendant RDDs or broadcasts in its lineage on an object cleanup. It determines

whether the object is still referenced and performs a cleanup of the unreferenced object [10].

SciDB [39] is a database system for large-scale arrays. It is known for using tile pipelining for its

query execution, which means a tile computed by an operator can subsequently be used by another

operator. MADlib [17] is a machine learning system running on a relational database system. A

tuple in the system consists of a row vector or a cell value with coordinates depending on the type

of a matrix.

NumPy [43] is a numerical computation package focusing on ease of use. It can access disk-

resident arrays via memory-mapped I/O. Likewise, MATLAB [19] supports memory-mapped files

to access arrays on disk. Dask [36] supports parallel matrix computations by splitting an array

into tiles of a NumPy matrix. SciPy [44] offers scientific computing functionalities such as sparse

matrix computations, complex linear algebra functions, and signal processing. TensorFlow [1] and

PyTorch [31] are among the most popular machine-learning libraries in diverse fields. TensorFlow

aims at distributing large-scale machine learning tasks, while PyTorch enables a high level of

flexibility in modeling. Unfortunately, these libraries do not support out-of-core computation for

large matrices. Marques et al. exploit cache memory to enable out-of-core computations, but they

focus on exploiting parallelism rather than minimizing I/O [25].

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 42. Publication date: February 2024.

42:22 Kyoseung Koo et al.

Tiling. Tiling is a common method for partitioning an array into smaller subarrays such that

data locality is preserved [38]. It has been adopted by numerous systems such as SciDB [39],

SystemDS [9], MLlib [28], and Dask [36]. In addition, many studies have been conducted focusing

on reducing disk I/O for processing tiled arrays. For instance, RIOT [47] examines the I/O patterns

present in a given program, identifying transformations that minimize I/O operations.

Reducing the Memory Pressure. SuperNeurons introduces liveness analysis to evict obsolete

variables frommemory [45]. It analyzes the input and output variables of each layer in deep learning

tasks to identify objects that will not be used in the next layer, and evicts those obsolete objects

after processing the current layer. The liveness analysis is similar to analyzing the future log of

PreVision. The eviction unit of PreVision is a tile, whereas that of SuperNeurons is a tensor object.

Operator fusion [11, 15] is a method for enhancing the performance by merging one operator

into another, enabling their joint execution. This fusion technique reduces intermediate data by

avoiding unnecessary materialization of data, and it improves query performance by eliminating

redundant scans and computations through sparsity exploitation.

GPU Memory Management. GPU memory management in deep learning tasks is a highlighted

subject in the GPU research community as an increasing number of model states are required by

the tasks. One strategy is GPU-CPU data swapping, which involves offloading GPU variables to

CPU memory when the deep learning training states overrun the memory capacity of the GPU.

There are many studies focused primarily on overlapping communication costs between the GPU

and other components [33, 35, 45].

It is worth mentioning that SwapAdvisor [18] takes a similar approach as PreVision. Both of them

select a victim for replacement based on future references. However, a key difference lies in the

timing of the victim selection. While SwapAdvisor selects a victim during an optimization phase

performed before runtime, PreVision makes this decision dynamically during runtime. PreVision
possesses the capability of predicting access patterns based on the future log of a given plan,

and focuses on the management of variable-length buffer frames. This is due to the inherent

unpredictability of the buffer pool content, and variable-length tiles and memory fragmentation

making it more challenging to plan evictions. In contrast, SwapAdvisor uses fixed-sized pages,

ensuring predictability in the buffer pool content and allowing for the generation of eviction plans

in advance.

8 CONCLUSION
We present an out-of-core matrix computation system called PreVision with optimal buffer replace-

ment. A matrix larger than the available memory budget is inevitably split into smaller chunks

or tiles so that they can be separately loaded into memory for further computations or query

processing. The chunk-by-chunk matrix computation will incur potentially a large number of I/O

operations, which would become the dominant cost of any task involving an out-of-core matrix

computation. To minimize the I/O overhead, PreVision predicts the entire pattern of tile accesses for

a given task by exploiting the deterministic nature of matrix computation algorithms. By referring

to the predicted access patterns collected in the future log, the buffer manager can handle buffer

replacement optimally. It also adopts the preemptive eviction strategy to remove obsolete tiles from

the buffer pool eagerly without causing unnecessary flushing to disk.

We demonstrate that PreVision outperforms the other competing systems in all the out-of-core

tasks tested in our experimental evaluations. The significant performance gain of PreVision is

attributed to the following factors. First, PreVision enables the optimal buffer replacement and

thereby reduces the overall I/O overhead. Second, the preemptive eviction strategy of PreVision
avoids unnecessary disk write operations. Third, PreVision reduces I/O operations further by taking

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 42. Publication date: February 2024.

PreVision: An Out-of-Core Matrix Computation System with Optimal Buffer Replacement 42:23

advantage of access locality. By leveraging the approaches introduced by PreVision, we believe that
the disk I/O and thememory pressure challenges arising frommany large-scale matrix computations

can be addressed more effectively.

The buffer replacement of PreVision is considered optimal only on the assumption that all the tiles

are given the same weight. Thus, if a larger tile is given a heavier weight than a smaller one, then

the buffer replacement of PreVision will no longer be considered optimal. For the wider application

of PreVision, we need to address such problems as synchronizing the timestamps of tiles across

multiple concurrent tasks, processing operators in parallel, and planning multiple queries globally.

We leave these challenges as future work.

ACKNOWLEDGMENTS
Thisworkwas supported by theNational Research Foundation of Korea (grant no. 2020R1A2C1010358).

The authors assume all responsibility for the content of the paper.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,

Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, Xiaoqiang Zheng, and Google

Brain. 2016. TensorFlow: a system for Large-Scale machine learning. In 12th USENIX symposium on operating systems
design and implementation (OSDI 16). Savannah, GA, USA.

[2] Martin Arlitt, Ludmila Cherkasova, John Dilley, Rich Friedrich, and Tai Jin. 2000. Evaluating content management

techniques for web proxy caches. ACM SIGMETRICS Performance Evaluation Review 27, 4 (March 2000), 3–11.

[3] Sorav Bansal and Dharmendra S. Modha. 2004. CAR: Clock with Adaptive Replacement. In 3rd USENIX Conference on
File and Storage Technologies (FAST 04). San Francisco, CA, USA.

[4] Nathan Beckmann, Haoxian Chen, and Asaf Cidon. 2018. LHD: Improving cache hit rate by maximizing hit density. In

15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18). Renton, WA, USA.

[5] L. A. Belady. 1966. A study of replacement algorithms for a virtual-storage computer. IBM Systems journal 5, 2 (1966),
78–101.

[6] Daniel. S. Berger, Nathan Beckmann, and Mor Harchol-Balter. 2018. Practical bounds on optimal caching with variable

object sizes. Proceedings of the ACM on Measurement and Analysis of Computing Systems 2, 2 (June 2018), 1–38.
[7] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet,

K. Stanley, D. Walker, and R. C. Whaley. 1987. ScaLAPACK Users’ Guide. SIAM, Philadelphia, PA.

[8] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: Flexible caching for web

applications. In 2017 USENIX Annual Technical Conference (USENIX ATC 17). Santa Clara, CA, USA, 499–511.
[9] Matthias Boehm, Iulian Antonov, Sebastian Baunsgaard, Mark Dokter, Robert Ginthör, Kevin Innerebner, Florijan

Klezin, Stefanie Lindstaedt, Arnab Phani, Benjamin Rath, Berthold Reinwald, Shafaq Siddiqui, and Sebastian Benjamin

Wrede. 2020. SystemDS: A Declarative Machine Learning System for the End-to-End Data Science Lifecycle. In 10th
Conference on Innovative Data Systems Research. Amsterdam, The Netherlands.

[10] Matthias Boehm, Michael Dusenberry, Deron Eriksson, Alexandre V. Evfimievski, Faraz Makari Manshadi, Niketan

Pansare, Berthold Reinwald, Frederick R. Reiss, Prithviraj Sen, Arvind C. Surve, and Shirish Tatikonda. 2016. Systemml:

Declarative machine learning on spark. Proceedings of the VLDB Endowment 9, 13 (Sept. 2016), 1425–1436.
[11] Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Alexandre V. Evfimievski, and Prithviraj Sen. 2018. On

Optimizing Operator Fusion Plans for Large-Scale Machine Learning in SystemML. Proceedings of the VLDB Endowment
(Aug. 2018), 1755–1768.

[12] Marek Chrobak, Gerhard J. Woeginger, Kazuhisa Makino, and Haifeng Xu. 2012. Caching is hard—even in the fault

model. Algorithmica 63, 4 (Aug. 2012), 781–794.
[13] Apache Software Foundation. 2023. RDD Programming Guide. https://spark.apache.org/docs/3.3.2/rdd-programming-

guide.html.

[14] The PostgreSQL Global Development Group. 2023. PostgreSQL: Documentation: 12: 19.4. Resource Consumption.

https://www.postgresql.org/docs/12/runtime-config-resource.html

[15] Donghyoung Han, Jongwuk Lee, and Min-Soo Kim. 2022. FuseME: Distributed Matrix Computation Engine based on

Cuboid-based Fused Operator and Plan Generation. In Proceedings of the 2022 International Conference on Management
of Data. Philadelphia, PA, USA, 1891–1904.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 42. Publication date: February 2024.

https://spark.apache.org/docs/3.3.2/rdd-programming-guide.html
https://spark.apache.org/docs/3.3.2/rdd-programming-guide.html
https://www.postgresql.org/docs/12/runtime-config-resource.html

42:24 Kyoseung Koo et al.

[16] Charles R. Harris, K. JarrodMillman, Stéfan van derWalt, Ralf Gommers, Pauli Virtanen, David Cournapeau, EricWieser,

Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk,

Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin

Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020. Array

programming with NumPy. Nature 585, 7825 (Sept. 2020), 357–362.
[17] Joseph Hellerstein, Florian Ré, Christopherand Schoppmann, Daisy Zhe Wang, Eugene Fratkin, Aleksander Gorajek,

Kee Siong Ng, Caleb Welton, Xixuan Feng, Kun Li, and Arun Kumar. 2012. The MADlib Analytics Library. Proceedings
of the VLDB Endowment 5, 12 (Aug. 2012), 1700–1711.

[18] Chien-Chin Huang, Gu Jin, and Jinyang Li. 2020. Swapadvisor: Pushing deep learning beyond the gpu memory limit via

smart swapping. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems. Lausanne, Switzerland, 1341–1355.

[19] The MathWorks Inc. 2022. MATLAB version: 9.13.0 (R2022b). Natick, Massachusetts, United States. https://www.

mathworks.com

[20] Akanksha Jain and Calvin Lin. 2016. Back to the future: Leveraging Belady’s algorithm for improved cache replacement.

ACM SIGARCH Computer Architecture News 44, 3 (June 2016), 78–89.
[21] Theodore Johnson and Dennis Shasha. 1994. 2Q: A Low Overhead High Performance Buffer Management Replacement

Algorithm. Proceedings of the 20th International Conference on Very Large Data Bases (Sept. 1994), 439–450.
[22] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is Twitter, a social network or a news

media?. In WWW ’10: Proceedings of the 19th international conference on World wide web (Raleigh, North Carolina,

USA). ACM, New York, NY, USA, 591–600.

[23] Daniel D. Lee and H. Sebastian Seung. 2000. Algorithms for non-negative matrix factorization. Advances in neural
information processing systems 13 (2000).

[24] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.stanford.

edu/data.

[25] Mercedes Marqués, Gregorio Quintana-Orti, Enrique. S. Quintana-Orti, and Robert. A. van de Geijn. 2009. Solving

“large” dense matrix problems on multi-core processors. In 2009 IEEE International Symposium on Parallel & Distributed
Processing. Rome, Italy.

[26] Richard. L. Mattson, Jan. Gecsei, D. R. Slutz, and I. L. Traiger. 1970. Evaluation techniques for storage hierarchies. IBM
Systems journal 9, 2 (1970), 78–117.

[27] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, low overhead replacement cache. In 2nd
USENIX Conference on File and Storage Technologies (FAST 03). San Francisco, CA, USA.

[28] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman, Davies Liu, Jeremy Freeman,

D. B. Tsai, Manish Amde, Sean Owen, Doris Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, and

Ameet Talwalkar. 2016. Mllib: Machine learning in apache spark. 17, 1 (Jan. 2016), 1235–1241.

[29] Elizabeth. J. O’neil, Patrick E. O’neil, and Gerhard Weikum. 1993. The LRU-K page replacement algorithm for database

disk buffering. ACM SIGMOD Record 22, 2 (June 1993), 297–306.

[30] Lawrence Page, S. Brin, R. Motwani, and T. Winograd. 1998. The pagerank citation ranking: Bring order to the web.
Technical Report. Technical report, Stanford University.

[31] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zachary DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. Pytorch: An

imperative style, high-performance deep learning library. Advances in neural information processing systems.
[32] William Pugh. 1990. Skip lists: a probabilistic alternative to balanced trees. Commun. ACM 33, 6 (June 1990), 668–676.

[33] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. 2021. ZeRO-infinity: Breaking

the gpu memory wall for extreme scale deep learning. In SC ’21: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. St. Louis, MO, USA, 1–14.

[34] Raghu Ramakrishnan and Johannes Gehrke. 2002. Database management systems (3rd ed.). McGraw-Hill.

[35] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W. Keckler. 2016. vDNN: Virtualized

deep neural networks for scalable, memory-efficient neural network design. In 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). Taipei, Taiwan, 1–13.

[36] Matthew Rocklin. 2015. Dask: Parallel computation with blocked algorithms and task scheduling. In Proceedings of the
14th python in science conference. Austin, TX, USA.

[37] Yousef Saad. 2003. Iterative methods for sparse linear systems. SIAM.

[38] Sunita Sarawagi and Michael Stonebraker. 1994. Efficient organization of large multidimensional arrays. In Proceedings
of 1994 IEEE 10th International conference on data engineering. IEEE, Houston, TX, USA, 328–336.

[39] Michael Stonebraker, Paul Brown, Alex Poliakov, and Suchi Raman. 2011. The architecture of SciDB. In Proceedings of
the 23rd International Conference on Scientific and Statistical Database Management. Portland, OR, USA.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 42. Publication date: February 2024.

https://www.mathworks.com
https://www.mathworks.com
http://snap.stanford.edu/data
http://snap.stanford.edu/data

PreVision: An Out-of-Core Matrix Computation System with Optimal Buffer Replacement 42:25

[40] Rabin A. Sugumar and Santosh G. Abraham. 1993. Efficient simulation of caches under optimal replacement with

applications to miss characterization. In Proceedings of the 1993 ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems. Santa Clara, CA, USA.

[41] Anthony Thomas and Arun Kumar. 2018. A comparative evaluation of systems for scalable linear algebra-based

analytics. Proceedings of the VLDB Endowment 11, 13 (Sept. 2018), 2168–2182.
[42] Sivan Toledo. 1999. A survey of out-of-core algorithms in numerical linear algebra. External memory algorithms 50

(Dec. 1999), 161–179.

[43] San van der Walt, S. Chris Colbert, and Gaël Varoquaux. 2011. The NumPy Array: A Structure for Efficient Numerical

Computation. Computing in Science & Engineering 13, 2 (March 2011), 22–30.

[44] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau, Evgeni Burovski,

Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod

Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, Ilhan Polat, Yu

Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,

Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0

Contributors. 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods 17, 3 (Feb.
2020), 261–272.

[45] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song, Zenglin Xu, and Tim Kraska. 2018.

Superneurons: Dynamic GPU memory management for training deep neural networks. In Proceedings of the 23rd ACM
SIGPLAN symposium on principles and practice of parallel programming. New York, NY, USA, 41–53.

[46] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauly, Michael J. Franklin,

Scott Shenker, and Ion Stoica. 2012. Resilient distributed datasets: A Fault-Tolerant abstraction for In-Memory cluster

computing. In 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 12). San Jose, CA, USA.

[47] Yi Zhang and Jun Yang. 2012. Optimizing I/O for Big Array Analytics. Proceedings of the VLDB Endowment 5, 8 (Aug.
2012).

Received July 2023; revised October 2023; accepted November 2023

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 42. Publication date: February 2024.

	Abstract
	1 Introduction
	2 Looking into the future
	2.1 Overview of PreVision
	2.2 Executing a DAG Query Plan
	2.3 Constructing a Future Log

	3 Optimal Tile Replacement
	4 Preemptive Eviction
	5 Implementation Details
	5.1 Memory Management
	5.2 I/O Management

	6 Evaluation
	6.1 Experimental Settings
	6.2 Comparison with Existing Systems
	6.3 Effects of Preemptive Eviction
	6.4 Effects of Buffer Replacement

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

