
DoppelGanger++: Towards Fast Dependency Graph
Generation for Database Replay
WONSEOK LEE

∗
, POSTECH, Korea

JAEHYUN HA
∗
, POSTECH, Korea

WOOK-SHIN HAN
†
, POSTECH, Korea

CHANGGYOO PARK, SAP Labs Korea, Korea
MYUNGGON PARK, SAP Labs Korea, Korea
JUHYENG HAN, SAP Labs Korea, Korea
JUCHANG LEE, SAP Labs Korea, Korea

A database replay system (DRS) captures workloads on a production system and then replays them in a test
system to test various system changes, avoiding any risk before realizing them in production. The dependency
graph generation in a DRS is crucial in preserving output determinism while maximizing concurrency. The
state-of-the-art dependency graph generation algorithm deployed in a commercial DBMS uses a generate-and-
prune strategy. It first generates a dependency graph by performing backward scans for each request in a
workload. It then prunes all redundant edges using an expensive, transitive reduction algorithm. However, we
notice that this generates a large dependency graph that contains many redundant edges and its worst-case
time complexity is quadratic to the number of requests in a workload. In order to solve these challenging
problems, we formally propose four classes of dependency graphs for DRSs. We then present a stateful single
forward scan algorithm, SSFS, to generate any class of dependency graphs by performing a single scan over
all requests while succinctly maintaining states. Here, states refer to information that is stored and maintained
for efficient dependency graph generation. We also propose the parallel SSFS to utilize the computation power
with multi-core CPUs while balancing the loads. We implemented our DRS in a leading commercial DBMS.
Extensive experiments using the TPC-C, SD benchmarks, and a real-world customer workload show that
our DRS significantly improves the dependency graph generation time by up to two orders of magnitude,
compared to the state-of-the-art.

CCS Concepts: • Information systems→ Database utilities and tools; Database performance evaluation.

Additional Key Words and Phrases: database replay

ACM Reference Format:
Wonseok Lee, Jaehyun Ha, Wook-Shin Han, Changgyoo Park, Myunggon Park, Juhyeng Han, and Juchang
Lee. 2024. DoppelGanger++: Towards Fast Dependency Graph Generation for Database Replay. Proc. ACM
Manag. Data 2, 1 (SIGMOD), Article 67 (February 2024), 26 pages. https://doi.org/10.1145/3639322

∗Both authors contributed equally to this research.
†Corresponding author

Authors’ addresses: Wonseok Lee, wslee@dblab.postech.ac.kr, POSTECH, Korea; Jaehyun Ha, jhha@dblab.postech.ac.kr,
POSTECH, Korea; Wook-Shin Han, wshan@dblab.postech.ac.kr, POSTECH, Korea; Changgyoo Park, changgyoo.park@
sap.com, SAP Labs Korea, Korea; Myunggon Park, myunggon.park@sap.com, SAP Labs Korea, Korea; Juhyeng Han,
juhyeng.han@sap.com, SAP Labs Korea, Korea; Juchang Lee, juc.lee@sap.com, SAP Labs Korea, Korea.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2836-6573/2024/2-ART67
https://doi.org/10.1145/3639322

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 67. Publication date: February 2024.

HTTPS://ORCID.ORG/0009-0008-3672-5384
HTTPS://ORCID.ORG/0009-0003-1815-3320
HTTPS://ORCID.ORG/0000-0001-9206-9563
HTTPS://ORCID.ORG/0009-0005-6675-2613
HTTPS://ORCID.ORG/0009-0009-6727-5280
HTTPS://ORCID.ORG/0000-0002-5522-2722
HTTPS://ORCID.ORG/0000-0002-2938-3354
https://doi.org/10.1145/3639322
https://orcid.org/0009-0008-3672-5384
https://orcid.org/0009-0003-1815-3320
https://orcid.org/0000-0001-9206-9563
https://orcid.org/0009-0005-6675-2613
https://orcid.org/0009-0009-6727-5280
https://orcid.org/0000-0002-5522-2722
https://orcid.org/0000-0002-2938-3354
https://doi.org/10.1145/3639322

67:2 Wonseok Lee et al.

1 INTRODUCTION
Database replay systems (DRSs) test relational database systems in a test system. DRSs capture
workloads on a production system and then replay them in a test system to test various system
changes (such as hardware/software upgrades) and to avoid any risk such as (a) performance
regression, (b) bugs, or (c) new resource contention points before realizing them in production
[20, 28]. Here, a workload consists of user requests each containing a SQL statement with session
ID.
Output determinism [10] ensures that the replay of a captured workload produces the same

output as the original run, even when physical plans for the workload change due to hardware or
software updates. The relative ordering between two dependent requests in the original run must
be preserved in the replay. Otherwise, the replay could not guarantee to produce the same output
as the original run. For example, in Listing 1, Q1 is executed before Q2 in the original run. Assume
that both queries are executed in auto-commit mode. However, during database replay, suppose
that Q1 and Q2 are replayed in reverse order. Then, the output of Q2 differs from that in the original
run, which violates output determinism.

Listing 1. Query examples

Q1: UPDATE emp SET salary=salary *1.1;

Q2: SELECT * FROM emp WHERE salary > 60000;

The state-of-the-art DRSs ensure output determinism by generating a dependency graph from a
captured workload and replaying requests based on the dependency graph. Here, each vertex in the
dependency graph corresponds to a request and an edge imposes a precedence constraint between
two requests [3, 28]. Although one can ensure output determinism by sequentially replaying the
requests in the same order in capture time, this naive approach fails to run a realistic replay,
severely limiting concurrency [28]. Instead, by executing the requests in parallel while preserving
the ordering in the dependency graph, DRSs can achieve output determinism while supporting
realistic, concurrent replay.
DRSs have been supported by major database vendors [2, 3, 5, 38]. They support the following

four phases in their database replay workflow: workload capture, dependency graph generation,
workload replay, and report generation. In the first phase, a DRS records all requests in a workload,
one capture file for each session. This step is done in a production system, while the other steps
are typically done in a test system to avoid interfering with running applications in the production
system. In the dependency generation phase, it generates a dependency graph that imposes prece-
dence constraints among requests to ensure the output determinism. In the workload replay phase,
it replays captured workloads using the minimal dependency graph with those capture files. The
last step generates various reports about any divergence between system changes.

Note that the decision to migrate existing database instances to a target system cannot be made
in one shot; instead, capture-and-replay is executed continuously to test the target system using
various workloads. Thus, reducing the generation time is crucial, although dependency graph
generation is an offline process.
To achieve output determinism while maximizing the concurrency, the DRS must generate the

minimal dependency graph with the shortest critical path [39] and replay the workload based on it.
Morfonios et al. [28] proposed RBSS, an efficient dependency graph generation algorithm using
the generate-and-prune strategy. With this strategy, the generation step generates the incoming
edges of each vertex by finding the latest dependent requests in other sessions using a backward
scan, while the pruning step prunes redundant edges using a transitive reduction algorithm [9]. A

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 67. Publication date: February 2024.

DoppelGanger++: Towards Fast Dependency Graph Generation for Database Replay 67:3

non-redundant

redundant
due to IT only
redundant
due to OT only

redundant due to
reachability other
than IT and OT

Edge types
Session 1

Session 2

Session 3

Session 4

redundant due to
both IT and OT

Transaction T

Fig. 1. An example of a dependency graph with edge types.

direct edge (𝑢, 𝑣) is redundant if 𝑣 is reachable from 𝑢 after removing the edge. The technique has
been employed in a commercial DBMS [2].
However, RBSS could still generate a large dependency graph containing many redundant

edges, although they can be filtered in the generation step. For example, Table 1 shows that 99.6%
of the edges in this dependency graph (labeled as G

RBSS
) are redundant in a representative ERP

workload, SD-Benchmark [4]. Given a dependency graph𝐺 (𝑉 , 𝐸), computing its transitive reduction
𝐺𝑡𝑟 (𝑉 , 𝐸′) could be expensive when |𝐸 | >> |𝐸′ |, since all redundant edges in 𝐸 will be removed.

Secondly, the time complexity of RBSS could be 𝑂 (|𝑉 |2) due to repetitive backward scans for
every vertex. Specifically, to generate in-edges of each vertex in a session, RBSS needs to scan
other sessions backward until reaching the start of the sessions in the worst case. Furthermore,
backward scanning accesses many unnecessary sessions. This inefficiency in the dependency graph
generation algorithm significantly increases the dependency graph generation time. Thus, we must
develop an efficient algorithm to generate a dependency graph close to the transitive reduction’s
size.
RBSS incurs a major bottleneck in the capture-and-replay pipeline, constituting more than

50% of the total end-to-end time. Since our customers continuously capture and replay changing
workloads over time to check any divergence between system changes quickly, the dependency
graph generation needs to be significantly boosted.
To formally address this problem, we first define two types of dominant, redundant edges in

the dependency graph (object transitivity (OT) and inter-session transitivity (IT)). OT refers to
redundancy due to a path where all requests on the path access a common object. Consider a
dependency graph in Figure 1. The label of a vertex represents an operation (Update, Select, or
Commit) on an object. For example, the label (i.e.,𝑈1) of a request 𝑟1 represents an update statement
on object 1. For example, (𝑟6, 𝑟9) is redundant by OT since there is a path (𝑟6, 𝑟8, 𝑟9) where all
requests access the common object 2. IT refers to redundancy due to a path through requests in two
sessions, even if some of the requests access different object(s). Consider Sessions 2 and 3. Then,
the edge (𝑟5, 𝑟12) is redundant due to IT as a path (𝑟5, 𝑟6, 𝑟8, 𝑟12) through these sessions exists. Note
that 𝑟5 and 𝑟12 access object 1, while the other requests access object 2. Although we can generalize
the definition of IT for three or more sessions, pruning such redundancy will require expensive
join operations, which is even more expensive than transitive closure. This motivates us to balance
compactness and efficiency in dependency graph generation. We will elaborate on this issue in
Section 3.2.

In order to find the most suitable dependency graph by systematically exploring the design space,
i.e., taxonomy, of all combinations of IT and OT, we next propose four new dependency graphs:
IT(k)-free, OT-free, OTIT-free, and IT[OT]-free graphs. We will formally define these graphs in
Section 3. Our formalism can explain that 1) the IT(k)-free graph is a generalized one of [28], 2)

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 67. Publication date: February 2024.

67:4 Wonseok Lee et al.

Table 1. Proportion of the redundant edges in each dependency graph in SD-benchmark with 16 server

instances.

Dependency Graph # of redundant edges
of edges × 100%

G
RBSS

99.6%
IT-free graph (GIT) 73.7%
OT-free graph (GOT) 62.9%

IT[OT]-free graph (GIT[OT]) 9.0%
OTIT-free graph (GOTIT) 5.3%

the OT-free graph is another new dependency graph to capture the transitive property of edges
through common objects, and 3) the IT[OT]-free graph takes advantages from both. We discover
that the IT[OT]-free graph is the most desirable one balancing both efficiency and size.
In order to avoid repetitive backward scans, we propose a novel, efficient dependency graph

generation algorithm called stateful single forward scan (SSFS). SSFS performs a single forward
scan over all requests while maintaining states. By analyzing the definitions of redundancies,
we succinctly maintain the states depending on the dependency graph type. We also propose a
parallel version of SSFS, where the requests are horizontally partitioned by time range. The parallel
SSFS hierarchically merges these local dependency graphs to generate a global dependency graph,
achieving linear speedup.

Our contributions are summarized as follows:

(1) We implement DoppelGanger++, a DRS with all proposed techniques in a leading, commer-
cial DBMS. Thus, DoppelGanger++ can support real-world customer workloads.

(2) We formally define a taxonomy of the four types of dependency graphs by systematically
exploring the design space of dominant redundant edges. We also provide a Venn diagram to
illustrate the containment relationships among those dependency graphs.

(3) We propose a novel dependency generation algorithm SSFS to scan requests once, i.e., avoiding
the quadratic complexity and achieving the linear complexity. Note that SSFS can generate
any type of dependency graphs in the taxonomy.

(4) By analyzing all dependency graphs, we suggest SSFS with the IT[OT]-free graph, which
achieves both the compactness of the dependency graph and the efficiency of the algorithm.

(5) We also propose a parallel version of SSFS, which reduces the dependency graph generation
time further.

(6) Experiments using TPC-C, SD benchmarks, and a real-world customer workload show that
SSFS outperforms RBSS by up to two orders of magnitude. We also show that the parallel
SSFS achieves almost linear speedup.

The rest of this paper is organized as follows. Section 2 describes the overall architecture of
DoppelGanger++. Section 3 proposes a taxonomy of dependency graphs. In Section 4, we review
RBSS and its relationship to the dependency graphs defined in Section 3. Section 5 proposes our
SSFS algorithm and shows how SSFS generates all types of dependency graphs. We also explain
why the IT[OT]-free graph is a desirable dependency graph balancing both efficiency and size.
Section 6 proposes a parallel version of SSFS. In order to substantiate our claims, Section 7 presents
an extensive experimental evaluation of SSFS compared to RBSS using the two benchmarks and a
real-world customer workload. Section 8 compares our contributions to related work, and Section
9 concludes the paper.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 67. Publication date: February 2024.

DoppelGanger++: Towards Fast Dependency Graph Generation for Database Replay 67:5

1 Capture

Control System

Captured files

Dependency
Graph

2 Preprocess

Dependency Graph

3 Replay

4 Analyze

Replicate

DBMS v. 3.5

App servers

Production System

DB

User clients

DBMS v. 4.0

Target System

DB

Replayer

Replay clients

Dependency Graph

Invoke Database ReplayDBA

Workload 1: peak time
Workload 2: normal
 ...

Fig. 2. The architecture of DoppelGanger++.

2 ARCHITECTURE OVERVIEW
DoppelGanger++ is a full-fledged DRS built on a state-of-the-art commercial DBMS. The system
offers users a multi-purpose testing tool by allowing them to capture the workload running on a
source system and replay the captured workload on a target system with detailed replay analysis
reports. Users can easily manage the entire process through a visualizing tool. Figure 2 illustrates
the overall architecture of DoppelGanger++, consisting of the following four steps.

The capturing step automatically captures the workload information including execution context
information and requests running on the production system in a lightweight way. Captured
information such as SQL data and transaction data is categorized and stored in different files
according to its type. In this step, DoppelGanger++ backs up the current snapshot so that it can
be used for replay.

The preprocessing step in a control system receives captured workload files as input and generates
dependency graph files for consistent workload replay [28]. The input files contain information
about requests issued from each database session at the time of capturing. The resulting files can
be replayed multiple times. The dependency graph file generated is a serialization of requests
where each request is associated with dependent requests in other concurrent sessions. Note
that the dependency graph generation takes 50% of the total end-to-end time when we use the
state-of-the-art [28], which is our motivation.

The replaying step replays the captured workload using dependency graph files while preserving
transactional order on the target system which is initialized by the snapshot backed up. Specifically,
loader threads read the dependency graph files and load them into session-specific request queues.
Each queue is managed by a request dispatcher that controls the execution timing. The request
dispatcher then sends the requests from the queue to execution threads. The requests without
incoming edges can be executed. When a non-commit request starts, it obtains a snapshot and
removes its outgoing edges. This enables successful completion of long-read transactions without
blocking write transactions. A commit request, on the other hand, acquires a commit timestamp
and removes the outgoing edges, allowing successful commitment. After running the requests, the
execution threads return their results.
The analyzing step compares replayed results with captured results and generates visualized

analysis reports. The comparison is performed in terms of performance and consistency. For
performance comparison, system-level throughput, resource consumption, and the execution times

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 67. Publication date: February 2024.

67:6 Wonseok Lee et al.

of individual requests are measured. The overall database state and the execution result of individual
requests are measured for consistency check.
Although this is beyond our scope, DoppelGanger++ already supports database replay in a

distributed environment. Our underlying DBMS maintains a single coordinator node with a global
timestamp. Thus, the transactions executed in the distributed database nodes can be ordered
by the same transaction timestamp generator, so it does not require changes to dependency
generation. An edge between objects located in two database nodes is implemented as an inter-
process communication call at the replay.

3 DEPENDENCY GRAPHS
We propose a formal taxonomy using the design space of all combinations of inter-session transitiv-
ity (IT) and object transitivity (OT): IT(k)-free, OT-free, OTIT-free, and IT[OT]-free graphs. Since
the dependency graph generated from the workload is ultimately pruned by extensive transitive
reduction, we need to find a compact dependency graph that can be efficiently generated by a
sequential scan. Based on our formal taxonomy, we will show in Lemma 1 that the dependency
graph generated by RBSS is a special case of IT(1)-free graph, since it fails to prune some edge
(𝑟, 𝑟 ′) with more than one IT connectivity between 𝑟 and 𝑟 ′.

3.1 Notation and Problem Definition
A workloadW is modeled as a directed graph Gini = (VR, Eses) where each vertex corresponds to
a request inW, and each edge is a pair of consecutive requests in a session (e.g., (𝑟2, 𝑟7) in Figure
1). Gini is called an initial graph. Here, each request 𝑟 is associated with a unique timestamp (𝑟 .𝑡𝑠), a
session ID (𝑟 .𝑠𝑖𝑑), and a set of objects accessed by 𝑟 (𝑟 .𝑜𝑏 𝑗𝑠). If 𝑟 is a commit request, 𝑟 .𝑜𝑏 𝑗𝑠 denotes
the set of all objects modified by the committed transaction. For example, in Figure 1, 𝑟5.𝑜𝑏 𝑗𝑠 is
{1, 3}, since the transaction 𝑇 modifies objects 1 and 3 in 𝑟1 and 𝑟3, respectively. 𝑆 denotes a set
of all sessions while 𝑂 denotes a set of all objects in the workload. As in [28], an object can be a
table or a table partition. Requests are classified into non-commit (NC) (i.e., SELECT or UPDATE)
and commit (C) requests making their updates permanent. If a transaction does not update any
object, its commit request has no dependencies to requests in the other sessions. Thus, it is ignored
during the dependency graph generation phase but simply replayed at the end of the transaction
during the replay phase. Requests within a session are constrained to be replayed in order of
timestamp, as imposed in Eses. Since requests in a session are stored in a timestamp order [28],
we do not need to store Eses explicitly. For ease of explanation, we assume that there exists 𝑟0
and 𝑟∞ which correspond to the virtual initial and last requests. Note that Gini = (VR, Eses) is not
the dependency graph since it contains the ordering constraints within each session only. Table 2
shows the notations used throughout the paper.
We first define predicates to define other dependency (binary) relations [28]. Consider two

requests 𝑟, 𝑟 ′ ∈ VR . The predicate 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠 (𝑟, 𝑟 ′) returns true if 𝑟 .𝑡𝑠 < 𝑟 ′ .𝑡𝑠 or false otherwise; we
define the set of precedence-dependent edges, E𝑝𝑟𝑒 = {(𝑟, 𝑟 ′) ∈ VR2 | 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑠 (𝑟, 𝑟 ′)}. 𝑐𝑜𝑚𝑚𝑖𝑡 (𝑟)
returns true if 𝑟 is a commit request or false otherwise; we define the set of commit-dependent
edges, E𝑐𝑜𝑚 = {(𝑟, 𝑟 ′) ∈ E𝑝𝑟𝑒 | 𝑐𝑜𝑚𝑚𝑖𝑡 (𝑟) ∨ 𝑐𝑜𝑚𝑚𝑖𝑡 (𝑟 ′)}. 𝑎𝑐𝑐𝑒𝑠𝑠_ 𝑐𝑜𝑚𝑚𝑜𝑛_𝑜𝑏 𝑗 (𝑟, 𝑟 ′) returns true
if 𝑟 and 𝑟 ′ access a common object (i.e., 𝑟 .𝑜𝑏 𝑗𝑠 ∩ 𝑟 ′ .𝑜𝑏 𝑗𝑠 ≠ ∅) or false otherwise; we define the set
of object-dependent edges, E𝑜𝑏 𝑗 = {(𝑟, 𝑟 ′) ∈ E𝑝𝑟𝑒 | 𝑎𝑐𝑐𝑒𝑠𝑠_𝑐𝑜𝑚𝑚𝑜𝑛_ 𝑜𝑏 𝑗 (𝑟, 𝑟 ′)}. Finally, we define
the set of collision-dependent edges, Ecol = E𝑐𝑜𝑚 ∩E𝑜𝑏 𝑗 . When (𝑟, 𝑟 ′) ∈ Ecol, we say that 𝑟 is
collision-dependent to 𝑟 ′. We use the terms “dependency relation” and “edge set” interchangeably.

Given an initial graph Gini = (VR, Eses), a dependency graph generation algorithm generates a
new edge set according to its specific relation. For example, a dependency graph algorithm can

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 67. Publication date: February 2024.

DoppelGanger++: Towards Fast Dependency Graph Generation for Database Replay 67:7

Table 2. Notations mainly used in this paper.

Notation Description
W a workload
VR a set of requests inW
𝑟 a request
𝑟 .𝑡𝑠 the timestamp of 𝑟
𝑟 .𝑜𝑏 𝑗𝑠 a set of objects accessed by 𝑟
𝑟 .𝑠𝑖𝑑 the session ID of 𝑟
𝑆 the set of sessions inW
𝑂 the set of accessed objects inW
G𝑡𝑟 transitive reduction of a graph G
G𝑡𝑐 transitive closure of a graph G
G[𝑃] the induced subgraph of G = (VR , E)

for a subset of vertices 𝑃 ⊂ VR
𝑉 (G) the set of vertices of G
𝐸 (G) the set of edges of G

𝒢!"#

𝒢$%

𝒢&'((

𝒢)%𝒢)%$%

𝒢$%[)%]

Fig. 3. Venn diagram for dependency graphs using the edge set containment relationships.

generate a dependency graph Gcol = (VR, Ecol) by checking both the commit dependency and the
object dependency.
One extreme dependency graph is a totally ordered dependency graph Gtotal, constructed by

connecting requests in increasing timestamp order. Using Gtotal, the requests inVR are executed
serially, leading to seriously limited concurrency [28], since the critical path of Gtotal is the longest
among those of all possible dependency graphs. The other extreme graph is a minimal dependency
graph Gmin = (VR, Emin), with which we can consistently replayW without any unnecessary
synchronization overhead. Here, Gmin can be constructed by removing all redundant edges in Ecol,
i.e., by executing a transitive reduction algorithm on Gcol.

Now, we provide a formal definition of our problem:

ProblemDefinition 1. Given a workload modeled as the initial graph Gini = (VR, Eses), generate
a compact dependency graph G = (VR, E) efficiently such that G𝑡𝑟 = G𝑡𝑟

𝑐𝑜𝑙
.

We now provide the overview for the dependency graphs based on the types of redundant
edges that each dependency graph prunes from Gcol. Figure 3 shows the containment relationships
among the dependency graphs. Note that each dependency graph avoids specific types of redundant
edges from Gcol. The IT-free graph GIT and OT-free graph GOT are those that respectively avoid
redundant edges due to IT and OT, as explained in Section 1. G

RBSS
, generated by the generation

step (i.e., before transitive reduction) in [28], is a special case of IT-free graph. The OTIT-free graph
GOTIT is the one that avoids redundant edges due to either IT or OT. The IT[OT]-free graph GIT[OT]
is the one that prunes edges redundant due to OT first and then prunes the edges redundant due to

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 67. Publication date: February 2024.

67:8 Wonseok Lee et al.

IT. 𝐸 (GIT[OT]) ⊇ 𝐸 (GOTIT), as GIT[OT] loses some IT connectivity after pruning redundant edges
due to OT.
For example, in Figure 1, GIT avoids all red and green dotted edges, whereas GOT does all

blue and green ones. GOTIT avoids all dotted edges except for (𝑟5, 𝑟10). Note that (𝑟5, 𝑟13) ∉

𝐸 (GOTIT) but (𝑟5, 𝑟13) ∈ 𝐸 (GIT[OT]). This is because, GIT[OT] removes (𝑟6, 𝑟9) first and thus the path
(𝑟5, 𝑟6, 𝑟9, 𝑟11, 𝑟13) disappears in the resulting dependency graph. The edge (𝑟5, 𝑟10) is redundant due
to reachability other than IT and OT. However, this type of redundancy is relatively infrequent;
only 5.3% of the edges in GOTIT are redundant in Table 1. Pruning those edges requires computing
transitive closure. Thus, we allow such edges in the generation step.

3.2 IT(k)-free Graph
We first define the concept of the k-forward path in two different sessions. We then define the
IT(k)-free graph, using the k-forward path. Among the IT(k)-free graphs, we specifically discuss two
of the special graphs IT(1)-free graph and IT(∞)-free graph. Finally, we explain why we consider
two different sessions only.
In order to define redundant edges in Ecol but not in the IT(k)-free graph, we first define the

concept of the k-forward path. Given two vertices, 𝑟 in session 𝑠 and 𝑟 ′ in session 𝑠′ (𝑠 ≠ 𝑠′), a
path (𝑟, 𝑟𝑠1, · · · , 𝑟𝑠𝑖 , 𝑟𝑠

′
1 , · · · 𝑟𝑠

′

𝑘
, 𝑟 ′) (𝑖 ≥ 0, 𝑘 ≥ 0, 𝑖 + 𝑘 ≥ 1) is called k-forward-path from 𝑟 to 𝑟 ′ in

Ecol ∪Eses where all 𝑟𝑠 ’s are in session 𝑠 and 𝑟𝑠
′ ’s are in session 𝑠′. Here, 𝑘 is the length of the

subpath consisting of vertices in session 𝑠′. Given an edge (𝑟, 𝑟 ′), if there exists a k-forward-path
from 𝑟 to 𝑟 ′, then (𝑟, 𝑟 ′) is redundant. This type of redundancy is referred to as inter-session
transitivity (IT) because a k-forward path exists along requests in two different sessions (𝑠 and 𝑠′).
For example, a path (𝑟5, 𝑟6, 𝑟8, 𝑟12) in Figure 1 is a 1-forward path from 𝑟5 to 𝑟12. Therefore, (𝑟5, 𝑟12)
is redundant. Thus it is pruned in the IT(1)-free graph.
We then formally define a new redundancy-free dependency graph, the IT(k)-free graph using

the k-forward-path. We first define a new notion of the redundancy-free dependency edge set.
For generality, we define it over an arbitrary edge set E: 𝐼𝑇𝑘 (E) = {(𝑟, 𝑟 ′) ∈ E |� 𝑖-forward path 𝑝

from 𝑟 to 𝑟 ′ in E ∪Eses where 0 ≤ 𝑖 ≤ 𝑘}. That is, every edge in 𝐼𝑇𝑘 (E) lacks any forward path of
length 𝑘 or less. Definition 1 defines the graph where the edge set is 𝐼𝑇𝑘 (Ecol).
Definition 1. An IT(k)-free graph GIT(k) = (VR, EIT(k)) for Gini is a dependency graph where
EIT(k) = 𝐼𝑇𝑘 (Ecol).
The dependency graph G

RBSS
= (VR, ERBSS), generated by the generation step (i.e., before

transitive reduction) of the dependency graph generation algorithm in [28], is in between GIT(0)
and GIT(1) (i.e., EIT(1) ⊆ ERBSS ⊆ EIT(0)). We will discuss this in Section 4.

Although theG
RBSS

provides higher replay concurrency thanGtotal, it could havemany redundant
edges, resulting in severe overheads during replay. One can execute a transitive reduction algorithm
on G

RBSS
. However, the overall performance of the dependency graph generation would be slow

due to the high overhead of unnecessarily redundant edge generation and removal. For example,
in Table 1, 99.6% of the edges in G

RBSS
are redundant. This motivates us to define a much more

compact dependency graph for efficient generation and transitive reduction.
The IT(∞)-free graph (simply denoted as the IT-free graph) is a general case of IT(k)-free graph

where the edges do not have any forward paths of any length (i.e., 𝑘 = ∞). The IT-free graph
ensures the pruning of all redundant edges in two inter-sessions. For brevity, we denote 𝐼𝑇∞ (E) as
𝐼𝑇 (E) in the following sections.

Although we can generalize the definition of IT for three or more sessions, pruning such redun-
dant edges will require expensive self-join operations over the edge set 𝐼𝑇 (E) being constructed
so far. For example, consider constructing 𝐼𝑇 (E) for three sessions. Then, we need to perform

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 67. Publication date: February 2024.

DoppelGanger++: Towards Fast Dependency Graph Generation for Database Replay 67:9

a three-way self-join over 𝐼𝑇 (E) using quantifiers 𝐸1, 𝐸2 and 𝐸3 where non-equi join conditions
include “𝐸1.𝑠𝑟𝑐_𝑡𝑠 ≤ 𝐸2 .𝑠𝑟𝑐_𝑡𝑠 AND 𝐸1.𝑑𝑠𝑡_𝑡𝑠 ≥ 𝐸2 .𝑑𝑠𝑡_𝑡𝑠 AND 𝐸2.𝑠𝑟𝑐_𝑠𝑖𝑑 <> 𝐸3.𝑑𝑠𝑡_𝑠𝑖𝑑 .” This
would be even more expensive than transitive closure.

3.3 OT-free Graph
Although the IT-free graph removes some redundant edges, many redundant edges remain, since it
considers inter-session redundancy due to two sessions only. For example, in Table 1, 73.7% of the
edges in the IT-free graph are still redundant. We analyze that the most redundant edges in the
IT-free graph are due to the transitive property of collision-dependent edges where the source and
the target vertex of each edge access the same object. We call this redundancy object transitivity
(OT). That is, OT captures important and dominant redundancy among multiple sessions, which
can be also detected efficiently, as we will see in Section 5.2. In the SD Benchmark for Table 1, 98%
of the redundant edges in the IT-free graph have OT.
We first formally define another important type of redundancy-free dependency edge sets

inspired by object transitivity-free (OT-free) edges. To define the OT-free edge set, we define a
predicate. Consider two requests 𝑟, 𝑟 ′ ∈ VR . The predicate 𝑎𝑐𝑐𝑒𝑠𝑠_𝑜𝑏 𝑗 (𝑟, 𝑜) returns 𝑡𝑟𝑢𝑒 if and only
if 𝑜 ∈ 𝑟 .𝑜𝑏 𝑗𝑠 . We then define the OT-free graph in Definition 2. For example, in Figure 1, the OT-free
graph does not have (𝑟6, 𝑟9), since (𝑟6, 𝑟8, 𝑟9) exists due to OT.
• Set of collision-dependent edges for object 𝑜
𝐶𝑜 (Ecol) = {(𝑟, 𝑟 ′) ∈ Ecol |𝑎𝑐𝑐𝑒𝑠𝑠_𝑜𝑏 𝑗 (𝑟, 𝑜)∧𝑎𝑐𝑐𝑒𝑠𝑠_𝑜𝑏 𝑗 (𝑟 ′, 𝑜)}
• Set of object transitivity-free edges for object 𝑜
𝑂𝑇𝑜 (Ecol) = {(𝑟, 𝑟 ′) ∈ Ecol |� a path p = (𝑟, 𝑟 ′′1 , · · · ,𝑟 ′′𝑛 , 𝑟 ′) (𝑛 ≥ 1) where all edges (𝑟, 𝑟 ′′1), · · · ,
(𝑟 ′′𝑛 , 𝑟 ′) ∈ 𝐶𝑜 (Ecol)}. The path 𝑝 is called an object transitive path.
• Set of object transitivity-free edges
𝑂𝑇 (Ecol) =

⋂
𝑜∈𝑂 𝑂𝑇𝑜 (Ecol)

Definition 2. A OT-free graph GOT = (VR, EOT) for Gini is a dependency graph where EOT =

𝑂𝑇 (Ecol).

3.4 OTIT-free Graph
A more concise dependency graph can be obtained by applying both 𝐼𝑇 (E) and 𝑂𝑇 (E) (i.e.,
removing both types of redundant edges). Among all possible compositions (i.e., 𝐼𝑇 (𝑂𝑇 (E)),
𝑂𝑇 (𝐼𝑇 (E)) and𝑂𝑇 (E) ∩ 𝐼𝑇 (E)), the most concise dependency graph is one without any redundant
edges, which are absent in either the OT-free or the IT-free graph. We call the graph OTIT-free
graph.
The edge set of the OTIT-free graph is simply an intersection of the edge sets of OT-free and

IT-free graphs, as defined in Definition 3. Note that the order of OT and IT is independent of the
definition.

Definition 3. A OTIT-free graph GOTIT = (VR, EOTIT) for Gini is a dependency graph where
EOTIT = 𝑂𝑇 (Ecol) ∩ 𝐼𝑇 (Ecol).

3.5 IT[OT]-free Graph
The OTIT-free graph has disadvantages in graph generation efficiency as it is biased toward
conciseness. We will discuss the specific time complexity in Section 5, but intuitively, the cost
of determining which edge is in both 𝐼𝑇 (E) and 𝑂𝑇 (E) is expensive. We observe that IT[OT]-
free graph, which can be obtained by applying 𝐼𝑇 (E) after 𝑂𝑇 (E), can be generated much more
efficiently while adding only a few more redundant edges compared to the OTIT-free graph (in
TPC-C, 1.3% more). In this section, we propose an IT[OT]-free graph, a compact graph that can

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 67. Publication date: February 2024.

67:10 Wonseok Lee et al.

be efficiently generated, which will be empirically verified in Section 7. We formally define the
concept of the IT[OT]-free graph in Definition 4.

Definition 4. An IT[OT]-free graph GIT[OT] = (VR, EIT[OT]) for Gini is a dependency graph
where EIT[OT] = 𝐼𝑇 (𝑂𝑇 (Ecol)).

By changing the order of OT and IT, we can obtain the OT[IT]-free graph. However, the OT[IT]-
free graph is poor in efficiency compared to the IT[OT]-free graph since computing 𝑂𝑇𝑜 (EIT) for
each object 𝑜 ∈ 𝑂 is expensive. Therefore, we omit the explanation for the OT[IT]-free graph. We
will discuss this in Section 5 before explaining how to generate each graph.

Although GOTIT is the smallest, DoppelGanger++ opts for GIT[OT] since it strikes a balance
between size and efficiency. That is, in our extensive experiments, | EIT[OT] || EOTIT | is at most 1.09, although
the generation cost of GOTIT is, on average, 3.2 times higher than that of GIT[OT] .

3.6 Output Determinism Guarantees
Wefirst show that our capture and replay algorithms guarantee output determinism under (transaction-
level) snapshot isolation. The snapshot isolation level prevents dirty read, non-repeatable read,
and phantom read. To ensure output determinism, we must ensure that 1) each replayed request 𝑟
returns the same output as during the capture time, and 2) 𝑟 changes the database state to be the
same as it was during the capture time. Here, we assume no random inconsistency exists as in [28];
a statement with the same input reading the same database state always results in the same output.
In snapshot isolation, each transaction acquires its own snapshot with its start timestamp and
reads (i.e., possibly by multiple statements) the snapshot of data committed before the timestamp.
The transaction can be committed when no write conflict occurs. To ensure 1), each replayed
transaction must see the same snapshot as during the capture time. For this, DRS records the
snapshot timestamp of each transaction as the timestamps of its non-commit requests. In Gcol,
the ordering between each non-commit request 𝑟 and commit requests modifying some object
in 𝑟 .𝑜𝑏 𝑗𝑠 is preserved. During replay, DRS needs to ensure that each non-commit request reads
the snapshot of 𝑟 .𝑜𝑏 𝑗𝑠 committed before its timestamp. With Gcol, 2) is also guaranteed, since the
commit requests with overlapping write sets are scheduled serially, avoiding any write conflict.
Note that some DBMSs such as PostgreSQL claim to support repeatable read isolation, but the
phantom read is not allowed in the level [6], while others such as SQL Server holds shared locks on
all data read by each statement until the transaction completes. In both cases, the read stability
condition (i.e., repeatable read) is satisfied if we use the same concurrency control under the same
isolation level for both capture and replay.

Now we explain why our algorithms also guarantee output determinism for a weaker isolation
level, statement-level snapshot isolation. In statement-level snapshot isolation, each statement
acquires its own snapshot with its snapshot timestamp and reads the data committed before the
timestamp, thereby allowing non-repeatable or phantom reads. Unlike transaction-level snapshot
isolation, we also capture the timestamp of each non-commit request. During replay, we ensure
that each non-commit request reads the snapshot of the objects committed before its timestamp.

Our correctness guarantees hold for all dependency graphs we propose. This is because removing
redundant edges does not change the order of execution of requests. For example, in Figure 1,
consider the redundant edge (𝑟4, 𝑟9). If we remove the edge, 𝑟9 still will be scheduled after 𝑟4 due to
the path (𝑟4, 𝑟8, 𝑟9).

Partition-level dependency ensures output determinism as table-level dependency does, avoiding
the replay inconsistency problem that occurs in block-level or row-level dependency [28]. When
we partition a table, we have knowledge of the partitioning information. Consequently, our system

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 67. Publication date: February 2024.

DoppelGanger++: Towards Fast Dependency Graph Generation for Database Replay 67:11

can identify the appropriate partitions for a query using this information, whereas block-level or
row-level dependency falls short.

Commercial DBMSs typically support either hash-based or range-based partitioning. Thus, once
a query is given, our DRS identifies all related partitions accessed by the query using partition
pruning techniques, such as [22]. If a query contains predicates on non-partitioning keys, the DRS
identifies all partitions of table 𝑅 even if some partitions may not have tuples relevant to the query.
That is, our DRS takes a conservative approach to guarantee the correctness.

For example, consider a table 𝑅(𝐴, 𝐵,𝐶) range partitioned on 𝐴: {[1-10], [11-20], [21-30], ...,
[9990-10000]}. Assume that the two transactions in Listing 2 are serially executed at the capture
time. Here, a transaction T1 uses a predicate on a non-partitioning key 𝐵, while a transaction
T2 uses a predicate on the partitioning key 𝐴 (i.e., 𝐴 = 1). Then, the SELECT request of T1 is
associated with all partitions of 𝑅, while both requests (i.e., UPDATE and COMMIT requests) of T2
are associated with the first partition only (note that the COMMIT request of T1 is ignored, since
T1 does not update any object as explained in Section 3.1). Thus, the SELECT request of T1 and the
COMMIT request of T2 are correctly ordered in the dependency graph.

Listing 2. Transaction examples

T1: SELECT * FROM R WHERE B<20; COMMIT;

T2: INSERT INTO R VALUES (1,5,20); COMMIT;

4 REPETITIVE BACKWARD SESSION SCAN (RBSS)
This section reviews how RBSS [28] generates a dependency graph G

RBSS
from Gini. Note that

RBSS refers to the generation algorithm, excluding the transitive reduction. We also provide the
time complexity of RBSS and the relationship between G

RBSS
and GIT(k) .

RBSS generates the incoming edges of each request 𝑟 ′ ∈ VR , by iterating over every session
𝑠 ∈ 𝑆 except for 𝑠′ = 𝑟 ′ .𝑠𝑖𝑑 , and performing a backward scan with a time interval (𝑟𝑚𝑖𝑛 .𝑡𝑠, 𝑟𝑚𝑎𝑥 .𝑡𝑠).
It stops the scan whenever we find 𝑟 collision-dependent to 𝑟 ′. Assume that 𝑟𝑝𝑟𝑒𝑣 is the previous
request of 𝑟 ′ in session 𝑠′. Then, 𝑟𝑚𝑎𝑥 is the earliest request after 𝑟 ′ in session 𝑠 , while 𝑟𝑚𝑖𝑛 is a
request in session 𝑠 which must wait for 𝑟𝑝𝑟𝑒𝑣 . Note that the edge (𝑟𝑚𝑖𝑛, 𝑟𝑝𝑟𝑒𝑣) needs to be generated
before the generation of incoming edges of 𝑟 ′. For example, we explain how to compute the time
interval of 𝑟7 in Figure 4. Since the (𝑟2, 𝑟4) is generated when we process 𝑟4, 𝑟𝑚𝑖𝑛 is set to 𝑟2. 𝑟𝑚𝑎𝑥 is
set to 𝑟8.

Session 1

Session 2

Backward scan

Fig. 4. How to determine the scan range (𝑟𝑚𝑖𝑛 .𝑡𝑠, 𝑟𝑚𝑎𝑥 .𝑡𝑠) in session 2 for 𝑟7.

Time complexity. The time complexity of RBSS is𝑂 (| VR |2). We assume that requests are evenly
distributed among sessions. Also, we assume that finding 𝑟𝑚𝑎𝑥 takes 𝑂 (𝑙𝑜𝑔 | VR ||𝑆 |), and all the other
subprocedures take constant time. In the worst case, RBSS must access all preceding requests
of 𝑟 ′ in every session except for 𝑟 ′ .𝑠𝑖𝑑 (i.e., 𝑟𝑚𝑖𝑛 can be 𝑟0). Thus, the overall time complexity is
𝑂 (∑ | VR |

𝑖=1 (𝑖 + |𝑆 | · 𝑙𝑜𝑔
| VR |
|𝑆 |) − |𝑆 | ·

∑ | VR |/|𝑆 |
𝑗=1 𝑗) = 𝑂 (| VR |2).

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 67. Publication date: February 2024.

67:12 Wonseok Lee et al.

In order to analyze experimental results using the time complexity analysis, we derive a tighter
bound using a concept of the average backward distance, 𝑑𝑎𝑣𝑔, an average number of requests to
scan to find an incoming edge from a session for each request. Finally, we obtain 𝑂 (| VR | · (|𝑆 | −
1) · (𝑑𝑎𝑣𝑔 + 𝑙𝑜𝑔 | VR ||𝑆 |)) as the time complexity of RBSS.

We explain the relationship between the IT(k)-free graph and the dependency graph G
RBSS

=

(VR, ERBSS). Note that [28] did not define this graph; thus it is difficult to understand and analyze
the properties of G

RBSS
. Lemma 1 establishes this relation. We briefly explain the intuition behind

the lemma’s proof. RBSS prunes every edge (𝑟, 𝑟 ′) with a 0-forward path (𝑟, · · · , 𝑟𝑠𝑖 , 𝑟 ′) (𝑖 ≥ 1)
(i.e., ERBSS ⊆ EIT(0)). Suppose that there is a 0-forward path (𝑟, · · · , 𝑟𝑠𝑖 , 𝑟 ′) (𝑖 ≥ 1) for (𝑟, 𝑟 ′) in
G

RBSS
. Then, during the backward scan in session 𝑠 to generate the incoming edges of 𝑟 ′, RBSS

must find 𝑟𝑠𝑖 and then stop. We now explain why RBSS fails to prune some edge (𝑟, 𝑟 ′) ∈ Ecol with
1-forward path (𝑟, 𝑟𝑠1, · · · , 𝑟𝑠𝑖 , 𝑟𝑝𝑟𝑒𝑣, 𝑟 ′) (𝑖 ≥ 0) (i.e., EIT(1) ⊆ ERBSS). As soon as (𝑟𝑠𝑖 , 𝑟𝑝𝑟𝑒𝑣) is pruned
from G

RBSS
, RBSS does not continue to prune the redundant edge (𝑟, 𝑟 ′) due to its 1-forward path.

The following lemma shows the containment relationships among these dependency graphs. All
formal lemmas and proofs are in the technical report [7]. We refer interesting readers to it for the
details.

Lemma 1. EIT(1) ⊆ ERBSS ⊆ EIT(0) .

5 STATEFUL SINGLE FORWARD SCAN (SSFS)
This section describes our efficient dependency graph generation algorithm called SSFS using states.
We first describe a common algorithm that generates the dependency graph using states. We then
explain what states should be maintained and how to generate the dependency graph from the
states for each type of dependency graph. SSFS can generate any dependency graph in Section 3.
We consider VR as a sequence of vertices according to their timestamp. We assume that the

timestamp 𝑡 is assigned by a monotonically increasing logical timer (𝑡 ≥ 1). A dependency
graph generation algorithm takesVR , processes the requests, and outputs a dependency relation
E ∈ {EOT, EIT, EOTIT, EIT[OT]}. We omit how to generate the OT[IT]-free graph since it requires
computing𝑂𝑇𝑜 (EIT) for each object 𝑜 ∈ 𝑂 , which is costly. Given an object 𝑜 , computing𝑂𝑇𝑜 (EIT)
is equivalent to computing the transitive reduction of (VR,𝐶𝑜 (EIT)), which takes 𝑂 (|𝐶𝑜 (EIT) | +
|𝑆 | | VR | + |𝑆 | |𝑂𝑇𝑜 (Ecol) |) [32, 34]. On the other hand, we can compute 𝑂𝑇 (Ecol) efficiently from
the observation Section 5.2. Our experiments also show that IT[OT]-free graph is efficient in both
conciseness and efficiency in Section 7. We omit how to generate EOTIT since it is obtained by the
intersection of EOT and EIT.
Algorithm 1 describes SSFS. SSFS first initializes a current edge set incrementally appended

(Line 1) and the states (Line 2). SSFS iterates over all requests 𝑟 ′ inVR in increasing timestamp
order (Line 3). For each request 𝑟 ′, SSFS generates a set of the incoming edges of 𝑟 ′, E𝑟 ′ , using
𝑠𝑡𝑎𝑡𝑒𝑠 (Line 4) and then updates 𝑠𝑡𝑎𝑡𝑒𝑠 (Line 5). Then SSFS appends the generated edge set to the
current edge set (Line 6). At the end of the iteration, SSFS finally returns the generated dependency
graph (Line 7).

5.1 Generating GIT

Consider the current request 𝑟 ′ of session 𝑠′ at timestamp 𝑡 . Since EIT(0) ⊇ EIT(k) for any 𝑘 > 0,
we first find every edge (𝑟, 𝑟 ′) in EIT(0) from each session 𝑠 (≠ 𝑠′) (Case 𝑘 = 0) and prune it if there
exists a 𝑘 (≥ 1)-forward path between 𝑟 and 𝑟 ′ (Case 𝑘 > 0). That is, those not pruned must be in
EIT(k) . For example, in Figure 5, we assume that the current request to process is 𝑟7 (= 𝑟 ′), i.e., a
commit request. Then, from session 1, we find (𝑟6, 𝑟7) ∈ EIT(0) and do not prune it since there is no

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 67. Publication date: February 2024.

DoppelGanger++: Towards Fast Dependency Graph Generation for Database Replay 67:13

Algorithm 1: Stateful Single Forward Scan (SSFS)
Input: A workload Gini = (VR, Eses), the dep. graph type 𝑇𝐺
1 𝐸𝑐𝑢𝑟𝑟 ← ∅ // The current edge set

2 𝑠𝑡𝑎𝑡𝑒𝑠 ← ∅ // The states

3 for 𝑟 ′ ∈ VR in increasing timestamp order do
4 𝐸𝑟 ′ ← GenerateIncomingEdges (𝑟 ′, 𝑠𝑡𝑎𝑡𝑒𝑠,𝑇𝐺)
5 𝑠𝑡𝑎𝑡𝑒𝑠 ← UpdateStates(𝑟, 𝑠𝑡𝑎𝑡𝑒𝑠,𝑇𝐺)
6 𝐸𝑐𝑢𝑟𝑟 ← 𝐸𝑐𝑢𝑟𝑟 ∪ 𝐸𝑟 ′
7 return (VR, 𝐸𝑐𝑢𝑟𝑟)

Session 1

Session 2

Session 3

request groupSize
1
1

obj type

Object 1
non-commit

targetSID

SID latestNCR latestCRobj

sourceSID appendedEdge
Groupby results

1 -3

1 -
2

-
Object 1

2 -1
3 -1
12
32

2 -3

3
1
2

-
Object 2

3

commit

candSource

Object 2
non-commit

commit
1

States for The state for

Fig. 5. The states for GIT and GOT when the current request 𝑟 ′ = 𝑟7. We show edges in EOTIT only.

k-forward path from 𝑟6 to 𝑟7. On the other hand, from session 2, we first find (𝑟4, 𝑟7) ∈ EIT(0) , and
prune it since there is a 1-forward path (𝑟4, 𝑟5, 𝑟7).
For each session 𝑠 (≠ 𝑠′), to ensure that (𝑟, 𝑟 ′) ∈ EIT(0) (Case 𝑘 = 0), 𝑟 must be the latest

collision-dependent request to 𝑟 ′ in session 𝑠 (see Figure 6a). Otherwise, there exists the latest
collision-dependent request 𝑟𝑠 (≠ 𝑟) to 𝑟 ′ in session 𝑠 , and thus there exists a 0-forward path
(𝑟, · · · , 𝑟𝑠 , 𝑟 ′), contradicting the definition of EIT(0) .
For each edge (𝑟, 𝑟 ′) ∈ EIT(0) , to ensure that (𝑟, 𝑟 ′) ∈ EIT (Case 𝑘 ≥ 1), no edge (𝑟𝑠 , 𝑟𝑠′) ∈
EIT(0) such that 𝑟𝑠 .𝑠𝑖𝑑 = 𝑠 , 𝑟𝑠 .𝑡𝑠 ≥ 𝑟 .𝑡𝑠 , 𝑟𝑠′ .𝑠𝑖𝑑 = 𝑠′, and 𝑟𝑠

′
.𝑡𝑠 < 𝑡 has been appended to the

dependency graph being currently constructed (see Figure 6b). Otherwise, there exists a k-forward
path (𝑟, · · · , 𝑟𝑠 , 𝑟𝑠′ , · · · , 𝑟 ′), which is contradictory to the definition of EIT(k) .
States for GIT: To generate the incoming edges for GIT, we maintain two nested tables as states:
the session-wise collision requests (SCR) and the latest appended edges between sessions (LAE).
SCR stores the latest non-commit and commit requests for every pair of (𝑜𝑏 𝑗 , 𝑆𝐼𝐷). Given an object
𝑜 and a session 𝑠 , we can retrieve and update the latest non-commit and commit requests accessing
𝑜 in session 𝑠 using SCR. SCR is implemented in a two-dimensional array, enabling lookup and
update operations to be performed in 𝑂 (1). For example, when we process 𝑟7 (= 𝑟) in Figure 5,
SCR stores 𝑟2 and 𝑟4 as the latest non-commit and commit requests accessing object 1 in session
2, respectively. Likewise, SCR stores 𝑟1 and 𝑟4 as the latest non-commit and commit requests

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 67. Publication date: February 2024.

67:14 Wonseok Lee et al.

Session

Session

(a) Case k = 0

Session

Session

(b) Case k > 0

Fig. 6. The two cases where there exists a k-forward path from 𝑟 in session 𝑠 to 𝑟 ′ in session 𝑠′.

accessing object 2 in session 2, respectively. LAE stores the most recently appended edge in EIT(0)
for every pair of sessions, supporting lookup and update as well. LAE is also implemented in a
two-dimensional array, enabling the operations to be performed in 𝑂 (1). For example, in the same
figure, the fourth tuple in LAE represents the most recently appended edge (𝑟4, 𝑟5) from session 2
to session 3.

We now describe a detailed algorithm for generating the incoming edges of 𝑟 ′ for GIT. Given 𝑟 ′,
for each pair (𝑠, 𝑜) such that 𝑜 ∈ 𝑟 ′ .𝑜𝑏 𝑗𝑠 , we retrieve the latest non-commit and commit requests
from SCR, that are collision-dependent to 𝑟 ′. Among all retrieved requests for 𝑟 ′, if 𝑟 ′ is a commit
request, we retrieve the latest request 𝑟 in session 𝑠 in 𝑂 (|𝑟 ′ .𝑜𝑏 𝑗𝑠 |), otherwise we retrieve the
latest commit request 𝑟 in session 𝑠 . Then, since (𝑟, 𝑟 ′) ∈ EIT(0) , we retrieve the latest appended
edge (𝑟𝑠 , 𝑟𝑠′) from LAE using 𝑠 and 𝑠′ in 𝑂 (1). If not found, we generate (𝑟, 𝑟 ′) as a new edge.
Otherwise, if 𝑟 .𝑡𝑠 > 𝑟𝑠 .𝑡𝑠 , we generate (𝑟, 𝑟 ′). After (𝑟, 𝑟 ′) is generated, we update the tuple in
LAE using 𝑠 and 𝑠′ in 𝑂 (1) by replacing the value of the 𝑎𝑝𝑝𝑒𝑛𝑑𝑒𝑑𝐸𝑑𝑔𝑒 column with (𝑟, 𝑟 ′). For
each request, updating SCR requires𝑂 (|𝑟 ′ .𝑜𝑏 𝑗𝑠 |), while updating LAE requires𝑂 (|𝑆 |), the upper
bound of the number of incoming edges of 𝑟 ′.
Now, we analyze the time and space complexity of edge generation and state maintenance for
GIT. For each request 𝑟 ′, we need to scan every tuple in SCR whose object ID ∈ 𝑟 ′ .𝑜𝑏 𝑗𝑠 . Scanning
each tuple in SCR takes 𝑂 (1) and thus, the time complexity of incoming edge generation for
𝑟 ′ is 𝑂 (|𝑟 ′ .𝑜𝑏 𝑗𝑠 | · |𝑆 |). The time complexity of maintaining SCR and LAE for each request is
𝑂 (𝑚𝑎𝑥 (|𝑟 ′ .𝑜𝑏 𝑗𝑠 |, |𝑆 |)). If |𝑆 | and |𝑟 ′ .𝑜𝑏 𝑗𝑠 | are regarded as constants, 𝑂 (1) is guaranteed for each
request. The space complexity for the states is𝑂 (|𝑆 | · |𝑂 | + |𝑆 |2), since the sizes of SCR and LAE
are 𝑂 (|𝑆 | · |𝑂 |) and 𝑂 (|𝑆 |2), respectively.

5.2 Generating GOT

Consider the current request 𝑟 ′ accessing 𝑟 ′ .𝑜𝑏 𝑗𝑠 at timestamp 𝑡 . To ensure that (𝑟, 𝑟 ′) ∈ EOT, for
every object 𝑜 ∈ 𝑟 .𝑜𝑏 𝑗𝑠 ∩ 𝑟 ′ .𝑜𝑏 𝑗𝑠 , there exists no object transitive path from 𝑟 to 𝑟 ′. Otherwise,
(𝑟, 𝑟 ′) ∉ 𝑂𝑇𝑜 (𝐶𝑜 (Ecol)) for some 𝑜 (see the definitions of 𝑂𝑇𝑜 and 𝐶𝑜). Therefore, for each 𝑜 ∈
𝑟 ′ .𝑜𝑏 𝑗𝑠 , we find the candidate source vertices of the incoming edges of 𝑟 ′ for 𝑂𝑇𝑜 (𝐶𝑜 (Ecol)). We
then group them by vertex ID to prune any candidate vertex 𝑟 whose group size does not match
|𝑟 ′ .𝑜𝑏 𝑗𝑠 ∩ 𝑟 .𝑜𝑏 𝑗𝑠 |. For example, in Figure 5, we assume that the current request is 𝑟7 (= 𝑟 ′). For
object 1, we find 𝑟4 since (𝑟4, 𝑟7) ∈ 𝑂𝑇 1 (𝐶1 (Ecol)). Similarly, for object 2, we find 𝑟5 and 𝑟6 since
(𝑟5, 𝑟7), (𝑟6, 𝑟7) ∈ 𝑂𝑇 2 (𝐶2 (Ecol)). The results of the group by operation are also shown in Figure 5.
Since the group size for 𝑟4 (=1) ≠ |𝑟7.𝑜𝑏 𝑗𝑠 ∩ 𝑟4 .𝑜𝑏 𝑗𝑠 | (=2), we discard 𝑟4. However, since the group
size for 𝑟5 (=1) = |𝑟7.𝑜𝑏 𝑗𝑠 ∩ 𝑟5.𝑜𝑏 𝑗𝑠 |, we generate (𝑟5, 𝑟7). Similar to (𝑟5, 𝑟7), we generate (𝑟6, 𝑟7).
To ensure that (𝑟, 𝑟 ′) ∈ 𝑂𝑇𝑜 (𝐶𝑜 (Ecol)) for 𝑜 ∈ 𝑟 ′ .𝑜𝑏 𝑗𝑠 , if 𝑟 ′ is a non-commit request, 𝑟 must be

the latest commit request accessing 𝑜 . Otherwise, there exists the latest commit request 𝑟 ′′ (≠ 𝑟)
accessing 𝑜 , and thus there exists an object transitive path (𝑟, 𝑟 ′′, 𝑟 ′), which is contradictory to the
definition of 𝑂𝑇𝑜 (𝐶𝑜 (Ecol)). When 𝑟 ′ is a commit request, 𝑟 can be either a commit request or a
non-commit request accessing 𝑜 . If 𝑟 is a commit request, 𝑟 must be the latest request accessing 𝑜 ,

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 67. Publication date: February 2024.

DoppelGanger++: Towards Fast Dependency Graph Generation for Database Replay 67:15

and there must be no non-commit request 𝑟 ′′ accessing 𝑜 after 𝑟 . Otherwise, an object transitive
path (𝑟, 𝑟 ′′, 𝑟 ′) exists (see Figure 7a). If 𝑟 is a non-commit request, there exists no commit request 𝑟 ′′
accessing 𝑜 after 𝑟 . Otherwise, an object transitive path (𝑟, 𝑟 ′′, 𝑟 ′) exists (see Figure 7b). We call a set
of non-commit requests accessing 𝑜 after the latest commit request accessing 𝑜 a latest non-commit
request set for object 𝑜 . For example, in Figure 5, {𝑟5, 𝑟6} is the latest non-commit request set for
object 2.

Session 1

Session 2

Session 3

(a) 𝑟 is a commit request.

Session 1

Session 2

Session 3

(b) 𝑟 is a non-commit request.

Fig. 7. The two cases where there exists an object transitive path for object 𝑜 from 𝑟 to 𝑟 ′.

We store in a temporary table all retrieved candidate source vertices for 𝑟 ′ .𝑜𝑏 𝑗𝑠 in a temporary
table. We then group them by the source vertex ID. If the group size of a source vertex 𝑟 is equal to
| (𝑟 .𝑜𝑏 𝑗𝑠 ∩ 𝑟 ′ .𝑜𝑏 𝑗𝑠) | (i.e., for every 𝑜 ∈ 𝑟 .𝑜𝑏 𝑗𝑠 ∩ 𝑟 ′ .𝑜𝑏 𝑗𝑠 , (𝑟, 𝑟 ′) ∈ 𝑂𝑇𝑜 (𝐶𝑜 (Ecol))), we generate the
edge (𝑟, 𝑟 ′) as a new edge to GOT. Otherwise, we discard 𝑟 .
The state for GOT: To generate the incoming edges for GIT, we maintain a nested table, the OT-free
candidate table, OTC(𝑜𝑏 𝑗 , 𝑡𝑦𝑝𝑒 , 𝑐𝑎𝑛𝑑𝑆𝑜𝑢𝑟𝑐𝑒) as a state. Each tuple in OTC corresponds to every
pair of (𝑜𝑏 𝑗 , 𝑡𝑦𝑝𝑒). If 𝑡𝑦𝑝𝑒 is COMMIT, 𝑐𝑎𝑛𝑑𝑆𝑜𝑢𝑟𝑐𝑒 stores the latest commit request accessing 𝑜𝑏 𝑗 .
Otherwise, 𝑐𝑎𝑛𝑑𝑆𝑜𝑢𝑟𝑐𝑒 stores the latest non-commit request set for 𝑜𝑏 𝑗 . Given an object 𝑜 and
the request type 𝑡𝑦𝑝𝑒 , we can retrieve and update the latest commit request accessing 𝑜 or the
latest non-commit request set for 𝑜 depending on 𝑡𝑦𝑝𝑒 , using OTC. For example, when processing
𝑟7 (= 𝑟 ′) in Figure 5, for 𝑜𝑏 𝑗 = 2 and 𝑡𝑦𝑝𝑒 = NON-COMMIT, OTC stores {𝑟5, 𝑟6} as a latest non-
commit request set. For 𝑜𝑏 𝑗 = 2 and 𝑡𝑦𝑝𝑒 = COMMIT, OTC stores the latest commit request
𝑟4.

We now describe a detailed algorithm for generating the incoming edges of 𝑟 ′ for GOT. For each
request 𝑟 ′, SSFS iterates over every object 𝑜 ∈ 𝑟 ′ .𝑜𝑏 𝑗𝑠 . Given an object 𝑜 , when 𝑟 ′ is a non-commit
request, we retrieve the latest commit request accessing 𝑜 using (𝑜,COMMIT) in O(1). If 𝑟 ′ is a
commit request, we first retrieve the latest non-commit request set using (𝑜,NON-COMMIT). If
such a non-commit request does not exist, then we retrieve the latest commit request accessing 𝑜
using (𝑜,COMMIT) in O(1). All retrieved requests are stored in a temporary table, and we group
the candidate source vertices by vertex ID. Then we generate every edge (𝑟, 𝑟 ′) such that 𝑟 ’s group
size is the same as |𝑟 .𝑜𝑏 𝑗𝑠 ∩ 𝑟 ′ .𝑜𝑏 𝑗𝑠 |.
Now, we analyze the time and space complexity of edge generation and state maintenance for
GOT. For each request 𝑟 ′, we need to scan the candidate source vertices from OTC, and store
them in the temporary table. If 𝑟 ′ is a non-commit request, it takes𝑂 (|𝑟 ′ .𝑜𝑏 𝑗𝑠 |). Otherwise, it takes
𝑂 (∑𝑜∈𝑟 ′ .𝑜𝑏 𝑗𝑠 # of non-commit requests in OTC for 𝑜). If the temporary table is implemented as
a hash table, the group by operation takes �̃� (𝑚𝑎𝑥 (|𝑟 ′ .𝑜𝑏 𝑗𝑠 |,∑𝑜∈𝑟 ′ .𝑜𝑏 𝑗𝑠 # of non-commit requests
in OTC for 𝑜)). The time complexity of maintaining OTC for each request is 𝑂 (|𝑟 ′ .𝑜𝑏 𝑗𝑠 |). The
space complexity of OTC and the temporary table is 𝑂 (∑𝑟 ∈VR (|𝑟 .𝑜𝑏 𝑗𝑠 |)).

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 67. Publication date: February 2024.

67:16 Wonseok Lee et al.

5.3 Generating GIT[OT]

A naive implementation to generate EIT[OT] is to 1) generate the incoming edges of 𝑟 ′ in EOT and
2) prune some of the edges not in EIT[OT] . The efficiency of this approach is severely limited, even
inferior to the generation of EOT.

Instead of generating all incoming edges of 𝑟 ′ in EOT, we discard some candidate requests from
OTC to avoid generating the edges not in EIT(0) . Specifically, for each (𝑜𝑏 𝑗, 𝑡𝑦𝑝𝑒) pair, we only
maintain the latest request for each session. As a result, the number of stored requests is significantly
smaller than the original OTC. Note that SCR is not needed for generating GIT[OT] .

We also iterate over sessions first and count the number of the latest candidate source vertex 𝑟 for a
given session. This way, we can check if the group size corresponding to 𝑟 equals | (𝑟 ′ .𝑜𝑏 𝑗𝑠∩𝑟 .𝑜𝑏 𝑗𝑠) |,
which avoids the hash-based grouping. This optimization enables a significant speedup, compared
to generating the edges for EOT only. Thus, generating EIT[OT] achieves both size and efficiency.
Extensive experiments in Section 7 confirm our claim. After generating the incoming edges of 𝑟 ′
for EOT ∩EIT(0) , we prune the edges using LAE (see case 𝑘 > 0 in Section 5.1).

6 PARALLELIZING SSFS
In this section, we propose the parallel version of SSFS (PSSFS). We focus on the IT[OT]-graph
since the other types of graphs can be obtained similarly.

It consists of three phases: 1) partitioning, 2) local dependency graph generation, and 3) hierarchi-
cal merging. In the partitioning phase, PSSFS divides the workload into 𝑝 partitions by time range,
𝑃1, 𝑃2, · · · , 𝑃𝑝 , and generates their induced subgraphs, Gini [𝑃1], Gini [𝑃2], · · · , Gini [𝑃𝑝]. Here, a
subgraph 𝐻 is an induced subgraph of G if every edge in 𝐸 (G) whose endpoints are both in 𝑉 (𝐻)
[14]. Given a set of vertices 𝑉 (𝐻), G[𝑉 (𝐻)] denotes 𝐻 . Then, PSSFS generates a local IT[OT]-free
dependency graph G𝑖 (0) for Gini [𝑃𝑖] by using the serial SSFS. Here, G𝑖 (𝑚) represents the 𝑖-th local
dependency graph at the𝑚-th level in the hierarchical merge. Note that we will explain what states
need to be maintained additionally for efficient hierarchical merging. Finally, we hierarchically
merge the local dependency graphs by generating missing inter-partition edges while maintain-
ing the states. Except for the last level, the merged dependency graph is also regarded as a local
dependency graph. For example, given local dependency graphs G𝑖 (𝑚) and G𝑖+1(𝑚) , the merged
dependency graph of these two is also another local dependency graph for𝑉 (G𝑖 (𝑚)) ∪ 𝑉 (G𝑖+1(𝑚))
for all 𝑖 < ⌈log2 𝑝 ⌉. Please refer to [7] for the detailed algorithm.

While this may appear to be a typical parallel algorithm, there are three challenges. 1) What were
the missing edges in local dependency graphs compared to the global dependency graph? 2) Does
any edge in local dependency graphs need to be removed? 3) What states should be maintained
additionally for efficient merging? Lemma 2 answers the first two questions. Lemma 2 states that 1)
missing edges are inter-partition ones only, and 2) there is no risk of removing any edge from the
local dependency graphs.

Lemma 2. Given the global dependency graph GIT[OT] , every local dependency graph G𝑖 is the
induced subgraph of the global dependency graph using all vertices in G𝑖 . That is,

G𝑖 = GIT[OT] [𝑉 (G𝑖)] .

Now, we answer the last question. As in SSFS, we first explain what states must be maintained to
generate candidate inter-partition edges for the merged OT-free graph efficiently. We then explain
how to prune redundant edges from them using the definition of the k-forward path. Thus, the
resulting graph satisfies all conditions of the IT[OT]-free graph.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 67. Publication date: February 2024.

DoppelGanger++: Towards Fast Dependency Graph Generation for Database Replay 67:17

Consider the merge of two local dependency graphs G𝑖 and G𝑖+1. Then, for any inter-partition
edge (𝑟 , 𝑟 ′) between the two graphs, 𝑟 ∈ 𝑉 (G𝑖) and 𝑟 ′ ∈ 𝑉 (G𝑖+1). Lemma 3 states a set of candidate
destination vertices {𝑟 ′} for the inter-partition edges, which we need to maintain.

Lemma 3. Consider merging two local dependency graphs G𝑖 and G𝑖+1. Then, for some object 𝑜 ,
every vertex 𝑟 ′ in the set of destination vertices in all inter-partition edges in the merged dependency
graph is either the first commit request accessing 𝑜 or a non-commit request accessing 𝑜 before the first
commit request accessing 𝑜 in G𝑖+1.

Based on Lemma 3, we maintain a new state as a hash table where its key is an object 𝑜 ∈ 𝑂 , and
its value is the pair of the first commit request and the first non-commit requests before the first
commit request for 𝑜 .

Here, we need not store all non-commit requests before the first commit request for each session
for 𝑜 , which is analogous to the optimization explained in Section 5.3. Then, for every 𝑜 ∈ 𝑂 , the
set of candidate destination vertices are union of both sets in the value of the hash table for key 𝑜 .
Now, we explain how to generate inter-partition edges of the merged OT-free graph with this

additional state. Consider merging two local dependency graphs, G𝑖 and G𝑖+1. Then, we can obtain
all candidate destination vertices for G𝑖+1. Since we will generate the incoming edges of GIT[OT] as
in SSFS, we sort these candidate destination vertices by timestamp order. Using the first commit
request and the non-commit requests before the commit request for every 𝑜 ∈ 𝑂 for G𝑖 , PSSFS
generates the edges in GIT[OT] as in SSFS, discarding any edge whose both vertices are in 𝑉 (G𝑖+1).

To generate the inter-partition edges for the merged IT[OT]-free graph, we need to prune out any
inter-partition edge (𝑟, 𝑟 ′) in EOT if there is a k-forward path from 𝑟 to 𝑟 ′. As explained in Section
5.1, 𝑟 must be the latest collision-dependent to 𝑟 ′. Therefore, the source vertex of the incoming
edge for 𝑟 ′ in the session 𝑠 must be the latest candidate source vertex 𝑟 ∈ 𝑉 (G𝑖) in a different
session. To prune out (𝑟, 𝑟 ′) such that a k-forward path from 𝑟 to 𝑟 ′ exists and all the edges in the
path are in 𝑂𝑇 (𝐸 (Gcol [𝑉 (G𝑖) ∪𝑉 (G𝑖+1)])) using the states, we provide the following lemma. It is
straightforward to prove by the definition of the IT-free graph.

Lemma 4. An edge (𝑟, 𝑟 ′) ∈ 𝑂𝑇 (𝐸 (Gcol [𝑉 (G𝑖) ∪𝑉 (G𝑖+1)])) is pruned if and only if there exists
another edge (𝑟𝑠 , 𝑟𝑠′) ∈ 𝑂𝑇 (𝐸 (Gcol [𝑉 (G𝑖) ∪𝑉 (G𝑖+1)])) such that 𝑟𝑠 .𝑠𝑖𝑑 = 𝑟 .𝑠𝑖𝑑 ∧ 𝑟𝑠 .𝑡𝑠 ≥ 𝑟 .𝑡𝑠 and
𝑟𝑠
′
.𝑠𝑖𝑑 = 𝑟 ′ .𝑠𝑖𝑑 ∧ 𝑟𝑠′ .𝑡𝑠 ≤ 𝑟 ′ .𝑡𝑠 .

According to Lemma 4, we need to find (𝑟𝑠 , 𝑟𝑠′) to check if the inter-partition edge (𝑟, 𝑟 ′)
needs to be pruned. If any of the following cases is satisfied, it is pruned: 1) 𝑟𝑠 , 𝑟𝑠′ ∈ 𝑉 (G𝑖) 2)
𝑟𝑠 ∈ 𝑉 (G𝑖) and 𝑟𝑠

′ ∈ 𝑉 (G𝑖+1), 3) 𝑟, 𝑟 ′ ∈ 𝑉 (G𝑖+1). When the first case holds, a k-forward path
(𝑟, 𝑟𝑠1, ..., 𝑟𝑠𝑖 , 𝑟𝑠

′
1 , ..., 𝑟

𝑠′

𝑘
, 𝑟 ′) (𝑖 ≥ 0, 𝑘 ≥ 1) such that 𝑟𝑠𝑖 = 𝑟𝑠 and 𝑟𝑠

′
1 = 𝑟𝑠

′ exists. That is, such (𝑟, 𝑟 ′)
must not be in 𝐼𝑇 (𝑂𝑇 (Ecol)). The other cases also hold according to the definition of the k-forward
path.

The first case is checked by using the LAE of G𝑖 , since (𝑟𝑠 , 𝑟𝑠
′) has been generated for G𝑖 . The

second case is also checked by LAE of G𝑖 , since the candidate destination vertices are processed
in increasing timestamp order. For the third case, we need to maintain an additional state, the first
appended edges between sessions (FAE). This case is checked by FAE for G𝑖+1.
After generating inter-partition edges between G𝑖 and G𝑖+1, PSSFS merges all states explained.

We omit how to merge in detail, since it is straightforward by definition.
Now we explain how to parallelize the transitive reduction. We can use any parallel transitive

reduction algorithm which supports local transitive reduction and hierarchical merge. For comput-
ing transitive reduction GIT[OT]

𝑡𝑟 of GIT[OT] , we need to calculate the transitive closure GIT[OT]
𝑡𝑐 .

Here, an edge (𝑟, 𝑟 ′) ∈ 𝐸 (GIT[OT]
𝑡𝑐) if and only if there is a path from 𝑟 to 𝑟 ′ in GIT[OT] .

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 67. Publication date: February 2024.

67:18 Wonseok Lee et al.

For each vertex 𝑣 , we need to maintain a set of vertices reachable to 𝑣 as a state. During the
merge phase, the transitive closure for the merged dependency graph needs to be updated since
inter-partition edges are generated additionally. Instead of updating the state for all vertices inVR ,
we need to update the state for 1) the requests in SCR, 2) the first commit request for each 𝑜𝑏 𝑗 , 3)
non-commit requests accessing 𝑜𝑏 𝑗 before the first commit request accessing 𝑜𝑏 𝑗 for every object
𝑜𝑏 𝑗 , and 4) the first and the last requests for each session. Updating the state for those vertices
only is sufficient, since the additional edges are generated between those vertices during the merge
phase. Experiments in Section 7 show that the overhead of our efficient merge strategy is negligible.

7 EXPERIMENTS
The goals of our experiments are as follows. SSFS(G) denotes SSFS with the dependency graph G.
• SSFS consistently and significantly outperforms RBSS for varying workloads, including a
real one (Sections 7.2 - 7.3).
• SSFS(GIT[OT]) outperforms SSFS with the other dependency graphs in both in efficiency and
in size (Sections 7.2 - 7.4).
• PSSFS achieves almost linear speedup (Section 7.5).

7.1 Experimental Setup
Workloads.We use two OLTP benchmarks, as our major customer workloads are OLTP ones: TPC-
C [1] and SD benchmark [4]. These benchmarks are representative ones, simulating our customer
workloads. The TPC-C benchmark is a standard OLTP benchmark that models a wholesale company
with warehouses. We set the number of warehouses to 100. The database consists of nine tables. In
Section 7.2, we partition the tables by warehouse ID to show the case when each table partition
is an object. The SD benchmark simulates sales and distribution scenarios with six transactions.
Each transaction involves several dialog steps [24]. We use a 3-tier architecture version of the SD
benchmark. We vary the number of application server instances to vary the number of sessions.
We use 5000 users and one sec of think time. Experiment results for SD benchmark show similar
trends to those for TPC-C. Due to the space limitation, we omit them and encourage readers to
refer to our technical paper for further information [7]. We also use the large-scale, real-world
customer workload, which was captured from a real-world cloud-based business application system
that is primarily for processing procurement operations of an enterprise. It was captured for 18
minutes, with 8.9 million requests from 7,393 sessions. The 2,812 tables are accessed, and 33 % of
the transactions contain updates. Write transactions contain 9.3 non-commit requests on average,
where INSERT, SELECT, UPDATE, DELETE, and MERGE_INTO statements account for 60%, 29%,
8.5%, 1.5%, 1%, respectively. The write transactions access 4.2 tables and update 2.7 tables on average.
Read-only transactions contain 1.4 non-commit requests, reading 2.2 tables on average.
Running Environments. We conducted experiments on a Linux machine with four Intel(R)
Xeon(R) CPU E7-8880 v4 CPUs, 1TB RAM, and one 745GB SSD. We used a single thread for all
experiments except for Section 7.5.
Measure.We measured the elapsed time with a breakdown into the edge generation and transitive
reduction times. We use the number of edges to report the dependency graph size. We also provide
the size of the minimal dependency graph generated by transitive reduction labeled as TR. The
number of captured transactions may vary with a given capture duration. Therefore, we normalized
the measures by the number of captured transactions. For SSFS, we additionally measured the
memory consumption for the states. Table 3 summarizes the experimental parameters with their
ranges and default values marked in boldface. Here, we used 30 minutes as the default capture
duration according to [28]. The timeout, labeled as TO, is set to 10 hours. To analyze the tradeoff in

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 67. Publication date: February 2024.

DoppelGanger++: Towards Fast Dependency Graph Generation for Database Replay 67:19

logging granularity, we report the end-to-end time breakdowns, including capture time, depen-
dency graph generation time, replay time, and pre/post-processing time for replay (i.e., importing
statements and exporting results), for different numbers of table partitions.

Table 3. Experimental parameters with their ranges and default values in TPC-C.

Parameter Range
capture duration 15, 30, 45, 60

of clients 32, 64, 96, 128, 256𝑎
of thread 1, 4, 8, 12, 16, 20

of table partitions 1, 4, 16, 64
𝑎for end-to-end time measurement with high replay concurrency

Competitor We use enhanced versions of RBSS, RBSS+ and RBSS
L, outperforming RBSS. RBSS+

generates the IT-free graph instead of the G
RBSS

. To find 𝑟𝑚𝑖𝑛 (in Section 4), RBSS+ scans backward
until it finds a request with an incoming edge. Unlike SSFS, RBSS+ becomes significantly slower
due to short sessions performing DB restore tasks such as table initialization in the captured
workload; The cost of finding the incoming edge in such a session is significant for RBSS+. For a
fair comparison, we have allowed all algorithms to ignore these sessions. RBSSL is a optimized
version of RBSS+ by memoizing the LAE table for RBSS, although this memoization is part of our
technique. RBSSL finds 𝑟𝑚𝑖𝑛 in 𝑂 (1) using LAE.
We parallelize RBSS

+ and RBSS
L (PRBSS+ and PRBSSL). Given a pair of sessions (𝑠, 𝑠′), the

edges from 𝑠 to 𝑠′ are sequentially generated by RBSS. The edges for different pairs of sessions are
generated in parallel. For transitive reduction, we use horizontal partitioning as in PSSFS.

7.2 Experimental Results for TPC-C
Varying capture duration Figures 8a and 9a show the elapsed times and the edge set sizes for
varying capture durations in TPC-C, respectively. Figure 9a empirically confirms the containment
relationships in the Venn diagram in Section 3. The elapsed time increases linearly with the
capture duration for all algorithms. In terms of elapsed time, SSFS(GIT[OT]) outperforms SSFS(GIT),
SSFS(GOT), SSFS(GOTIT), RBSS+ and RBSS

L by up to 1.6, 1.6, 1.4, 20.9 and 15.9. This is because
the size of SSFS(GIT[OT]) is only 5% larger than the minimal dependency graph and achieves both
graph compactness and algorithm efficiency. In terms of edge generation time, SSFS(GOT) is the
slowest among SSFSs due to the overhead of 1) inserting candidate source vertices into a temporary
table and 2) performing expensive group-by operations as analyzed in Section 5.3. The transitive
reduction time is almost proportional to the edge set size.
Varying # of clients Figures 8b and 9b show the elapsed times and the edge set sizes for varying
the number of clients in TPC-C, respectively. As the number of clients increases, the number of
sessions also increases. The elapsed times for RBSS+ and RBSS

L super-linearly increase as the
number of clients increases. The elapsed times of SSFS(GIT[OT]) and SSFS(GOT) slowly increase
as the number of clients increases, since | EOT | remains almost constant regardless of the number
of clients as shown in Figure 9b. The elapsed times of SSFS(GOTIT) and SSFS(GIT) almost linearly
increase, since the number of the incoming edges of each request in these algorithms also linearly
increases. Their dependency graphs’ sizes linearly increase as shown in Figure 9b.
Varying # of table partitions Figures 8c and 9c show the elapsed times and the edge set sizes
by varying the number of table partitions, respectively. The elapsed times for RBSS+ and RBSS

L

increase as the number of table partitions increases, since 𝑑𝑎𝑣𝑔 in Section 4 increases due to the
size reductions in | Ecol | for varying the number of partitions. The elapsed times of SSFS(GIT[OT])

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 67. Publication date: February 2024.

67:20 Wonseok Lee et al.

1000

2000

3000

4000

S
S
F
S
(
IT

[
O

T
]
)

S
S
F
S
(
O

T
IT

)

S
S
F
S
(
O

T
)

S
S
F
S
(
IT

)

R
B

S
S
+

R
B

S
S
L

S
S
F
S
(
IT

[
O

T
]
)

S
S
F
S
(
O

T
IT

)

S
S
F
S
(
O

T
)

S
S
F
S
(
IT

)

R
B

S
S
+

R
B

S
S
L

S
S
F
S
(
IT

[
O

T
]
)

S
S
F
S
(
O

T
IT

)

S
S
F
S
(
O

T
)

S
S
F
S
(
IT

)

R
B

S
S
+

R
B

S
S
L

S
S
F
S
(
IT

[
O

T
]
)

S
S
F
S
(
O

T
IT

)

S
S
F
S
(
O

T
)

S
S
F
S
(
IT

)

R
B

S
S
+

R
B

S
S
L

15 30 45 60

0

100

200

300

400

Transitive Reduction

Edge Generation

Capture duration (min)

E
la

p
s
e
d
 t

im
e
 (

s
)

(a) Varying duration.

500

1000

1500

S
S
F
S
(
IT

[
O

T
]
)

S
S
F
S
(
O

T
IT

)

S
S
F
S
(
O

T
)

S
S
F
S
(
IT

)

R
B

S
S
+

R
B

S
S
L

S
S
F
S
(
IT

[
O

T
]
)

S
S
F
S
(
O

T
IT

)

S
S
F
S
(
O

T
)

S
S
F
S
(
IT

)

R
B

S
S
+

R
B

S
S
L

S
S
F
S
(
IT

[
O

T
]
)

S
S
F
S
(
O

T
IT

)

S
S
F
S
(
O

T
)

S
S
F
S
(
IT

)

R
B

S
S
+

R
B

S
S
L

S
S
F
S
(
IT

[
O

T
]
)

S
S
F
S
(
O

T
IT

)

S
S
F
S
(
O

T
)

S
S
F
S
(
IT

)

R
B

S
S
+

R
B

S
S
L

32 64 96 128

0

50

100

Transitive Reduction

Edge Generation

of clients

E
la

p
s
e
d
 t

im
e
 (

s
/1

M
 t

x
n
s
)

(b) Varying # of clients.

1000

2000

3000

S
S
F
S
(
IT

[
O

T
]
)

S
S
F
S
(
O

T
IT

)

S
S
F
S
(
O

T
)

S
S
F
S
(
IT

)

R
B

S
S
+

R
B

S
S
L

S
S
F
S
(
IT

[
O

T
]
)

S
S
F
S
(
O

T
IT

)

S
S
F
S
(
O

T
)

S
S
F
S
(
IT

)

R
B

S
S
+

R
B

S
S
L

S
S
F
S
(
IT

[
O

T
]
)

S
S
F
S
(
O

T
IT

)

S
S
F
S
(
O

T
)

S
S
F
S
(
IT

)

R
B

S
S
+

R
B

S
S
L

S
S
F
S
(
IT

[
O

T
]
)

S
S
F
S
(
O

T
IT

)

S
S
F
S
(
O

T
)

S
S
F
S
(
IT

)

R
B

S
S
+

R
B

S
S
L

1 4 16 64

0

50

100

Transitive Reduction

Edge Generation

of table partitions

E
la

p
s
e
d
 t

im
e
 (

s
/1

M
 t

x
n
s
)

(c) Varying # of table partitions.

Fig. 8. Dependency graph generation time in TPC-C.

T
R

S
S
F
S
(
IT

[
O

T
]
)

S
S
F
S
(
O

T
IT

)

S
S
F
S
(
O

T
)

S
S
F
S
(
IT

)

R
B

S
S
+

R
B

S
S
L

T
R

S
S
F
S
(
IT

[
O

T
]
)

S
S
F
S
(
O

T
IT

)

S
S
F
S
(
O

T
)

S
S
F
S
(
IT

)

R
B

S
S
+

R
B

S
S
L

T
R

S
S
F
S
(
IT

[
O

T
]
)

S
S
F
S
(
O

T
IT

)

S
S
F
S
(
O

T
)

S
S
F
S
(
IT

)

R
B

S
S
+

R
B

S
S
L

T
R

S
S
F
S
(
IT

[
O

T
]
)

S
S
F
S
(
O

T
IT

)

S
S
F
S
(
O

T
)

S
S
F
S
(
IT

)

R
B

S
S
+

R
B

S
S
L

15 30 45 60

0

100M

200M

300M

400M

500M

Capture duration (min)

E
d
g
e
 s

e
t
 s

iz
e

(a) Varying duration.

T
R

S
S
F
S
(
IT

[
O

T
]
)

S
S
F
S
(
O

T
IT

)

S
S
F
S
(
O

T
)

S
S
F
S
(
IT

)

R
B

S
S
+

R
B

S
S
L

T
R

S
S
F
S
(
IT

[
O

T
]
)

S
S
F
S
(
O

T
IT

)

S
S
F
S
(
O

T
)

S
S
F
S
(
IT

)

R
B

S
S
+

R
B

S
S
L

T
R

S
S
F
S
(
IT

[
O

T
]
)

S
S
F
S
(
O

T
IT

)

S
S
F
S
(
O

T
)

S
S
F
S
(
IT

)

R
B

S
S
+

R
B

S
S
L

T
R

S
S
F
S
(
IT

[
O

T
]
)

S
S
F
S
(
O

T
IT

)

S
S
F
S
(
O

T
)

S
S
F
S
(
IT

)

R
B

S
S
+

R
B

S
S
L

32 64 96 128

0

50M

100M

150M

200M

of clients

E
d
g
e
 s

e
t
 s

iz
e
 p

e
r
 1

M
 t

x
n
s

(b) Varying # of clients.

T
R

S
S
F
S
(
IT

[
O

T
]
)

S
S
F
S
(
O

T
IT

)

S
S
F
S
(
O

T
)

S
S
F
S
(
IT

)

R
B

S
S
+

R
B

S
S
L

T
R

S
S
F
S
(
IT

[
O

T
]
)

S
S
F
S
(
O

T
IT

)

S
S
F
S
(
O

T
)

S
S
F
S
(
IT

)

R
B

S
S
+

R
B

S
S
L

T
R

S
S
F
S
(
IT

[
O

T
]
)

S
S
F
S
(
O

T
IT

)

S
S
F
S
(
O

T
)

S
S
F
S
(
IT

)

R
B

S
S
+

R
B

S
S
L

T
R

S
S
F
S
(
IT

[
O

T
]
)

S
S
F
S
(
O

T
IT

)

S
S
F
S
(
O

T
)

S
S
F
S
(
IT

)

R
B

S
S
+

R
B

S
S
L

1 4 16 64

0

20M

40M

60M

80M

100M

of table partitions

E
d
g
e
 s

e
t
 s

iz
e
 p

e
r
 1

M
 t

x
n
s

(c) Varying # of table partitions.

Fig. 9. Edge set size in TPC-C.

S
S
F
S

R
B

S
S
+

R
B

S
S
L

S
S
F
S

R
B

S
S
+

R
B

S
S
L

S
S
F
S

R
B

S
S
+

R
B

S
S
L

S
S
F
S

R
B

S
S
+

R
B

S
S
L

1 4 16 64

0

5k

10k

15k
Pre/Post-processing Replay

Transitive reduction Edge generation

Capture duration

of table partitions

E
la

p
s
e
d
 t

im
e
 (

s
)

(a) 64 clients.

S
S
F
S

R
B

S
S
+

R
B

S
S
L

S
S
F
S

R
B

S
S
+

R
B

S
S
L

S
S
F
S

R
B

S
S
+

R
B

S
S
L

S
S
F
S

R
B

S
S
+

R
B

S
S
L

1 4 16 64

0

10k

20k

30k

40k
Pre/Post-processing Replay

Transitive reduction Edge generation

Capture duration

of table partitions

E
la

p
s
e
d
 t

im
e
 (

s
)

(b) 256 clients.

Fig. 10. End-to-end time breakdown in TPC-C.

remain almost constant, since | EOT | also remains almost constant. In contrast, the elapsed time of
SSFS(GIT) decreases, since | EIT | also decreases. As the number of table partitions increases, | EIT |
decreases, since the size of Ecol decreases. This explains why the elapsed time of SSFS(GIT) slightly
decreases as we increase the number of partitions. However, | EOT | remains almost constant, since
the probability of an edge being pruned by an object transitive path decreases when the number of
objects increases. SSFS(GIT[OT]) is the fastest, outperforming SSFS with other dependency graphs.
This is because its edge set size is almost close to TR, and the cost to generate GIT[OT] is the
cheapest, as explained in Section 5.
End-to-end time breakdown Figure 10 shows the end-to-end time breakdowns of SSFS(GIT[OT]),
RBSS

+, and RBSSL for varying the number of table partitions in TPC-C. The replay time is affected
by the number of table partitions and the number of clients. In Figure 10a, the replay time with no

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 67. Publication date: February 2024.

DoppelGanger++: Towards Fast Dependency Graph Generation for Database Replay 67:21

partitioning is 25% longer than the capture time. This is because the replay can slow down due
to the artificial dependencies in table-level logging. However, as the number of table partitions
increases to 64, the replay time is 26% faster than the capture time, as the requests accessing
different partitions can be replayed in parallel. In Figure 10b, the replay time is 58% faster than
the capture time as replay concurrency increases with 256 clients. This phenomenon is explained
as follows. During capture time, as the number of clients increases from 64 to 256, the capture
throughput increases only 5% as write conflicts also increase. However, as the write conflicts do
not occur during the replay as explained in Section 3.6, the replay throughput increases 67% as the
number of clients increases from 64 to 256. The dependency graph generation times of RBSS+ and
RBSS

L take up to 89% and 86% of the total end-to-end times, which are the bottlenecks.
The size of Ecol Table 4 shows | VR |, | Ecol |, and | E𝑡𝑟 | for varying the capture duration and the
number of table partitions. We omit the results for varying the number of clients, since there is
no change in trend. In all cases, the number of redundant edges in Ecol (i.e., | Ecol −E𝑡𝑟 |) is much
larger than | E𝑡𝑟 | by at least five orders of magnitude. Thus, more than 99% of the redundant edges
are pruned due to IT and OT, since EOTIT has only 8% more edges than E𝑡𝑟 on average in Figure 9.
This indicates the two types of redundancy are significantly prevalent. The other workloads also
show similar trends.

Table 4. The size of Ecol.

(a) Varying capture duration.

min | VR | | Ecol | | E𝑡𝑟 |
15 3.0 × 107 1.6 × 1013 3.2 × 107

30 5.9 × 107 6.6 × 1013 6.4 × 107

45 8.7 × 107 1.4 × 1014 9.5 × 107

60 1.2 × 108 2.5 × 1014 1.3 × 108

(b) Varying # of table partitions.

| VR | | Ecol | | E𝑡𝑟 |
1 5.9 × 107 6.6 × 1013 6.4 × 107

4 5.9 × 107 1.6 × 1013 3.6 × 107

16 6.1 × 107 4.2 × 1012 1.5 × 107

64 6.2 × 107 1.3 × 1012 7.1 × 106

7.3 Experimental Results for Real-World Customer Workload
Figure 11 shows the elapsed times and the edge set sizes in the large-scale, real-world customer
workload. In Figure 11a, the trend of the edge generation time is similar to that of TPC-C with 128
clients. Note that the number of clients is a dominant factor in the elapsed time rather than the
number of table partitions in TPC-C. The edge generation time of SSFS(GOT) and SSFS(GOTIT) is
2-3x longer than the others, as in the TPC-C with 128 clients. RBSS+ and RBSSL reach timeout. The
transitive reduction time is proportional to the edge set size. In Figure 11b, the trend of the edge
set size is similar to that of TPC-C with 64 table partitions. GOT is the largest, and thus transitive
reduction for SSFS(GOT) takes more than three times longer compared to that with the other
graphs. Although | EIT | is 7.8 times smaller than | EOT |, the edge generation time of SSFS(GIT) is
more than twice as slow as that of SSFS(GOT). This is because SSFS(GIT) first scans the candidates
of the IT(0)-free graph from SCR and then prunes the edges with k-forward paths using LAE.
The number of scanned candidates from SCR in SSFS(GIT) is four times larger than that from
OTC in SSFS(GOT). SSFS(GIT[OT]) remains the best in efficiency and compactness.

7.4 Memory Usage
Table 5 shows the memory usages of the states in SSFS with the default configuration of TPC-C,
TPC-C with 64 table partitions (denoted as TPC-C64), and the large-scale, real-world customer
workload, depending on the type of dependency graph. In TPC-C with default configuration,
except for SSFS(GOT), the states occupy less than 100 kB of memory. However, SSFS(GOT) exhibits

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 67. Publication date: February 2024.

67:22 Wonseok Lee et al.

400

500

600

700

800

TO TO

S
S
F
S
(
IT

[
O

T
]
)

S
S
F
S
(
O

T
IT

)

S
S
F
S
(
O

T
)

S
S
F
S
(
IT

)

R
B

S
S
+

R
B

S
S
L

0

50

100

150

Transitive Reduction

Edge Generation

E
la

p
s
e
d
 t

im
e
 (

s
)

(a) Elapsed time (s).

1M

2M

3M

4M

5M

TO TO

T
R

S
S
F
S
(
IT

[
O

T
]
)

S
S
F
S
(
O

T
IT

)

S
S
F
S
(
O

T
)

S
S
F
S
(
IT

)

R
B

S
S
+

R
B

S
S
L

0

200k

400k

600k

800k

E
d
g
e
 s

e
t
 s

iz
e

(b) Edge set size.

Fig. 11. Experimental results in the large-scale, real-world customer workload.

significantly higher memory consumption. This is due to the unbounded growth of OTC in
SSFS(GOT) when there is an unmodified table (e.g., ITEM table in TPC-C). Unlike in SSFS(GOT),
OTCs in SSFS(GIT[OT]) and SSFS(GOTIT) store at most one vertex for each session, and thus the
memory usages for their OTC are bounded to𝑂 (|𝑆 | · |𝑂 |). In TPC-C64, the memory usage for states
increases by up to 32 times, as |𝑂 | increases. The maximum space required for states is 269 MBytes
only. In the large-scale, real-world customer workload with 7,393 sessions, the memory usages for
the states increase by up to 1 GB. Note that the space complexity of SCR and LAE is 𝑂 (|𝑆 | · |𝑂 |)
and 𝑂 (|𝑆 |2). Therefore, SSFS(GIT[OT]) consume less memory than SSFS(GIT) and SSFS(GOTIT),
since it does not maintain SCR. For both workloads, SSFS(GIT[OT]) requires a manageable size of
states within modern server systems.

Table 5. The Memory Usages for the States in SSFS.

SSFS(GIT[OT]) SSFS(GOTIT) SSFS(GOT) SSFS(GIT)
TPC-C 50 kB 67 kB 134 MB 57 kB
TPC-C64 785 kB 2.16 MB 269 MB 1.41 MB
Real. 630 MB 1.03 GB 299 MB 830 MB

7.5 Scalability of PSSFS
Figure 12 shows the speedups of the PSSFS(GIT[OT]), PRBSS+ and PRBSSL compared to serial
SSFS(GIT[OT]) by varying the number of threads in TPC-C. The speedup is defined as the ratio of
the elapsed time of the serial SSFS(GIT[OT]) over that of a parallel algorithm. PSSFS achieves almost
linear speedup with minimal overhead on the merge phase as the number of threads increases.
Althrough PRBSS+ and PRBSSL achieve almost linear speedup, PSSFS(GIT[OT]) outperforms them
17.2 and 12.4 times on average. We omit the results of the other workloads due to the similar trends.

8 RELATEDWORK
The concept of database replay was first proposed in [20]. It provides a synchronization mechanism
that is more restrictive than necessary, resulting in a low level of concurrency and poor performance.
Morfonios et al. [28] enhanced this schema by proposing RBSS. We prove that RBSS generates the
dependency graph between GIT(0) and GIT(1) . Snowtrail [38] focuses on seamlessly executing pro-
duction queries using different cloud instances without interfering with the customer’s production

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 67. Publication date: February 2024.

DoppelGanger++: Towards Fast Dependency Graph Generation for Database Replay 67:23

0 1 4 8 12 16 20

0
1

5

10

15

20

PSSFS(IT[OT])

PRBSS+

PRBSSL

of threads

S
p
e
e
d
u
p

(
v
s
.
1

-
t
h
r
e
a
d
e
d
 S

S
F
S
(
IT

[
O

T
]
)
)

Fig. 12. Speedup rate by varying the number of threads.

workload in a cloud environment. The replay mechanism of Snowtrail is similar to Oracle Database
Replay [20]. These techniques generate many redundant edges, which are subsequently pruned by
the expensive transitive reduction.

Flex [11] is a prototype system for testing and tuning a production database instance. Flex mainly
loads a specific snapshot 𝑠 and executes an action on 𝑠 , such as a user-defined executable, not
supporting fine-grained workload replay. Doppler [12] is a recommendation engine for migrating
on-premise data platforms to Platform-as-a-Service (PaaS) offerings. However, Doppler does not
utilize workload information but instead utilizes rudimentary information for the recommendation:
performance counters, all possible cloud target Stock Keeping Units (SKUs), and the real-time
pricing for each SKU. It then relies on machine learning models to recommend the right-sized SKUs.
Instead, DRSs focus on the fine-grained workload information to safely migrate to new database
versions or hardware. Although these efforts are orthogonal to our approach, we believe our work
complements them.
Diametrics [13] is a framework for end-to-end benchmarking and performance monitoring

of query engines. It focuses on repeatable benchmarking for various query engines rather than
diagnosing any performance issues faced by any software/hardware upgrade. TROD [26] is a
framework for debugging web applications. It captures and sequentially re-runs the transactions to
reproduce bugs.
Recording of runs of a general program and replaying with the log to debug non-deterministic

failures has been extensively studied [10, 29, 30]. [10] utilizes consistency relaxation to debug data
races in a multi-core environment. [29] proposes an approximate replay system that divides a
sequence of events generated by a program into transactions and then logs conflicting operations at
the transaction level. However, this scheme does not guarantee the correct replay, which is crucial
in our target applications. [30] utilizes hardware-assisted virtualization extensions to implement a
software-based deterministic replay system. However, all these approaches are for general programs
incurring significant overhead in recording all conflicting operations on shared memory. However,
a DRS is a tailored replay system designed for database workloads.
There are recovery systems utilizing dependency graphs to parallelize recovery [27]. Adaptive

Logging [40] requires capturing all tuple IDs in read and write sets of each transaction, whose
numbers can be large with scan operations. This can lead to significant overhead for edge generation,
compared to ours. It is also challenging to maintain all read/write sets in our production system.
Even if Adaptive Logging uses a coarser granularity, replaying the resulting dependency graph
does not guarantee the output determinism in snapshot isolation, the most important desideratum
in DRS. In [40], each node represents a transaction (i.e., a stored procedure call). Consider two
transactions, 𝑇1 and 𝑇2, concurrently accessing a common table containing tuples 𝑟1 and 𝑟2 during

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 67. Publication date: February 2024.

67:24 Wonseok Lee et al.

the capture phase. Suppose that 𝑇1 reads 𝑟1, and 𝑇2 reads 𝑟2. 𝑇1 writes 𝑟2, and 𝑇2 writes 𝑟1 using the
values they read, respectively. Furthermore, 𝑇1 commits before 𝑇2 commits (i.e., write skew). Then,
in the resulting dependency graph, there is an edge from 𝑇1 to 𝑇2. Thus, Adaptive Logging replays
𝑇2 after𝑇1. However, this leads to a different database state, compared to the database state captured
during the capture. This will be reported as a bug in our DRS. Note that this is not a problem since
transactions are executed serially in H-store, the underlying DBMS of Adaptive Logging. Pacman
[37] builds a dependency graph using the program analysis technique. However, Pacman assumes
that all transactions are implemented as stored procedures and are known in advance, severely
restricting the user applications and rendering it unusable for general DRSs.
There are four additional types of dependency graphs, where all of these dependency graph

generation algorithms cannot be readily applied to our DRS: (G1) the dependency graph managed
by a lock manager for deadlock detection [19, 36], (G2) the one for detecting possible anomalies
in a given transaction workload under an applied (weak) isolation level [21, 25], (G3) the one for
scheduling the transactions to reduce runtime conflicts [15–17, 35], and (G4) the one for making
replicas consistent with the primary database [23]. The dependency graph is generated on the fly
at the replica by comparing each transaction with all existing transactions in the graph. Here, a
node corresponds to a transaction rather than a request. Even if the dependency graph is much
coarser than ours, the system limits the insertion of vertices when there are many vertices. Note
that G1 and G2 focus on finding cycles existing in the maintained dependency graphs. G3 focuses
on reducing inter-transaction conflicts by reordering pending requests. G4 focuses on ordering
among the replicated write transactions only, while our DRS should consider the ordering of both
write and read requests.

Graph sparsification is the problem reducing the edge set size while approximately preserving the
graph’s properties, such as the cut sizes or the distances between vertices [8, 18, 31, 33]. Although
some graph sparsifiers such as [33] reduce the graph in nearly-linear time, they do not guarantee
to preserve all necessary dependent edges. However, as stated in our problem definition, all edges
in G𝑡𝑟

𝑐𝑜𝑙
must be preserved for DRSs to achieve output determinism. Thus, these methods cannot be

readily applied to our problem.

9 CONCLUSION
In this paper, we presented a comprehensive and practical solution for fast dependency graph
generation in a database replay system (DRS). In Section 3, we formally proposed a taxonomy
of four types of dependency graphs for a DRS. In Section 4, we showed that the worst-case time
complexity of the state-of-the-art technique is𝑂 (| VR |2) due to repetitive backward scans for each
request. We showed that its dependency graph is the one between IT(0)-free graph and IT(1)-free
graph, potentially having many redundant edges. In order to solve this challenging problem, in
Section 5, we proposed a novel dependency generation algorithm SSFS to scan requests once
by succinctly maintaining the information required to generate the edges. We implemented our
solution in a leading commercial DBMS. Experiments using our DRS showed that it dramatically
improves the dependency graph generation time by up to two orders of magnitude, compared to
the state-of-the-art.

ACKNOWLEDGMENTS
The authors would like to thank Jaehyun Lim for helping the experimental setting of the TPC-C
benchmark. This work was supported by the National Research Foundation of Korea(NRF) grant
funded by the Korea government(MSIT) (No. NRF-2021R1A2B5B03001551).

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 67. Publication date: February 2024.

DoppelGanger++: Towards Fast Dependency Graph Generation for Database Replay 67:25

REFERENCES
[1] 2010. TPC Benchmark C. http://www.tpc.org/tpcc/. Accessed: 2022-06-23.
[2] 2020. Oracle Database 19c: Real Application Testing Overview. Technical Report.
[3] 2022. Capturing and Replaying Workloads. https://help.sap.com/docs/SAP_HANA_COCKPIT/

afa922439b204e9caf22c78b6b69e4f2/4f3c88249d484b0faba0e6b27b82c2dd.html?locale=en-US
[4] 2022. SAP Standard Application Benchmarks. https://www.sap.com/about/benchmark.html.
[5] 2022. Sql server distributed replay. https://learn.microsoft.com/en-us/sql/tools/distributed-replay/sql-server-

distributed-replay?view=sql-server-ver16
[6] 2023. The Internals of PostgreSQL. https://www.interdb.jp/. Accessed: 2023-10-20.
[7] 2023. Technical Report. https://sites.google.com/view/systemx-replay
[8] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. 2012. Graph sketches: sparsification, spanners, and subgraphs.

In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI symposium on Principles of Database Systems. ACM, Scottsdale
Arizona USA, 5–14. https://doi.org/10.1145/2213556.2213560

[9] Alfred V. Aho, Michael R Garey, and Jeffrey D. Ullman. 1972. The transitive reduction of a directed graph. SIAM J.
Comput. 1, 2 (1972), 131–137.

[10] Gautam Altekar and Ion Stoica. 2009. ODR: Output-deterministic replay for multicore debugging. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles. 193–206.

[11] Nedyalko Borisov and Shivnath Babu. 2013. Rapid experimentation for testing and tuning a production database
deployment. Proceedings of the 16th International Conference on Extending Database Technology, 125–136.

[12] Joyce Cahoon, Wenjing Wang, Yiwen Zhu, Katherine Lin, Sean Liu, Raymond Truong, Neetu Singh, Chengcheng Wan,
Alexandra Ciortea, Sreraman Narasimhan, and Subru Krishnan. 2022. Doppler: automated SKU recommendation in
migrating SQL workloads to the cloud. Proceedings of the VLDB Endowment 15, 12 (Aug. 2022), 3509–3521. https:
//doi.org/10.14778/3554821.3554840

[13] Shaleen Deep, Anja Gruenheid, Kruthi Nagaraj, Hiro Naito, Jeff Naughton, and Stratis Viglas. 2021. Diametrics:
benchmarking query engines at scale. ACM SIGMOD Record 50 (2021), 24–31. Issue 1.

[14] Reinhard Diestel. 2005. Graph theory 3rd ed. Graduate texts in mathematics 173 (2005), 33.
[15] Bailu Ding, Lucja Kot, and Johannes Gehrke. 2018. Improving optimistic concurrency control through transaction

batching and operation reordering. Proceedings of the VLDB Endowment 12, 2 (2018), 169–182.
[16] Jose M Faleiro and Daniel J Abadi. 2014. Rethinking serializable multiversion concurrency control. arXiv preprint

arXiv:1412.2324 (2014).
[17] Jose M Faleiro, Daniel J Abadi, and Joseph M Hellerstein. 2017. High performance transactions via early write visibility.

Proceedings of the VLDB Endowment 10, 5 (2017).
[18] Wai Shing Fung, Ramesh Hariharan, Nicholas J.A. Harvey, and Debmalya Panigrahi. 2011. A general framework for

graph sparsification. In Proceedings of the forty-third annual ACM symposium on Theory of computing. ACM, San Jose
California USA, 71–80. https://doi.org/10.1145/1993636.1993647

[19] Donald Fussell, Zvi M Kedem, and Abraham Silberschatz. 1981. Deadlock removal using partial rollback in database
systems. In Proceedings of the 1981 ACM SIGMOD international conference on Management of data. 65–73.

[20] Leonidas Galanis, Supiti Buranawatanachoke, Romain Colle, Benoît Dageville, Karl Dias, Jonathan Klein, Stratos
Papadomanolakis, Leng Leng Tan, Venkateshwaran Venkataramani, Yujun Wang, et al. 2008. Oracle database replay.
In Proceedings of the 2008 ACM SIGMOD international conference on Management of data. 1159–1170.

[21] Yifan Gan, Xueyuan Ren, Drew Ripberger, Spyros Blanas, and Yang Wang. 2020. IsoDiff: debugging anomalies caused
by weak isolation. Proceedings of the VLDB Endowment 13, 12 (2020).

[22] Herodotos Herodotou, Nedyalko Borisov, and Shivnath Babu. 2011. Query optimization techniques for partitioned
tables. In Proceedings of the 2011 ACM SIGMOD International Conference on Management of data. ACM, Athens Greece,
49–60. https://doi.org/10.1145/1989323.1989330

[23] Chuntao Hong, Dong Zhou, Mao Yang, Carbo Kuo, Lintao Zhang, and Lidong Zhou. 2013. KuaFu: Closing the
parallelism gap in database replication. In 2013 IEEE 29th International Conference on Data Engineering (ICDE). IEEE,
1186–1195.

[24] Bahman Javadi Isfahani. 2017. Evaluating a modern in-memory columnar data management system with a contempo-
rary OLTP workload. (2017).

[25] Kyle Kingsbury and Peter Alvaro. 2020. Elle: inferring isolation anomalies from experimental observations. Proceedings
of the VLDB Endowment 14, 3 (Nov. 2020), 268–280. https://doi.org/10.14778/3430915.3430918

[26] Qian Li, Peter Kraft, Michael Cafarella, Çağatay Demiralp, Goetz Graefe, Christos Kozyrakis, Michael Stonebraker,
Lalith Suresh, and Matei Zaharia. 2023. Transactions Make Debugging Easy.. In CIDR.

[27] Arlino Magalhaes, Jose Maria Monteiro, and Angelo Brayner. 2022. Main Memory Database Recovery: A Survey.
Comput. Surveys 54, 2 (March 2022), 1–36. https://doi.org/10.1145/3442197

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 67. Publication date: February 2024.

http://www.tpc.org/tpcc/
https://help.sap.com/docs/SAP_HANA_COCKPIT/afa922439b204e9caf22c78b6b69e4f2/4f3c88249d484b0faba0e6b27b82c2dd.html?locale=en-US
https://help.sap.com/docs/SAP_HANA_COCKPIT/afa922439b204e9caf22c78b6b69e4f2/4f3c88249d484b0faba0e6b27b82c2dd.html?locale=en-US
https://www.sap.com/about/benchmark.html
https://learn.microsoft.com/en-us/sql/tools/distributed-replay/sql-server-distributed-replay?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/tools/distributed-replay/sql-server-distributed-replay?view=sql-server-ver16
https://www.interdb.jp/
https://sites.google.com/view/systemx-replay
https://doi.org/10.1145/2213556.2213560
https://doi.org/10.14778/3554821.3554840
https://doi.org/10.14778/3554821.3554840
https://doi.org/10.1145/1993636.1993647
https://doi.org/10.1145/1989323.1989330
https://doi.org/10.14778/3430915.3430918
https://doi.org/10.1145/3442197

67:26 Wonseok Lee et al.

[28] Konstantinos Morfonios, Romain Colle, Leonidas Galanis, Supiti Buranawatanachoke, Benoît Dageville, Karl Dias, and
Yujun Wang. 2011. Consistent synchronization schemes for workload replay. Proceedings of the VLDB Endowment 4,
12 (2011), 1225–1236.

[29] Ernest Pobee, Xiupei Mei, and Wing Kwong Chan. 2019. Efficient transaction-based deterministic replay for multi-
threaded programs. In Proceedings of the 34th IEEE/ACM International Conference on Automated Software Engineering.
760–771.

[30] Shiru Ren, Le Tan, Chunqi Li, Zhen Xiao, and Weijia Song. 2017. Leveraging hardware-assisted virtualization for
deterministic replay on commodity multi-core processors. IEEE Trans. Comput. 67, 1 (2017), 45–58.

[31] Venu Satuluri, Srinivasan Parthasarathy, and Yiye Ruan. 2011. Local graph sparsification for scalable clustering. In
Proceedings of the 2011 ACM SIGMOD International Conference on Management of data. ACM, Athens Greece, 721–732.
https://doi.org/10.1145/1989323.1989399

[32] Klaus Simon. 1988. An improved algorithm for transitive closure on acyclic digraphs. Theoretical Computer Science 58,
1-3 (1988), 325–346.

[33] Daniel A. Spielman and Shang-Hua Teng. 2004. Nearly-linear time algorithms for graph partitioning, graph sparsifica-
tion, and solving linear systems. In Proceedings of the thirty-sixth annual ACM symposium on Theory of computing.
ACM, Chicago IL USA, 81–90. https://doi.org/10.1145/1007352.1007372

[34] Xian Tang, Junfeng Zhou, Yaxian Qiu, Xiang Liu, Yunyu Shi, and Jingwen Zhao. 2020. One Edge at a Time: A Novel
Approach Towards Efficient Transitive Reduction Computation on DAGs. IEEE Access 8 (2020), 38010–38022.

[35] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao, and Daniel J Abadi. 2012. Calvin:
fast distributed transactions for partitioned database systems. In Proceedings of the 2012 ACM SIGMOD international
conference on management of data. 1–12.

[36] Gerhard Weikum and Gottfried Vossen. 2001. Transactional information systems: theory, algorithms, and the practice of
concurrency control and recovery. Elsevier.

[37] Yingjun Wu, Wentian Guo, Chee-Yong Chan, and Kian-Lee Tan. 2017. Fast Failure Recovery for Main-Memory DBMSs
on Multicores. In Proceedings of the 2017 ACM International Conference on Management of Data. ACM, Chicago Illinois
USA, 267–281. https://doi.org/10.1145/3035918.3064011

[38] Jiaqi Yan, Qiuye Jin, Shrainik Jain, Stratis D Viglas, and Allison Lee. 2018. Snowtrail: Testing with production queries
on a cloud database. Proceedings of the Workshop on Testing Database Systems, 1–6.

[39] C-Q Yang and Barton P Miller. 1988. Critical path analysis for the execution of parallel and distributed programs. In
The 8th International Conference on Distributed. Computing Systems, 366–367.

[40] Chang Yao, Divyakant Agrawal, Gang Chen, Beng Chin Ooi, and Sai Wu. 2016. Adaptive Logging: Optimizing
Logging and Recovery Costs in Distributed In-memory Databases. In Proceedings of the 2016 International Conference
on Management of Data. ACM, San Francisco California USA, 1119–1134. https://doi.org/10.1145/2882903.2915208

Received July 2023; revised October 2023; accepted November 2023

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 67. Publication date: February 2024.

https://doi.org/10.1145/1989323.1989399
https://doi.org/10.1145/1007352.1007372
https://doi.org/10.1145/3035918.3064011
https://doi.org/10.1145/2882903.2915208

	Abstract
	1 Introduction
	2 Architecture Overview
	3 Dependency Graphs
	3.1 Notation and Problem Definition
	3.2 IT(k)-free Graph
	3.3 OT-free Graph
	3.4 OTIT-free Graph
	3.5 IT[OT]-free Graph
	3.6 Output Determinism Guarantees

	4 Repetitive Backward Session Scan (RBSS)
	5 Stateful Single Forward Scan (SSFS)
	5.1 Generating `3́9`42`"̇613A``45`47`"603A`3́9`42`"̇613A``45`47`"603AGIT
	5.2 Generating `3́9`42`"̇613A``45`47`"603A`3́9`42`"̇613A``45`47`"603AGOT
	5.3 Generating `3́9`42`"̇613A``45`47`"603A`3́9`42`"̇613A``45`47`"603AGIT[OT]

	6 Parallelizing SSFS
	7 Experiments
	7.1 Experimental Setup
	7.2 Experimental Results for TPC-C
	7.3 Experimental Results for Real-World Customer Workload
	7.4 Memory Usage
	7.5 Scalability of PSSFS

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

