
SkyPIE: A Fast & Accurate Oracle for Object Placement
TIEMO BANG, University of California, Berkeley, USA
CHRIS DOUGLAS, University of California, Berkeley, USA
NATACHA CROOKS, University of California, Berkeley, USA
JOSEPH M. HELLERSTEIN, University of California, Berkeley, USA

Cloud object stores offer vastly different price points for object storage as a function of workload and geography.
Poor object placement can thus lead to significant cost overheads. Prior cost-saving techniques attempt to
optimize placement policies on the fly, deciding object placements for each object individually. In practice,
these techniques do not scale to the size of the modern cloud. In this work, we leverage the static nature and
pay-per-use pricing model of cloud environments to explore a different approach. Rather than computing
object placements on the fly, we precompute a SkyPIE oracle—a lookup structure representing all possible
placement policies and the workloads for which they are optimal. Internally, SkyPIE represents placement
policies as a matrix of cost-hyperplanes, which we effectively precompute through pruning and convex
optimization. By leveraging a fast geometric algorithm, online queries then are 1 to 8 orders of magnitude faster
but as accurate as Integer-Linear-Programming. This makes exact optimization tractable for real workloads
and we show >10x cost savings compared to state-of-the-art heuristic approaches.

CCS Concepts: • Information systems → Cloud based storage; Data replication tools; Remote replication;
Data analytics; • Mathematics of computing → Solvers; • Computer systems organization → Cloud
computing.

Additional Key Words and Phrases: object placement, data placement, offline, exact, cloud oracle

ACM Reference Format:
Tiemo Bang, Chris Douglas, Natacha Crooks, and Joseph M. Hellerstein. 2024. SkyPIE: A Fast & Accurate
Oracle for Object Placement. Proc. ACM Manag. Data 2, 1 (SIGMOD), Article 55 (February 2024), 27 pages.
https://doi.org/10.1145/3639310

1 INTRODUCTION
Modern cloud services rely heavily on object stores like AWS S3, Azure Blob Storage or Google
Cloud Storage, due to their high convenience [6, 12, 27, 32, 44, 45, 66]. Besides the simple API,
these storage systems offer unbounded elastic capacity, only charge for actual usage (pay-per-use),
and are globally available. Cloud services hence have ample opportunity to optimize their service
quality and storage costs through object placement and replication across these object stores. For
example, objects can be placed close to the clients—across many cloud regions and possibly across
multiple clouds [46, 55, 79].

Unfortunately, there is no easy way especially for large-scale users to match their usage patterns
to optimal placement policies and many end up overpaying by large margins; costs vary across
providers, regions and service levels, and depend on workload features like the network costs
between the clients making requests and the location of object stores. However, the pay-per-use
Authors’ addresses: Tiemo Bang, University of California, Berkeley, USA, tbang@berkeley.edu; Chris Douglas, University
of California, Berkeley, USA, chris_douglas@berkeley.edu; Natacha Crooks, University of California, Berkeley, USA,
ncrooks@berkeley.edu; Joseph M. Hellerstein, University of California, Berkeley, USA, hellerstein@berkeley.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 2836-6573/2024/2-ART55
https://doi.org/10.1145/3639310

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 55. Publication date: February 2024.

HTTPS://ORCID.ORG/0000-0003-0826-8645
HTTPS://ORCID.ORG/0000-0003-2628-354X
HTTPS://ORCID.ORG/0000-0002-3567-801X
HTTPS://ORCID.ORG/0000-0002-7712-4306
https://doi.org/10.1145/3639310
https://orcid.org/0000-0003-0826-8645
https://orcid.org/0000-0003-2628-354X
https://orcid.org/0000-0002-3567-801X
https://orcid.org/0000-0002-7712-4306
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3639310

55:2 Tiemo Bang, Chris Douglas, Natacha Crooks, & Joseph M. Hellerstein

AWS Azure Azure+AWS
Cloud

100us
1ms

10ms
100ms

1s
10s

100s

O
nl

in
e

O
pt

. T
im

e

Optimization Method
ILP (CPU)
SkyPIE (CPU)
SkyPIE (GPU)

Fig. 1. Object placement via Integer-Linear-Program (ILP) versus SkyPIE: A comparison of the online compu-
tation time for the placement of a single object on the object stores of the indicated cloud vendors.

costs models are linear functions over the basic workload features—one can easily compute the
storage costs of each object. In theory, it should be possible to choose the perfect mix of object
stores and replicas to minimize dollar cost.

To date, the NP-hard problem of optimal object placement has defied practical solutions that are
both acceptably fast and accurate. The best way to minimize network costs and achieve latency
SLOs is often to replicate objects to multiple stores, but this introduces exponential blow-up in the
number of available object stores—reaching ∼10465 choices across AWS and Azure today1.

The state of the art in this problem is still nascent. Current solutions optimizing object placement
include pricing tools [17, 69] and full-fledged object replication systems [2, 3, 7, 8, 47, 49, 78], but
none of them can accurately optimize cloud-scale workloads. ILP-based optimizers [5, 53, 56, 71, 78]
compute exactly the optimal solutions, but with exponential time complexity [48]. As shown in
Figure 1, their optimization time grows drastically with the number of available object stores,
exceeding 100 seconds to compute the placement for a single object. Accordingly, faster heuristics
and approximates have been proposed, such as SpanStore’s workload aggregation, partitioning
the ILP or reinforcement learning [1, 20, 25, 39, 40, 50, 76, 78]. These, however, offer only loose
guarantees on placement quality, thus can lead to storage bills many times of what an optimal
placement could produce on real-world workloads, as we will see in §6.

Despite the inherent complexity, we show that this trade-off is not fundamental in practice: we
can achieve optimal object placement at the scale of the modern cloud with reasonable compute
time. Our insight begins with observing two key properties of cloud object storage. The first is that
storage and serving costs in these systems change very slowly (on the order of months), so we
can assume a priori knowledge of those costs. The second is that for the consumer, the elasticity
of cloud storage is effectively unbounded, so we can ignore transient issues of system load in
our optimization. These observations lead us to a counter-intuitive, eager approach. Rather than
optimizing placements online, we eagerly construct an oracle for any placement question—an
exhaustive and accurate lookup structure.
We embrace precomputation, “flipping the script” on the problem. A traditional optimizer

computes: 𝑝 = argmin𝑝𝑖 ∈𝑃 𝑐𝑜𝑠𝑡𝑝𝑖 (®𝑤) on demand, a function 𝑂𝑝𝑡 : W → 𝑃 from object signatures
®𝑤 (read/write frequency per client, object size, etc.) to the optimal placements 𝑝 (choice of object
store, region, replication factor). Instead, we eagerly compute all optimal pairs (®𝑤, 𝑝) ∈ W × 𝑃 .
Because we are being exhaustive, we can build our oracle by working “backwards”, computing
𝑂𝑝𝑡−1 : 𝑃 → 2W for all of 𝑃 , mapping each placement to the set of object signatures for which it
is optimal. We then retain only those placements in 𝑃 that are optimal for some ®𝑤 ∈ W. In the
forward direction, our representation of the oracle can be queried for any given ®𝑤 and accurately
returns the optimal placement like previous ILP-based optimizers. However, as shown in Figure 1,
query times are orders of magnitude faster for placement in a single- and multi-cloud scenarios.
1“How long and broad the poodle grows!”–Goethe, 1843 [75]. You have unlocked this quote by printing our paper :)

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 55. Publication date: February 2024.

SkyPIE: A Fast & Accurate Oracle for Object Placement 55:3

A natural concern with this approach is the cost of precomputing the oracle. In this paper, we
propose the SkyPIE algorithm that scales computation of oracles to hundreds of object stores and
replication factor 5. This oracle computation requires only few hours of parallel computation,
thanks to careful optimization and embarrassing parallelism. Also, the resulting oracles fit well
into memory—even of today’s GPUs (<32GB). When the cloud setting does eventually change, a
new SkyPIE can be computed in a few hours and redistributed.

Object Size (GB)
0

5
10

15
20Get Accesses (req)

0 5 10 15 20

C
ost

(¢)

0

20

40

60

80

100

120

Fig. 2. A simplistic workload/cost
space with two workload dimensions
W = (object size × get accesses) and the
cost of three placements (green, blue, and
orange planes). The lowest-cost placement for
each point ®𝑤 ∈ W is projected down to the
bottom (cost=0) to show what ray-shooting
would choose for each point in the workload.

The technical underpinnings of our work rest on the
linearity of the unbounded, pay-per-use cost functions.
In a nutshell, each object signature ®𝑤 ∈ W has an asso-
ciated cost under any placement 𝑝—a point inW×𝑐𝑜𝑠𝑡
space.We illustrate a simple version of this space in Fig-
ure 2. Since the cost function of any placement 𝑝 is lin-
ear in its inputs, the cost of a placement 𝑝 for all object
signatures ®𝑤 forms a hyperplane. Different placements
will have different (linear) cost formulae, resulting in
many hyperplanes in the space. Our oracle-building
approach computes the lowest-cost placements of all
possible workloads (§4).

To place an object with vector ®𝑤 optimally, we want
to choose the lowest-cost placement for ®𝑤 . To query
the oracle for a ®𝑤 , we use geometric techniques to
“shoot a ray” from the floor of the space (i.e. [®𝑤, 0])
upward along the cost axis; the hyperplane that we
hit first identifies the lowest point [®𝑤, 𝑧] and hence
the cost-optimal placement policy. Figure 2 colors the
contiguous regions on the floor of the space according
to the plane that each ray would hit first.

In summary, we make three contributions:
(1) An inverse perspective on the object placement problem enabling the construction of an oracle.
(2) Effective precomputation of a compact oracle, SkyPIE, including all optimal placements.
(3) Fast and accurate querying of specific optima in SkyPIE by geometric computation.

Artifacts are available on GitHub: https://github.com/hydro-project/cloud_oracle [18].

2 TWO PERSPECTIVES ON OBJECT PLACEMENT
We next highlight the benefits of precomputing the SkyPIE oracle. The traditional approach is to
take a workload with the access patterns and sizes of all objects (object signatures) and iteratively
compute the optimal placements: ∀®𝑤 ∈ W : 𝑜𝑝𝑡 (®𝑤) = 𝑝 ®𝑤 . Our inverse approach instead starts
from the placements and maps them back to the object signatures for which they are optimal:
∀𝑝 ∈ 𝑃 : 𝑜𝑝𝑡−1 (𝑝) = W𝑝 , where

⋃
W𝑝 = W. This inverse strategy avoids repeated optimization

and embraces eager computation: we precompute a universal lookup structure (an “oracle”) that
represents all optimal placements for all possible object signatures.
We contrast these two approaches for the simple object placement problem of storage tiering

between S3 Standard (Std.) and S3 Infrequent Access (IA), similar to S3’s intelligent tiering [64].
Assume a cloud service like Slack that stores and reads (does not write) images on S3 [6], as listed
on the left of Table 1. The pricing of S3 Std. targets small frequently accessed objects and the pricing
of the S3 IA targets large infrequently accessed objects, as our simplified prices on the top of Table 1
resemble.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 55. Publication date: February 2024.

https://github.com/hydro-project/cloud_oracle

55:4 Tiemo Bang, Chris Douglas, Natacha Crooks, & Joseph M. Hellerstein

Object signatures Placements with pay-per-use costs

𝑝1={S3 Std.} 𝑝2={S3 IA} 𝑝3={S3 Std., S3 IA}
[3¢/GB, 1¢/get][1¢/GB, 5¢/get] [4¢/GB, 6¢/get]

®𝑤1 : [3GB, 8gets] 17¢ 43¢ 60¢
®𝑤2 : [6GB, 2gets] 20¢ 16¢ 36¢
®𝑤3 : [9GB, 10gets] 37¢ 59¢ 96¢

Table 1. Example of storage tiering as placement
optimization for 3 images with object signatures
®𝑤1– ®𝑤3 and object stores S3 Standard (Std.) and
Infrequent Access (IA) under simplified pay-per-
use pricing for storage and get requests.

Accordingly, a placement optimizer must con-
sider the number of gets and the size of an object
signature to find the cheapest storage tier. Object
placement generally considers replication of an ob-
ject to several object stores, so we consider the
replicated placement on both S3 Std. and IA for
exposition. Note that, this simplified example dis-
regards the network transfer costs and the request
source (cloud region). In the general, cost-optimal
routing of get requests to object replicas is an im-
portant aspect of the placement problem, as we
detail in §3.

2.1 Traditional: FromWorkload to Placement
For every object signature in the workload, current optimizers compute the serving costs of
each object store. Then they feed an Integer-Linear Program (ILP) into a solver to compute the
combination of object stores that minimizes the total serving cost for a particular object signature—
its optimal placement.

ILP solvers, in essence, search subsets of the available object stores for the choice of object stores
that has the least serving costs. Despite the fact that ILPs search the same object stores for every
object signature ®𝑤𝑖 , solvers have to start the search from scratch, because each ®𝑤𝑖 can have distinct
serving costs, e.g., as shown in Table 1.
ILP computation is a complex search and remain specific to a specific object signature. The

online optimization overhead is exponential in the number of object stores [48]. To make matters
worse, reuse is limited and heuristic-based [10, 29, 36, 41]. Such an approach is clearly infeasible
in today’s cloud landscape, which consists of hundreds of object stores, serving workloads with
millions of objects.
Heuristics such as relaxed ILPs, reinforcement learning or optimizing over aggregate data like

SpanStore can reduce computation overhead [1, 25, 39, 40, 50, 76, 78] but come with significant risks:
their optimization quality is volatile—it depends on the workload with at best loose guarantees. For
instance, SpanStore would aggregate ®𝑤1 and ®𝑤2 via the element-wise sum, yielding the aggregate
object size and accesses like ®𝑤3. However, the cheapest placement 𝑝2 of ®𝑤3 costs 37¢ rather than
17¢+16¢=33¢ of ®𝑤1 and ®𝑤2 individually. In reality, this error further increases when replicating to
multiple object stores, e.g., reaching >6x for our real-world trace in §6.3.

2.2 SkyPIE’s Inverse Approach
From Placement to Workload. In this work, we go backwards. We start from the placements

and map these to cost functions that are independent of a specific workload. Based on these cost
functions, we compute which placements have an optimal object signature, i.e., achieve lowest cost
for some workload. All these optimal placements together make up the SkyPIE oracle, which we
can query online for the lowest-cost placement of any given object signature.

Figure 3 illustrates our inverse approach. Given the object stores 𝑜1 and 𝑜2 and their pay-per-use
pricing, we can construct the placements 𝑝1–𝑝3 with corresponding cost functions:

𝑐𝑜𝑠𝑡𝑝1 (®𝑤) = 3¢ ∗ ®𝑤𝑠𝑖𝑧𝑒 + 1¢ ∗ ®𝑤𝑔𝑒𝑡𝑠 (1)

𝑐𝑜𝑠𝑡𝑝2 (®𝑤) = 1¢ ∗ ®𝑤𝑠𝑖𝑧𝑒 + 5¢ ∗ ®𝑤𝑔𝑒𝑡𝑠 (2)

𝑐𝑜𝑠𝑡𝑝3 (®𝑤) = 4¢ ∗ ®𝑤𝑠𝑖𝑧𝑒 + 6¢ ∗ ®𝑤𝑔𝑒𝑡𝑠 (3)

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 55. Publication date: February 2024.

SkyPIE: A Fast & Accurate Oracle for Object Placement 55:5

Object Size (GB)
0

5
10

15
20Get Accesses (req)

0 5 10 15 20

C
ost

(¢)

0

20

40

60

80

100

120

Costs of placement policies p1,p2,p3

[3 GB,8 gets,¢17]

[6 GB,2 gets,¢16]

[9 GB,10 gets,¢37]

Fig. 3. SkyPIE’s inverse, from placement to work-
load: Cost planes of placements specify the cost
for all workload and the lowest plane at the coor-
dinates of an object signature identifies the opti-
mal placement.

These linear functions can be modeled as planes
in workload-cost space, with the z-axis for cost and
axes for each object signature dimension in ®𝑤 , e.g.,
object size and number of gets. We plot these planes
in Figure 3 and project on the “floor” (z=0) the color
of the lowest plane for each (x,y) point. It is then
straightforward to determine which placement is
cheapest for a given object signature: given the cor-
responding workload coordinates, the colored pro-
jection reveals the best solution. We can see that
along the purple line at coordinates of object size
3GB and 8 gets (®𝑤1) the blue plane of 𝑝1 is the low-
est. Right next to it in workload space at 6GB and 2
gets (aquamarine line), one can quickly see that ®𝑤2
also has 𝑝1 as its lowest plane—both have 𝑝1 as their
optimal placement. We can see that among all the planes, only 𝑝1 (blue) and 𝑝2 (yellow) achieve
lowest cost for some object signature. Hence, the key idea of our inverse approach is a subset
of placements and their planes suffice to optimize every object signature.

Precomputation of the SkyPIE Oracle. At first blush, the precomputation of the SkyPIE oracle
seems prohibitively expensive. Three key findings allow us to leverage efficient pruning and convex
optimization that make precomputation tractable:
(1)Offline Information. We observe that precomputation is actually possible and worthwhile.

The available object stores, their pricing, SLOs, etc. are known a priori and change relatively
infrequently. Moreover, the elasticity of object stores makes us independent of the load at
runtime. It is thus possible to enumerate placements, derive cost planes and precompute offline.

(2)Few Optimal Placements. Despite a massive space of placements, relatively few placements
are ever optimal. In our simple example, we can disregard the aquamarine 𝑝3 plane and still
find the lowest cost point of every object signature. We empirically find that there are many
high-cost placements which precomputation can sift out.

(3)Leveraging Convexity. Naïvely comparing the costs of all placements to find the lowest-cost
ones would be intractable. Luckily, since their cost planes are linear and continuous, the space
underneath all the cost planes necessarily forms a convex polyhedron. We can thus rely on linear
convex optimization, which is still exact but significantly cheaper than the discrete optimization
necessary to solve ILPs.

Building on these observations, we design the tractable SkyPIE algorithm to precompute oracles
in §4. For coarsely discretized (“T-shirt sized”) SLOs and replication factors, a vendor can even
precompute default oracles that can be shared and reused, as we discuss in §8 “Oracle Lifetime”.

Querying the SkyPIE Oracle. After building the SkyPIE oracle, the next step is to query that
oracle fast and accurately—in terms of Figure 3, to find the color of a point on the cost floor. This
must remain time- and space-efficient in many dimensions. To this effect, we recast the problem
as a computational geometry question: the optimal placement policy in Figure 3 corresponds to
the plane that intersects each signature’s vertical line at the lowest point. More generally, we
can construct geometric queries to operate on a compact matrix, reducing them to matrix-vector
computations that are cheap and embarrassingly parallel (see §5).

One might be tempted to employ traditional spatial search structures such as BSP-trees, kd-trees,
R+-trees, etc. [21, 22, 34, 63], but their space overhead, construction time or query time grow
exponentially with the number of dimensions in the worst case.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 55. Publication date: February 2024.

55:6 Tiemo Bang, Chris Douglas, Natacha Crooks, & Joseph M. Hellerstein

3 THE OBJECT PLACEMENT PROBLEM
We now formalize this object placement problem— how can we place an object on one or more
object stores given its object signature, so that serving costs are minimal and SLOs are fulfilled.
The problem definition summarized in Table 2 reflects the definition used by related traditional
optimizers [11, 56, 71, 74, 78]. Table 2d further details our cost model.

Table 2. Definition of the object placement problem.

(a) Input parameters of the object placement problem.

Parameter Definition

Object stores O, object stores available for object placement
Pay-per-use pricing ®co , cost feature per metered workload feature
App cloud regions A, cloud regions of apps accessing objects
Observed workload ®w ∈ W, object signature vectors (see Table 2d)
Replication factor f , the least number of object stores to choose
Max. replication factor fmax , the most number of object stores to choose
Latency SLOs SLOper , SLOs on access latency by percentile
Latency profile lr,o,per , latency between each application region 𝑟

and object 𝑜 by percentile

(b) Definition of placements.

Parameter Definition

Placement (pol-
icy)

𝑝 :=(𝑊,𝑅) , pair of write choice𝑊 and read choice
𝑅.

Write choice 𝑊 ⊆ 𝑂 , choice of object stores each storing (repli-
cas of) objects

Read choice 𝑅:={ (𝑟, 𝑜) |∀𝑟 ∈ 𝐴 : ∃𝑜 ∈ 𝑂 }, assignments of
region 𝑟 to read objects placed on object store 𝑜

Pay-per-use
pricing

®cp , cost feature vector composed of object stores’
pay-per-use pricing (see Table 2d)

Cost ®cp · ®w, cost of 𝑝 for object signature ®𝑤

(c) Object placement optimization model.

Optimization Model

Objective argmin𝑝∈𝑃 ®𝑐𝑝 · ®𝑤, ∀ ®𝑤 ∈ W
subject to:
All regions assigned ∀𝑟 ∈ 𝐴 : ∃𝑜 ∈𝑊 : (𝑟, 𝑜) ∈ 𝑅
Replication fulfilled |𝑊 | ≥ 𝑓
Latency SLOs ful-
filled

𝑙𝑟,𝑜,𝑝𝑒𝑟 ≤ 𝑆𝐿𝑂𝑝𝑒𝑟 , ∀(𝑟, 𝑜) ∈ 𝑅

Capacity

(d) Object signature and cost features for placement.

Object signature (Workload) ®𝑤 Cost ®𝑐𝑝

Object size 𝑤𝑠𝑖𝑧𝑒 𝑐𝑠𝑖𝑧𝑒 :=
∑
𝑜∈𝑊 𝑐𝑠𝑖𝑧𝑒𝑜

put op. 𝑤𝑝𝑢𝑡 :=
∑
𝑟 ∈𝑅 𝑤

𝑝𝑢𝑡
𝑟 𝑐𝑝𝑢𝑡 :=

∑
𝑜∈𝑊 𝑐

𝑝𝑢𝑡
𝑜

get op. 𝑤
𝑔𝑒𝑡
𝑟 𝑐

𝑔𝑒𝑡
𝑟 := 𝑐

𝑔𝑒𝑡
𝑜 : (𝑟, 𝑜) ∈ 𝑅

Net. ingress 𝑤𝑖𝑛
𝑟 := 𝑤

𝑝𝑢𝑡
𝑟 ∗ 𝑤𝑠𝑖𝑧𝑒 𝑐𝑖𝑛𝑟 :=

∑
𝑜∈𝑊 𝑐𝑖𝑛𝑜,𝑟

Net. egress 𝑤𝑜𝑢𝑡
𝑟 := 𝑤

𝑔𝑒𝑡
𝑟 ∗ 𝑤𝑠𝑖𝑧𝑒 𝑐𝑜𝑢𝑡𝑟 := 𝑐𝑜𝑢𝑡𝑜,𝑟 : (𝑟, 𝑜) ∈ 𝑅

®𝑤 := (𝑤𝑠𝑖𝑧𝑒 , 𝑤𝑝𝑢𝑡 , 𝑤
𝑔𝑒𝑡
𝑟 , . . . , 𝑤𝑖𝑛

𝑟 , . . . , 𝑤𝑜𝑢𝑡
𝑟 , . . .)

®𝑐𝑝 := (𝑐𝑠𝑖𝑧𝑒 , 𝑐𝑝𝑢𝑡 , 𝑐
𝑔𝑒𝑡
𝑟 , . . . , 𝑐𝑖𝑛𝑟 , . . . , 𝑐𝑜𝑢𝑡𝑟 , . . .)

3.1 Problem Definition
Input Parameters. As listed in Table 2a, the input is the set of available object stores𝑂 (spanning

storage tiers, cloud regions, cloud vendors), their associated pay-per-use pricing ®𝑐𝑜 , as well as the
list of cloud regions 𝐴 from which applications will access these object stores. Typically, users will
determine𝐴 based on the regions where their applications are deployed and will determine𝑂 based
on their overall intended storage deployment, e.g., single-cloud versus multi-cloud. We associate
each object in the system with an object signature capturing all billable workload features (like
put or get operations), as we describe in our cost model in §3.2. We refer to the aggregate set of all
object signatures as observed workloadW. The remaining inputs allow the user to parameterize
placements to be considered as valid solutions, as we will detail.

Placement Policies. Given these inputs, placements 𝑝 ∈ 𝑃 are defined via a write choice𝑊 and
read choice 𝑅.𝑊 is a set of object stores that defines the chosen “locations” of an object. 𝑅 is a
mapping of regions to object stores that defines, for each region 𝑟 ∈ 𝑅, from which object store
an application should read. Here, we assume that a full copy is stored in each chosen object store
𝑜 ∈𝑊 and that every write updates all copies but only reads from one.2

2We focus on a single-reader multiple-writer replication model for brevity. Other replication models like erasure-coded
storage or reading a quorum would change the definition of placements and the cost model but would not contradict our
approach, since these placements still can be enumerated and still have a linear cost function over the workload.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 55. Publication date: February 2024.

SkyPIE: A Fast & Accurate Oracle for Object Placement 55:7

The pay-per-use pricing ®𝑐𝑝 of a placement reflects the costs for storing, writing, and reading
an object, which depend upon both the write choice and read choice as well as the pay-per-use
pricing of the chosen object stores. The cost of a placement 𝑝 for a particular object signature ®𝑤 is
the dot product ®𝑐𝑝 · ®𝑤—a linear function. We detail the cost model in §3.2.

Optimization Model. Our goal is to identify, for each object signature, the placement with
lowest cost. More formally, ∀®𝑤 ∈ W, we need to find argmin𝑝∈𝑃 ®𝑐𝑝 · ®𝑤 where the write choice and
read choice of 𝑝 have minimal costs and are valid: (1) the read choice has to include an assignment
for all application regions, (2) the write choice has to meet the minimum replication factor 𝑓 , and
(3) the chosen object stores must be reached within the specified SLOs by all regions. Further
constraints on performance metrics are conceivable, as we will discuss in §8.

Complexity: NP-Hard. This optimization problem is NP-hard as it is equivalent to the Unca-
pacited Facility Location (UFL) problem with general cost functions—and reduces to the set cover
problem [42]. Write choices are equivalent to choosing which facilities to open and read choices
are equivalent to choosing which open facility serves which client. The storage and put costs
correspond the facility opening costs and the get/ingress/egress costs to the service costs—costs
by multiple variables of general cost functions.

3.2 Cost Model
The example of §2 was intentionally simple. In reality, modern cloud object stores charge for used
storage capacity, operations (put, get, etc.), and network ingress/egress. The cost model in Table 2d
reflects all these features in the workload feature vector ®𝑤 of the object signature and cost feature
vector ®𝑐𝑝 of the placement. In fact, the prices for network ingress/egress even differ for application
regions, so that the cost model further distinguishes global and region-specific features.

• Object Size—Global. The cost of storing an object can be directly inferred from the object
size and the storage costs of each chosen object store in𝑊 .

• put Operations—Global. put operations have a single feature in both ®𝑤 and ®𝑐𝑝 as every put
operation writes to all chosen object stores independent of its origin. The cost thus is the
sum of the cost of each individual write.

• get Operations—Region. In contrast, get operations have a feature per region, as the
application regions read from a single object store according to the read choice 𝑅. Their cost
is thus directly the cost of reading from that object store.

• Network Ingress/Egress—Region. Network ingress corresponds to the data volume ema-
nating from a specific application region into all object stores, as a result of put operations.
Conversely, network egress refers to the data volume reaching a given application region
following a get operation. Although these data volumes are based on the object size and
number of operations, we consider these as distinct features to obtain a linear model.3 To
capture all dimensions of transfer cost across regions, availability zones, and data centers—
including intra-region transfers, when the cost coefficient is zero—each of these is a feature
per region.

Note that, the region-specific features yield high-dimensional object signatures. Vectors ®𝑐𝑝 and ®𝑤𝑖

grow proportional to the number of application regions in 𝐴 (| ®𝑐𝑝 | = | ®𝑤𝑖 | = 2 + 3 ∗ |𝐴|)—reaching
tens to hundreds of dimensions. Finally, it is noteworthy that this cost model is straightforward to
extend with linear cost components.

3The network data volumes𝑤𝑝𝑢𝑡
𝑟 ∗𝑤𝑠𝑖𝑧𝑒 and𝑤𝑔𝑒𝑡

𝑟 ∗𝑤𝑠𝑖𝑧𝑒 are products—quadratic terms.We can substitute for newworkload
features 𝑤𝑖𝑛

𝑟 and 𝑤𝑜𝑢𝑡
𝑟 without loss of generality: 𝑐𝑖𝑛𝑟 ∗𝑤𝑝𝑢𝑡

𝑟 ∗𝑤𝑠𝑖𝑧𝑒 = 𝑐𝑖𝑛𝑟 ∗𝑤𝑖𝑛
𝑟 and 𝑐𝑜𝑢𝑡𝑟 ∗𝑤𝑔𝑒𝑡

𝑟 ∗𝑤𝑠𝑖𝑧𝑒 = 𝑐𝑜𝑢𝑡𝑟 ∗𝑤𝑜𝑢𝑡
𝑟 .

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 55. Publication date: February 2024.

55:8 Tiemo Bang, Chris Douglas, Natacha Crooks, & Joseph M. Hellerstein

4 PRECOMPUTING THE SkyPIE ORACLE
The SkyPIE oracle, once precomputed, comprises of a set of object placements that can be quickly
queried to find the exact cost-optimal placement of any given object signature. To ensure the
accuracy (exactness) of these queries, all “winning” placements must be included in the oracle—
winning placements are those which are optimal for at least one object signature. Conversely, to
ensure the efficiency (speed) of these queries, it is preferable to include as few non-winning policies
as possible. While non-winning policies do not affect the query’s accuracy thanks to the convex
nature of the problem, their presence enlarges the oracle, thus slowing down queries.

4.1 Precomputation by Inverse Enumeration

Write choices of object stores O with:

Read choices of app regions A to:

All: |O||O| * |O||A|

Candidates: |O|fmax

Placement policies

3

Oracle:
All optimal + ...

f to |O| stores: |O||O|

2

1

each store: |O||A|

lowest-read-cost stores

f to fmax stores: |O|fmax

Fig. 4. Precomputation by Inverse Enumeration.

1 def precompute_skypie(O: Object stores , A: App regions , f:rep. factor , f_max:max

rep. factor) -> Oracle:

2 C = list()

3 # Write choices of f to f_max object stores

4 for W in combinations(O, f..f_max): ⊲ O(|𝑂 | 𝑓𝑚𝑎𝑥)
5 # Candidate placements of write choice W with optimal read choices

6 C += enumerate_candidates(W, A) ⊲ O(|𝐴 | ∗ 𝑓 2𝑚𝑎𝑥)
7 Oracle = reduce_oracle(C) # Tighter set of placements ⊲ O(|𝐶 | ∗ 𝑏 ∗ 𝐿𝑃 (𝑏, |𝐴 |))
8 return Oracle

Listing 1. SkyPIE precomputation, O(|𝑂 |𝑓𝑚𝑎𝑥).

Rooted in our inverse approach, our precomputation algorithm efficiently enumerates candidate
placements and then computes a compact oracle. This requires some care, as the space of options to
consider during precomputation can be large, as depicted in Figure 4. Specifically, the possible write
choices (the red rectangle) are all combinations of at least 𝑓 and at most |𝑂 | object stores: O(|𝑂 | |𝑂 |).
The possible read choices (the red hexagon) are all the independent choices of any object store for
each app region: O(|𝑂 | |𝐴 |). The cross-product of these two is the massive space of all placements
(the red circle). With hundreds of available object stores and cloud regions, precomputation needs
to discern over 10100 possibilities. We reduce the cost of our algorithm in Listing 1 via the following
three high-level steps.
First, we compute the set of possible write choices, assuming that replication is bounded to

a small number of at most 𝑓𝑚𝑎𝑥 object stores—the green rectangle labeled (1) in Figure 4. This
significantly reduces the possible write choices and the complexity of the outer loop in Line 4 from
O(|𝑂 | |𝑂 |) to O(|𝑂 | 𝑓𝑚𝑎𝑥).

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 55. Publication date: February 2024.

SkyPIE: A Fast & Accurate Oracle for Object Placement 55:9

Second, we avoid exhaustively enumerating read choices by computing the lowest-cost read
choices directly—the green points in the hexagon labeled (2) in Figure 4. As we will discuss in
§4.2, this reduces the number of read choices dramatically, constraining the aforementioned cross-
product to a tractable, but sufficient set of candidate placements. With O(|𝐴| ∗ 𝑓 2𝑚𝑎𝑥) time complexity
this computation in Line 6 is far more efficient than exhaustive enumeration.

Third, after generating candidates, we reduce the size of the oracle using a textbook redundancy
elimination technique in Line 7—resulting in the small, solid-edged circle labeled (3) in Figure 4.
As we discuss in §4.3, we conservatively speed up this technique by applying it to partitions of
the candidates. This results in quasi-linear time complexity by solving linearly many LPs of small,
constant size 𝑏: O(|𝐶 | ∗ 𝑏 ∗ 𝐿𝑃 (𝑏, |𝐴|)).
As a result, our precomputation algorithm achieves O(|𝑂 | 𝑓𝑚𝑎𝑥) time complexity, while current

ILP-based optimizers have exponential complexity in both the number of object stores and cloud
regions. Our approachmakes precomputation of a single exact oracle tractable, even under hundreds
of object stores and cloud regions—i.e., today’s entire cloud. We proceed to elaborate on the second
and third of these steps in more detail.

4.2 Candidate Enumeration

1 def enumerate_candidates(W: Write choice ,A: App regions) -> Placements:

2 R = dict()

3 # Enumerate for app region r all optimal read choices with object stores in W

4 parallel for r in A: ⊲ O(|𝐴 |)
5 R[r] = opt_assignments(W, r) ⊲ O(𝑓 2𝑚𝑎𝑥)
6 if R[r]. empty(): # No SLO -compliant assignments found

7 return [] # Abort , no SLO -compliant placements exists

8 # Merge to placements of W and the optimal read choices

9 return merge_placements(W, R) ⊲ O(|𝑅 | ∗ 𝑙𝑜𝑔 (|𝑅 |))
Listing 2. Candidate enumeration algorithm, computing per write choice the lowest-cost read choices and
combining these to the lowest-cost placements, in O(|𝐴| ∗ 𝑓 2𝑚𝑎𝑥).

Listing 2 presents the high-level algorithm for enumerating candidate placements, before we
discuss its subroutines. Recall that a placement is a combination of a write choice (from the red
rectangle) and a read assignment (from the red hexagon). Given a bounded write choice𝐶 (from the
green rectangle), we compute optimal read choices for every possible object signature𝑤 ∈W (green
points in the red hexagon) in the subroutine opt_assignments. Subroutine merge_placements
then constructs candidate placements 𝑝𝐶 (the dashed green circle). Both routines have low com-
plexity, while the former is also embarrassingly parallel, making enumeration tractable for large
inputs.

Note that opt_assignments ensures mandatory compliance with latency SLOs. When it does not
find any SLO-compliant read choice for a region it is not possible to construct any SLO-compliant
placement. In this case, candidate enumeration aborts with an empty result for the given write
choice (Line 6). We now discuss the two subroutines in turn.

Optimal Assignment Computation. The opt_assignments algorithm in Listing 3 computes
all the cost-optimal read choices (green points in the red hexagon) associated with the given write
choice𝑊 and application region 𝑟 . Note that opt_assignments optimizes each region’s read choice
independently of other regions. Optimizing the read choice per region is much simpler than the
overall optimization of placements and permits parallel computation. Assigning a region to an

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 55. Publication date: February 2024.

55:10 Tiemo Bang, Chris Douglas, Natacha Crooks, & Joseph M. Hellerstein

object store of the given write choice establishes get and egress costs for that region but does not
affect the costs of the read choices of other regions. Since the fixed write choice predetermines the
object stores and their costs, there is no trade-off between the costs (get and egress) of application
regions. Hence, opt_assignments can independently compute the cost-optimal read choices for
individual application regions—with low complexity and in parallel.

1 def opt_assignments(W, r) -> List[Tuple[Range , Store]]:

2 # SLO -compliant object stores in write choice

3 compliant = list(o for o in W if r.is_slo_compliant(o))

4 # Read choices of region r to object store o with optimal size range

5 R = dict(o : Range(0,inf) for o in compliant)

6 parallel for 𝑜1,𝑜2 in combinations(compliant ,2): ⊲ O(𝑓 2𝑚𝑎𝑥)
7 # Boundary of 𝑜1's and 𝑜2's read choice costs

8 size ,o_low ,o_high = boundary(r, 𝑜1, 𝑜2) ⊲ O(1)
9 # Update upper/lower bound of optimal object size range for read choices

10 # to the object stores on the low/high side of the intersection

11 R[o_low].up = min(R[o_low].up, size)

12 R[o_high].low = max(R[o_high].low , size)

13 # Filter object stores with non -empty optimal size range

14 # that make an optimal assignment for r

15 return [(ra ,o) for o,ra in R.items() if not ra.empty()]

Listing 3. Object stores for optimal read-assignment of region, using cost-optimal object size as proxy for
cost-optimal number of get requests and network egress volume.

In Line 3, the algorithm starts by identifying the object stores (compliant) whose access latency
to region 𝑟 fulfills the SLOs. This is the point in the overall precomputation algorithm where we
enforce SLOs. Any change in latency SLOs or the latency profiles necessitates the precomputation
of a new oracle. Subject to those SLOs, the remainder of this routine computes the optimal read
choices for all possible object signatures of the given region.

To compute cost-optimal read choices, in principle we need to consider costs in two dimensions
for our objects: the number of gets and the network egress volume. Specifically, the cost function
for the assignment of region 𝑟 to object store 𝑜𝑖 (Table 2) is:

𝑐𝑜𝑠𝑡𝑟𝑒𝑎𝑑𝑜𝑖 ,𝑟
(®𝑤) = 𝑐

𝑔𝑒𝑡
𝑜𝑖 𝑤

𝑔𝑒𝑡
𝑟 + 𝑐𝑜𝑢𝑡𝑜𝑖 ,𝑟

𝑤𝑜𝑢𝑡
𝑟 (4)

We can view these cost functions as planes in space, as illustrated in Figure 5 (a). However, we
can reduce the complexity of our algorithm by mapping these three-dimensional planes to a
single dimension—object size—as in Figure 5 (b). To understand this intuition better, consider how
each plane in Figure 5 (a) shows the cost of read choices of region 𝑟1 to object stores 𝑜1, 𝑜2, 𝑜3:
(𝑟1, 𝑜1), (𝑟1, 𝑜2), (𝑟1, 𝑜3). The shading on the “cost floor” indicates which read choice is optimal for
each [get, 𝑒𝑔𝑟𝑒𝑠𝑠] point: points in the blue-shaded area are optimal for the read choice (𝑟1, 𝑜1),
and those in the yellow-shaded areas are optimal for the read choice (𝑟1, 𝑜2). There is no optimal
point for the read choice (𝑟1, 𝑜3). Note that the boundaries between the optimal read choices
arise from the intersections of the planes above. Our reduction simplifies the computation of the
boundaries between optimal read choices as follows. Consider the read choices (𝑟1, 𝑜1) and (𝑟1, 𝑜2).
The boundary on the cost floor is where their costs are equal:

𝑐
𝑔𝑒𝑡
𝑜1 𝑤

𝑔𝑒𝑡
𝑟 + 𝑐𝑜𝑢𝑡𝑜1,𝑟w

out
r = 𝑐

𝑔𝑒𝑡
𝑜2 𝑤

𝑔𝑒𝑡
𝑟 + 𝑐𝑜𝑢𝑡𝑜2,𝑟w

out
r (5)

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 55. Publication date: February 2024.

SkyPIE: A Fast & Accurate Oracle for Object Placement 55:11

Object Size (GB)

Network Egress (GB)

(r1 ,o3) (r1 ,o2)

Pair-wise boundaries of opt. size:

(r1 ,o3)

(r1 ,o2) (r1 ,o1)

Overall optimal opt. size ranges:

(r1 ,o1) (r1 ,o2)
(r1 ,o3)(r1 ,o1)

(r1 ,o1) (r1 ,o2)

⋂=

(b) Optimal read choices by object size(a) Optimal read choices by get and egress

Fig. 5. Optimal workload for read choices for region 𝑟1 to object stores 𝑜1, 𝑜2, 𝑜3: (a) Cost of read choices in
3-dimensional get-egress-cost space with optimal get-egress workload shaded on the floor (z=0). (b)
Optimal object size of read choices, equivalent to (a) due to reformulation.

Note that the total egress volume𝑤𝑜𝑢𝑡
𝑟 is equivalent to𝑤𝑔𝑒𝑡

𝑟 𝑤𝑠𝑖𝑧𝑒 , so we can simplify:

𝑐
𝑔𝑒𝑡
𝑜1 𝑤

𝑔𝑒𝑡
𝑟𝑘 + 𝑐𝑜𝑢𝑡𝑜1,𝑟w

get
r wsize = 𝑐

𝑔𝑒𝑡
𝑜2 𝑤

𝑔𝑒𝑡
𝑟 + 𝑐𝑜𝑢𝑡𝑜2,𝑟w

get
r wsize (6)

And now we can solve for a single variable𝑤𝑠𝑖𝑧𝑒 :

wsize = (𝑐𝑔𝑒𝑡𝑜1 − 𝑐
𝑔𝑒𝑡
𝑜2)/(𝑐

𝑜𝑢𝑡
𝑜2,𝑟 − 𝑐𝑜𝑢𝑡𝑜1,𝑟) (7)

Effectively, the boundary between two read choices is a single point in one dimension: object size.
Consider for example the boundary of the blue and yellow read choices in the first row of Figure 5
(b). Blue dominates yellow in a half-line of object sizes: all object sizes lower than the red boundary.
Inversely yellow dominates blue in the upper half-line of the boundary.
Now, we can find all object sizes for which blue is optimal by collecting the boundaries of blue

with every other read choice—yellow and green — and forming the intersection of the half-lines
that result. We repeat this procedure for every read choice (yellow and green). The result at bottom
of Figure 5 (b) represents the optimal read choice for every object size. Note that intersection of the
green half-lines is empty, as it is never optimal.
Returning to the opt_assignment algorithm of Listing 3, Line 5 initializes a dictionary of

optimal ranges for each SLO-compliant read choice. The loop of Line 6 and onwards, computes the
boundaries between each pair of read choices and maintains running intersections of the resulting
half-lines. Notably, Line 8 computes the boundary and which read choice is lower and which is
upper. Finally, the algorithm returns the list of optimal read choices with non-empty size ranges.

Merging Read choices to Candidate Placements. We are now ready to construct candidate
placements. Recall from Listing 1, Line 4 that our overall algorithm begins by enumerating all write
choices. At this point, we are considering a specific write choice𝑊 . Given our computation of the
optimal read choices per region 𝑅, we are now ready to enumerate the placements of𝑊 that jointly
optimize read choices across all regions.
Given a fixed𝑊 and read choices 𝑅, merge_placements in Listing 4 now constructs a single

placement for every object size. For every object size, it selects the optimal read choice of each
region and constructs a placement with the write choice𝑊 . Of course, we do not enumerate all
object sizes [0..∞], but instead compute placements for distinct ranges along the object size axis.
We do this by segmenting the object size axis into ranges at the finest granularity: all the boundaries
in 𝑅 across all regions.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 55. Publication date: February 2024.

55:12 Tiemo Bang, Chris Douglas, Natacha Crooks, & Joseph M. Hellerstein

Specifically, the merge_placements algorithm first initializes the joint read choice cur_R with
the optimal read choice per region for size 0 (Line 5). In Line 7 it loads all read choices (r,o) into a
list and sorts these by the upper bounds of the previously computed ranges. Walking this sorted list
in Lines 10–14, it constructs a placement for every distinct range on the size axis (Line 12). Also, it
gradually updates the optimal read choice for every boundary stored in cur_R (Line 14)—note that
two read choices in cur_R may share a boundary. The returned candidates P are all the placements
combining the given write choice𝑊 with its optimal read choices across regions.

When merge_placements completes for a particular𝑊 , control returns to the top-level routine—
Line 6 of Listing 1. At that point, we have assembled the set P containing the candidate placements
with optimized read choices of each write choice. This guarantees that we now have all exact
solutions in our oracle: the set P includes all optimal placements, taking into account read choices
and write choices. The set P likely includes suboptimal placements as well; we handle this next in
reduce_oracle.

1 def merge_placements(W: Write choice , R: Dict[Region , List[Tuple[Range , Store]]])

-> Placements:

2 P = [] # Candidate placements

3 cur_s = -1 # Current size boundary

4 # Initialize with read choice for 0 object size

5 cur_R = {r: l.pop(argmin(l))[1] for r, l in R.items()}

6 # List of all read choices sorted by upper boundary of optimal size range

7 L = sorted ([(up ,(r,o)) \ ⊲ O(|𝑅 | ∗ 𝑙𝑜𝑔 (|𝑅 |))
8 for r,l in R.items() for (_,up),o in l])

9 # Create a placement for all regions at each size boundary

10 for s, (r, o) in L: ⊲ O(|𝑅 |)
11 if s > cur_s:

12 P.append(Placement(W, cur_R)) # Placement of cur_s

13 cur_s = s # Move on to next boundary

14 cur_R[r] = o # Read choice of r for cur_s

15 P.append(Placement(W, cur_R)) # Final placement

16 return P

Listing 4. Algorithm for merging optimal read choices per region to joint candidate placements.

4.3 Oracle Size Reduction
The efficiency of querying the SkyPIE oracle can be significantly improved by discarding candidate
placements that are not in fact optimal. That is, candidates enumerated by enumerate_candidates
for one write choice which are superseded by candidates of another write choice. As we will
explain, dominated placements are equivalent to redundant constraints in Linear-Programs (LPs).
The convex optimization literature applies redundancy elimination to speed up LPswithout affecting
their accuracy [35]. We utilize this technique for our oracle, specifically Clarkson’s algorithm [26].
But we apply a relaxation to curb the overhead for large candidate sets.

Utilizing Redundancy Elimination. Figures 6a–c illustrate how redundancy elimination
applies to our placements. In the convex optimization literature, non-redundant constraints tightly
bound the convex region of feasible solutions in LPs. Redundant constraints do not further bound the
solutions but still incur computation costs, so that redundancy elimination removes these without
changing the solutions. Now, recall that the lowest plane at the coordinates of an object signature
indicates the lowest-cost placement and consider the space underneath the planes in Figures 6a–b.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 55. Publication date: February 2024.

SkyPIE: A Fast & Accurate Oracle for Object Placement 55:13

Object Size

0
5

10
15

20Get Accesses

0 5 10 15 20

C
ost

(¢)

0

20

40

60

80

100

120

(a) Large Oracle of Candidate Policies

(a) Large oracle of candidate
placements.

Object Size

0
5

10
15

20Get Accesses

0 5 10 15 20

C
ost

(¢)

0

20

40

60

80

100

120

(b) Optimal Oracle of Optimal Policies

(b) Tight oracle of optimal place-
ments.

Object Size

0
5

10
15

20Get Accesses

0 5 10 15 20
C

ost
(¢)

0

20

40

60

80

100

120

(c) Sub-Optimal Oracle Missing an Optimal Policy

(c) Sub-optimal oracle missing
placements.

Fig. 6. Framing computation of optimal placements of all workloads as partitioned redundancy elimination.

We realize that the lowest planes (blue and yellow) are tight bounds to the space underneath, while
the green and orange planes are redundant bounds to that space. If we were to remove the yellow
plane as in Figure 6c, the height of the bounded space would increase in the red-shaded area. So,
the realization is that the space underneath the planes is a convex region like the feasible solutions
of LPs, where redundancy elimination can identify the tight bounds that belong to the optimal
placements.4
Technically, redundancy elimination uses Linear-Programs (LPs) to test if a plane is tight and

linearly independent compared to all other planes. It utilizes the linear convex optimization al-
gorithms of LPs to efficiently test if a plane has a point that is truly lowest (<) anywhere in the
high-dimensional space. Notably, it eliminates the tangential orange plane, as it is only lowest
where also the blue and yellow plane are lowest—the orange plane is a tight but linearly dependent
bound, hence redundant. Only convex optimization algorithms can efficiently test linear depen-
dency in high dimensions. Simpler algorithms outside of convex optimization are ineffective for
our purpose, as these are either slow or do not identify placements with linearly dependent planes
as non-optimal.
To apply redundancy elimination, we describe the convex region underneath the planes of the

candidates. We start by reformulating the cost functions:

Function: 𝑐𝑜𝑠𝑡𝑝 (®𝑤) = ®𝑐𝑝 · ®𝑤 (8)
Plane: (𝑣 = ®𝑐𝑝 · ®𝑤) ⇔ (0 = ®𝑐𝑝 · ®𝑤 − 𝑣) (9)
Half-plane: 0 ≥ ®𝑐𝑝 · ®𝑤 − 𝑣 (10)

As shown in Eq. 8, a cost function has the policy’s cost feature vector as coefficients and the object
signature vector as variables. In Eq. 9, we reformulate this cost function to the plane equation in
standard form, introducing the variable 𝑣 in addition to ®𝑤 . In Eq. 10, we then express the space
underneath the plane (a half-plane), by changing the equality to the inequality ≥.

Our reduce_oracle algorithm in Listing 5 executes this conversion in Line 4 by expanding the
cost feature vector by the additional −1 coefficient of 𝑣 . In Line 6, we further add inequalities to
bound the region to positive object signatures and cost, i.e., the positive orthant. Otherwise, some
expensive placements would appear as tight bounds for “negative workload” and would not be
detected as non-optimal. This convex region describes the same space for all sets of candidates that
contain the same cost-optimal placements.5

4The space underneath the planes is a convex polyhedron—an open convex region bound by linear planes. Like every
convex object, it has many representations—a minimal one with the tight bounds of the lowest planes and many further
ones including additional redundant bounds of farther out planes.
5The convex polyhedron is the intersection of all the lower half-planes (Eq.10):

⋂
𝑝∈𝐶 { (𝑣, ®𝑤) |0 ≥ ®𝑐𝑝 · ®𝑤−𝑣∧0 ≤ 𝑣∧0 ≤ ®𝑤}.

This intersection is identical ∀𝐶 ⊆ 𝑃 that contain the same optimal placements 𝑃∗ ⊆ 𝐶 .

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 55. Publication date: February 2024.

55:14 Tiemo Bang, Chris Douglas, Natacha Crooks, & Joseph M. Hellerstein

Relaxing Redundancy Elimination. Redundancy elimination can be prohibitively expensive
for large inputs. To address this, we employ a conservative performance heuristic: we partition the
candidate policies into subsets. In Lines 8–12, our algorithm applies redundancy elimination to
subsets of 𝑏 candidates, along with the additional inequalities of Line 6 to bound each partition to
positive orthant. It stores the non-redundant placements of each subset and finally returns all of
these as oracle with reduced size.
Importantly, our resulting oracle still gives exact results. Any truly non-redundant plane—one

that is lowest for some workload in the resulting oracle—is always lowest in its partition as well,
and will not be pruned.6

This relaxation proves to be surprisingly effective at speeding up redundancy elimination. As we
measure in §6.2, even the smallest partition size we considered significantly reduces the number of
policies in the oracle.7 The exponential complexity of LPs makes the aggregate compute time of
many small LPs much smaller than that of one large LP [48]; moreover, the multiple small LPs can
be handled independently in an embarrassingly parallel fashion.

1 def reduce_oracle(C: Candidate placements , b_size = len(P)) -> Placements:

2 Compact = list() # Compact set of placements

3 # Convert cost functions to inequalities of half -planes

4 H = [p.c + [-1] for p in C]

5 # Additional half -planes of positive orthant

6 PO = pos_halfplane_per_dimension(dims=len(H[0]))

7 # Apply redundancy elimination to partitions

8 parallel for start , end in partitions(H, b_size): ⊲ O(|𝐶 |/𝑏)
9 # Compute indexes of non -redundant half -planes

10 non_red = redundancy_elimination(H[start:end] + PO) ⊲ O(𝑏 ∗ 𝐿𝑃 (𝑏, |𝐴 |))
11 # Save policies of non -redundant half -planes

12 Compact.extend(C[start+i] for i in non_red)

13 return Compact # Placements for the oracle

Listing 5. Algorithm removing non-optimal candidate placements from the oracle to speed up queries without
affecting accuracy.

5 QUERYING THE SkyPIE ORACLE
The SkyPIE oracle computed by the techniques of §4 is comprised of (1) a list of the precomputed
placements and (2) a matrix of their cost planes, where the rows are policies and the columns are cost
coefficients (Listing 6).8 To achieve fast and accurate querying, we apply computational geometry
directly on the precomputed cost planes. The size of the cost plane matrix is deterministic and
compact. Similarly, the matrix-vector computations of our geometric queries have fixed quadratic
cost, yet are cheap and are easy to accelerate. As a result, querying the SkyPIE oracle is practically
orders of magnitude faster than current ILP-based optimizers and has low resource demands.

6Exactness is within the limits of the employed LP algorithms. Their numerical precision is a research topic of its own.
Optimizing these algorithms or exploring their trade-offs in depth is outside our scope. We refer interested readers to the
literature [36, 41, 61].
7The partition size should be greater than the number of workload dimensions for redundancy elimination to be effective.
Otherwise, the convex polyhedron of the policies in a smaller partition may not be full-dimensional, so that redundant
planes become unlikely.
8We use the plane equality of Eq. 9, see §4.3.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 55. Publication date: February 2024.

SkyPIE: A Fast & Accurate Oracle for Object Placement 55:15

1 def load_oracale(P: Placements) -> Oracle:

2 # Convert placements ' costs to matrix of plane inequalities

3 return Oracle(P, Planes=Tensor ([p.c+[-1] for p in P]))

Listing 6. Loading the oracle from precomputed policies.

1 def query_opt_policy(Oracle , size , gets , puts) -> Tuple[Placement ,Cost]:

2 # Construct workload vector , materializing network ingress and egress

3 W=Tensor ([size]+puts+gets+[sum(put*size)]+gets*size)

4 # Vertical ray -shooting for workload vectors W

5 idx , min_cost = Oracle.Planes.matmul(W).min() ⊲ O(|𝑃 | ∗ |𝑅 |)
6 return (Oracle.P[idx],min_cost) # Return optimal placement and costs

Listing 7. Algorithm for batched querying of the oracle for the optimal placements of object signatures.

Notably, we do not adopt spatial search structures. The optimal workload of optimal policies
is high-dimensional and unbounded, so that spatial search structures have poor worst-case per-
formance [43].9 Instead, we are able to utilize straightforward matrix-vector multiplication, as we
describe next.

Optimal Placement Queries. The query_opt_policy algorithm in Listing 7 queries the oracle
for the optimal placement of an object signature via vertical ray-shooting—the intersection search
initially mentioned in §2.2. Given the object size and put/get requests of application regions, it
first constructs the complete object signature, computing the ingress and egress based on the object
size and put/get requests of the individual regions (Line 3). In Line 5, it then computes the lowest
intersecting plane along a vertical ray (parallel to the cost axis) that originates from the coordinates
of the signature on the “cost floor”. The special case of a vertical ray simplifies ray-shooting to a
single matrix-vector multiplication and subsequent search of the minimal element, identifying the
index of the lowest plane and associated costs. These operations, while quadratic in complexity,
can be efficiently vectorized on CPUs or GPUs. They also allow for batched queries of multiple
object signatures (omitted from the Listing for brevity). This vertical ray-shooting is as exact as
current ILP-based optimizers but orders of magnitude faster, particularly on a GPU.

6 EXPERIMENTAL EVALUATION
In this evaluation, we answer three questions:
§6.1 How does online optimization compare with the current exact approach?
§6.2 How does precomputation scale?
§6.3 How does the end-to-end performance of the SkyPIE compare against the state-of-the-art?

Placement Scenarios. We evaluate object placement under 25 placement scenarios—replication
factor 1–5 and 5 cloud deployments of increasing size: (C1) AWS regions in the EU (8), standard tier
object stores (8); (C2) AWS regions in the EU (8), all object stores (24); (C3) All AWS regions (25),
all object stores (75); (C4) All Azure regions (22), all object stores (88); (C5) All AWS and Azure
regions (47), all object stores (163) [16, 68].

9Object signature incorporates the get/ingress/egress of each application region, hence is high-dimensional even for few
regions. Additionally, the pay-per-use pricing of object stores “scales to zero” and generally is monotonically increasing.
Therefore, the intersections of placements’ cost planes all go through the origin, so that the optimal workload of optimal
policies starts at the origin and extends to infinity.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 55. Publication date: February 2024.

55:16 Tiemo Bang, Chris Douglas, Natacha Crooks, & Joseph M. Hellerstein

All specified cloud regions are considered as application regions and each object store of the
specified storage tiers in these regions is considered for placement.10 We consider the cloud regions,
object stores, and pricing information as of January 9th, 2023 [16, 68]. Notably, in order to perform
a controlled experiment of optimizer performance, we do not impose latency SLOs. Latency SLOs
would reduce the number of considered object stores in an application-specific way; instead, we
directly specify the object stores in our placement scenarios. SkyPIE generally supports latency
SLOs, cf. §3.1/§4.2.
Setup. We execute all online optimization (SkyPIE and baselines) on the 40 threads of one

processor in our Nvidia DGX-1 hardware [30] but execute the SkyPIE’s embarrassingly parallel
precomputation on both available processors. That is, the ILP solver does not benefit from multiple
processors due to limited parallelism in the algorithm and NUMA effects.11 We hence execute the
online optimization of all approaches on a single processor. We employ the commercial solver
Mosek [9] for both the ILP and the redundancy elimination of our precomputation. Queries to the
SkyPIE oracle are executed via Pytorch 2.0—GPU-based queries on a NVIDIA V100 [31].

6.1 Online Optimization Performance
We first benchmark the online optimization of the SkyPIE oracle against an exact ILP—the gold
standard for truly optimal placements. We use SpanStore’s ILP formulation [78]. We compare online
optimization time and accuracy. Thereby, we seek to verify the premise of the SkyPIE oracle—that
precomputation yields a compact but complete lookup structure (cf. §4) which makes geometric
online querying fast and accurate (cf. §5).
In this experiment, we compute the placement of a given object signature with our oracle and

the ILP, comparing their performance for each of the placement scenarios. Here, we sample 5000
object signatures drawn from a uniform random distribution over common object sizes (0-1000
GB) and access frequencies (0-1000 put/get requests per application region). These 5000 samples
are practical in the sense that our measurements are robust and the ILP becomes prohibitively
expensive to compute for more samples. Due this prohibitive overhead of the ILP, we also limit the
number of samples to 100 for the large placement scenarios (AWS+Azure at replication factor >2).

OnlineOptimizationTime. Figure 7(a)-(c) compares the online optimization time for computing
the placement of a given object signature, i.e., the wall clock time for solving one ILP with 40 threads
versus one SkyPIE query with 40 threads and on the GPU. For completeness, we measure the online
optimization time including the loading time of the object signature vector12.

Figure 7(a) details the effect of the cloud deployment size (object stores and cloud regions) on the
optimization time under replication factor 3. The optimization time of SkyPIE on the GPU remains
close to 100us throughout. On the CPU, SkyPIE’s optimization time noticeably increases with the
problem size, but query times remain under 100ms. In contrast, the time to solve a single ILP starts
at 100ms increases to 100s.13 Figure 7(b) shows that these observations generalize to the average
optimization time for all our placement scenarios. SkyPIE is 101–106x faster on the CPU and GPU.
Also, SkyPIE retains sub second response time while the ILP reaches ∼100s.
10Excluding archive tiers [13, 70], AWS object stores: Standard, Non-Critical, and Infrequent Access storage tiers of S3 in all
AWS cloud regions. Azure object stores: Premium, Hot, and Cool storage tiers of Blob Storage/Block Block in all Azure cloud
regions. The workload dimensions according to the number of application regions are 28, 28, 77, 68, 143, respectively.
11ILP solvers rely on sequential refinement of solutions that belie parallelism. Commercial solvers thus operate only on
CPUs and do not support GPU acceleration [37]
12For SkyPIE loading time involves initializing a tensor on the CPU or GPU, while for the ILP it is initialization of the model
parameters. These loading times do not affect the general trends.
13The variance in the optimization time relates to sensitivity of the ILP’s convergence to the specific model parameter values.
For example, it is known that (I)LPs can achieve polynomial time for specific placement scenarios, but incur exponential
time for other placement scenarios (their worst-case complexity) [48].

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 55. Publication date: February 2024.

SkyPIE: A Fast & Accurate Oracle for Object Placement 55:17

C1 C2 C3 C4 C5
Cloud

100us
1ms

10ms
100ms

1s
10s

100s

O
nl

in
e

Q
ue

ry
 T

im
e

(a) Query Times of Rep. F. 3

1 2 3 4 5

C5

C4

C3

C2

C1

C
lo

ud

2e
+0

2
4e

+0
4

6e
+0

4
2e

+0
5

5e
+0

1
3e

+0
3

4e
+0

3
7e

+0
3

5e
+0

4

4e
+0

1
1e

+0
3

1e
+0

3
1e

+0
3

1e
+0

3

2e
+0

1
6e

+0
1

6e
+0

1
6e

+0
1

6e
+0

1

1e
+0

1
2e

+0
1

2e
+0

1
2e

+0
1

2e
+0

1

ILP

1 2 3 4 5
Replication Factor

0.0
6

0.2 1e
+0

1
5e

+0
2

0.0
5

0.1 0.6 3e
+0

1
5e

+0
2

0.0
5

0.1 0.4 1e
+0

1
3e

+0
2

0.0
5

0.0
5

0.1 0.1 0.2

0.0
5

0.0
5

0.0
5

0.0
5

0.0
5

SkyPIE (CPU)

1 2 3 4 5

0.1 0.2 0.2 0.6

0.1 0.1 0.1 0.1 0.2

0.1 0.1 0.1 0.1 0.3

0.1 0.1 0.1 0.1 0.2

0.1 0.1 0.1 0.1 0.1

SkyPIE (GPU)

10
0

10
2

10
4

O
nl

in
e

Q
ue

ry
 T

im
e

(m
s)

(b) All Query Times

AWS Azure Azure+AWS
Cloud

1us
10us

100us
1ms

10ms
100ms

1s
10s

100s

W
al

l T
im

e
P

er
 Q

ue
ry

(a) By Cloud

1 2 3
Replication Factor

(b) By Replication Factor

1 10 100 1000
Batch Size

(c) By Batch Size

ILP (CPU)
SkyPIE (CPU)
SkyPIE (GPU)

1 1.01 1.02 1.03 1.04
Optimality Gap vs. ILP

0.00

0.25

0.50

0.75

1.00

C
D

F

m
in

=1

m
ax

=1
.0

39

(d) Overall Accuracy

Type
SkyPIE
After Enumeration

Fig. 7. (a)–(c) detail the time to compute placements for given object signatures including preparation—(a)
the time per query for all cloud deployments and replication factor 3, (b) the average query times for all
placement scenarios, and (c) the time per query when batch computing for C5 and replication factor 5. (d)
details the gap between the cost of the placements computed by SkyPIE versus the exact ILP. Floating point
arithmetic in the oracle reduction introduces minor inaccuracy.

Figure 7(c) illustrates the benefits of optimizing batches of several object signatures, under
replication factor 3 and the largest deployment (C5). Batching improves optimization efficiency,
with the same resources as before the median speedup of batched optimization is 1.5–2.3x on the
CPU and 8–37x on the GPU. Optimization efficiency improves with increasing batch size, but
with diminishing returns beyond batch size 100. It improves memory utilization on the CPU and
additionally utilizes the hardware parallelism on the GPU, but eventually saturates these resources.

Online Optimization Accuracy. Figure 7(d) reports the accuracy of SkyPIE as a cumulative
distribution over all queries. To quantify accuracy we measure, for each query, the optimality
gap between SkyPIE and the ILP—which we define as the ratio of the serving costs of SkyPIE’s
computed placement versus the true optimum of the ILP. The y-axis indicates the proportion of
queries with an optimality gap according to the x-axis. The blue line shows that SkyPIE’s overall
accuracy is a steep short-tailed distribution close to 1. There is no query with gap <1, so SkyPIE
returns no incorrect results that claim impossibly inexpensive placements. About 80% of queries
return placements with truly minimal costs with gap 1. The remaining 20% of queries have minor
inaccuracy with costs less than 4% more than the optimum (gap <1.04). This inaccuracy related to
the Linear-Program of the redundancy elimination as expected (§4.3), i.e., the orange line shows
that an oracle after enumeration without redundancy elimination is perfectly accurate.

Insight: SkyPIE achieves sub second object placement—101–108x faster than Integer-Linear-
Programs (ILPs). SkyPIE is almost as accurate as the ILP with minor inaccuracy (1–1.04x) due to
numerical imprecision in the reduction step of the precomputation.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 55. Publication date: February 2024.

55:18 Tiemo Bang, Chris Douglas, Natacha Crooks, & Joseph M. Hellerstein

1 2 3 4 5
Replication Factor

C5

C4

C3

C2

C1

0.0
2 3

5e
+0

2
3e

+0
4

0.0
04 0.2 2e

+0
1

1e
+0

3
2e

+0
4

0.0
02 0.2 1e

+0
1

5e
+0

2
8e

+0
3

0.0
00

4
0.0

02 0.1 0.8 4

0.0
00

3

0.0
00

3
0.0

06
0.0

09
0.0

08

(a) All Precomputation Times for 200

Cand. 200.0 500.0 1000.0
Batch Size

0

500

1000

1500

2000

W
al

l T
im

e
(s

)

(b) Precomputation Time C5, rep.f. 3

Cand. 200.0 500.0 1000.0
Batch Size

0.0

0.5

1.0

1.5

P

la
ce

m
en

ts
 (1

e6
)

(c) Precomputation Output C5, rep.f. 3

Cand. 200.0 500.0 1000.0
Batch Size

0

5

10

15

20

25

W
al

l T
im

e
(m

s)

(d) Query Time on CPU C5, rep.f. 3

10
2

10
0

10
2

10
4

W
al

l T
im

e
(s

)

Fig. 8. (a) Precomputation times for all placement scenarios under batch size 200. (b)–(d) Precomputation
time, number of placements in the resulting oracle, and the execution time for queries on the CPU of
candidate enumeration (Cand.) and subsequent relaxed oracle reduction with indicated partition size under
C5 (AWS+Azure) with replication factor 3.

6.2 Precomputation Performance
Tractable precomputation of a compact oracle is key to reap the previously presented optimization
speedup. We now analyze the precomputation time of oracles across placement scenarios varying
in replication factor (1–5) and cloud deployment size. Specifically, we seek understanding for the
efficiency of the three steps that yield our O(|𝑂 | 𝑓𝑚𝑎𝑥)-algorithm; the bounded replication factor,
enumeration of all candidate placements of a given cloud deployment, and batched reduction of
the oracle, cf. §4.

Figure 8(a) provides an overview over the precomputation times across all considered placement
scenarios, for our recommended batch size of 200. It shows that precomputation with 80 threads
takes 3ms to 50min wall clock time. The precomputation overhead grows significantly with the
replication factor and cloud deployment size, due to the exponential growth of the search space. This
currently caps our precomputation at a maximum replication factor of 5 for the largest deployment
(47 cloud regions and 163 object stores of AWS and Azure)—precomputation did not terminate after
4 days due to enumeration of too many candidates. Nevertheless, we demonstrate in the subsequent
experiment that this limitation introduces marginal inaccuracy in object placement for real-world
workloads.

Figures 8(b)–(d) detail the benefits of the relaxed oracle size reduction during precomputation.
We separate on the x-axis results for precomputation with only the candidate enumeration (denoted
as Cand.) and the subsequent relaxed reduction under a range of partition sizes. For this detailed
analysis, we consider the largest cloud deployment (C5) under replication factor 3.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 55. Publication date: February 2024.

SkyPIE: A Fast & Accurate Oracle for Object Placement 55:19

In summary, we can see that the small partition size 200 is highly effective.14 In Figure 8(b), this
partition size reduces the precomputation time by >4x down to 500s from 2500s—with about 250s
of that time being candidate enumeration. Still, compared to the larger partition sizes, the partition
size of 200 achieves almost the same oracle size and subsequent query time, as Figures 8(c)–(d)
show. However, one has to take these empirical observations with a grain of salt. The efficacy
of this trade-off between precomputation and query time depends on the specific distribution
of (non)-optimal placements across the redundancy elimination partitions—and in turn on price
distribution of the object stores. The effective partition size can change in future and users may
have their own preferences for this trade-off.

Insight: Precomputation is tractable up to replication factor 5. Relaxed reduction with small par-
titions proves highly effective, yielding substantial speedup for both precomputation and querying.

6.3 End-to-end Performance for Real-World Workload
We finally benchmark object placement end-to-end—for the real-world workload of the file hosting
service Ubuntu One [38] and three state-of-the-art heuristic optimization techniques. Today, these
heuristics trade off optimization time for accuracy. We now expose the real-world benefit of
accurate optimization with the SkyPIE oracle and contrast its optimization time including the
offline precomputation.

We set up the following realistic scenario. Ubuntu One operates front-end applications in various
cloud regions that access files in AWS S3 object stores. We simulate application cloud regions
with a randomly chosen set of 10 AWS regions15, as the trace was recorded does not contain
locations. We randomly select one as the home region accessing the object according to the trace.
The remaining remote regions access the object at a configurable probability. This probability
defines the likelihood that any of the remote regions besides the home region accesses an object.
We extract object signatures (object sizes and access frequencies) for the first week of the processed
trace, as published here [18].

In this realistic scenario, we compare SkyPIE’s accuracy and optimization time against the heuris-
tic approaches: (1) SpanStore [78], (2) Kmeans clustering [72, 80], and (3) profit-based ranking [4].
SkyPIE, kmeans, and profit-based optimize placements per object (∼1.1M trace records), where
kmeans clusters only on the access costs and profit-based computes a ranking based on access
and storage costs. SpanStore instead aggregates the object signature of objects with shared access
and then optimizes the placements of the resulting 150–1500 aggregates with an ILP [78]. We set
the maximum replication factor required by SkyPIE and kmeans to 5. We exclude the ILP, as its
overhead is intractable for this real-world use case.

Real-World Accuracy. Figure 9(a) shows on the y-axis the accuracy as the cost of the computed
placements relative to SkyPIE and on the x-axis the percent of accesses to objects from remote
cloud regions other than the home region. It shows that SkyPIE computes placements with costs
orders of magnitude lower than the heuristics. Also, we can see the workload sensitivity of the
heuristics, especially sudden degradation of SpanStore and the profit-based heuristics. Note that,
even under accesses from many regions, SkyPIE maintains high accuracy, despite the constrained
replication factor of 5. Consider for example 1000% remote accesses, where all 10 regions jointly
access the same objects. Intuitively, the cost of transferring objects from a nearby replica is only
marginally higher than the costs of writing and storing an object across all 10 regions. Despite the
limited replication factor, SkyPIE thus computes significantly cheaper placements compared to the
heuristics.
14200 placements is the minimum batch size in this case, since the partition size must be greater than the number of workload dimensions, cf. §4.3.
15AP-South-1, AP-Southeast-2, EU-Central-2, EU-North-1, EU-South-1, EU-West-1, EU-West-2, ME-Central-1, US-East-2, US-West-2

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 55. Publication date: February 2024.

55:20 Tiemo Bang, Chris Douglas, Natacha Crooks, & Joseph M. Hellerstein

0
10

0

10
1

10
2

10
3

10
4

C
os

t r
el

at
iv

e
to

 S
ky

P
IE

1 10
Remote Accesses (%)

(a) Accuracy

100 1000
Optimizer

0

2

4

6

8

W
al

l T
im

e
(h

)

(b) Total Optimization Time

Optimizer
SkyPIE (CPU)
SkyPIE (GPU)
Profit-based
SpanStore
Kmeans

Fig. 9. Object placement accuracy and optimization time for real-world workload derived from Ubuntu One.

Real-World Optimization Time. While Figure 9 (a) shows the accuracy of the optimization
approaches as the percentage of remote accesses increases, Figure 9(b) summarizes the total
optimization time of all runs and including offline precomputation for SkyPIE. To compute the
placements for this first week of Ubuntu One’s trace, the heuristics take∼1–2.5 hours while SkyPIE’s
end-to-end optimization time takes 8 hours and <1 hour, respectively. As such, SkyPIE end-to-end
offline and online optimization takes less time than the heuristics when using the GPU for querying.
Insight: SkyPIE significantly outperforms the current object placement heuristics. It achieves

>10x lower cost while taking comparable time for the end-to-end offline and online optimization.
SkyPIE thus promises significant cost savings through accurate placement and low optimization
overhead even for large scale, geo-distributed cloud services.

7 RELATEDWORK
We now discuss how related optimization approaches address the inherent complexity of data
placement problems. Data placement problems appear in various shapes of the Facility Location
Problem—with various objective and constraint formulations. The Facility Location Problem even in
the uncapacitated case of elastic capacity is NP-hard. Optimizers thus must navigate this inherent
complexity for tractable overhead at the large scale of the cloud.

SpanStore [78] reduces the online optimization overhead assuming uniform workload as input.
Rather than solving the placement one object signature at a time, SpanStore heuristically aggregates
groups of objects that are accessed from the same cloud regions. They solve the placement problem
in a general form using Integer-Linear-Programming, but only solve for few workload aggregates.
As we show in our experiments, SpanStore yields accurate placement if the workload is uniform,
but it is sensitive to access skew.

Other ILP solutions find similar ways to limit the input and invocations of the the solver. TripS [56]
coarsens object signatures to the average object size in a data center (DC). Other ILP solutions [71]
similarly assume aggregate workloads or a small number of DCs for tractable optimization.

Baruah et al. [20] propose partitioning to avoid costly solving of large placement problems. They
propose placement optimization based on Linear-Programming, but on individual partitions of the
overall problem. They show that this partitioned approach significantly speedup optimization and
remains close to the optimum if the number of partitions is relatively small compared to number of
available placement locations (e.g., servers).
Sharov et al. [72] propose a weighted k-means clustering approach for latency-centric place-

ment at Google. They reduce the problem complexity, addressing the realistic scenario of latency
minimization and assume a low replication factor (similar to SkyPIE). In their weighted k-means
algorithm, they further avoid high-dimensions by devising a 1-dimensional weight reflecting overall
latency-sensitivity, since the latency-sensitivity of operations is independent of the placement. No-
tably, their evaluation on Google’s production workload shows diminishing returns for increasing
replica numbers—underlining that a low replication factor is a realistic problem setting.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 55. Publication date: February 2024.

SkyPIE: A Fast & Accurate Oracle for Object Placement 55:21

Tuba [11, 74] assumes restrictive constraints for tractable online enumeration of placements. They
propose to enumerate placements via constraint satisfaction and subsequently rank the candidates.
Restrictive constraints allow effective enumeration without assumptions on the problem. Restrictive
constrains also yield a small candidate set, so that the subsequent ranking is cheap and likely close
to the optimum.

Liu et al. [51] propose to decouple optimization into offline optimization and online adaptation.
For tractable offline optimization, they address placement under elastic capacity and devise a
distributed optimization algorithm based on community detection. This offline optimization as well
as their online adaptation are an approximate optimization, for which they provide a parameterized
worst-case bound.

Akkio [8] apply a ranking-based approach for very low overhead placement of petabytes of small
data shards. They decide the placement of a data shard based on its access pattern, the resource
availability of data centers, and a customizable ranking policy. This ranking has very low overhead
so that is a heuristic placement approach scales well to the large problem size at Meta.
Wang et al. [76] propose reinforcement-based ML agents to decide placement at each data

center individually. The formulate the problem as a placement policy per data center and as
an unconstrained trade-off between latency and costs. Offline training of the agents allows low
overhead online optimization.
SkyPIE leverages a realistic problem formulation and offline optimization to circumvent high

online overhead. It addresses a less complex problem, considering a low replication factor. It further
relaxes the online optimization, shifting the heavy optimization to offline precomputation.

Note that, the specific problem formulations of the cited approaches differ. SkyPIE’s enumeration
(§4.2) can be extended with alternative constraints and its reduction step (§4.3) is compatible with
any linear cost functions, so that SkyPIE can be extended to these formulations.

8 LIMITATIONS & DIRECTIONS
8.1 SkyPIE In Broader Context

Use Cases. SkyPIE can be applied to a range of use cases. We have focused on object placement
use case and the cost minimization task that cloud users immediately face. Here, SkyPIE oracles
can serve as optimizers for the cloud vendors’ replication mechanism [14, 59, 65] or as drop-in
replacement for the prior optimizers [8, 11, 78, 80]—minimizing object placement cost or latency
at fine-granularity and with low overhead. In addition, SkyPIE oracles neatly extend to further
optimization tasks, serving these use cases with fast and accurate stochastic simulation for “what-if”
scenario planning, and minimization under workload drift for migration planning [19].

Placement optimization of dynamic workloads is anothermore involved use case. Current systems
assume fairly stationary workloads that afford periodic refinement of placements [8, 78]. However,
workloads with strong unpredictable variance, e.g., in access frequencies, require continuous
refinement of placements. Dynamic online optimization algorithms (similar to [24, 54]) can employ
SkyPIE as an inner-loop optimizer to improve accuracywhile maintaining low overhead. By contrast,
SkyPIE’s utility for prediction-based optimization algorithms (like [52, 62, 77]) is currently limited.
These algorithms need to solve the more complex placement problem that also includes the cost of
object migration. The resulting search space is too large for SkyPIE, but an oracle for the problem
without migration costs can seed starting points for search techniques. Dynamic pricing is not well
supported either—all price changes require computing new oracles. Predictable price changes may
warrant stochastic oracle computation over price distributions. Exploring dynamic optimization
based on SkyPIE is an interesting avenue.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 55. Publication date: February 2024.

55:22 Tiemo Bang, Chris Douglas, Natacha Crooks, & Joseph M. Hellerstein

Oracle Lifetime. SkyPIE benefits the above use cases with fast and accurate placement opti-
mization based on offline precomputation. A natural concern is whether the expected lifetime of an
oracle is short. Overall, an oracle is valid as long as the precomputation inputs remain unchanged,
e.g., prices, latency SLOs, available object stores, etc. Accordingly, if a limited number of scenarios
is expected, one can precompute an oracle for each. For example, cloud vendors may offer default
oracles for common sets of SLO classes (e.g., interactive, background) and global vs. continental
deployments. Applications may use several oracles simultaneously and may compute custom
oracles for custom SLOs or pricing.
Changes of the object stores, e.g., new pricing, as well as any changes of the precomputation

inputs require a new oracle. Crucially, such changes also invalidate placements. A new SkyPIE
oracle can be computed from scratch and shipped just a few hours after such pricing changes,
to begin the process of moving data to optimal locations. It is attractive to consider incremental
techniques to modify an existing SkyPIE oracle and data placements in the face of changes to costs,
but this is challenging due to the supermodular structure of the underlying set cover problem (§3.1).

Further Performance Optimizations. Applications may require higher performance than
offered out of the box from individual object stores, e.g., a higher request rate or tighter request
latency. Starting points for improvements are optimizations for object store performance, e.g.,
overlapping concurrent requests, issuing redundant requests or partitioning/load balancing ob-
jects [23, 33, 57, 67, 73]. Optimizations that generally improve performance are complementary to
the placement optimization, while optimizations that incur trade-offs may need integration with
the objective function of the placement optimization.
Additionally, the placement optimization of SkyPIE can be extended with further performance

constraints. For example, one can add constraints for applications that require high aggregate
bandwidth across multiple object stores. Performance constraints require extension of SkyPIE’s
candidate enumeration (§4.2).

8.2 Complex Pricing Models
Object stores can have pricing models that are more complex than assumed throughput the paper.
In addition to discounts based on monthly usage, Google Cloud Storage and Cloudflare R2 offer
limited free storage and accesses per month [28, 58], while Azure offers discounts for reserved
storage capacity [15]. Also, there are alternate storage services with distinct pricing models. SkyPIE
requires extensions to optimally handle these cases, as we discuss next.

Free & Reserved Capacity. SkyPIE can support efficient optimal placement under discounts from
free and reserved capacity. The required extension is to consider the active discounts based on the
current usage of the object stores. It can be realized by introducing “discounted instances” of object
stores (for each combination of discounts) and introducing conditional placements. Fortunately,
placement optimization of individual objects remains sufficient, since plainly the consumption of
all available discounted capacity minimizes costs regardless of the objects that occupy that capacity.
Hence, offline precomputation of all cost-optimal placements across all possible discounts allows
SkyPIE to offer fast and optimal online optimization.

Precomputation must handle mutually exclusive discounts, i.e., enumeration of candidates (§4.2)
must avoid choosing the same object store with different discounts in the same placement and the
oracle size reduction (§4.3) must only eliminate placements that are active for the same usage. The
overhead of this approach will depend on the number of discounts for different workload features,
due to combinatorics. Given the current number of free usage and reserved capacity discounts, we
expect this straightforward extension to be sufficient. Alternatively, ad hoc recomputation oracles
could be an avenue.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 55. Publication date: February 2024.

SkyPIE: A Fast & Accurate Oracle for Object Placement 55:23

Online querying (§5) must resolve the active placements for the current usage. Placements need
to be indexed by the discounts of their object stores and the matrix of the active placements has to
be assembled. We expect the effective overhead to be marginal, since the active placements change
infrequently given the typically large amounts of usage covered by discounts. One challenge is the
accurate placement of objects when their object signature exceeds the discounted capacity.

Usage Discounts. Object placement under usage discounts requires further extensions beyond
those described above, and cost-optimal placement appears difficult to achieve. Usage discounts
reduce prices based on the account-wide monthly usage[17, 60, 69]—the higher the usage of a
particular object store the higher the discounts. This incentivizes cloud services to consolidate
their monthly workload. However, it implies that minimizing costs requires the joint placement
optimization of all objects together and requires knowledge of the monthly workload in advance.
Cost-optimal placement hence requires massive scale optimization across all objects and prediction
of the monthly workload. Considering the currently narrow gap between discounted and non-
discounted prices, it seems that heuristics could be adequate here, but this merits further study.
Since perfect workload prediction is unlikely, we propose considering placement under usage

discounts as online problem where objects are gradually revealed. In this setting, a sophisticated
approach could simulate object migration to identify reachable usage discounts. A simpler approach
could greedily consolidate workload among similarly priced object stores. SkyPIE would accelerate
either approach, given the above extension for discount support.

Further Pricing Models. Cost-optimal placement under the non-linear pricing models of alter-
nate storage services require new approaches to cost modeling and precomputation. For example,
the stepwise linear pricing of DynamoDB likely requires approximation as linear function. Pricing
by provisioned bandwidth (e.g., provisioned IOPS) will require workload prediction to bridge to
the pay-per-use pricing of object stores. Exploring non-linear optimization and approximation
techniques is an interesting avenue to support further cost models.

CONCLUSION
SkyPIE demonstrates that is not only possible but highly beneficial to optimize cloud object
placement by precomputing an oracle. The predictability of cloud object storage costs allows us
to attack the problem exhaustively. This predictability leads us to an inverse perspective on the
problem, approaching it from the placements. Subsequent querying via geometric intersection
search proves to be as accurate as the best prior approaches, but orders of magnitude faster.
From a pragmatic perspective, SkyPIE works at the scale of the modern cloud, requiring only

a few hours to precompute an oracle. Cloud vendors change their prices and offerings far less
frequently, so the overhead of oracle precomputation is practically acceptable. As a result, SkyPIE
can replace the optimizers in current pricing tools and object replication systems, offering nano- to
millisecond response time for queries.

ACKNOWLEDGMENTS
We thank Observe Inc. and Tomas Karnagel for their support in processing workload traces on
their Observability Cloud. This work was supported by gifts from AMD, Anyscale, Google, IBM,
Intel, Microsoft, Mohamed Bin Zayed University of Artificial Intelligence, Samsung SDS, Uber, and
VMware.

REFERENCES
[1] Karen Aardal, Fabián A. Chudak, and David B. Shmoys. 1999. A 3-approximation algorithm for the k-level uncapacitated

facility location problem. Inform. Process. Lett. 72, 5 (1999), 161–167. https://doi.org/10.1016/S0020-0190(99)00144-1

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 55. Publication date: February 2024.

https://doi.org/10.1016/S0020-0190(99)00144-1

55:24 Tiemo Bang, Chris Douglas, Natacha Crooks, & Joseph M. Hellerstein

[2] Hussam Abu-Libdeh, Lonnie Princehouse, and Hakim Weatherspoon. 2010. RACS: a case for cloud storage diversity.
In Proceedings of the 1st ACM symposium on Cloud computing. Association for Computing Machinery, New York, NY,
USA, 229–240.

[3] Sharad Agarwal, John Dunagan, Navendu Jain, Stefan Saroiu, Alec Wolman, and Habinder Bhogan. 2010. Volley:
Automated data placement for geo-distributed cloud services. In NSDI. USENIX Association, USA, 2.

[4] Muhannad Alghamdi, Bin Tang, and Yutian Chen. 2017. Profit-based file replication in data intensive cloud data
centers. In 2017 IEEE International Conference on Communications (ICC). IEEE, Paris, France, 1–7. https://doi.org/10.
1109/ICC.2017.7996728

[5] Guillermo A Alvarez, Elizabeth Borowsky, Susie Go, Theodore H Romer, Ralph Becker-Szendy, Richard Golding, Arif
Merchant, Mirjana Spasojevic, Alistair Veitch, and John Wilkes. 2001. Minerva: An automated resource provisioning
tool for large-scale storage systems. ACM Transactions on Computer Systems (TOCS) 19, 4 (2001), 483–518.

[6] Amazon Web Services. 2023. Slack Case Study. https://aws.amazon.com/solutions/case-studies/slack/
[7] Eric Anderson, Michael Hobbs, Kimberly Keeton, Susan Spence, Mustafa Uysal, and Alistair Veitch. 2002. Hippodrome:

running circles around storage administration. In Conference on File and Storage Technologies (FAST 02). USENIX
Association, USA, 13.

[8] Muthukaruppan Annamalai, Kaushik Ravichandran, Harish Srinivas, Igor Zinkovsky, Luning Pan, Tony Savor, David
Nagle, and Michael Stumm. 2018. Sharding the Shards: Managing Datastore Locality at Scale with Akkio. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18). USENIX Association, Carlsbad, CA,
445–460. https://www.usenix.org/conference/osdi18/presentation/annamalai

[9] Mosek ApS. 2019. Mosek optimization toolbox for matlab. User’s Guide and Reference Manual, Version 4 (2019), 1.
[10] Mosek ApS. 2023. Advanced hot-start. https://docs.mosek.com/10.0/toolbox/advanced-hotstart.html
[11] Masoud Saeida Ardekani and Douglas B Terry. 2014. A Self-Configurable Geo-Replicated Cloud Storage System. In 11th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 14). USENIX Association, USA, 367–381.
[12] Microsoft Azure. 2023. Azure Blob Storage. https://azure.microsoft.com/en-us/products/storage/blobs/
[13] Microsoft Azure. 2023. Estimate the cost of archiving data. https://learn.microsoft.com/en-us/azure/storage/blobs/

archive-cost-estimation#the-cost-to-rehydrate
[14] Microsoft Azure. 2023. Object replication for block blobs. https://learn.microsoft.com/en-us/azure/storage/blobs/object-

replication-overview
[15] Microsoft Azure. 2023. Optimize costs for Blob storage with reserved capacity. https://learn.microsoft.com/en-us/azure/

storage/blobs/storage-blob-reserved-capacity
[16] Microsoft Azure. 2023. Pricing API. https://learn.microsoft.com/en-us/rest/api/cost-management/retail-prices/azure-

retail-prices
[17] Microsoft Azure. 2023. Pricing Calculator. https://azure.microsoft.com/en-us/pricing/calculator/
[18] Tiemo Bang, Chris Dougals, Natacha Crooks, and Joeseph M. Hellerstein. 2023. Cloud Oracle/SkyPIE Github Repo.

https://github.com/hydro-project/cloud_oracle
[19] Tiemo Bang, Conor Power, Siavash Ameli, Natacha Crooks, and Joseph M. Hellerstein. 2024. Optimizing the cloud?

Don’t train models. Build oracles!. In 14th Annual Conference on Innovative Data Systems Research, CIDR 2024 Chaminade,
USA, January 14-17, 2024. www.cidrdb.org. https://www.cidrdb.org/cidr2024/papers/p47-bang.pdf

[20] Nirvik Baruah, Peter Kraft, Fiodar Kazhamiaka, Peter Bailis, and Matei Zaharia. 2022. Parallelism-Optimizing Data
Placement for Faster Data-Parallel Computations. Proceedings of the VLDB Endowment 16, 4 (Dec. 2022), 760–771.
https://doi.org/10.14778/3574245.3574260

[21] Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative searching. Commun. ACM 18, 9
(1975), 509–517.

[22] Jon Louis Bentley. 1979. Multidimensional binary search trees in database applications. IEEE Transactions on Software
Engineering 5, 4 (1979), 333–340. https://doi.org/10.1109/TSE.1979.234200

[23] Haoqiong Bian and Anastasia Ailamaki. 2022. Pixels: An efficient column store for cloud data lakes. In 2022 IEEE 38th
International Conference on Data Engineering (ICDE). IEEE Computer Society, USA, 3078–3090. https://doi.org/10.1109/
ICDE53745.2022.00276

[24] Sebastien Bubeck. 2011. Introduction to Online Optimization. http://sbubeck.com/BubeckLectureNotes.pdf
[25] Amina Chikhaoui, Laurent Lemarchand, Kamel Boukhalfa, and Jalil Boukhobza. 2021. StorNIR, a multi-objective replica

placement strategy for cloud federations. In Proceedings of the 36th Annual ACM Symposium on Applied Computing.
Association for Computing Machinery, New York, NY, USA, 50–59. https://doi.org/10.1145/3412841.3441886

[26] K.L. Clarkson. 1994. More output-sensitive geometric algorithms. In Proceedings 35th Annual Symposium on Foundations
of Computer Science. IEEE Computer Society, USA, 695–702. https://doi.org/10.1109/SFCS.1994.365723

[27] Google Cloud. 2023. Cloud Storage. https://cloud.google.com/storage/
[28] CloudFlare. 2023. Pricing CloudFlare R2 Docs. https://developers.cloudflare.com/r2/pricing/

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 55. Publication date: February 2024.

https://doi.org/10.1109/ICC.2017.7996728
https://doi.org/10.1109/ICC.2017.7996728
https://aws.amazon.com/solutions/case-studies/slack/
https://www.usenix.org/conference/osdi18/presentation/annamalai
https://docs.mosek.com/10.0/toolbox/advanced-hotstart.html
https://azure.microsoft.com/en-us/products/storage/blobs/
https://learn.microsoft.com/en-us/azure/storage/blobs/archive-cost-estimation#the-cost-to-rehydrate
https://learn.microsoft.com/en-us/azure/storage/blobs/archive-cost-estimation#the-cost-to-rehydrate
https://learn.microsoft.com/en-us/azure/storage/blobs/object-replication-overview
https://learn.microsoft.com/en-us/azure/storage/blobs/object-replication-overview
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-blob-reserved-capacity
https://learn.microsoft.com/en-us/azure/storage/blobs/storage-blob-reserved-capacity
https://learn.microsoft.com/en-us/rest/api/cost-management/retail-prices/azure-retail-prices
https://learn.microsoft.com/en-us/rest/api/cost-management/retail-prices/azure-retail-prices
https://azure.microsoft.com/en-us/pricing/calculator/
https://github.com/hydro-project/cloud_oracle
https://www.cidrdb.org/cidr2024/papers/p47-bang.pdf
https://doi.org/10.14778/3574245.3574260
https://doi.org/10.1109/TSE.1979.234200
https://doi.org/10.1109/ICDE53745.2022.00276
https://doi.org/10.1109/ICDE53745.2022.00276
http://sbubeck.com/BubeckLectureNotes.pdf
https://doi.org/10.1145/3412841.3441886
https://doi.org/10.1109/SFCS.1994.365723
https://cloud.google.com/storage/
https://developers.cloudflare.com/r2/pricing/

SkyPIE: A Fast & Accurate Oracle for Object Placement 55:25

[29] IBM Corporation. 2022. Starting from a solution: MIP starts. https://www.ibm.com/docs/en/icos/22.1.0?topic=mip-
starting-from-solution-starts

[30] NVIDIA Corporation. 2023. NVIDIA DGX-1. https://images.nvidia.com/content/pdf/dgx1-v100-system-architecture-
whitepaper.pdf

[31] NVIDIA Corporation. 2023. NVIDIA Tesla V100 GPUArchitecture. https://images.nvidia.com/content/volta-architecture/
pdf/volta-architecture-whitepaper.pdf

[32] Oracle Corporation. 2023. Object Storage. https://www.oracle.com/cloud/storage/object-storage/
[33] Dominik Durner, Viktor Leis, and Thomas Neumann. 2023. Exploiting Cloud Object Storage for High-Performance

Analytics. Proceedings of the VLDB Endowment 16, 11 (2023), 2769–2782.
[34] Henry Fuchs, Zvi M Kedem, and Bruce F Naylor. 1980. On visible surface generation by a priori tree structures. In

Proceedings of the 7th annual conference on Computer graphics and interactive techniques. Association for Computing
Machinery, New York, NY, USA, 124–133. https://doi.org/10.1145/800250.807481

[35] Komei Fukuda. 2015. Lecture - Polyhedral Computation, Spring 2015. https://people.inf.ethz.ch/fukudak/lect/pclect/
notes2015/PolyComp2015.pdf

[36] Gerald Gamrath, Benjamin Hiller, and Jakob Witzig. 2015. Reoptimization techniques for MIP solvers. In Experimental
Algorithms: 14th International Symposium, SEA 2015, Paris, France, June 29–July 1, 2015, Proceedings 14. Springer,
Springer-Verlag, Berlin, Heidelberg, 181–192. https://doi.org/10.1007/978-3-319-20086-6_14

[37] Greg Glockner. 2023. Does Gurobi support GPUs? https://support.gurobi.com/hc/en-us/articles/360012237852-Does-
Gurobi-support-GPUs

[38] Raúl Gracia-Tinedo, Yongchao Tian, Josep Sampé, Hamza Harkous, John Lenton, Pedro García-López, Marc Sánchez-
Artigas, and Marko Vukolic. 2015. Dissecting UbuntuOne: Autopsy of a Global-Scale Personal Cloud Back-End. In
Proceedings of the 2015 Internet Measurement Conference (IMC ’15). Association for Computing Machinery, New York,
NY, USA, 155–168. https://doi.org/10.1145/2815675.2815677 event-place: Tokyo, Japan.

[39] Sudipto Guha and Samir Khuller. 1999. Greedy Strikes Back: Improved Facility Location Algorithms. Journal of
Algorithms 31, 1 (April 1999), 228–248. https://doi.org/10.1006/jagm.1998.0993

[40] Xiangyu Guo, Janardhan Kulkarni, Shi Li, and Jiayi Xian. 2020. On the Facility Location Problem in Online and
Dynamic Models. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2020) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 176), Jaros\law Byrka and
Raghu Meka (Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 42:1–42:23. https:
//doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.42 ISSN: 1868-8969.

[41] Menal Guzelsoy. 2009. Dual methods in mixed integer linear programming. Ph. D. Dissertation. Lehigh University PhD.
[42] M. T. Hajiaghayi, M. Mahdian, and V. S. Mirrokni. 2003. The Facility Location Problem with Gen-

eral Cost Functions. Networks 42, 1 (2003), 42–47. https://doi.org/10.1002/net.10080 _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.10080.

[43] Joseph M. Hellerstein, Elias Koutsoupias, and Christos H. Papadimitriou. 1997. On the Analysis of Indexing Schemes.
In Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, May
12-14, 1997, Tucson, Arizona, USA. Association for Computing Machinery, New York, NY, USA, 249–256. https:
//doi.org/10.1145/263661.263688

[44] Backblaze Inc. 2023. B2 Cloud Storage. https://www.backblaze.com/b2/cloud-storage.html
[45] Cloudflare Inc. 2023. Cloudflare R2. https://www.cloudflare.com/products/r2/
[46] Paras Jain, Sam Kumar, Sarah Wooders, Shishir G. Patil, Joseph E. Gonzalez, and Ion Stoica. 2023. Skyplane: Optimizing

Transfer Cost and Throughput Using Cloud-Aware Overlays. USENIX Association, USA, 1375–1389. https://www.
usenix.org/conference/nsdi23/presentation/jain

[47] Sudarshan Kadambi, Jianjun Chen, Brian F Cooper, David Lomax, Raghu Ramakrishnan, Adam Silberstein, Erwin Tam,
and Hector Garcia-Molina. 2011. Where in the world is my data? Proceedings of the VLDB Endowment 4, 11 (2011),
1040–1050.

[48] Richard M Karp, RE Miller, and JW Thatcher. 1972. Reducibility among combinatorial problems, Complexity of
computer computations. Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, 1972 378476, 51 (1972),
14644.

[49] Ramakrishna Kotla, Lorenzo Alvisi, and Mike Dahlin. 2007. SafeStore: A durable and practical storage system. In
USENIX Annual Technical Conference. USENIX Association, USA, 129–142.

[50] Shi Li. 2013. A 1.488 approximation algorithm for the uncapacitated facility location problem. Information and
Computation 222 (Jan. 2013), 45–58. https://doi.org/10.1016/j.ic.2012.01.007

[51] Kaiyang Liu, Jun Peng, Jingrong Wang, Weirong Liu, Zhiwu Huang, and Jianping Pan. 2020. Scalable and Adaptive
Data Replica Placement for Geo-Distributed Cloud Storages. IEEE Transactions on Parallel and Distributed Systems 31,
7 (2020), 1575–1587. https://doi.org/10.1109/TPDS.2020.2968321

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 55. Publication date: February 2024.

https://www.ibm.com/docs/en/icos/22.1.0?topic=mip-starting-from-solution-starts
https://www.ibm.com/docs/en/icos/22.1.0?topic=mip-starting-from-solution-starts
https://images.nvidia.com/content/pdf/dgx1-v100-system-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/dgx1-v100-system-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.oracle.com/cloud/storage/object-storage/
https://doi.org/10.1145/800250.807481
https://people.inf.ethz.ch/fukudak/lect/pclect/notes2015/PolyComp2015.pdf
https://people.inf.ethz.ch/fukudak/lect/pclect/notes2015/PolyComp2015.pdf
https://doi.org/10.1007/978-3-319-20086-6_14
https://support.gurobi.com/hc/en-us/articles/360012237852-Does-Gurobi-support-GPUs
https://support.gurobi.com/hc/en-us/articles/360012237852-Does-Gurobi-support-GPUs
https://doi.org/10.1145/2815675.2815677
https://doi.org/10.1006/jagm.1998.0993
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.42
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.42
https://doi.org/10.1002/net.10080
https://doi.org/10.1145/263661.263688
https://doi.org/10.1145/263661.263688
https://www.backblaze.com/b2/cloud-storage.html
https://www.cloudflare.com/products/r2/
https://www.usenix.org/conference/nsdi23/presentation/jain
https://www.usenix.org/conference/nsdi23/presentation/jain
https://doi.org/10.1016/j.ic.2012.01.007
https://doi.org/10.1109/TPDS.2020.2968321

55:26 Tiemo Bang, Chris Douglas, Natacha Crooks, & Joseph M. Hellerstein

[52] Qingsong Liu, Zhuoran Li, and Zhixuan Fang. 2022. Online Convex Optimization with Switching Costs: Algorithms
and Performance. In 2022 20th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless
Networks (WiOpt). IEEE Computer Society, 1–8. https://doi.org/10.23919/WiOpt56218.2022.9930570

[53] Harsha V Madhyastha, John McCullough, George Porter, Rishi Kapoor, Stefan Savage, Alex C Snoeren, and Amin
Vahdat. 2012. Scc: Cluster storage provisioning informed by application characteristics and SLAs.. In FAST. USENIX
Association, USA, 23.

[54] Yaser Mansouri, Adel Nadjaran Toosi, and Rajkumar Buyya. 2019. Cost Optimization for Dynamic Replication
and Migration of Data in Cloud Data Centers. IEEE Transactions on Cloud Computing 7, 3 (2019), 705–718. https:
//doi.org/10.1109/TCC.2017.2659728

[55] Paul Miller, Pascal Matzke, Will McKeon-White, Christopher Voce, and Ian McPherson. 2018. A Clear Multicloud
Strategy Delivers Business Value. https://www.forrester.com/report/a-clear-multicloud-strategy-delivers-business-
value/RES128781

[56] Kwangsung Oh, Abhishek Chandra, and Jon Weissman. 2017. TripS: Automated Multi-Tiered Data Placement in a
Geo-Distributed Cloud Environment. In Proceedings of the 10th ACM International Systems and Storage Conference
(SYSTOR ’17). Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3078468.3078485
event-place: Haifa, Israel.

[57] Matthew Perron, Raul Castro Fernandez, David DeWitt, and Samuel Madden. 2020. Starling: A Scalable Query Engine
on Cloud Functions. In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 131–141. https://doi.org/10.1145/3318464.3380609

[58] Google Cloud Platform. 2023. Cloud Storage Always Free usage limits. https://cloud.google.com/storage/pricing#cloud-
storage-always-free

[59] Google Cloud Platform. 2023. Data Availability and Durability. https://cloud.google.com/storage/docs/availability-
durability#cross-region-redundancy

[60] Google Cloud Platform. 2023. Pricing Calculator. https://cloud.google.com/products/calculator
[61] Ted Ralphs. 2006. Duality and Warm Starting in Integer Programming. https://coral.ise.lehigh.edu/~ted/files/papers/

DMII06.pdf
[62] James Blake Rawlings, David Q. Mayne, and Moritz Diehl. 2017. Model predictive control: theory, computation, and

design (2nd edition ed.). Nob Hill Publishing, Madison, Wisconsin.
[63] Timos Sellis, Nick Roussopoulos, and Christos Faloutsos. 1987. The R+-Tree: A Dynamic Index for Multi-Dimensional

Objects. Technical Report. University of Maryland.
[64] Amazon Web Services. 2023. Amazon S3 Intelligent-Tiering storage class. https://aws.amazon.com/s3/storage-classes/

intelligent-tiering/
[65] Amazon Web Services. 2023. Amazon S3 Replication. https://aws.amazon.com/s3/features/replication/
[66] Amazon Web Services. 2023. Cloud Object Storage. https://aws.amazon.com/s3/
[67] Amazon Web Services. 2023. Performance Design Patterns for Amazon S3. https://docs.aws.amazon.com/AmazonS3/

latest/userguide/optimizing-performance-design-patterns.html
[68] Amazon Web Services. 2023. Pricing API. https://pricing.us-east-1.amazonaws.com/offers/v1.0/aws/index.json
[69] Amazon Web Services. 2023. Pricing Calculator. https://calculator.aws/
[70] Amazon Web Services. 2023. Restoring an archived object. https://docs.aws.amazon.com/AmazonS3/latest/userguide/

restoring-objects.html
[71] P.N. Shankaranarayanan, Ashiwan Sivakumar, Sanjay Rao, and Mohit Tawarmalani. 2014. Performance Sensitive

Replication in Geo-distributed Cloud Datastores. In 2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. IEEE Computer Society, USA, 240–251. https://doi.org/10.1109/DSN.2014.34

[72] Artyom Sharov, Alexander Shraer, Arif Merchant, andMurray Stokely. 2015. Takeme to your leader! online optimization
of distributed storage configurations. Proceedings of the VLDB Endowment 8, 12 (Aug. 2015), 1490–1501. https:
//doi.org/10.14778/2824032.2824047

[73] Junjay Tan, Thanaa Ghanem, Matthew Perron, Xiangyao Yu, Michael Stonebraker, David DeWitt, Marco Serafini,
Ashraf Aboulnaga, and Tim Kraska. 2019. Choosing a cloud DBMS: architectures and tradeoffs. Proceedings of the
VLDB Endowment 12, 12 (Aug. 2019), 2170–2182. https://doi.org/10.14778/3352063.3352133

[74] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan, Marcos K. Aguilera, and Hussam
Abu-Libdeh. 2013. Consistency-Based Service Level Agreements for Cloud Storage. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles (SOSP ’13). Association for Computing Machinery, New York, NY,
USA, 309–324. https://doi.org/10.1145/2517349.2522731 event-place: Farminton, Pennsylvania.

[75] Johann Wolfgang Von Goethe. 1843. Faust: A Tragedy, in Two Parts. Chapman and Hall.
[76] Haoyu Wang, Haiying Shen, Zijian Li, and Shuhao Tian. 2021. GeoCol: A geo-distributed cloud storage system with

low cost and latency using reinforcement learning. In 2021 IEEE 41st International Conference on Distributed Computing
Systems (ICDCS). IEEE Computer Society, 149–159. https://doi.org/10.1109/ICDCS51616.2021.00023

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 55. Publication date: February 2024.

https://doi.org/10.23919/WiOpt56218.2022.9930570
https://doi.org/10.1109/TCC.2017.2659728
https://doi.org/10.1109/TCC.2017.2659728
https://www.forrester.com/report/a-clear-multicloud-strategy-delivers-business-value/RES128781
https://www.forrester.com/report/a-clear-multicloud-strategy-delivers-business-value/RES128781
https://doi.org/10.1145/3078468.3078485
https://doi.org/10.1145/3318464.3380609
https://cloud.google.com/storage/pricing#cloud-storage-always-free
https://cloud.google.com/storage/pricing#cloud-storage-always-free
https://cloud.google.com/storage/docs/availability-durability#cross-region-redundancy
https://cloud.google.com/storage/docs/availability-durability#cross-region-redundancy
https://cloud.google.com/products/calculator
https://coral.ise.lehigh.edu/~ted/files/papers/DMII06.pdf
https://coral.ise.lehigh.edu/~ted/files/papers/DMII06.pdf
https://aws.amazon.com/s3/storage-classes/intelligent-tiering/
https://aws.amazon.com/s3/storage-classes/intelligent-tiering/
https://aws.amazon.com/s3/features/replication/
https://aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance-design-patterns.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/optimizing-performance-design-patterns.html
https://pricing.us-east-1.amazonaws.com/offers/v1.0/aws/index.json
https://calculator.aws/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/restoring-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/restoring-objects.html
https://doi.org/10.1109/DSN.2014.34
https://doi.org/10.14778/2824032.2824047
https://doi.org/10.14778/2824032.2824047
https://doi.org/10.14778/3352063.3352133
https://doi.org/10.1145/2517349.2522731
https://doi.org/10.1109/ICDCS51616.2021.00023

SkyPIE: A Fast & Accurate Oracle for Object Placement 55:27

[77] Tyler Westenbroek, Max Simchowitz, Michael I. Jordan, and S. Shankar Sastry. 2021. On the Stability of Nonlinear
Receding Horizon Control: A Geometric Perspective. In 2021 60th IEEE Conference on Decision and Control (CDC). IEEE,
Austin, TX, USA, 742–749. https://doi.org/10.1109/CDC45484.2021.9682955

[78] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett, and Harsha V. Madhyastha. 2013. SPANStore:
Cost-Effective Geo-Replicated Storage Spanning Multiple Cloud Services. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles (SOSP ’13). Association for Computing Machinery, New York, NY, USA,
292–308. https://doi.org/10.1145/2517349.2522730 event-place: Farminton, Pennsylvania.

[79] Zongheng Yang, Zhanghao Wu, Michael Luo, Wei-Lin Chiang, Romil Bhardwaj, Woosuk Kwon, Siyuan Zhuang,
Frank Sifei Luan, GautamMittal, Scott Shenker, and Ion Stoica. 2023. SkyPilot: An Intercloud Broker for Sky Computing.
USENIX Association, USA, 437–455. https://www.usenix.org/conference/nsdi23/presentation/yang-zongheng

[80] Hamidreza Zare, Viveck Ramesh Cadambe, Bhuvan Urgaonkar, Nader Alfares, Praneet Soni, Chetan Sharma, and
Arif A Merchant. 2022. LEGOStore: a linearizable geo-distributed store combining replication and erasure coding.
Proceedings of the VLDB Endowment 15, 10 (Sept. 2022), 2201–2215. https://doi.org/10.14778/3547305.3547323

Received July 2023; revised October 2023; accepted November 2023

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 55. Publication date: February 2024.

https://doi.org/10.1109/CDC45484.2021.9682955
https://doi.org/10.1145/2517349.2522730
https://www.usenix.org/conference/nsdi23/presentation/yang-zongheng
https://doi.org/10.14778/3547305.3547323

	Abstract
	1 INTRODUCTION
	2 TWO PERSPECTIVES ON OBJECT PLACEMENT
	2.1 Traditional: From Workload to Placement
	2.2 SkyPIE's Inverse Approach

	3 THE OBJECT PLACEMENT PROBLEM
	3.1 Problem Definition
	3.2 Cost Model

	4 PRECOMPUTING THE SkyPIE ORACLE
	4.1 Precomputation by Inverse Enumeration
	4.2 Candidate Enumeration
	4.3 Oracle Size Reduction

	5 QUERYING THE SkyPIE ORACLE
	6 EXPERIMENTAL EVALUATION
	6.1 Online Optimization Performance
	6.2 Precomputation Performance
	6.3 End-to-end Performance for Real-World Workload

	7 RELATED WORK
	8 LIMITATIONS & DIRECTIONS
	8.1 SkyPIE In Broader Context
	8.2 Complex Pricing Models

	REFERENCES

