
PLAQUE: Automated Predicate Learning atQuery Time

YIMING LIN∗, University of California, Berkeley, USA

SHARAD MEHROTRA, University of California, Irvine, USA

Predicate pushing down is a key optimization used to speed up query processing. Much of the existing practice

is restricted to pushing predicates explicitly listed in the query. In this paper, we consider the challenge of

learning predicates during query execution which are then exploited to accelerate execution. Prior related

approaches with a similar goal are restricted (e.g., learn only from only join columns or from specific data

statistics). We significantly expand the realm of predicates that can be learned from different query operators

(aggregations, joins, grouping, etc.) and develop a system, entitled PLAQUE, that learns such predicates during

query execution. Comprehensive evaluations on both synthetic and real datasets demonstrate that the learned

predicate approach adopted by PLAQUE can significantly accelerate query execution by up to 33x, and this

improvement increases to up to 100x when User-Defined Functions (UDFs) are utilized in queries.

CCS Concepts: • Information systems→ Query operators.

Additional Key Words and Phrases: Data Management, Query Processing

ACM Reference Format:

Yiming Lin and Sharad Mehrotra. 2024. PLAQUE: Automated Predicate Learning at Query Time. Proc. ACM
Manag. Data 2, 1 (SIGMOD), Article 46 (February 2024), 25 pages. https://doi.org/10.1145/3639301

1 INTRODUCTION
Predicate pushdown based on selectivity and cost estimates is a key strategy used to optimize

queries in relational databases. Pushing predicates down in a query tree could lead to significant

savings by reducing the size of data that migrates to downstream operators. In this paper, we seek

a new approach to query processing, entitled PLAQUE, automated Predicate LeArning at QUery

timE, that learns selective predicates during query execution (beyond those listed explicitly) in

order to filter out tuples that would not result in any query results as early as possible during query

processing. To illustrate the key idea behind PLAQUE, we examine a slightly modified and simplified

version of TPC-H Query Q-10 that includes a theta-join condition.
1
In this query, the predicates

o_orderdate < ’1993-01-01’ and p_brand = ’:10’ can be pushed down to orders and parts tables.
However, the query contains no predicates on the lineitem table that could prune non-matching

lineitem records that do not result in any query results. Thus, any query plan without a built index

will scan over all records in the lineitem table.

SELECTMAX(l_discount)
FROM part, lineitem, orders
WHERE p_retailprice < l_extendedprice AND o_orderkey = l_orderkey AND o_orderdate < ’1993-
01-01’ AND p_brand = ’:10’

∗
Work done at UC Irvine.

1
The similar query is used in previous works [23, 25] to evaluate theta-join in TPC-H benchmark.

Authors’ addresses: Yiming Lin, University of California, Berkeley, USA, yiminglin@berkeley.edu; Sharad Mehrotra,

University of California, Irvine, USA, sharad@ics.uci.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).

ACM 2836-6573/2024/2-ART46

https://doi.org/10.1145/3639301

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

https://doi.org/10.1145/3639301
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3639301

46:2 Yiming Lin and Sharad Mehrotra

l_discountl_orderkey l_extendprice

1 0.3 20

1 0.04 2

1 0.4 10

3 0.6 5

3 0.1 12

3 0.8 16

……

p_brandp_retailprice

1015

1020

o_orderdateo_orderkey

1992-06-011

1993-04-012

1991-03-013

…… ……

1

2

3

4

5

6

1 p1 = l_orderkey ∈ pok p2 = l_discount > 0.3
2 Dropped away by p2
3 p3 = l_extendedprice > 10
4 Dropped away by p3
5 p3 is updated to: p3 = l_extendedprice > 12
6 is updated to: p2 p2 = l_discount > 0.8

b) Predicates Creation and Updates During Query Execution

Lineitem Order

Part

Fig. 1. Learned Predicates duringQuery Execution and the UpdatedQuery Plan Tree of the Simplified TPC-H
Q10.

Consider that all records in the lineitem table that result in an answer satisfy a predicate

𝑙_𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 > 0.7 - we will momentarily see how PLAQUE learns such predicates. Query execution

can be significantly accelerated by pushing such predicates down in the query to filter records in

the lineitem table. Only a small fraction of lineitem records will need to join with the orders and
parts tables resulting in significant savings.

Several prior works have explored learning predicates, other than those specified explicitly in

queries, to reduce downstream query processing. Such approaches, typically learn predicates prior

to the execution of the query based, especially, on exploiting query predicates on join columns

(e.g., [9, 12, 20, 22]). For instance, if the query above contained a predicate l_orderkey < 5) in addition
to the other predicates listed in the query, techniques such as [26] could infer a new predicate

o_orderkey < 5) which could then be used to filter tuples from the orders table to speed up the

query execution. Such prior work on learning predicates, however, is of limited applicability since

queries containing equi joins seldom contain additional selection predicates on the join column.

This can be observed by examining such equi-join queries over several real datasets and synthetic

benchmarks such as TPC-H [7] or TPC-DS [6] in which none of the equi-join queries contain

additional predicates on the join columns. As such, above mentioned techniques rarely result in

significant execution cost reduction of benchmark queries. An alternate strategy that empowers

predicates learned ahead of query execution has been explored in [16]. In this strategy, the system

maintains data statistics (e.g., min and max of columns) at the data block level which is used for

sideways information passing over equi-joins accelerating query execution, especially in big-data

systems such as Hive or Pig where data is partitioned across clusters. The work, however, is limited

to equi-joins.

In contrast to learning predicates before query execution, some prior work [15, 21, 27] have also

considered alternate strategies that, similar to PLAQUE, infer predicates to add to queries on the

fly during query execution. Much of this work, however, has been in the context of hash-joins

in main-memory database settings. Such strategies build summarization data structures, such as

bloom filters, for the build table and use them to skip tuples in the probe table. We note that

approaches that learn predicates prior to execution [9, 12, 20, 22], and those that learn predicates

during execution, can be considered as complementary - they can be used in conjunction.

In this paper, we propose PLAQUE that similar to [15, 21, 27] learns predicates to add to the

query during query processing. In contrast to them, PLAQUE takes a much more comprehensive,

as well as, an adaptive approach to learning and using predicates in query execution. PLAQUE

infers new predicates not just during execution of hash-join (as in [15, 21, 27]) but based on a
range of relational operators including aggregation operators such as min and max, theta-joins,

equi-joins, group-by operators and having conditions in queries. In PLAQUE, as query execution

proceeds and records pass through operators in the query tree, the system learns new predicates to

reduce downstream data processing. Such predicates learned are further refined as query processing

proceeds (and more data is seen) resulting in improved filters. Predicate learning in PLAQUE occurs

not just when the system uses a hash-based operator implementation (e.g., as in hash-joins) but

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

PLAQUE: Automated Predicate Learning at Query Time 46:3

also when nested-loop or sort-merge algorithms are used (as will be clear in Section 3). In PLAQUE,

predicate learning and maintenance including predicate refinement is performed efficiently and

remains a negligible part of query execution cost. PLAQUE in addition to saving computation

cost by pruning unnecessary records, also supports checking of newly-learned predicates using

an index-based implementation to reduce I/O costs and decides on the optimal placement of the

learned filters (as we will show later, placement of the operator depends upon when it is learned

and a simple rule such as pushing the predicate as far down the tree as possible may not be optimal).

Comprehensive evaluations on two benchmarks (TPCH [7] and SmartBench [13]) and one real

dataset (IMDB) [2] in Section 6 demonstrate that adding the learned predicates using PLAQUE can

achieve significant improvement ranging from 2x-33x, especially in queries containing expensive

User-Defined-Functions (UDFs) where the improvement can be up to 100x in SmartBench [13].

Specifically, this paper makes the following contributions.

• A set of novel approaches to infer predicates during query execution from aggregate, equi join,

theta join, and having conditions in the given query, and place them wisely in the given query

tree to maximize the benefits from predicates pushdown using a partial-order based graphical

approach.

• A system entitled PLAQUE to exploit the learned predicates using index and in-memory

predicates to effectively save both I/O cost and memory footprint.

• A set of comprehensive experiments on both real and synthetic benchmarks to evaluate the

effectiveness of our learned predicates. We further test the learned predicates on queries with

UDFs to demonstrate their broader applicability.

2 PLAQUE OVERVIEW
PLAQUE learns predicates that act as filters to reduce the load on downstream operations acceler-

ating query processing. Before we discuss how PLAQUE works, we briefly discuss opportunities

that can be exploited to learn predicates during query processing.

Opportunities to Learn Predicates Consider a query processing pipeline illustrated in Figure 1-

a) that corresponds to the query plan generated by PostgreSQL (V 14.6) for the TPC-H query in

Section 1. In this plan, Z𝑙_𝑜𝑟𝑑𝑒𝑟𝑘𝑒𝑦=𝑜_𝑜𝑟𝑑𝑒𝑟𝑘𝑒𝑦 is implemented as a hash join and nested loop join

is used for Z𝑙_𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝑝𝑟𝑖𝑐𝑒>𝑝_𝑟𝑒𝑡𝑎𝑖𝑙𝑝𝑟𝑖𝑐𝑒 . One opportunity to learn a predicate to accelerate query

execution is to exploit the hash join implementation of Z𝑙_𝑜𝑟𝑑𝑒𝑟𝑘𝑒𝑦=𝑜_𝑜𝑟𝑑𝑒𝑟𝑘𝑒𝑦 as is proposed in prior

works such as [15, 21]. In particular, since order is the build table and lineitem is the probe relation,

once the hash table on order has been built, since all values of the join column of order are known
(they have been read during the build phase), such information can be used to learn a predicate

𝑝1 = 𝑙_𝑜𝑟𝑑𝑒𝑟𝑘𝑒𝑦 ∈ 𝑝𝑜𝑘 where 𝑝𝑜𝑘 corresponds to all values of 𝑜_𝑜𝑟𝑑𝑒𝑟𝑘𝑒𝑦 in the build table (i.e.,

order) as shown in Figure 1-b). 𝑝1 can be used to filter tuples in the probe side (i.e., lineitem). 𝑝1
in this example is a membership predicate which is effective in reducing the size of tuples for the

downstream operators. We can alternatively implement the predicates learned from the equi join

as range predicates, which are amenable to support index scan to bring additional I/O savings, as

we will show in Section 4.

Besides exploiting the equi join (hash-join in particular) to learn filters, let us explore how other

relational operators offer additional opportunities. We continue to use the example in Figure 1-b).

For ease of illustration, we use small instances of lineitem, part and order tables, respectively.
Assume that after the execution of the build phase for order, during the probe phase over lineitem,

a tuple (1,0.3,20) (1 in Figure 1-b) rises to the join operator Z𝑙_𝑜𝑟𝑑𝑒𝑟𝑘𝑒𝑦=𝑜_𝑜𝑟𝑑𝑒𝑟𝑘𝑒𝑦 , where it joins
appropriate records in order and part tables and reaches the aggregate operator𝐴𝑔𝑔𝑚𝑎𝑥 (𝑙_𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡).
At this stage, we can establish that the final query answer (i.e., 𝑀𝐴𝑋 (𝑙_𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡)) is at least 0.3,
since 0.3 is the current maximum 𝑙_𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 in the quantifying tuples reaching the aggregate

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

46:4 Yiming Lin and Sharad Mehrotra

Query
Optimizer

Query
Executor

PLAQUE

Query
Query Plan

event adaption

End user
Query Answer

Fig. 2. PLAQUE Architecture
operator so far. We can, thus, create a new predicate 𝑝2, i.e., 𝑙_𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 > 0.3, and push this

predicate down to 𝑝 in Figure 1-c). Such a predicate could potentially reduce the query execution

cost significantly, especially in the scenario where the maximum value of the discount in lineitem is

close to 0.3. In this case, all future tuples in lineitem table can be eliminated from consideration! In

our current example, the second tuple 2 in lineitemwill be dropped away by 𝑝2 since its 𝑙_𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡

(0.04) is less than 0.3.

Consider now the third tuple 3 in lineitem that joins with the record in order table to reach the

nested loop joinwith the part table. It fails tomeet the condition 𝑙_𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝑝𝑟𝑖𝑐𝑒 > 𝑝_𝑟𝑒𝑡𝑎𝑖𝑙𝑝𝑟𝑖𝑐𝑒 in

the theta-join for every record in part. As a result, we can learn a new predicate𝑝3 = 𝑙_𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝑝𝑟𝑖𝑐𝑒 >

10, since failure of tuple 3 with 𝑙_𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝑝𝑟𝑖𝑐𝑒 = 10 to join any tuple in part establishes all
values of 𝑝_𝑟𝑒𝑡𝑎𝑖𝑙𝑝𝑟𝑖𝑐𝑒 must be greater than or equal to 10 and thus all values in 𝑙_𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝑝𝑟𝑖𝑐𝑒

must be greater than 10 in order to successfully join and produce an answer. Such a filter will allow

Tuple 4 in lineitem to be eliminated since it violates 𝑝3, which implies that it must fail the theta

join operator.

Note that predicates learned above can be refined to more selective predicates as data processing

proceeds. To see this, consider the fifth tuple 5 in the lineitem table. When it joins with order
table and reaches Z𝑙_𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝑝𝑟𝑖𝑐𝑒>𝑝_𝑟𝑒𝑡𝑎𝑖𝑙𝑝𝑟𝑖𝑐𝑒 , it fails to join any tuple in part table, and thus we

can update 𝑝3 to a more selective predicate as 𝑙_𝑒𝑥𝑡𝑒𝑛𝑑𝑝𝑟𝑖𝑐𝑒 > 12. Likewise, when tuple 6 in the

lineitem table reaches the aggregate operator with 𝑙_𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 as 0.8, we can similarly update 𝑝2 to

be a more selective predicate 𝑙_𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 > 0.8. The more selective predicates can prune additional

tuples early further reducing query execution costs.

The example above illustrates several opportunities to learn predicates that can serve as filters

to accelerate query processing from different relational operations – from equi join (𝑝1), theta

join (𝑝3), and MAX/MIN (𝑝2). In Section 3 we consider a more comprehensive set of relational

operators that can help determine predicates. We note that several predicates we learn can be

refined as query processing proceeds as illustrated above - e.g., predicates learned from theta join

conditions, aggregations such as MIN/MAX. Furthermore, different types of predicates can be

learned from equi join conditions (e.g., range filters or membership filters), and such predicates can

be implemented in different ways - as filters in memory or using an index, in which case, it could

potentially reduce I/O costs of reading a relation from disk. Finally, note that the predicates learned

from equi join could potentially provide more benefit if they are learned from a more downstream

join operator. For instance, consider the theta join condition 𝑙_𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝑝𝑟𝑖𝑐𝑒 > 𝑝_𝑟𝑒𝑡𝑎𝑖𝑙𝑝𝑟𝑖𝑐𝑒 in

Figure 1-c), if we modify it to be equi join 𝑙_𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝑝𝑟𝑖𝑐𝑒 = 𝑝_𝑟𝑒𝑡𝑎𝑖𝑙𝑝𝑟𝑖𝑐𝑒 and assume it uses hash

join with part as the build table. The predicates learned from 𝑝_𝑟𝑒𝑡𝑎𝑖𝑙𝑝𝑟𝑖𝑐𝑒 when the hash table of

part is built can be pushed further down to the scan of lineitem (as part of 𝑝 in Figure 1-c). Such a

predicate would filter away tuples early by using the condition from a downstream join operator.

Above, we highlighted several opportunities to infer predicates during query execution that can

help accelerate query execution. To our best knowledge, PLAQUE is the first such comprehensive

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

PLAQUE: Automated Predicate Learning at Query Time 46:5

attempt to explore learning and refining predicates during query processing to prune away redun-

dant tuples that do not result in query results. Before we discuss PLAQUE architecture, we first

highlight some key challenges that arise in learning predicates that will be addressed by PLAQUE.

Challenges. Learning predicates and using them to accelerate query execution leads to several

challenges. One such challenge is to devise ways to infer and refine predicates by exploiting

semantics and implementations of various relational operators that comprise a query. The predicate

learned should be selective so that it prunes away as many records as possible. However, the

predicate must simultaneously be correct in the sense that its usage does not change query results.

Second, where should we insert the learned predicates in the query tree? As will be shown later,

pushing the predicates down to the scan (leaves) of the query tree might not always be the best

option. Third, it is critical to implement the learned predicates carefully such that applying them

will not introduce significant overhead while ensuring the correctness of the learned predicates.

PLAQUE Design. PLAQUE addresses the above challenges by making careful design choices. The

overview of the architecture of PLAQUE is in Figure 2. Given a SQL query, in PLAQUE a query

optimizer first generates a query plan sent to the query executor. During query execution, PLAQUE

will capture certain events to either learn new predicates or update/refine predicates that have been
learned previously. PLAQUE ensures that such predicate addition and/or refinements do not change

the results of the original query. Learning or refining predicates in PLAQUE are implemented

using ECA rules [3] based on the state of execution of the query. An ECA rule consists of three

components: an event is defined as [WHEN: event, IF: condition, THEN action]. As an example

in Figure 1, consider the first tuple 1 in the lineitem table, and the following event: [WHEN:

tuple 1 reaches the aggregate operator 𝐴𝑔𝑔𝑚𝑎𝑥 (𝑙_𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡), IF tuple 1 is the first tuple reaching

𝐴𝑔𝑔𝑚𝑎𝑥 (𝑙_𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡), THEN a predicate 𝑙_𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 > 0.3] is created. Similarly, PLAQUE will detect

events to learn/update new predicates from MIN/MAX, theta-join, equi-join, HAVING/GROUP BY

conditions in Section 3.

Once the new predicates are learned, PLAQUE applies the learned predicates in the query

executor to speed up the execution. This is achieved in PLAQUE through two subtasks:

• Deciding where to place the learned predicates in the given query plan tree PLAQUE makes

the decision based on evaluating dependence between different query blocks of a query tree and

determining a placement strategy to maximize the benefit of predicate placement (discussed in

Section 5).

• Deciding how to implement the learned predicates in the executor, i.e., whether or not to use

index-scan (discussed in Section 4).

Finally, the executor returns the query answer to end users.

PLAQUE has been implemented in an Apache project VanillaDB [8, 24], which consists of

several key components (query executor and optimizer) and supports most popular operator

implementations such as hash-join, index/table scan, index join, sort-merge join, nested loop join,

etc. Thus VanillaDB is suitably modified for a reference implementation of PLAQUE. In particular,

PLAQUE added the code to implement the learned predicates in VanillaDB by creating in-memory
predicate or index predicate, which requires minimal modifications to current DBMS codes with

low overhead. The in-memory predicate is implemented as an in-memory checker that is directly
applied to the data flow among operators during query execution to eliminate any tuple that

fails the corresponding predicate, while the index predicate is implemented as index-scan to fetch

tuples using an index. We discuss the two implementations in detail in Section 4. Furthermore,

mechanisms to add and dynamically refine predicates in the executing query using ECA rules

were added to the codebase. Extending other open-source DBMSs, such as PostgreSQL, to support

learned-predicate-based query execution is part of our future work.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

46:6 Yiming Lin and Sharad Mehrotra

3 PREDICATE CREATION
In this section, we describe how PLAQUE learns predicates from various relational operations

in a query, including MIN/MAX aggregate, theta join, equi join, and group by/having conditions.

In particular, PLAQUE aims to learn two types of predicates during query execution, i.e., range
predicate and membership predicate which are of the form [𝑎 𝑜𝑝 𝑣] and [𝑎 ∈ 𝑉] respectively, where

𝑜𝑝 is a relational operator such as >, ≥, etc., and 𝑣 is a value in the domain of attribute 𝑎, and𝑉 is a

set of such values.

Predicates learned in PLAQUE that are used to modify the query do not result in a change of

the final answers returned by the query (correctness). Furthermore, PLAQUE uses amonotonic

refinement approach to modifying predicates learned wherein a predicate, say 𝑝 may be replaced

by a predicate 𝑝′ learned later if 𝑝′ is more selective compared to 𝑝 , i.e., 𝑝′ → 𝑝 . As an example, a

predicate 𝑎 > 10 may be replaced by 𝑎 > 20 since the latter is more selective. PLAQUE uses such a

monotonic refinement strategy to filter more tuples thereby improving performance. Monotonic

refinement of learned predicates does not jeopardize the correctness of the approach, which

produces exactly the same results as that produced by the original query without learned predicates.

Below we restrict ourselves to discussing only the predicate learned from different operators.

Arguments about the correctness of the approach, and the exact definition of correctness in the

context of adding newly learned predicates during query execution, while intuitively simple, are

nonetheless, more formally treated in [5].

3.1 MIN/MAX Aggregation
Consider an aggregate query with max or min conditions on attribute 𝑎,𝑀𝐴𝑋 (𝑎) or𝑀𝐼𝑁 (𝑎). Let 𝑡
be a tuple and 𝑡 .𝑎 be the attribute value of 𝑎 in tuple 𝑡 . We first describe the event that causes the

corresponding ECA rule (discussed in Section 2) to trigger the creation of a predicate learned from

extremal aggregate operators. We restrict our discussion to the MAX operator. The logic for MIN is

very similar and follows directly from the discussion below.

Event 1. Predicate Creation from MAX Operator.

WHEN:𝑀𝐴𝑋 (𝑎) operator receives a tuple 𝑡
IF: 𝑡 is the first tuple𝑀𝐴𝑋 (𝑎) receives
THEN: a predicate 𝑝 , 𝑎 > $𝑎, is created, where $𝑎 = 𝑡 .𝑎.

Note that 𝑎 > $𝑎 satisfies the predicate correctness since none of the records with values of

𝑎 ≤ $𝑎 would satisfy the query answer. As an example in Figure 1, consider the first tuple 1 in the

lineitem table. A predicate 𝑙_𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 > 0.3 is created when tuple 1 reaches 𝐴𝑔𝑔𝑚𝑎𝑥 (𝑙_𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡)
with 𝑙_𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 as 0.3. Eliminating records with 𝑙_𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 ≤ 0.3 will not change the query results.

Once a predicate is learned from MAX aggregate operator, it may be updated later during query

processing. Such a refinement is captured by the following event.

Event 2. Predicate Refinement from MAX Operator.

WHEN:𝑀𝐴𝑋 (𝑎) aggregate operator receives a tuple 𝑡
IF: the predicate 𝑝 associated with𝑀𝐴𝑋 (𝑎) exists and 𝑡 .𝑎 > $𝑎

THEN: update 𝑝 to be 𝑎 > $𝑎, where $𝑎 = 𝑡 .𝑎.

The predicate refinement based on𝑀𝐴𝑋 (𝑎) operator defined above is monotonic and hence the

refinement may filter additional records since the corresponding predicate is more selective. We

note that predicates learned from MAX operator would be most effective if the true maximum

value (or a value close to it) appears early in lineitem table, which will then allow early pruning of

other tuples that would not make it pass the aggregation operator.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

PLAQUE: Automated Predicate Learning at Query Time 46:7

3.2 MIN/MAX with GROUP BY
Let us now consider MIN and MAX predicates in conjunction with GROUP BY operators. For now,

let us assume there is no HAVING clause in the query which is addressed separately in Section 3.3.

Let 𝑎 be the attribute on which the MAX or MIN value is computed, and 𝑏 is the attribute used

to create groups, e.g., SELECT MAX(a), b, FROM..., WHERE..., group by b. For such a GROUP BY

aggregate operator, PLAQUE adds a predicate an initial predicate 𝑝 as follows at the beginning of

the query processing.

Event 3. Predicate Initialization MIN/MAX GROUP BY.

WHEN: at start of query execution

THEN: Add a predicate 𝑝 = ¬(𝑏 ∈ $𝑔𝑟𝑜𝑢𝑝𝑠), where $𝑔𝑟𝑜𝑢𝑝𝑠 = ∅.
𝑝 initially will return true for any tuple since $𝑔𝑟𝑜𝑢𝑝𝑠 = ∅. When a tuple 𝑡 reaches the aggregation

operator, the predicate 𝑝 is appropriately modified by adding a new predicate 𝑝𝑖 as a disjunct, where

𝑝𝑖 corresponds to a predicate for the group (i.e., the 𝑏 value) associated with the tuple 𝑡 .

Event 4. Predicate Addition MIN/MAX GROUP BY.

WHEN:𝑀𝐴𝑋 (𝑎) operator receives a tuple 𝑡
IF: 𝑡 is the first tuple𝑀𝐴𝑋 (𝑎) receives in the group whose group value 𝑏 = 𝑡 .𝑏

THEN: create a predicate 𝑝𝑖 = (𝑏 = 𝑏𝑖) ∧ (𝑎 > $𝑎𝑖), where $𝑎𝑖 = 𝑡 .𝑎. Modify the variable $𝑔𝑟𝑜𝑢𝑝𝑠

in the predicate 𝑝 associated with the aggregation to $𝑔𝑟𝑜𝑢𝑝𝑠 ∪ {𝑏𝑖 }. Finally, add 𝑝𝑖 as a disjunct to
𝑝 creating a modified /extended version of 𝑝 . More formally, let 𝑝 = ¬(𝑏 ∈ $𝑔𝑟𝑜𝑢𝑝𝑠} ∨ 𝑝′. 2 The 𝑝
is modified to be: 𝑝 = ¬(𝑏 ∈ {$𝑔𝑟𝑜𝑢𝑝𝑠 ∪ {𝑏𝑖 }} ∨ 𝑝′ ∨ ((𝑏 = 𝑏𝑖) ∧ (𝑎 > $𝑎𝑖)).
Consider a modified TPCH query in Section 1 where the aggregate attribute 𝑎 = 𝑙_𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡

and the group attribute is 𝑙_𝑠ℎ𝑖𝑝𝑚𝑜𝑑𝑒 = { ’Air’, ’Mail’, ...}. When the first tuple 𝑡 reaches the

aggregate operator whose 𝑡 .𝑙_𝑠ℎ𝑖𝑝𝑚𝑜𝑑𝑒 =’Air’ and 𝑡 .𝑙_𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 = 0.3, the predicate 𝑝 is updated

to ¬(𝑏 ∈ {’Air’}) ∨ ((𝑏 =’Air’) ∧ (𝑎 > 0.3)). At this time instance, if we were to apply the learned

predicate 𝑝 on a new tuple 𝑡 ′ to check if 𝑡 ′ can be skipped or not, and assume 𝑡 ′ .𝑙_𝑠ℎ𝑖𝑝𝑚𝑜𝑑𝑒 =

’Mail’, the predicate returns true and tuple 𝑡 ′ will pass since its group does not associate with any

filtering condition.

The newly learned disjunct to the predicate 𝑝 associated with the GROUP BY aggregation

operator contains a filtering condition (𝑎 > $𝑎𝑖) which is further refined as more tuples of the

same group 𝑏𝑖 are seen as query execution proceeds.

Event 5. Predicate Refinement from MIN/MAX GROUP BY.

WHEN:𝑀𝐴𝑋 (𝑎) operator receives a tuple 𝑡
IF: 𝑡 is in group 𝑏𝑖 where 𝑏𝑖 ∈ $𝑔𝑟𝑜𝑢𝑝𝑠 , and 𝑡 .𝑎 > $𝑎𝑖
THEN: update 𝑝 to 𝑝 = ¬(𝑏 ∈ $𝑔𝑟𝑜𝑢𝑝𝑠) ∨ 𝑝′ ∨ ((𝑏 = 𝑏𝑖) ∧ (𝑎 > $𝑎𝑖), where $𝑎𝑖 = 𝑡 .𝑎.

When a new tuple 𝑡 reaches the aggregate operatorwhose 𝑡 .𝑙_𝑠ℎ𝑖𝑝𝑚𝑜𝑑𝑒 = ’Air’ and 𝑡 .𝑙_𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 =

0.8, the predicate 𝑝 is refined to ¬(𝑏 ∈ { ’Air’ }) ∨ ((𝑏 = ’Air’) ∧ (𝑎 > 0.8)). For each group 𝑏𝑖 , $𝑎𝑖
is the maximum value in this group observed so far during execution. In Section 4, we will detail

how to implement such a disjunction of predicates.

We note that the above strategy of maintaining a predicate for each group to filter tuples may

introduce non-trivial storage and processing overhead when the number of groups is large. PLAQUE

uses several optimizations to reduce such overhead. To reduce the overhead of maintaining and

checking a disjunction for each group, PLAQUE maintains predicates for a small set of 𝑘 groups. We

choose the 𝑘 groups for which to maintain predicates based on estimating the size of different groups

2
Note that after initialization, when ¬(𝑏 ∈ $𝑔𝑟𝑜𝑢𝑝𝑠) , then 𝑝′ is empty. As more disjuncts get added to the predicate 𝑝 ,

the subsequent value of predicate 𝑝 has a non-empty 𝑝′ which itself contains one disjunct for each group that has been

observed so far.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

46:8 Yiming Lin and Sharad Mehrotra

by a bootstrapping process by processing an initial sample of records without any predicates. From

the sample, we determine the top-𝑘 largest groups and then subsequently learn filters on the chosen

𝑏𝑖 values based on frequency. The intuition behind the choice is that predicate-based filtering will

be most effective on such groups given their size. We can further reduce the overhead of checking if

a value of 𝑏 in a tuple has been previously observed (i.e., ¬(𝑏 ∈ {$𝑔𝑟𝑜𝑢𝑝𝑠) by maintaining $𝑔𝑟𝑜𝑢𝑝𝑠

as a bloom filter. Note that false positives in the bloom filter does not jeopardize the correctness - it

only implies that PLAQUE will not be able to form a predicate on 𝑏𝑖 if the bloom filter indicates

that 𝑏𝑖 is already in $𝑔𝑟𝑜𝑢𝑝𝑠 as a false positive.

3.3 Conditions in HAVING Clause
Consider a query with having condition, SELECT Agg(a), b FROM 𝑅1, . . ., 𝑅𝑛 WHERE . . . Group
by b HAVING Agg(a) 𝑜𝑝 𝑣 , where 𝑎 is the aggregate attribute and 𝑏 is the group attribute. 𝑜𝑝 is

one of > | ≥ | < | ≤ | =, 𝑣 is a value, and Agg = max | min | sum | count.
During query execution, the aggregate operator maintains the aggregated value 𝐴𝑔𝑔(𝑎) (e.g.,

𝑆𝑈𝑀 (𝑎)) for each group. 𝐴𝑔𝑔(𝑎) will be updated when any new tuple reaches the aggregate

operator.

Consider the scenario where 𝐴𝑔𝑔 is count, and HAVING condition is count(a) < 100. If the
HAVING condition becomes false, i.e., count(a) ≥ 100, it will always remain false during later query

execution for that group. On the other hand, for the HAVING condition count(a) > 100, once it
becomes true, it will always remain true in the future when more tuples are processed. We capture

such a concept by defining in-preserving and out-preserving properties for the condition in the

HAVING clause. Subsequently, we describe how to learn predicates that can be used to filter tuples

based on the conditions in the HAVING clause.

Definition 1. In/Out-Preserving Property of Having Condition. A condition 𝐻 =

[𝐴𝑔𝑔(𝑎) 𝑜𝑝 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡] in the HAVING clause is in-preserving, if 𝐻 becomes true at any instance 𝑡

during query execution (based on partially observed tuples belonging to a given group), 𝐻 always

remains true at any instance 𝑡 ′ where 𝑡 ′ > 𝑡 , when more tuples of that group have been observed.

On the other hand, 𝐻 is out-preserving, if 𝐻 is false at an instance 𝑡 during query execution, it

remains false at any future instance 𝑡 ′ where 𝑡 ′ > 𝑡 when more data has been observed. □

Given the above concepts of In/Out preserving conditions, we can now define the event to create

the corresponding predicate.

Event 6. Predicate Learned From Having.

WHEN: 𝐴𝑔𝑔(𝑎) in a HAVING condition is updated for group with group value 𝑏𝑖
IF: the HAVING condition is out-preserving, and 𝐴𝑔𝑔(𝑎) fails the condition (false-condition)

THEN: a membership predicate 𝑝𝑖 = ¬{𝑏𝑖 } is created.
Whenever an out-preserving having condition becomes false during query execution in the

group whose group value is 𝑏𝑖 , PLAQUE learns the predicate 𝑝𝑖 to skip all later tuples in the same

group. In particular, for any tuple 𝑡 , if 𝑡 .𝑏 = 𝑏𝑖 , 𝑡 fails the predicate 𝑝𝑖 and it will be skipped. Note

that the In/Out-preserving property of HAVING containing MIN, MAX or COUNT aggregation

can be decided together with 𝑜𝑝 in advance of query execution. For instance,𝑚𝑎𝑥 (𝑎) > 100 is in-

preserving and𝑚𝑎𝑥 (𝑎) < 100 is out-preserving. As for sum aggregate operation, if the data statistics

of attribute 𝑎 is known in advance, say all values in 𝑎 are non-negative, then the out-preserving

property of sum can also be determined a-priori to query execution. For instance, 𝑠𝑢𝑚(𝑎) < 100 is

out-preserving if ∀𝑣 ∈ 𝑉𝑎𝑙𝑠 (𝑎), 𝑣 ≥ 0.

3.4 Learning from Theta Join
In this part, we show how to learn predicates from theta join conditions in the given query during

query execution. Let 𝑅 be a relation. Consider a theta join condition between relations 𝑅1 and 𝑅2,

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

PLAQUE: Automated Predicate Learning at Query Time 46:9

𝑅1 ⊲⊳𝑎 𝑜𝑝 𝑏 𝑅2, where 𝑎 and 𝑏 are two attributes, and 𝑜𝑝 := > | ≥ | < | ≤. To better illustrate the

idea, without loss of generality, let us assume 𝑜𝑝 is >, i.e., the theta join condition is 𝑎 > 𝑏. We first

define the event to trigger the creation of predicates learned from a theta join operator.

Event 7. Predicate Creation From Theta-Join Operator.WHEN: tuple 𝑡 ∈ 𝑅1 arrives at a

theta join operator, 𝑅1 ⊲⊳𝑎 > 𝑏 𝑅2
IF: 𝑡 is the first tuple that fails to join with any tuples in 𝑅2,

3

THEN: a predicate 𝑝 , 𝑎 > $𝑎, is created, where $𝑎 = 𝑡 .𝑎

A tuple 𝑡 ∈ 𝑅1 failing to join with any tuple in 𝑅2 implies that for any tuple 𝑡
′ ∈ 𝑅2 that comes to

this theta join operator, the attribute value of 𝑡
′
.𝑏 must be greater than or equal to 𝑡 .𝑎, i.e., 𝑏 ≥ 𝑡 .𝑎.

Since 𝑎 > 𝑏, this naturally implies 𝑎 > 𝑡 .𝑎, thus establishing the correctness of the learned predicate

𝑝 . Consider the tuple 3 in the lineitem table in Figure 1-b). As shown in Section 2, the theta join

Z𝑙_𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝑝𝑟𝑖𝑐𝑒>𝑝_𝑟𝑒𝑡𝑎𝑖𝑙𝑝𝑟𝑖𝑐𝑒 learns the predicate 𝑝_𝑟𝑒𝑡𝑎𝑖𝑙𝑝𝑟𝑖𝑐𝑒 ≥ 10 when tuple 3 of lineitem fails

to join any tuple in the part table.
Once the predicate 𝑝 = 𝑎 > $𝑎 is learned, it could be updated during later query execution when

$𝑎 is updated to a larger value. In particular, we define the event of predicate refinement from theta

join operator below.

Event 8. Predicate Refinement From Theta-Join Operator. WHEN: tuple 𝑡 ∈ 𝑅1 arrives at

a theta join operator, 𝑅1 ⊲⊳𝑎 > 𝑏 𝑅2
IF: 𝑝 = 𝑎 > $𝑎, 𝑡 fails to join with any tuples in 𝑅2, and 𝑡 .𝑎 > $𝑎

THEN: the predicate 𝑝 is updated to be, 𝑎 > $𝑎, where $𝑎 = 𝑡 .𝑎.

The predicate refinement discussed above is monotonic. The operand $𝑎 in predicate 𝑎 > $𝑎

is the maximum value of attribute 𝑎 in the tuple from 𝑅1 that failed join test in the theta join

operator so far. So failure of a larger 𝑎 value to join any tuple in the theta join can be used to refine

the predicate to a more selective predicate while ensuring correctness of the execution. This was

illustrated in Figure 1 by refining the predicate from 𝑙_𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝑝𝑟𝑖𝑐𝑒 > 10 to 𝑙_𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝑝𝑟𝑖𝑐𝑒 > 12

when processing the tuple 5 of the lineitem which also failed to join with any tuples in the part
table in theta join operator Z𝑙_𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝑝𝑟𝑖𝑐𝑒>𝑝_𝑟𝑒𝑡𝑎𝑖𝑙𝑝𝑟𝑖𝑐𝑒 .

Likewise, when 𝑜𝑝 in the theta join condition is ≥, we follow Event 7 and Event 8 to learn exactly

the same predicate as the one when 𝑜𝑝 is >. In contrast, when 𝑜𝑝 is < or ≤, the learned predicate is
𝑎 < $𝑎, where $𝑎 is the minimum value of attribute 𝑎 in the tuple from 𝑅1 that failed the join test

in the theta join operator so far.

Symmetrically, for a theta join 𝑅1 ⊲⊳𝑎 > 𝑏 𝑅2, if there is a tuple coming from the right side of

the join, i.e., 𝑅2 and it fails the join test, we create a predicate 𝑏 < $𝑏, where $𝑏 is the minimum

value of 𝑅2.𝑏 in the tuples from 𝑅2 that fails join test in this theta join operator so far during query

execution.

In a nested loop implementation of theta join 𝑅1 ⊲⊳𝑎 > 𝑏 𝑅2, if a tuple rises from 𝑅1 and the join

algorithm checks the entire 𝑅2 relation to perform the join, we refer to 𝑅1 as outer relation and

𝑅2 as inner relation Table 1 summarizes all the predicates that can be learned from a theta join

condition based on the 𝑜𝑝 and on which side the tuple 𝑡 ascends into the join. In the table, we

denote𝑚𝑎𝑥𝑎 and𝑚𝑖𝑛𝑎 by the maximum and minimum value in attribute 𝑎 that fails join test so far

during query execution. It can easily be shown that the process of replacing predicates added to

the query tree earlier by stronger predicates discovered later in the execution is monotonic and

ensures the correctness of the execution.

Analysis: The effectiveness of predicates learned from theta joins in accelerating query processing

depends on the implementation used to implement the join. The most commonly used theta-join

3
The above observation can be easily captured during query execution since the join output for 𝑡 in current theta join

operator will be empty (NULL).

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

46:10 Yiming Lin and Sharad Mehrotra

Theta join 𝑅1 ⊲⊳𝑎 𝑜𝑝 𝑏 𝑅2

Outer relation 𝑅1 𝑅2

𝑜𝑝 > or ≥ < or ≤ > or ≥ < or ≤
Predicates 𝑎 > 𝑚𝑎𝑥𝑎 𝑎 < 𝑚𝑖𝑛𝑎 𝑏 < 𝑚𝑖𝑛𝑏 𝑏 > 𝑚𝑎𝑥𝑏

Table 1. Learned Predicates for Theta Join

.

implementations can be categorized as (block-based) nested loop join, index nested-loop join or

sort-merge joins with a few variants, such as ripple join, that performs join 𝑅 ⊲⊳ 𝑆 by sampling

tuples from both relations simultaneously. Consider the theta-join operator 𝑅1 ⊲⊳𝑎 > 𝑏 𝑅2 and let the

join be implemented using nested loop (or index nested loop). W.L.O.G., assume 𝑅1.𝑎 is the outer

relation where each tuple 𝑡 in 𝑅1 reaches the operator, and then the operator checks 𝑡 matches any

tuples in 𝑅2 (inner relation).
4
The learned predicates from such a join operator are expected to

provide improvement when (block-based) nested loop join, index join and ripple join are used and

the values in 𝑅1 .𝑎 reaching the theta join operator is not sorted. The advantage of the predicate
would not benefit the sort-merge implementation because tuples are processed in sort order. All

the remaining tuples yet to be processed satisfy the learned predicate and, hence, would not be

pruned further.

3.5 Learning from Equi Join
Equi join is the most common SQL query. We start with identifying several opportunities to learn

predicates from equi join.

To identify opportunities to learn predicates from equi join we first need to define a concept of

convergence point.

Definition 2. Convergence Point Let 𝑅 be a relation that participates in a join in a query 𝑄 .

A convergence point for 𝑅 wrt to the join operator is defined to be the earliest point in the query

execution when all the possible tuples of 𝑅 that could possibly participate in the join have passed

through the join operator at least once. □

The convergence point of a relation participating in a join depends upon the join algorithm

used. For instance, in the case of a hash join, the convergence point of the build relation occurs

when the corresponding hash table has been built. In the query tree in Figure 1-a), the conver-

gence point of order table is reached after we build the hash table for order table. Similarly, the

convergence point of part table is reached when the first outer loop is complete in the join operator

Z𝑙_𝑒𝑥𝑡𝑒𝑛𝑑𝑒𝑑𝑝𝑟𝑖𝑐𝑒>𝑝_𝑟𝑒𝑡𝑎𝑖𝑙𝑝𝑟𝑖𝑐𝑒 when using nested loop join. At the convergence point for a relation

in a join, all possible values of the relation that could participate in the join have already been

observed and this information can be exploited in learning the appropriate predicates from joins.

Note that different relations reach convergence points at different instances, based on the join

implementation. For instance, in Figure 3 the convergence point for lineitem occurs close to the

end of query execution since lineitem is the probe table and we have to consume all tuples from

lineitem table to complete the query. In general, for one-pass hash join or nested loop join, their

build table or inner table will potentially reach convergence points early during query execution

when the build phase is complete or the first outer loop is complete. For multi-pass hash join (e.g.,

grace hash join) and sort-merge join, both relations will reach their convergence points when the

scan or sort for both relations is complete.

We can learn either membership or range predicates from equi joins at the convergence point of

participating relations.

4
For index join, the inner relation corresponds to the one that performs the index scan for each tuple coming from the outer

relation. Ripple join switches the inner and outer relations during join execution.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

PLAQUE: Automated Predicate Learning at Query Time 46:11

Timeline of pipeline query processing

Begin Order Part Lineitem End

Fig. 3. Convergence Points of Relations.

42 8 11 19 21

fr = [2,21]

f1
r = [2,4] f 2

r = [8,11] f3
r = [19,21]

Fig. 4. Range Predicates Learned From Equi Join.

Event 9. Predicate Creation from Eqi Join.

WHEN: 𝑅1 reaches its convergence point

THEN: define a predicate 𝑝 on relation 𝑅2 on the join column 𝑅1.𝑎 where 𝑝1 is either a set of range

predicates that cover the attribute values in 𝑅1 .𝑎 or 𝑝1 is a membership predicate 𝑎 ∈ 𝑉𝑎𝑙𝑠 (𝑅1.𝑎),
where 𝑉𝑎𝑙𝑠 (𝑅1.𝑎) consist of all values in 𝑅1 .𝑎.

We next discuss how membership/range predicates are learned.

Learning Membership Predicate from Equi Join: When a relation 𝑅 reaches its convergence point

early during query execution, we can learn a membership predicate 𝑝𝑚 from the join attribute in

𝑅. We adopt the choice of bloom filters to implement membership predicates as in the previous

work [15, 21, 27] to enable more efficient filtering due to the succinct nature of the bloom filters.

Membership predicates can save on the computational cost of computing join by filtering records

that will not join with records in the other relation. Such functions, however, do not save the

I/O cost of reading tuples from disk. For such a benefit. we instead can learn index-based range

predicates. Below we describe the range predicate learning strategy used in PLAQUE that brings

about 3x I/O saving compared with the membership filter as shown in Section 6). We will show

how to implement an index scan using the range predicates from equi join conditions in Section 4.

Learning Range Predicate from Equi Join: Consider an equi join operator ⊲⊳𝑅1 .𝑎=𝑅2 .𝑏 , where 𝑎 and

𝑏 are join attributes in 𝑅1 and 𝑅2. Assume that 𝑅1 reaches its convergence point early during query

execution (e.g., 𝑅1 is the build table) and, thus, all values of 𝑅1.𝑎 are known early at the convergence

point. Our goal is to learn a set of range predicates from the values in 𝑅1.𝑎 that can be pushed down

to the other relation 𝑅2 relation (e.g., the probe side) in the query plan tree to help filter away tuples

using an index on 𝑅2, thus saving I/O costs. Figure 4 shows the histogram of values in 𝑅1.𝑎 (blue

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

46:12 Yiming Lin and Sharad Mehrotra

buckets)
5
where the size of a bucket is unit size, i.e., 1. Let 𝑃𝑟 = {𝑝𝑖𝑟 } be a set of range predicates.

Our approach to learning range predicates does not explicitly construct the histogram for 𝑅1 .𝑎 - we

use the histogram in Figure 4 for better illustrations. To learn 𝑃𝑟 from values in 𝑅1.𝑎 in the equi

join condition ⊲⊳𝑅1 .𝑎=𝑅2 .𝑏 , several factors are considered.

• Completeness: the learned range predicates 𝑃𝑟 should not introduce false negatives, i.e., 𝑃𝑟
should contain all values of 𝑅1 .𝑎. Otherwise using 𝑃𝑟 on the probe side will incorrectly filter

potential correct values in the query answer.

• Effectiveness: 𝑃𝑟 should not result in large number false positives. One possible learned predicate

for 𝑅1.𝑎 in Figure 4 is 𝑝𝑟 = {[2, 21]}, which has zero false negatives. However, 𝑝𝑟 is not effective

since it has large false positives. (e.g., [5, 7], [12, 18]) Instead, 𝑃𝑟 = {[2, 4], [8, 11], [19, 21]} may

be a better set of predicates learned from 𝑅1.𝑎 since it does not introduce any false positives

nor false negatives.

• Complexity: the number of predicates in 𝑃𝑟 should be constrained. If we simply learn the unit

predicates (i.e., create one predicate for one value, such as [2, 2], [3, 3], ...[21, 21]), 𝑃𝑟 downgrades
to a membership-like predicate but using a less efficient implementation, and |𝑃𝑟 | will be equal
to the number of distinct values in the column 𝑅1.𝑎, which increases the complexity of predicate

implementation as we will show in Section 4.

The predicate 𝑝𝑟 we learn from an equi join condition on attribute 𝑎 has the format [𝑙, 𝑢], where
𝑙 and 𝑢 represent the lower and the upper values in attribute 𝑎. Let 𝑙 (𝑝𝑟) be the number of domain

values covered by the predicate, where 𝑙 (𝑝𝑟) = 𝑢 − 𝑙 + 1. For a value 𝑣 , we denote by 𝑣 ∈ 𝑝𝑟 if 𝑣 is in

the interval of 𝑝𝑟 . Formally, we define the Range Predicate Learning (RPL) problem as follows.

Definition 3. Range Predicate Learning. Given a set of values 𝑉 in join attribute and 𝑘 ,

the maximum number of range predicates, RPL aims to find a set of range predicates 𝑃𝑟 = {𝑝𝑖𝑟 },
such that,

(RPL)min

∑︁
𝑝𝑖𝑟 ∈𝑃𝑟

𝑙 (𝑝𝑖𝑟) (1)

s.t. |𝑃𝑟 | ≤ 𝑘 (2)

∀𝑣 ∈ 𝑉 , 𝑣 ∈ 𝑃𝑟 (3)

The range predicate learning defined based on Definition 3, condition 2 guarantees that the

number of learned range predicates is at most 𝑘 (i.e., complexity), and condition 3 makes sure the

learned predicates will contain all attribute values and thus no false negatives. (i.e., completeness)

By minimizing the total length of range predicates, we are able to maximize the effectiveness of

the predicates since less number of false positives (i.e., gaps in the histogram of attribute values)

will be introduced by more concise predicates. RPL defined above can be shown to be NP-Hard by

reducing from size-constrained weighted set cover problem [11]. PLAQUE, thus, uses a fast greedy

approach k-Max-Gap to find the range predicates. The detailed analysis of problem hardness and

algorithm description using pseudo code is put in [5].

Example 1. Consider the example in Figure 4. Assume 𝑘 = 3, i.e., |𝑃𝑟 | ≤ 3 implying that our

goal is to find at most 3 range predicates. We first sort the values in the join key and find the top-2

largest gaps (the distance between two consecutive values in a sorted list) between two consecutive

values in the join key, and they are (11, 19) and (4, 8). Dropping these two gaps from the value

interval of the join key leads to three predicates, [2, 4], [8, 11] and [19, 21].

5
Assume the value type of 𝑅1 .𝑎 is an integer, which can easily be relaxed to float.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

PLAQUE: Automated Predicate Learning at Query Time 46:13

3.6 Sideway Information Passing
The above sections specify how PLAQUE learns predicates from relational operators. In addition,

PLAQUE uses a sideway information passing (SIP) approach to learn new predicates based on

predicates learned from relational operators when queries have joins.

SIP via Equi Join. Consider an equi join ⊲⊳𝑅1 .𝑎=𝑅2 .𝑏 . W.L.O.G., assume we have learned a predicate

𝑝1 which is applicable in join column 𝑅1.𝑎, e.g., 𝑝1 = 𝑅1.𝑎 > 10, PLAQUE learns a new predicate 𝑝2
in 𝑅2.𝑏 by passing 𝑝1 via equi join condition, i.e., 𝑝2 = 𝑅2 .𝑏 > 10.

SIP via Theta join. Consider a theta join ⊲⊳𝑅1 .𝑎 𝑜𝑝 𝑅2 .𝑏 , where 𝑜𝑝 := > | ≥ | < | ≤ | ≠. W.L.O.G.,

assume we have learned a predicate 𝑝1 which is applicable to join column 𝑅1.𝑎. If 𝑝1 is a membership

predicate, i.e., 𝑅1 .𝑎 ∈ 𝑉𝑎𝑙𝑠 (𝑅1 .𝑎), and 𝑜𝑝 is the operator ≠, then PLAQUE learns a new predicate 𝑝2
on 𝑅2.𝑏 where 𝑝2 is 𝑅2.𝑏 ∉ 𝑉𝑎𝑙𝑠 (𝑅1 .𝑎). Alternatively, if 𝑜𝑝 is >, then PLAQUE can learn a predicate

𝑅2 .𝑏 <= 𝑥 , where 𝑥 is the maximum of the elements in𝑉𝑎𝑙𝑠 (𝑅1.𝑎). Similar predicates can be learned

for other instantiation of the operator, e.g., if 𝑜𝑝 is <, then we can learn the predicate 𝑅2 .𝑏 >= 𝑥 ,

where 𝑥 is the minimum value in 𝑉𝑎𝑙𝑠 (𝑅1.𝑎).
Likewise, PLAQUE learns appropriate predicates on 𝑅2 .𝑏 values based on a set of range predicates

learned over 𝑅1.𝑎. Consider a predicate 𝑝1 consisting of a set of ranges: 𝑝1 = 𝑝𝑟1 ∨ 𝑝𝑟2 ∨ ... ∨ 𝑝𝑟𝑛 ,

where 𝑝𝑟𝑖 = [𝑙𝑖 , 𝑢𝑖] and 𝑢𝑖 < 𝑙𝑖+1 learned over 𝑅1.𝑎. Based on the operator 𝑜𝑝 in the theta join

⊲⊳𝑅1 .𝑎 𝑜𝑝 𝑅2 .𝑏 , PLAQUE learns predicates on 𝑅2 as follows. If 𝑜𝑝 is >, then the predicate learned on

𝑅2 .𝑏 corresponds to 𝑅2.𝑏 ≤ 𝑥 , where 𝑥 = 𝑢𝑛 , and 𝑢𝑛 is the largest value in the range predicates

covering 𝑅1 .𝑎 values. Likewise, if 𝑜𝑝 is <, we add a predicate 𝑅2.𝑏 ≥ 𝑥 , where 𝑥 = 𝑙1, where 𝑙1 is the

smallest value in the range predicates covering 𝑅1.𝑎. Note that in both the above cases, if 𝑙1 or 𝑢𝑛
are not bounded, we do not learn any predicate on 𝑅2. For instance, if the first range predicate on

𝑅1 .𝑎 corresponded to say 𝑅1.𝑎 ≤ 5 , then its range is (−∞, 5]. Thus, in such a situation, since 𝑙1 is

not bounded, no predicate on 𝑅2 will result from the above join condition. Above, we have specified

a few cases of how SIP predicates are learned in the case of theta joins. The comprehensive set of

learned predicates depends upon the set of operators in the theta join, but the essential logic is

similar to the one highlighted above.

4 PREDICATE IMPLEMENTATION
In this section, PLAQUE implements learned predicates as either in-memory predicate or as index
predicate.
In-memory Predicate. The in-memory predicates can be either range predicate, membership

predicate, or a disjunction of range predicates as in the MIN/MAX with GROUP BY (see Section 3.2).

Membership predicate is implemented by converting the value set to bloom filter. Note that the

bloom filter will not have false negatives but may introduce false positives. Such a false positive

may result in tuples going through but such tuples will be eliminated by the downstream operators,

and thus will not generate wrong answers. In-memory range predicates are simply implemented as

range conditions. The disjunction of range predicates learned from MIN/MAX with GROUP BY is

converted into a map, where the key is the group value and the value corresponds to the filtering

condition in the corresponding group.

Index Predicate. In-memory predicates are easy to implement and can be placed everywhere in

the query tree. While they offer great flexibility and are able to eliminate tuples early during query

execution, they do not help reduce the I/O cost of query execution. The alternate implementation

of learned predicates using index can additionally offer I/O saving by exploiting index scans. Index

based implementation of learned predicates is, however, more complex since refining predicates

dynamically during query execution with more selective predicates, as is done in PLAQUE, becomes

more complex when using an index-based implementation. (e.g., as is the case with the predicates

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

46:14 Yiming Lin and Sharad Mehrotra

learned from max/min aggregate operator and theta join operator). Furthermore, shifting the

original scan in the given query plan tree to index scan of learned predicates at query execution

time, if not carefully implemented, will generate duplicated query answers, as will be clear shortly.

Index based implementation of predicates needs to be implemented carefully only when it will

bring obvious performance improvement.

We thus consider implementing the index based predicate 𝑝 when the following conditions are

satisfied:

• index of the attribute that a learned predicate 𝑝 operates on already exists in the database

• 𝑝 is able to be pushed down to just above the scan of relation 𝑅 that 𝑝 is applicable in the query

plan tree.

• the original scan of 𝑅 is not index scan. (e.g., linear scan) Otherwise, the benefit from 𝑝 using

index scan would be diminished, and implementing index scan using more than one predicate

adds high complexity to the executor, thus not worthy.

• 𝑝 is a range predicate instead of a membership predicate.

We begin with a bootstrapping phase to estimate the selectivity of a learned predicate 𝑝 , i.e., the

percentage of the tuples satisfying 𝑝 over all sampled tuples so far during a bootstrapping phase. In

this stage, 𝑝 is implemented as an in-memory predicate and placed in the optimal location in the

query plan tree using Algorithm 1. If the selectivity of 𝑝 is lower than a predefined threshold (i.e., 𝑝

is selective), we shift 𝑝 from an in-memory predicate to an index predicate. Let 𝑇 be the timestamp

when the index predicate is built and operated, and 𝑇𝑢𝑝𝑙𝑒𝑠 be a set of tuples in 𝑅 that have been

already processed during query execution before 𝑇 . An index scan 𝑝 on 𝑅 typically retrieves all

tuples satisfying 𝑝 , which might contain a subset of 𝑇𝑢𝑝𝑙𝑒𝑠 , leading to potential duplication of

query answers. PLAQUE remembers all the RIDs of the 𝑇𝑢𝑝𝑙𝑒𝑠 , and skips 𝑇𝑢𝑝𝑙𝑒𝑠 returned by the

new index scan. Especially, when the rows are accessed in the increasing order of the record id

(RID) (for efficient sequential I/O) in the table scan on relation 𝑅, PLAQUE uses a more efficient

strategy to prevent duplication. Let 𝑐𝑢𝑟_𝑅𝐼𝐷 be the RID of the row in 𝑅 at the time 𝑇 when index

predicate 𝑝 is built. We add a predicate 𝑅𝐼𝐷 > 𝑐𝑢𝑟_𝑅𝐼𝐷 (implemented as in-memory predicate) in

𝑝 immediately to prevent the duplication of already processed rows whose RID is smaller than or

equal to 𝑐𝑢𝑟_𝑅𝐼𝐷 .

5 PREDICATE PLACEMENT
We next discuss the strategy used in PLAQUE to place the learned predicates during query execution

in a given query tree so as to maximize its benefit of filtering away spurious tuples. Predicate

placement in the traditional context before query execution is relatively straightforward - typically

optimizers push down predicates as far down the query tree and as close to the relational scan

as possible. Interestingly, when predicates are learned mid-flight during query execution, their

placement as far down the query tree as possible might not be a good strategy. For example, assume

PLAQUE learns a new predicate 𝑅.𝑎 > 𝑣𝑎𝑙 at a given stage during execution. Assume that the

relation 𝑅 was part of a join condition and was designated as a build table in a hash-join. Pushing

the predicate below the hash function in such a case, if the build process has already occurred by

the time the predicate is learned, would not help since the hash table based on 𝑅 is already built. In

contrast, placing the predicate, perhaps, above the hash-join to reduce the number of tuples that

reach downstream operators could still be very useful in accelerating query execution. In general,

one has to be careful on where and how to place operators in the query tree, when predicates are

not known apriori and are learned during query execution. Our goal in this section is to develop a

strategy that maximizes the impact of the predicate by placing it at an appropriate location in the

query tree.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

PLAQUE: Automated Predicate Learning at Query Time 46:15

R1 R2

R3 R4 R5INLJ

Probe Build Build

BuildProbe

Probe

A

B C D

A
B C D

Agg

Join 1

Join 2

Join 3

Join 4

Fig. 5. Optimal Predicate Placement and Execution Graph.

In a pipeline query plan, a query is often executed in several blocks based on the specific

implementations in relational operators, where all operations in one block are pipelined. Consider

a four-way join aggregate query plan tree in Figure 5, where 𝑅1 and 𝑅2 are joined using Index

Nested Loop Join (INLJ), and all the other joins are hash join. For each hash join, the probe phase is

executed after the build phase is complete, leading to naturally two blocks of execution, i.e., build

and probe.

Example 2. Figure 5 shows four execution blocks in the query tree, represented by nodes𝐴, 𝐵,𝐶, 𝐷

with different colors. Let 𝑏𝑖 be a block where all the operations can be executed using pipelining. In
Figure 5, node 𝐴 is one block where the INLJ, two probing operations, and aggregate operation can

be pipelined together, while the build operation in Join 2 is in one individual block. (i.e., node 𝐵 in

Figure 5). Similarly, the probe phase of Join 4 can be pipelined with the build phase of Join 3 in

node 𝐶 , while the build of 𝑅5 in Join 4 is an individual block.

We formulate query execution on a given query plan tree into a partial order graph to capture

the order of block executions.

Definition 4. Join Graph. Let𝐺 = (V, E) be a directed graph, where each 𝑏𝑖 ∈ V represents

a block, and 𝑒𝑖 𝑗 ∈ E denoting that the execution of block 𝑏 𝑗 must be executed after 𝑏𝑖 is complete.

Example 3. The join graph in Figure 5 has four nodes, 𝐴, 𝐵,𝐶, 𝐷 . The edge from 𝐵 to 𝐴 denotes

that all the operations in 𝐴 can be executed only when the build table of 𝑅3 is complete.

Formulating query execution as a partial order join graph is helpful in identifying where to place

the learned predicates. On one hand, we wish to push the learned predicates as low as possible

in the query tree to maximize their benefits to potentially skip more rows early during query

execution. On the other hand, it is not beneficial to place the predicates in a block whose execution

has already been completed before the time when the predicates are learned. The partial order join

graph provides a way to determining where to place the predicates in the example below.

Assume a range predicate 𝑝𝑟 is learned from the max operator (e.g., Agg in Figure 5), and it

is applicable in 𝑅1, then the best location to place 𝑝𝑟 is just above the scan of 𝑅1, since doing so

will filter away tuples earliest. However, if 𝑝𝑟 is applicable to 𝑅3, inserting 𝑝𝑟 above the scan of

𝑅3 will not help remove tuples since the build phase of 𝑅3 is complete before the 𝑝𝑟 is learned in

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

46:16 Yiming Lin and Sharad Mehrotra

Algorithm 1: Predicate Insertion

Input: 𝑝,𝐺 = (V, E)
1 𝑏 := node where 𝑝 is created

2 𝐷𝑒𝑠𝐺 (𝑏) := the set of descendants nodes of 𝑏 in 𝐺

3 for 𝑏𝑖 ∈ 𝐷𝑒𝑠𝐺 (𝑏) ∪ {𝑏} do
4 𝑝𝑢𝑠ℎ𝑑𝑜𝑤𝑛(𝑝,𝑏𝑖)

the aggregate operator. Instead, the best location for 𝑝𝑟 is 𝑅1 (or 𝑅2) if 𝑅3 joined with 𝑅1 (or 𝑅2).

Intuitively, we wish to push the learned predicate as deep as possible in the query plan tree, while

ensuring the predicate will effectively filter away tuples.

We formally describe the algorithm to place any learned predicate in the query plan tree in

Algorithm 1. Given a learned predicate 𝑝 and the partial order execution graph 𝐺 = (V, E), we
first identify the node 𝑏 ∈ V (i.e., block) where 𝑝 is created. (Ln.1) Second, we identify the set of

descendant nodes of 𝑏 in graph 𝐺 , 𝐷𝑒𝑠𝐺 (𝑏), i.e., the set of nodes that are reachable from 𝑏. Finally,

in block 𝑏 and each block in 𝐷𝑒𝑠𝐺 (𝑏), we push down the predicate 𝑝 into each such block if 𝑝 is

applicable in the corresponding relations in the block. (Ln.3-4)

Example 4. In Figure 5, assume a predicate 𝑝 is learned in node 𝐷 (i.e., after the hash table of 𝑅5
is complete). Obviously, 𝑝 cannot be pushed down further in 𝐷 . Consider the set of descendants of

𝐷 , i.e., {𝐶, 𝐵}. 𝑝 can be pushed down in𝐶 to the probe of 𝑅4, and it can also be immediately pushed

down above the scan of the applicable base relation in node 𝐴 via Join 3 (e.g., if Join 3 is 𝑅1 ⊲⊳ 𝑅4,

then 𝑝 can be pushed down above the scan of 𝑅1). Similarly, a predicate 𝑝 learned in node 𝐶 (after

the build table of 𝑅4 is complete) can be passed through Join 3 and pushed down to node 𝐴. Note

that 𝑝 learned in 𝐶 will not help eliminate tuples in its ancestor nodes in the graph 𝐺 , such as 𝐷 ,

since 𝑝 is learned after the block 𝐷 is fully executed. When the predicate 𝑝 is learned from 𝐴𝑔𝑔 in

node 𝐴 (e.g., max or min operator), the only node we can push 𝑝 down is 𝐴 since 𝐴 does not have

any child nodes in the graph. In particular, 𝑝 can be pushed down appropriately into the different

execution points in 𝐴 based on the applicable attribute of 𝑝 . For instance, if 𝑝 is applicable in either

𝑅1 or 𝑅2, then 𝑝 can be pushed down to the scan of 𝑅1 or 𝑅2. If 𝑝 is applicable in 𝑅3, then 𝑝 will

be placed in probe phase in Join 2 in the node 𝐴, which is not the deepest location in 𝐴, but will

help eliminate tuples early for downstream operations in 𝐴, such as the probe phase in Join 3 and

aggregation.

6 EVALUATION
We evaluate PLAQUE’s ability to accelerate query execution using two synthetic data sets and one

real data set.

6.1 Methodology
6.1.1 Data Sets. • TPC-H. We use TPC-H (SF=1) as our first data set generated using standard

datagen [7] which creates the uniformly distributed data. The default TPC-H does not represent a

practical data distribution, which is often skewed. Therefore, we further use a modified datagen [1]

to create TPC-H datasets with different amounts of skew, i.e., Zipf factor as 1 and 2, respectively.

• SmartBench. To evaluate the learned predicates on a User-Defined-Functions (UDFs) benchmark

where UDFs are used in queries, we choose SmartBench [13] which is derived from a smart space

sensor system and focuses on analytics of IoT data. Smartbench contains multiple sensor tables,

such as Bluetooth, WiFi, or camera as well as a space table (that connects sensors to locations),

where several UDFs are supported, such as location and occupancy computations.

• IMDB. We finally use a real data set IMDB [2], which contains around 4GB size files.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

PLAQUE: Automated Predicate Learning at Query Time 46:17

Q21 Q21-max Q21-min Q22 Q22-max Q22-min Q5 Q5-max Q5-min Q4 Q4-max Q4-min
0

5

10

15

20

25

R
u

n
n

in
g

 T
im

e
 (

S
e

c
o

n
d

s
)

VanillaDB

Sia

QS

PLAQUE

(a) TPC Queries (Top-4 Performance).

Q6 Q6-max Q6-min Q19 Q19-max Q19-min Q1 Q1-max Q1-min Q10 Q10-max Q10-min
0

2

4

6

8

10

12

R
u

n
n

in
g

 T
im

e
 (

S
e

c
o

n
d

s
)

VanillaDB

Sia

QS

PLAQUE

(b) TPC Queries (Bottem-4 Performance).

Fig. 6. TPCHQueries.

Q3 Q3-max Q3-min Q5 Q5-max Q5-min Q9 Q9-max Q9-min Q10 Q10-max Q10-min

SmartBench Queries (log10-scale)

10
1

10
2

10
3

10
4

10
5

R
u
n
n
in

g
 T

im
e
 (

M
ill

is
e
c
o
n
d
s
)

VanillaDB

Sia

QS

PLAQUE

Fig. 7. Query Run Time on SmartBench.

6.1.2 Queries. We tested all queries {𝑄1, ..., 𝑄22} in TPCH.
6
In addition to testing the query 𝑄𝑖

to test the effect of MIN and MAX optimizations, we also test PLAQUE for 𝑄𝑖 with the aggregate

modified to MIN and MAX, denoted by 𝑄𝑖 -max and 𝑄𝑖 -min to evaluate the predicates learned from

MIN/MAX conditions. We refer to the modified TPCH query set with MIN and MAX conditions as

TPCH-max and TPCH-min. In the SmartBench we pick four representative queries, 𝑄3, 𝑄5, 𝑄9

and 𝑄10, where two UDFs, computing location of a person [18] and occupancy of a room [19].
7
In

IMDB data set, we manually create four selection-projection-join-aggregate queries (i.e., 𝑄1-𝑄4),

6
For a comprehensive test, minor query modifications are made while preserving the query complexities and semantics,

such as adding proper having conditions on the aggregated attributes (if any).

7
We did not test other queries in SmartBench since they are either not interesting (without join and UDFs) or they are

similar to one of the representative queries above.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

46:18 Yiming Lin and Sharad Mehrotra

Q1 Q1-max Q1-min Q2 Q2-max Q2-min Q3 Q3-max Q3-min Q4 Q4-max Q4-min

IMDB Queries

0

2

4

6

8

10

12

14

16

R
u

n
n

in
g

 T
im

e
 (

S
e

c
o

n
d

s
)

VanillaDB

Sia

QS

PLAQUE

Fig. 8. Query Run Time on IMDB.

TPCH-Q2 TPCH-Q4 SB-Q3 SB-Q10 IMDB-Q4
0

2

4

6

8

10

12

14

Im
pr

ov
em

en
t R

at
io

selectivity-0.2

selectivity-0.4

selectivity-0.6

selectivity-0.8

(a) Learned Predicates from Join.

TPCH-Q2-max TPCH-Q4-max SB-Q3-max SB-Q10-max IMDB-Q4-max
0

10

20

30

40

50

60

70

Im
pr

ov
em

en
t R

at
io

selectivity-0.2

selectivity-0.4

selectivity-0.6

selectivity-0.8

(b) Learned Predicates from MAX.

Fig. 9. Improvement Ratio on Different Selectivities.

and for each query 𝑄𝑖 we modify the aggregate condition to be MAX and MIN, and thus creating

additional two queries 𝑄𝑖 -max and 𝑄𝑖 -min for each 𝑄𝑖 .

6.1.3 Compared Approaches. We compared the performance of the following four strategies. (1)

VanillaDB: standard query optimizer and executor implemented in VanillaDB [8, 24]. (2) Sia [26]:

Sia learns synthesized predicates given a SQL query before query execution. (3)QuickStep (QS) [21]:

QS builds bloom filters for build table in hash join and use them to filter (4) PLAQUE.

6.2 Experimental Results
6.2.1 Performance of Learned Predicates. We start with reporting the performance of our learned

predicates on TPCH (Zipf is 0 using the standard datagen [7]), SmartBench and IMDB data sets

in Figure 6, Figure 7 and Figure 8, respectively. Let improvement ratio be 𝑇𝑖𝑚𝑒 (𝑉𝑎𝑛𝑖𝑙𝑙𝑎𝐷𝐵)
𝑇𝑖𝑚𝑒 (𝑃𝐿𝐴𝑄𝑈𝐸) , where

𝑇𝑖𝑚𝑒 () is the run time of a certain strategy.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

PLAQUE: Automated Predicate Learning at Query Time 46:19

max max+groupby having theta-join equi-join
0

1

2

3

4

5

6

R
u
n
n
in

g
 T

im
e
 (

M
ill

is
e
c
o
n
d
s
)

Saving

Overhead

(a) TPCH-Q4

max max+groupby having theta-join equi-join
0

0.5

1

1.5

R
u
n
n
in

g
 T

im
e
 (

M
ill

is
e
c
o
n
d
s
)

Saving

Overhead

(b) TPCH-Q11

max max+groupby having theta-join equi-join
0

10

20

30

40

50

60

R
u
n
n
in

g
 T

im
e
 (

M
ill

is
e
c
o
n
d
s
)

Saving

Overhead

(c) SmartBench-Q5

max max+groupby having theta-join equi-join
0

1

2

3

4

5

R
u
n
n
in

g
 T

im
e
 (

M
ill

is
e
c
o
n
d
s
)

Saving

Overhead

(d) IMDB-Q4

Fig. 10. Saving and Overhead Breakdown of Learned Predicates.

Performance on TPCH.We tested all queries in TPCH and report the queries with Top-4 and

Bottem-4 performance ranked by the improvement ratio of PLAQUE on the TPCH queries (not

TPCH-max or TPCH-min). We report the experimental results for all TPCH queries in [5].

Figure 6(a) shows that PLAQUE, by exploiting learned predicates, achieves improvements up

to 3.54x (Q21) over the basic plan without filters for TPCH queries. The improvement become

up to 33.5x (Q21-min) for MIN/MAX variants of these queries. As for the bottom-4 queries in

Figure 6(b), PLAQUE still shows a slight improvement over VanillaDB (and most other baselines),

and a noticeable improvement is observed for their corresponding MIN/MAX queries. This is

primarily because these queries contain few conditions/predicates (e.g., join, aggregate, group-by,

having, etc,.) that PLAQUE could learn effective predicates from. For instance, PLAQUE has similar

performance as VanillaDB in Q6, since Q6 does not have join, max/min, group-by and having

conditions, and thus PLAQUE fails to learn any new predicates. However, when we add MIN or

MAX conditions as in Q6-max or Q6-min, PLAQUE outperforms VanillaDB by 2.76x immediately.

Overall, PLAQUE’s plan with learned predicates outperforms the plan without learned predicates by

2.1x, 12.3x, and 12.7x on average in all queries in TPCH, TPCH-max, and TPCH-min, respectively.

This observation demonstrates that the learned predicates could significantly speed up query

execution especially when the MIN/MAX is used as the aggregate condition, the learned predicates

are able to skip a large number of tuples to be processed, thus leading to significant savings.

Performance on SmartBench. In Figure 7, we use log10 scale to plot the query running time.

The improvement of PLAQUE over the standard query executor, VanillaDB, is up to 6.6x for non-

MIN/MAX queries and 58x for MIN/MAX queries. It demonstrates that if queries contain expensive

UDFs, the impact of filtering tuples (as done by learned predicates) is even more significant.

Performance on IMDB. In IMDB data set in Figure 8, wemade similar observations. The predicates

learned in PLAQUE improves the standard query executor, VanillaDB, by around 2x (𝑄1) to 3.7x

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

46:20 Yiming Lin and Sharad Mehrotra

(𝑄4) for join queries without MIN/MAX aggregate conditions, and the improvement goes up from

2.2 (𝑄3-max) to 5.7x in 𝑄4-min.

Comparison with Sia. Among all queries in TPCH benchmark, Sia is only able to generate new

predicates for Q4 and Q21. For instance, in Q21, Sia leverages the condition l_shipdate < ’1992-07-01’
and l_shipdate > l_commitdate, thus a new predicate l_commitdate < ’1992-07-01’. Sia fails to

learn new predicates for all queries in SmartBench and IMDB workloads. Sia works well when

the query when queries contain additional predicates on join columns. PLAQUE works in a much

wider spectrum of queries and achieves higher performance improvement. Sia is complementary

to PLAQUE and the predicates learned by Sia before query execution could be combined with the

one learned by PLAQUE during query run time.

Comparison with QS. QS focuses on hash join and builds the bloom filter for the hash table,

which is used to filter tuples in the probe table. The filtering approach of QS is included already in

PLAQUE- its counterpart is learning the membership predicate from a hash join. However, PLAQUE

expands the opportunities to learn predicates in several ways - based on a much larger repertoire

of operators and supports both main memory and index-based implementation of the filter. The

experimental results clearly demonstrates that PLAQUE significantly outperforms QS by 5.5X, 9.4X

and 2.2X in TPCH, SmartBench and IMDB, respectively.

We also performed experiments on JOB [4] (Join Order Benchmark), and we observed that

PLAQUE achieves significant speed ups over VanillaDB by 5.56x on average, and outperforms the

best baseline QS by 4.49x on average since JOB use 𝑀𝐼𝑁 as the aggregate conditions and have

a relatively large number of joins in our tests. (Detailed results are shown in [5] due to space

limitation.)

6.2.2 The Effect of Query Selectivity. Figure 9 examines the performance of PLAQUE approach

over the standard query executor on queries with different selectivities. We pick five queries

from TPCH, SmartBench (SB for short), and IMDB data sets, i.e., TPCH-Q2, TPCH-Q4, SB-Q3,

SB-Q10, and IMDB-Q4, and report the results in Figure 9(a). We also pick their corresponding

MAX queries in Figure 9(b). We vary the selectivity of a query to be 0.2, 0.4, 0.6, 0.8. A query

with lower selectivity indicates it is more selective since less number of tuples are in the results.

We plot the improvement ratio under various selectivities of query workloads. For join queries

without MIN/MAX aggregate conditions, when queries are more selective (low selectivity value),

the improvement due to PLAQUE is larger. This is because for any equi join operator 𝑜 , if one of its

inputs, say the left side of 𝑜 , 𝑜𝐿 , is highly selective, then PLAQUE would be able to learn selective

predicates from the tuples coming to 𝑜 from its left side 𝑜𝐿 , and pass the learned selective predicates

along the query plan tree using the algorithm in Section 5, leading to larger improvement.

For aggregate queries with MAX conditions in Figure 9(b), interestingly, we have made a different

observation. The improvement from the learned predicates is larger when the query is less selective

(higher selectivity value). This is because when a query is less selective, the tuples will probably

reach the aggregate operator at an earlier time and thus the predicates can be learned earlier

and updated to be more selective (due to its monotonicity) in the aggregate operator using the

predicate creation algorithm in Section 3. On the other hand, when the query is less selective,

the improvement brought by the predicates learned from join operators is smaller as observed

in Figure 9(a). It turns out the improvement due to the predicates from MAX operator is more

significant than the one learned from join operators, thus leading to an overall performance

improvement with the increase of selectivity. This observation indicates that the predicates learned

in MIN/MAX aggregate conditions will work better for slow queries that are less selective, which

demonstrates that such learned predicates are even more suitable for long-running queries with

significant overheads.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

PLAQUE: Automated Predicate Learning at Query Time 46:21

Time(PLAQUE _P)/Time(PLAQUE) IMP_avg IMP_min IMP_max

TPCH (TPCH-max) 1.4 (1.5) 1 (1) 2.2 (2.4)

SmartBench (SB-max) 2.8 (3.5) 1 (1) 5.8 (7.9)

IMDB (IMDB-max) 1.6 (1.7) 1 (1) 1.9 (2.3)

Table 2. Predicate Pushdown VS Optimal Predicate Placement.

Selectivity Threshold 0 0.05 0.1 0.15 0.2

TPCH 1.4 1.68 2.13 2.1 2.04

TPCH-max 4.2 11.9 12.8 12.4 12.1

TPCH-min 4.1 10.8 12.3 12.6 12.2

SmartBench 3.1 3.6 4.2 4.1 4

SmartBench-max 32.3 34.1 35.9 36.1 35.6

SmartBench-min 31.2 34.2 36.1 36.3 35.9

IMDB 1.3 1.6 2.3 2.2 2

IMDB-max 1.7 2.4 3.1 3.1 2.8

IMDB-min 1.7 2.4 3.1 3.1 2.8

Table 3. Improvement Ratio of Memory Predicate VS Index Predicate.

Selectivity Threshold 0 0.05 0.1 0.15 0.2

TPCH 0 0.06 0.11 0.24 0.28

TPCH-max 0 0.21 0.24 0.29 0.33

TPCH-min 0 0.21 0.24 0.29 0.33

SmartBench 0 0.09 0.17 0.25 0.29

SmartBench-max 0 0.38 0.44 0.52 0.54

SmartBench-min 0 0.38 0.44 0.52 0.54

IMDB 0 0.11 0.17 0.21 0.24

IMDB-max 0 0.28 0.31 0.35 0.39

IMDB-min 0 0.28 0.31 0.35 0.39

Table 4. Percentage of Index Predicates.

6.2.3 The Effect of Optimal Predicate Placement. We examine the effect of the predicate placement

algorithm in Section 5 and report the results in Table 2. In particular, we compared our placement

strategy with the standard strategy that always pushes the learned predicates down to the leaf

nodes of the query tree, denoted by PLAQUE _P, and we reported the improvement of PLAQUE

compared with PLAQUE _P, i.e., Time(PLAQUE _P)/Time(PLAQUE). We performed the tests over

all queries in TPCH, SmartBench, IMDB, and all their variants (e.g., TPCH-max, IMDB-min), and

reported the average, minimum, and maximum improvement of the optimal predicate placement

over the predicate pushdown strategy (denoted by 𝐼𝑀𝑃_𝑎𝑣𝑔, 𝐼𝑀𝑃_𝑚𝑖𝑛 and 𝐼𝑀𝑃_𝑚𝑎𝑥 in Table 2).

Note that due to space limitation, we do not report TPCH-min, SmartBench-min, and IMDB-min

since its performance and improvements are very similar to that for the MAX queries.

In Table 2 we observe that by using our optimal predicate placement, PLAQUE could maximize

the benefit of the learned predicates by placing them in the most effective locations in the query

tree, which outperforms the pushdown strategy by 1.4x, 2.8x, and 1.6x on average, and up to 2.2x,

5.8x and 1.9x in TPCH, SmartBench, and IMDB, respectively. Our strategy has a slightly better

performance on the query variants with MAX aggregate conditions.

6.2.4 The Effect of Data Distributions. In this experiment, we explore the effect of data distributions

on the query performance in Figure 11. In particular, we use a modified datagen [1] to create TPC-H

datasets with different amounts of skew, i.e., Zipf factor as 1 and 2, respectively. The standard

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

46:22 Yiming Lin and Sharad Mehrotra

Saving Overhead

TPCH 3.92 0.37

TPCH-max 7.21 0.41

TPCH-min 7.13 0.42

SmartBench 67.1 0.31

SmartBench-max 84.9 0.37

SmartBench-min 82.6 0.39

IMDB 4.91 0.49

IMDB-max 7.13 0.53

IMDB-min 7.38 0.55

Table 5. Saving VS Overhead in Seconds.

TPC-H [7] comes with a Zipf as 0, which means that the data values have a uniform distribution in

each column. We report the improvement ratio of PLAQUE over the VanillaDB, and discuss the

result for queries with and without MAX aggregate conditions in Figure 11.

For join queries without MIN/MAX aggregate conditions (left picture in Figure 11), the improve-

ment due to the learned predicates becomes larger on a more skewed data set with a higher Zipf

value. This is expected since using the predicates learning algorithm in Section 3.5, we are able to

learn a more selective predicate from equi join conditions when values are more skewed. We have

similar observations for the MAX aggregate queries. The improvement from the learned predicates

slightly increases on a more skewed data set, which is primarily contributed by the predicates

learned from equi join conditions, and it turns out the predicates learned from MAX aggregate

condition are less sensitive to the skewness of the data set than the predicates learned from join

conditions.

6.2.5 Overhead and Saving of the Learned Predicates. To understand the overheads and savings of

learned predicates, we report the average (in Table 5) as well as report the breakdown of the costs

and savings for each type of the learned predicates (in Figure 10) for sample queries in each of the

datasets. We measure the overhead of the learned predicates by computing overheads of predicate

creations and applications, and we measure the savings by the query runtime reduction due to the

added predicates.

In Table 5, we observe that PLAQUE pays a minimal overall overhead to achieve 8.2x, 186x, and

8.3x savings in TPCH, SmartBench, and IMDB in return. With a slightly higher overhead in the

MAX/MIN variants of the above three benchmarks, we observe even higher savings due to the

MIN/MAX (group-by) predicates up to 14x, 207x, and 12x, respectively. In Figure 10 we showed the

breakdown of overheads and savings for each type of learned predicate. We picked four interesting

queries that contain the most query conditions/predicates that can trigger the predicate learning in

PLAQUE. In particular, we examined five types of predicates, the predicates learned from single
MIN/MAX, MIN/MAX+group-by, having, theta-join and equi-join. 8 When evaluating a certain type

of learned predicate, we used the knobs to disable the creations and applications of all the other

types of learned predicates. We observe that the overheads of predicates learned from equi-join

and group-by are noticeably higher than other types of learned predicates since learning predicates

from equi-join involves possible sorts but they need to be done only one time, and group-by involves
the maintenance of multiple range predicates in each group. Note that most range predicates (e.g.,

ones learned from MIN/MAX, theta join, etc,.) are very efficient since the predicate updates and

applications are simply updating the operands in the predicate during query execution. Overall the

MIN/MAX related predicates and the predicates learned from equi-join provided the most savings.

8
We slightly modified the above queries such that they contain all the conditions to trigger the learning of the above five

predicates.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

PLAQUE: Automated Predicate Learning at Query Time 46:23

ZipF-0 ZipF-1 ZipF-2
1

2

3

4

5

6

7

8
Im

p
ro

v
e
m

e
n
t
R

a
ti
o

TPCH-Q2

TPCH-Q3

TPCH-Q4

TPCH-Q5

TPCH-Q23

TPCH-Q24

ZipF-0 ZipF-1 ZipF-2
0

10

20

30

40

50

60

70

80

Im
p
ro

v
e
m

e
n
t
R

a
ti
o

TPCH-Q2-max

TPCH-Q3-max

TPCH-Q4-max

TPCH-Q5-max

TPCH-Q23-max

TPCH-Q24-max

Fig. 11. Improvement Ratio on Different Data Distributions.

0 5 10 15 20 25 30

k

1

2

3

4

5

6

Im
p
ro

v
e
m

e
n
t
R

a
ti
o

ZipF-0 ZipF-1 ZipF-2

(a) TPCH-Q2

0 5 10 15 20 25 30

k

1

2

3

4

5

6

Im
p
ro

v
e
m

e
n
t
R

a
ti
o

ZipF-0 ZipF-1 ZipF-2

(b) TPCH-Q4

Fig. 12. Improvement Ratio on Various 𝑘 for Predicates Learned from Equi Join.

6.2.6 Index Predicates VS Memory Predicates. PLAQUE implements index-based predicates when

the selectivity of a learned predicate is below a given threshold 𝑡𝑠 . (see Section 4 for details)

We vary 𝑡𝑠 by chosing values from {0, 0.05, 0.1, 0.15, 0.2} and report the improvement ratio, i.e.,

𝑇𝑖𝑚𝑒 (𝑉𝑎𝑛𝑖𝑙𝑙𝑎𝐷𝐵)
𝑇𝑖𝑚𝑒 (𝑃𝐿𝐴𝑄𝑈𝐸) and the percentage of index-based predicates in all learned predicates in Table 3

and Table 4. We observe that the best performance is achieved when the selectivity thresholds

range from [0.1, 0.15] in the tested datasets, and the percentage of index-based predicates accounts

for roughly 20% on average. Note that the predicates learned from MIN/MAX are the most selective.

When the selectivity threshold becomes larger, the time stamp of index switching tends to become

later, and thus less I/O savings.

6.2.7 Parameter Selection in JoinQueries. In Section 3.5, when we learn range predicates from equi

join conditions, we use 𝑘 to specify the maximum number of range predicates we wish to learn from

an equi join condition. In this experiment, we explore the effect of 𝑘 to the query performance on

TPCH-Q2 and TPCH-Q4, by varying 𝑘 from 1 to 30, and report the improvement ratio in Figure 12.

When 𝑘 is 1, both queries 𝑄2 and 𝑄4 have the same run time as the standard query executor

without improvement. In this case, one range predicate learned from equi join condition contains

the maximum and minimum values on one side of the join input, which will not help eliminate

any tuples, and thus will not improve the query performance. With increasing 𝑘 , the improvement

ratio quickly increases and then flattens out when 𝑘 reaches about 10 for both 𝑄2 and 𝑄4. When 𝑘

is too large, such as 30, the improvement ratio is slightly lower. This is because learning too many

range predicates, which will although improve the selectivity of the overall learned predicates

marginally, leads to additional complexity of applying the learned predicates in the query processing.

Empirically, we recommend 𝑘 as 10 to be the ideal setting when we learn predicates from equi join

conditions.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

46:24 Yiming Lin and Sharad Mehrotra

7 RELATEDWORK
The paper has already discussed (and/or experimentally studied) several approaches developed in

prior related work that have also explored learning predicates [15, 16, 21, 26, 27]. Additional related

work include techniques to move predicates using magic set [9, 20], algebraic equivalence [12],

value-based pruning [22]. Like the syntax-driven rewrite rules in [26], this work also requires

additional query specified predicates on join columns (which, as mentioned in the introduction, is

not comment based on looking at standard benchmark queries, such as in TPC-H, TPC-DS).

Prior research has also explored the use of data properties, such as functional dependencies

and column correlations, to accelerate query processing [10, 14, 17]. However, determining these

properties can be computationally expensive (e.g., [14] employs a student t-test for each column

pair). Moreover, it remains uncertain whether these properties can be sustained as data evolves.

Additionally, imprecise data properties may have limited utility in query optimization (e.g., a soft

functional dependency, which does not retain set multiplicity, cannot ensure the accuracy of specific

plan transformations involving group-bys and joins).

Finally, we note that the predicates learned before query execution [10, 14, 16, 17, 26] (which

has been the dominant line of investigation so far) are complementary to the learned predicates

using our approach at query time, and they can be used together to boost query performance.

8 CONCLUSION
In this work, we study the predicate inference problem at query run time. We proposed a set of

approaches to learn new predicates from aggregate, equal join, theta join, group by/having condi-

tions, and further place the learned predicates wisely in the given query plan tree to maximize their

benefit of skipping rows early during query execution, leading to possibly significant improvement.

The learned filters exhibit monotonic properties, becoming increasingly selective during query

processing. We have built a prototype system, PLAQUE, based on ideas described in this paper and

used the implementation to conduct comprehensive evaluations on both synthetic and real datasets.

Our experiments demonstrate that our learned predicates approach can accelerate query execution

by up to 33x, and this improvement increases to up to 100x when User-Defined Functions (UDFs)

are utilized in queries.

This work opens several interesting new research opportunities. One is to combine PLAQUE

with query compilation. One could pre-compile operators with predicate templates placed at

appropriate places in the query tree, and the templates can get modified/instantiated dynamically

with new values as the execution proceeds and predicates are learned. The other is to explore query

optimization when query processing may learn new predicates. For instance, given that PLAQUE

might discover new predicates early in the nested loop join when the first tuple in the outer loop

is processed, the optimizer may prefer it over other join algorithms, such as hash join in some

cases, when it expects a very effective filter. Last but not least, extending PLAQUE to parallel query

execution is also interesting. How to learn and share predicates in data partitions in a parallel

setting, and how to optimize the data partitions based on the query predicates to learn effective

predicates early are both interesting directions of further exploration.

ACKNOWLEDGMENTS
This material is based on research sponsored by HPI under Agreement No. FA8750-16-2-0021, and it

is partially supported by NSF Grants No. 1527536, 1545071, 2032525, 1952247, 1528995 and 2008993.

REFERENCES
[1] 2016. Skew TPC-H Benchmark.https://bit.ly/2wvdNVo.
[2] 2022. IMDB Data Set.https://developer.imdb.com/non-commercial-datasets/ .

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

https://bit.ly/2wvdNVo
https://developer.imdb.com/non-commercial-datasets/

PLAQUE: Automated Predicate Learning at Query Time 46:25

[3] 2023. Event Condition Action (ECA).https:// en.wikipedia.org/wiki/Event_condition_action.
[4] 2023. Join Order Benchmark.https://github.com/gregrahn/ join-order-benchmark.
[5] 2023. Technical Report of PLAQUE: Automated Predicate Learning at Query Time.https://drive.google.com/file/d/1QhJot-

kEM9dA5TJ0rljMXFJlsh_jG03z/view?usp=drive_link.
[6] 2023. TPC-DS Benchmark.http://www.tpc.org/ tpcds.
[7] 2023. TPC-H Benchmark.http://www.tpc.org/ tpch.
[8] 2023. VanillaDB.https://www.vanilladb.org/ .
[9] Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D Ullman. 1985. Magic sets and other strange ways

to implement logic programs. In Proceedings of the fifth ACM SIGACT-SIGMOD symposium on Principles of database
systems. 1–15.

[10] Paul G Brown and Peter J Haas. 2003. BHUNT: Automatic discovery of fuzzy algebraic constraints in relational data.

In Proceedings 2003 VLDB Conference. Elsevier, 668–679.
[11] Lukasz Golab, Flip Korn, Feng Li, Barna Saha, and Divesh Srivastava. 2015. Size-constrained weighted set cover. In

2015 IEEE 31st International Conference on Data Engineering. IEEE, 879–890.
[12] Goetz Graefe. 1995. The cascades framework for query optimization. IEEE Data Eng. Bull. 18, 3 (1995), 19–29.
[13] Peeyush Gupta, Michael J Carey, Sharad Mehrotra, and oberto Yus. 2020. Smartbench: A benchmark for data manage-

ment in smart spaces. Proceedings of the VLDB Endowment 13, 12 (2020), 1807–1820.
[14] Ihab F Ilyas, Volker Markl, Peter Haas, Paul Brown, and Ashraf Aboulnaga. 2004. CORDS: Automatic discovery of

correlations and soft functional dependencies. In Proceedings of the 2004 ACM SIGMOD international conference on
Management of data. 647–658.

[15] Zachary G Ives and Nicholas E Taylor. 2008. Sideways information passing for push-style query processing. In 2008
IEEE 24th International Conference on Data Engineering. IEEE, 774–783.

[16] Srikanth Kandula, Laurel Orr, and Surajit Chaudhuri. 2019. Pushing data-induced predicates through joins in big-data

clusters. Proceedings of the VLDB Endowment 13, 3 (2019), 252–265.
[17] Hideaki Kimura, George Huo, Alexander Rasin, Samuel Madden, and Stanley B Zdonik. 2009. Correlation maps: A

compressed access method for exploiting soft functional dependencies. Proceedings of the VLDB Endowment 2, 1 (2009),
1222–1233.

[18] Yiming Lin et al. 2021. Locater: cleaning wifi connectivity datasets for semantic localization. Proceedings of the VLDB
Endowment 3 (2021), 329 – 341.

[19] Yiming Lin, Pramod Khargonekar, Sharad Mehrotra, and Nalini Venkatasubramanian. 2021. T-cove: an exposure

tracing system based on cleaning wi-fi events on organizational premises. Proceedings of the VLDB Endowment 14, 12
(2021), 2783–2786.

[20] Inderpal Singh Mumick and Hamid Pirahesh. 1994. Implementation of magic-sets in a relational database system.

ACM SIGMOD Record 23, 2 (1994), 103–114.

[21] Jignesh M Patel, Harshad Deshmukh, Jianqiao Zhu, Navneet Potti, Zuyu Zhang, Marc Spehlmann, Hakan Memisoglu,

and Saket Saurabh. 2018. Quickstep: A data platform based on the scaling-up approach. Proceedings of the VLDB
Endowment 11, 6 (2018), 663–676.

[22] Nga Tran, Andrew Lamb, Lakshmikant Shrinivas, Sreenath Bodagala, and Jaimin Dave. 2014. The Vertica Query

Optimizer: The case for specialized query optimizers. In 2014 IEEE 30th International Conference on Data Engineering.
IEEE, 1108–1119.

[23] Julian Weise, Sebastian Schmidl, and Thorsten Papenbrock. 2021. Optimized Theta-Join Processing. BTW 2021 (2021).
[24] Shan-Hung Wu, Tsai-Yu Feng, Meng-Kai Liao, Shao-Kan Pi, and Yu-Shan Lin. 2012. T-Part: Partitioning of Transactions

for Forward-Pushing in Deterministic Database Systems. In Proceedings of the 2016 ACM SIGMOD International
Conference on Management of Data (SIGMOD). ACM.

[25] Xiaofei Zhang, Lei Chen, and Min Wang. 2012. Efficient multi-way theta-join processing using mapreduce. arXiv
preprint arXiv:1208.0081 (2012).

[26] Qi Zhou, Joy Arulraj, Shamkant Navathe, William Harris, and Jinpeng Wu. 2021. Sia: Optimizing queries using learned

predicates. In Proceedings of the 2021 International Conference on Management of Data. 2169–2181.
[27] Jianqiao Zhu, Navneet Potti, Saket Saurabh, and Jignesh M Patel. 2017. Looking ahead makes query plans robust:

Making the initial case with in-memory star schema data warehouse workloads. Proceedings of the VLDB Endowment
10, 8 (2017), 889–900.

Received July 2023; revised October 2023; accepted November 2023

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 46. Publication date: February 2024.

https://en.wikipedia.org/wiki/Event_condition_action
https://github.com/gregrahn/join-order-benchmark
https://drive.google.com/file/d/1QhJot-kEM9dA5TJ0rljMXFJlsh_jG03z/view?usp=drive_link
https://drive.google.com/file/d/1QhJot-kEM9dA5TJ0rljMXFJlsh_jG03z/view?usp=drive_link
http://www.tpc.org/tpcds
http://www.tpc.org/tpch
https://www.vanilladb.org/

	Abstract
	1 Introduction
	2 PLAQUE Overview
	3 Predicate Creation
	3.1 MIN/MAX Aggregation
	3.2 MIN/MAX with GROUP BY
	3.3 Conditions in HAVING Clause
	3.4 Learning from Theta Join
	3.5 Learning from Equi Join
	3.6 Sideway Information Passing

	4 Predicate Implementation
	5 Predicate Placement
	6 Evaluation
	6.1 Methodology
	6.2 Experimental Results

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

