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1 INTRODUCTION

Taxonomy or hierarchical classification of species goes back at least to discussions between Aris-
totle and his teacher Plato1 (∼350 BC), while modern taxonomy is often attributed to Linnaeus2

(∼1750). The discussions of evolution in the 19th century clarified the notion of evolutionary trees,
or phylogenies, and the notion that species were close due to a common past ancestor. Such evolu-
tionary trees are seen in the works of Hitchcock3 (1840) and Darwin4 (1859). Viewing the descen-
dants of each node as a class, the evolutionary tree induces a hierarchical classification.

In the 1960s came the interest in computing evolutionary trees based on present data, the so-
called numerical taxonomy problem [11, 49, 50]. Our focus is on the following simple model by
Cavalli-Sforza and Edwards from 1967 [11]. In an evolutionary tree, let the edge between the child
and its parent be weighted by the evolutionary distance between them. Then the evolutionary
distance between any two species is the sum of weights on the unique simple path between them.
We note that the selection of the root plays no role for the distances. What we are saying is that
any tree with edge weights induces distances between its nodes, a so-called tree metric assuming
that all weights are positive.

We now have the converse reconstruction problem of numerical taxonomy [11, 49, 50]: Given a
set S of species with measured distances between them, find a tree metric matching those observed
distances on S . Thus we are looking for an edge-weighted tree T that includes S among its nodes
with the right distances between them. Importantly, T may have nodes not in S representing an-
cestors explaining proximity between different species. The better the tree metric T matches the
measured distances on S , the better the tree T explains these measured distances.

Other applications. This very basic reconstruction problem also arises in various other contexts.
First, concerning the evolutionary model, it may be considered too simplistic to just add up dis-
tances along the paths in the tree. Some changes from parent to child could be reverted for a
grandchild. Biologists [12, 35] have suggested stochastic models for probabilistic changes that also
have a chance of being reverted further down. However, Farach and Kannan [33] have shown that
applying logarithms appropriately, we can convert estimated distances into some other distances
for which we find a matching tree metric that we can then convert back into a maximum likelihood
stochastic tree. The basic point is that finding tree metrics can be used as powerful tool to invert
evolution even in cases where tree metric model does not apply directly.

Obviously, the numerical taxonomy problem is equally relevant to other historical sciences with
an evolutionary branching process leading to evolutionary distances, e.g., historical linguistics.

More generally, if we can approximate distances with a tree metric, then the tree of this met-
ric provides a very compact and convenient representation that is much easier to navigate than a
general distance function. Picking any root, the tree induces a distance-based hierarchical classifi-
cation, and referring to the discussions between Plato and Aristotle’s, humans have been interested
in such hierarchical classifications since ancient times.

It is not just humans but also computers that understand trees and tree metrics much better
than general metrics. Many questions that are NP-hard to answer in general can be answered
very efficiently based on trees (see, e.g., Chapter 10.2, “Solving NP-Hard Problems on Trees,” in
Reference [42]).

Computing “good” tree representations is nowadays also a major tool to learn from data. In this
context, we are sometimes interested in a special kind of tree metrics, called ultrametrics, defined

1https://iep.utm.edu/classifi/,InternetEncyclopediaofPhilosophy
2https://britannica.com/science/taxonomy/The-Linnaean-system
3https://en.wikipedia.org/wiki/Edward_Hitchcock
4https://en.wikipedia.org/wiki/On_the_Origin_of_Species
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by rooted trees whose sets of leaves is S and where the leaf-to-root distance is the same for all
points in S . Equivalently, an ultrametric is a metric so that for any three points i, j,k , the distance
from i to j is no bigger than the maximum of the distance from i to j and the distance from j to k .5

An ultrametric can be seen as modeling evolution that is linear over time. This may not be the
case in biology, where the speed of evolution depends on the local evolutionary pressure for exam-
ple. However, ultrametrics are key objects in machine learning and data analysis, see e.g., Reference
[10], and there are various algorithms for embedding arbitrary metrics into ultrametrics such as
the popular “linkage” algorithms (single, complete or average linkage), see also References [24, 45].

1.1 Tree Fitting (Numerical Taxonomy Problem)

Typically our measured distances do not have an exact fit with any tree metric. We then have the
following generic optimization problem for any Lp -norm:

Problem: Lp -fitting tree (ultra) metrics.

Input: A set S with a distance function D :
(S
2

)
→ R>0.6

Desired Output: A tree metric (or ultrametric)T that spans S and fitsD in the sense of minimizing
the Lp -norm

‖T − D‖p =
����

∑
{i, j }∈(S2)

|distT (i, j) − D(i, j)|
p
�		


1/p

. (1)

Cavalli-Sforza and Edwards [11] introduced this numerical taxonomy problem for both tree and
ultrametrics in the L2-norm in 1967. Farris suggested using L1-norm in 1972 [35, p. 662].

1.2 Our Result

In this article, we focus on the L1-norm, that is, the total sum of errors. The problem is APX-hard for
both tree metrics and ultrametrics (see Section 9 and Reference [3]), so a constant approximation
factor is the best we can hope for in polynomial time. The best previous approximation factor for
both tree metrics and ultrametrics was O((logn)(log logn)) by Ailon and Charikar [3].

In this article, we present a deterministic polynomial time constant factor approximation both
for tree metrics and for ultrametrics, that is, in both cases, we can find a tree T minimizing the
L1-norm within a constant factor of the best possible.

Thus, we will prove the following theorem.

Theorem 1.1. The L1-fitting tree metrics problem can be solved in deterministic polynomial time

within a constant approximation factor. The same holds for the L1-fitting ultrametrics problem.

1.3 History of Lp Tree Fitting

Since Cavalli-Sforza and Edwards introduced the tree fitting problem, the problem has collected an
extensive literature. In 1977 [54], it was shown that if there is a tree metric coinciding exactly with
D, then it is unique and it can be found in time linear in the input size, i.e.,O(|S |2) time. The same
then also holds trivially for ultrametrics. Unfortunately there is typically no tree metric coinciding
exactly withD, and in 1987 [28] it was shown that for L1 and L2 the numerical taxonomy problem
is NP-hard in the tree metric and the ultrametric cases. The problems are in fact APX-hard (see
Section 9), which rules out the possibility of a polynomial-time approximation scheme. Thus, a

5https://en.wikipedia.org/wiki/Ultrametric_space
6 (S

k

)
denotes all subsets of S of size k .
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constant factor, like ours for L1, is the best one can hope for from a complexity perspective for
these problems.

For the L∞ numerical taxonomy problem, there was much more progress. In 1993 [34], it was
shown that for the ultrametric case an optimal solution can be found in Θ(|S |2) time. More recently,
it was shown that when the points are embedded into Rd and the distances are given by the
pairwise Euclidean distances, the problem can be approximated in subquadratic time [22, 25]. For
the general trees case (still in the L∞-norm objective), Reference [2] gave anO(|S |2) algorithm that
produces a constant factor approximation and proved that the problem is APX-hard (unlike the
ultrametric case).

The technical result from Reference [2] was a general reduction from general tree metrics to
ultrametrics. It modifies the input distance matrix and asks for fitting this new input with an ultra-
metric that can later be converted to a tree metric for the original distance matrix. The result states
that for anyp, if we can minimize the restricted ultrametricLp error within a factorα in polynomial-
time, then there is a polynomial-time algorithm that minimizes the tree metric Lp error within a
factor 3α . The reduction from Reference [2] imposes a certain restriction on the ultrametric, but
the restriction is not problematic, and in Section 8, we will even argue that the restriction can be
completely eliminated with a slightly modified reduction. With n species, the reduction from tree
metrics to ultrametrics can be performed in time O(n2). Applying this to the optimal ultrametric
algorithm from Reference [34] for the L∞-norm objective yielded a factor 3 for general metrics for
the L∞-norm objective. The generic impact is that for any Lp , later algorithms only had to focus on

the ultrametric case to immediately get results for the often more important tree metrics case, up to

losing a factor 3 in the approximation guarantee. Indeed, the technical result of this article is a con-
stant factor approximation for ultrametric. Thus, letting TreeMetric and UltraMetric respectively
denote the approximation factors of the tree metric and ultrametric problems, we have

TreeMetric ≤ 3 · UltraMetric

For Lp -norms with constant p, the developments have been much slower. Ma et al. [44] consid-
ered the problem of finding the best Lp fit by an ultrametric where distances in the ultrametric are
no smaller than the input distances. For this problem, they obtained an O(n1/p ) approximation.

Later, Dhamdhere [29] considered the problem of finding a line metric to minimize additive
distortion from the given data (measured by the L1-norm) and obtained anO(logn) approximation.
In fact, his motivation for considering this problem was to develop techniques that might be useful
for finding the closest tree metric with distance measured by the L1-norm. Harb, Kannan, and
McGregor [40] developed a factor O(min{n,k logn}1/p ) approximation for the closest ultrametric
under the Lp -norm where k is the number of distinct distances in the input.

The best bounds known for the ultrametric variant of the problem are due to Ailon and Charikar
[3]. They first focus on ultrametrics in L1 and show that if the distance matrix has only k distinct
distances, then it is possible to approximate the L1 error within a factor k + 2. Next they obtain an
LP-based O((logn)(log logn)) approximation for arbitrary distances matrices. Finally, they sketch
how it can be generalized to an O(((logn)(log logn))1/p ) approximation of the Lp error for any p.
Using the reduction from Reference [2], they also get an O(((logn)(log logn))1/p ) approximation
for tree metrics under the Lp -norm objective. The O(((logn)(log logn))1/p ) approximation comes
from an O((logn)(log logn)) approximation of the pth moment of the following function:

‖T − D‖
p
p =

����
∑

{i, j }∈(S2)

|distT (i, j) − D(i, j)|
p
�		
 . (2)
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Table 1. Tree Fitting Approximation Factors

Norm L1 Lp , p < ∞ L∞
Treemetric Θ(1) O(((logn)(log logn))1/p ) Θ(1)
Ultrametric Θ(1) O(((logn)(log logn))1/p ) 1

Technically, Ailon and Charikar [3] present a simple LP relaxation for L1 ultrametric fitting—an
LP that will also be used in our article. They get theirO((logn)(log logn)) approximation using an
LP rounding akin to the classicO(logn) rounding of Leighton and Rao for multicut [43]. The chal-
lenge is to generalize the approach to deal with the hierarchical issues associated with ultrametric
and show that this can be done paying only an extra factor O(log logn) in the approximation fac-
tor. Next they show that their LP formulation and rounding is general enough to handle different
variants, including other Lp -norms as mentioned above, but also they can handle the weighted

case, where for each pair of species i, j, the error contribution to the overall error is multiplied by a
value wi j . However, this weighted problem captures the multicut problem (and the weighted min-
imization correlation clustering problem) [3]. Since the multicut cannot be approximated within
a constant factor assuming the unique games conjecture [19] and the best-known approximation
bound remains O(logn), it is beyond reach of current techniques to do much better in these more
general settings.

Ailon and Charikar [3] conclude that “determining whether an O(1) approximation can be ob-
tained is a fascinating question. The LP formulation used in our [their] work could eventually lead
to such a result.” For their main LP formulation for the (unweighted) L1 ultrametric fitting, the
integrality gap was only known to be somewhere between 2 and O((logn)(log logn)). To break
the logn-barrier, we must come up with a radically different way of rounding this LP and free
ourselves from the multicut-inspired approach.

For L1 ultrametric fitting, we give the first constant factor approximation, and we show this can
be obtained by rounding the LP proposed by Ailon and Charikar, thus demonstrating a constant
integrality gap for their LP. Our solution breaks the logn barrier using the special combinatorial
structure of the L1 problem.

Stepping a bit back, having different solutions for different norms should not come as a surprise.
As an analogue, take the generic problem of placing k facilities in such a way that each of n cities
is close to the nearest facility. Minimizing the vector of distances in the L1-norm is called the k-
median problem. In the L2-norm, it is called the k-means problem and in the L∞-norm the k-center
problem. Indeed, while the complexity of the k-center problem has been settled in the mid-1980s
thanks to Gonzalez’s algorithm [38], it remained a major open problem for the next 15 years to ob-
tain constant factor approximation for the k-median and the k-means problems. Similarly, our un-
derstanding of the k-means problem (L2-objective) remains poorer than our understanding of the
k-median problem, and the problem is in fact provably harder (no better than 1+8/e-approximation
algorithm [39], while k-median can be approximated within a factor 2.675 [9]).

For our tree fitting problem, the L∞-norm has been understood since the 1990s, and our result
shows that the L1-norm admits a constant factor approximation algorithm. The current status of af-
fairs for tree and ultrametrics is summarized in Table 1. The status for Lp tree fitting is that we have
a good constant factor approximation if we want to minimize the total error L1 or the maximal er-
ror L∞. For all other Lp -norms, we only have the much weaker but generalO(((logn)(log logn))1/p )
approximation from Reference [3]. In particular, we do not know if anything better is possible with
L2. The difference is so big that even if we are in a situation where we would normally prefer an
L2 approximation, our much better approximation guarantee with L1 might be preferable.

J. ACM, Vol. 71, No. 2, Article 10. Publication date: April 2024.



10:6 V. Cohen-Addad et al.

1.4 Other Related Work

Computational Biology. Researchers have also studied reconstruction of phylogenies under sto-
chastic models of evolution (see Farach and Kannan [33] or Mossel et al. [46] and the references
therein; see also Henzinger et al. [41]).

Finally, related to the hierarchical correlation clustering problem that we introduce in this article
is the hierarchical clustering problem introduced by Dasgupta [27] where the goal is, given a
similarity matrix, to build a hierarchical clustering tree where the more similar two points are,
the lower in the tree they are separated (formally, a pair (u,v) induces a cost of similarity(u,v)
times the size of the minimal subtree containing both u and v , the goal is to minimize the sum
of the costs of the pairs). This has received a lot of attention in the past few years (References
[5, 14–16, 18, 23, 24, 45, 47], see also References [1, 6, 13, 21]) but differs from our settings, since
the resulting tree may not induce a metric space.

Metric Embeddings. There is a large body of work of metric embedding problems. For example,
the metric violation distance problem asks to embed an arbitrary distance matrix into a metric
space while minimizing the L0-objective (i.e., minimizing the number of distances that are not
preserved in the metric space). The problem is considerably harder and is only known to admit
an O(OPT1/3)-approximation algorithm [31, 32, 36], while no better than a 2 hardness of approx-
imation is known. More practical results on this line of work includes References [51] and [37].
Sidiropoulos et al. [48] also considered the problem of embedding into metric, ultrametric, and so
on, while minimizing the total number of outlier points.

There is also a rich literature on metric embedding problems where the measure of interest is
the multiplicative distortion, and the goal of the problem is to approximate the absolute distortion
of the metric space (as opposed to approximating the optimal embedding of the metric space).
Several such problems have been studied in the context of approximating metric spaces via tree
metrics (e.g., References [8, 30]). The objective of these works is very different, since they are
focused on the absolute expected multiplicative distortion over all input metrics while we aim at
approximating the optimal expected additive distortion for each individual input metric.

While the embedding techniques developed in References [8, 30] and related works have been
very successful for designing approximation algorithms for various problems in a variety of con-
texts, they are not aimed at numerical taxonomy. Their goal is to do something for general metrics.
However, for our tree-fitting problem, the idea is that the ground truth is a tree, e.g., a phylogeny,
and that the distances measured, despite noise and imperfection of the model, are close to the
metric of the true tree. To recover an approximation to the true tree, we therefore seek a tree that
compares well against the best possible fit of a tree metric.

1.5 Techniques

We will now discuss the main idea of our algorithm. Our solution will move through several com-
binatorial problems that code different aspects of the L1-fitting of ultrametrics but that do not
generalize nicely to other norms.

Our result follows from a sequence of constant-factor-approximation reductions between prob-
lems. To achieve our final goal, we introduce several new problems that have a key role in the
sequence of reductions. Some of the reductions and approximation bounds have already been ex-
tensively studied (e.g., Correlation Clustering). A roadmap of this sequence of results is given in
Figure 1. While some the reductions and techniques we use for our new constant factor approxima-
tion were known, we do not make use of anything published since the previousO((logn)(log logn))
factor approximation of Ailon and Charikar [4].

J. ACM, Vol. 71, No. 2, Article 10. Publication date: April 2024.
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Fig. 1. Roadmap leading to our result for L1-fitting tree metrics.

1.5.1 Correlation Clustering. Our algorithms will use a subroutine for what is known as the
unweighted minimizing-disagreements correlation clustering problem on complete graphs [7]. We
simply refer to this problem as Correlation Clustering throughout the article.

First, for any family P of disjoint subsets of S , let

E(P) =
⋃
T ∈P

(
T

2

)
.

Thus E(P) represents the edge sets over an isolated clique over each set T in P . Often P will be a
partition of S , that is,

⋃
P = S .

The correlation clustering takes as input an edge set E ⊆
(S
2

)
and seeks a partition P minimizing

|E	E(P)|,

where 	 denotes symmetric difference. Bansal et al. [7] presented a deterministic constant factor
approximation for this correlation clustering problem. Thus,

CorrClust = O(1). (D) from Figure 1

We note that better approximation factors have been found, e.g., a randomized polynomial time
1.994 + ϵ factor approximation from Reference [26] (see also References [4, 20]) and a 2.5 deter-
ministic approximation algorithm [52] are known. However, for our purposes, it suffices to know
that a constant factor can be achieved in polynomial time.

J. ACM, Vol. 71, No. 2, Article 10. Publication date: April 2024.
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It is well known that correlation clustering is equivalent to ultrametric fitting with two distances
(see, e.g., Reference [40]). Also, we note that Ailon and Charikar, who presented the previous best
O((logn)(log logn)) approximation for tree metrics and ultrametrics at FOCS’05 [3], had presented
a 2.5 approximation for correlation clustering at the preceding STOC’05 with Newman [4]. In fact,
inspired by this connection, they proposed in Reference [3] a pivot-based (M + 2)-approximation
algorithm for the L1 ultrametric problem where M is the number of distinct input distances. Thus,
involving correlation clustering for fitting ultrametrics is not a new idea. The novelty is the way
we use it so as to get the desired constant factor approximation for tree and ultrametrics.

1.5.2 Hierarchical Correlation Clustering. We are going to work with a generalization of the
problem of L1-fitting ultrametric that is implicit in previous work [3, 40]. In fact, Reference [3]
contains an integer program capturing exactly this problem, and indeed it is the LP relaxation of
this problem that they round within a factor ofO((logn)(log logn)). However, here we will exploit
the generality of hierachical correlation clustering in new interesting ways.

Problem Hierarchical Correlation Clustering.
Input The input is � weights δ (1), . . . ,δ (�) ∈ R>0 and � edge sets E(1), . . . ,E(�) ⊆

(S
2

)
.

Desired output � partitions P (1), . . . , P (�) of S that are hierarchical in the sense that P (t ) subdivides
P (t+1) and such that we minimize

�∑
t=1

δ (t ) |E(t ) 	 E(P (t ))|. (3)

Thus, we are having a combination of � correlation clustering problems where we want the output
partitions to form a hierarchy and where the objective is to minimize a weighted sum of the costs
for each level problem.

We shall review the reduction from Reference [3] of L1-fitting of ultrametrics to hierarchical
correlation clustering in Section 7. The instances we get from ultrametrics will always satisfy
E(1) ⊆ · · · ⊆ E(�), but as we shall see shortly, our new algorithms will reduce to instances where
this is not the case, even if the original input is from an ultrametric.

1.5.3 Hierarchical Cluster Agreement. We will be particularly interested in the following special
case of Hierarchical Correlation Clustering.
Problem Hierarchical Cluster Agreement.
Input The input is � weights δ (1), . . . ,δ (�) ∈ R>0 and � partitions Q (1), . . .Q (�) of S .
Desired output � partitions P (1), . . . , P (�) of S that are hierarchical in the sense that P (t ) subdivides
P (t+1) and such that we minimize

�∑
t=1

δ (t ) |E(Q (t )) 	 E(P (t ))|. (4)

This is the special case of hierarchical correlation clustering, where the input edge set E(t ) are
the disjoint clique edges from E(Q (t )). The challenge is that the input partitions may disagree in
the sense thatQ (t ) does not subdivideQ (t+1), or, equivalently, E(Q (t )) � E(Q (t+1)), so now we have
to find the best hierarchical agreement.

We are not aware of any previous work on hierarchical cluster agreement, but it plays a central
role in our hierarchical correlation clustering algorithm, outlined below.

1.6 High-level Algorithm for Hierarchical Correlation Clustering

Our main technical contribution in this article is solving Hierarchical Correlation Clustering. Re-
ductions from Ultrametric to Hierarchical Correlation Clustering, and from general Tree Metric

J. ACM, Vol. 71, No. 2, Article 10. Publication date: April 2024.
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to Ultrametric, are already known from References [3, 40] and [2], respectively. We discuss both
reductions in Sections 7 and 8. This includes removing some restrictions in the reduction from
Tree Metrics to Ultrametrics.

Focusing on Hierarchical Correlation Clustering, our input is the � weights δ (1), . . . ,δ (�) ∈ R>0

and � edge sets E(1), . . . ,E(�) ⊆
(S
2

)
.

Step 1: Solve correlation clustering independently for each level. The first step in our solution is to
solve the correlation clustering problem defined by E(t ) for each level t = 1, . . . , � independently,
thus obtaining an intermediate partitioningQt . As we mentioned in Section 1.5.1, this can be done
so that Qt minimizes |E(t )	E(Qt )| within a constant factor.

Step 2: Solve hierarchical cluster agreement. We now use the � weights δ (1), . . . ,δ (�) ∈ R>0 and
� partitions Q (1), . . . ,Q (�) of S as input to the hierarchical cluster agreement problem, which we
solve using an LP very similar to the one Ailon and Charikar [3] used to solve general hierarchical
correlation clustering within a O((logn)(log logn)) factor. However, when applied to the special
case of hierarchical cluster agreement, it allows an unusual kind of constant-factor LP rounding.
We use the LP variables (which only indicate how much pairs of species should be together) to
decide which sets from the input partitions are important to the hierarchy and which sets can be
ignored. The important sets may not yet be hierarchical (or laminar), but we show that some small
modifications suffice. This is done by a relatively simple combinatorial algorithm that modify the
important sets bottom-up to generate the hierarchical output partitions P (1), . . . , P (�). The result
is a poly-time constant factor approximation for hierarchical cluster agreement, that is,

HierClustAgree = O(1).

The output partitions P (1), . . . , P (�) are also returned as output to the original hierarchical correla-
tion clustering problem.

We now provide a high level overview and the intuition behind the hierarchical cluster agree-
ment algorithm. The algorithm can be broadly divided into two parts.

LP cleaning. We start by optimally solving the LP based on the weights δ (1), . . . ,δ (�) and par-
titions Q (1), . . . ,Q (�). For each level t ∈ {1, . . . , �}, we naturally think of the relevant LP variables
as distances and call them LP distances. That is because a small value means that the LP wants
the corresponding species to be in the same part of the output partition at level t and vice versa,
while the LP constraints also enforce the triangle inequality. The weights δ (1), . . . ,δ (�) impact the
optimal LP variables but will otherwise not be used in the rest of the algorithm.

Using the LP distances, we clean each set in every partitionQ (t ) independently. The objective of
this step (LP-Cleaning - Algorithm 2) is to keep only the sets where most species are very close to
each other and far away from the species not in the set. All other sets are disregarded. We process
the sets of each level independently. The algorithm may only slightly modify sets that are not
disregarded when processing their level. The property that we can clean each set independently
to decide whether it is important or not, without looking at any other sets makes this part of our
algorithm quite simple.

Omitting exact thresholds for simplicity, the algorithm works as follows. We process each set
CI ∈ Q

(t ) by keeping only those species that are at very small LP distance from at least half of the
other species in CI and at large LP distance to almost all the species outside CI . Let us note that
by triangle inequality and the pigeonhole principle, all species left in a set are at relatively small
distance from each other. After this cleaning process, we only keep a set if at least 90% of its species
are still intact, and we completely disregard it otherwise. The LP cleaning algorithm outputs the
sequence L(∗) = (L(1), . . . ,L(�)), where L(t ) is the family of surviving cleaned sets from Q (t ).
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Derive hierarchy. Taking L(∗) as input, in the next step the algorithm Derive-Hierarchy (Algo-
rithm 3) computes a hierarchical partition P (∗) = (P (1), . . . , P (�)) of S . This algorithm works bottom-
up while initializing an auxiliary bottom most level of the hierarchy with |S | sets where each set is
a singleton and corresponds to a species of S . Then the algorithm performs � iterations where at the
t th iteration it processes all the disjoint sets in L(t ) and computes partition P (t ) while ensuring that
at the end of the iteration P (1), . . . , P (t ) are hierarchical. An interesting feature of our algorithm is
that while creating P (t ) we do not make any changes to the lower partitions P (1), . . . , P (t−1). Next,
we discuss how to compute P (t ) given L(t ) and the lower partitions P (1), . . . , P (t−1).

Consider a setCLP ∈ L
(t ). Now if for each lower level setC ′ eitherC ′∩CLP = ∅ orC ′ ⊆ CLP , then

introducingCLP at level t does not violate the hierarchy property. Otherwise, letC ′ be a lower level
set such thatC ′∩CLP � ∅ andC ′ � CLP . Note that we already mentioned, once created,C ′ is never
modified while processing upper level sets. Thus, to ensure the hierarchy condition, the algorithm
can either extend CLP so that it completely covers C ′ or can discard the common part from CLP .

In the process of modifyingCLP (where we can add or discard some species from it), at any point
we define the core of CLP to be the part that comes from the set created initially. Now to resolve
the conflict between CLP and C ′, we work as follows. If the core of CLP intersects the core of C ′,
then we extend CLP so that C ′ becomes a subset of it. Omitting technical details, there are two
main ideas here: First, we ensure that the number of species in C ′ (respectively, CLP ) that are not
part of its core is negligible with respect to the size of C ′ (respectively, CLP ). Furthermore, since
the cores ofCLP ,C

′ have at least one common species, using triangle inequality we can claim that
any pair of species from the cores ofC ′,CLP also have small LP distance; therefore, nearly all pairs
of species in CLP ,C

′ have small LP distance, meaning that the extension of CLP is desirable (i.e.,
its cost is within a constant factor from the LP cost while it ensures the hierarchy).

Here we want to emphasize the point that because of the LP-cleaning, we can ensure that for
any lower level set C ′ at level t there exists at most one set whose core has an intersection with
the core ofC ′. We call this the hierarchy-friendly property of the LP cleaned sets. This property is
crucial for consistency, as it ensures that at level t there cannot exist more than one sets that are
allowed to contain C ′ as a subset.

In the other case, where the cores ofCLP andC ′ do not intersect, the algorithm removesCLP ∩C
′

fromCLP . The analysis of this part is more technical but follows the same arguments, namely using
the aforementioned properties of LP-cleaning along with triangle inequality.

After processing all the sets in L(t ), the algorithm naturally combines these processed sets with
P (t−1) to generate P (t ), thus ensuring that P (1), . . . , P (t ) are hierarchical.

High-level analysis. We will prove that the partitions P (1), . . . , P (�) solves the original hierarchi-
cal clustering problem within a constant factor.

Using triangle inequality, we are going to show that the switch in Step 1, from the input edge
sets E(1), . . . ,E(�) to the partitionsQ (1), . . . ,Q (�) costs us no more than the approximation factor of
correlation clustering used to generate each partition. This then becomes a multiplicative factor
on our approximation factor for hierarchical cluster agreement, more specifically,

HierCorrClust < (CorrClust + 1)(HierClustAgree + 1).

We will even show that we can work with the LP from Reference [3] for the original hierarchical
correlation clustering problem, and get a solution demonstrating a constant factor integrality gap.

1.7 Organization of the Article

In Section 2, we present the LP formulation and related definitions for Hierarchical Correla-
tion Clustering. In Section 3, we show how to reduce Hierarchical Correlation Clustering to
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Hierarchical Cluster Agreement. In Section 4, we present the algorithm for Hierarchical Clus-
ter Agreement, and in Section 5 we analyze it. In Section 6, we show that the LP formulation
for Hierarchical Correlation Clustering has constant integrality gap. In Section 7, we show how
Lp -fitting ultrametrics reduces to Hierarchical Correlation Clustering. In Section 8, we discuss
the reduction from Lp -fitting tree metrics to Lp -fitting ultrametrics. In Section 9, we prove APX-
Hardness of L1-fitting ultrametrics and L1-fitting tree metrics. We conclude in Section 10.

2 LP DEFINITIONS FOR HIERARCHICAL CORRELATION CLUSTERING

In this section, we present the IP/LP formulation of Hierarchical Correlation Clustering, implicit
in References [3, 40]. In what follows, we use [n] to denote the set {1, . . . ,n}.

Definition 2.1 (IP/LP Formulation of Hierarchical Correlation Clustering). Given is a set S , � posi-
tive numbers δ (1), . . . ,δ (�) and edge-sets E(1), . . . ,E(�) ⊆

(S
2

)
. The objective is

min
�∑

t=1

δ (t )
���

∑
{i, j }∈E (t )

x (t )i, j +
∑

{i, j }�E (t )
(1 − x (t )i, j )

�	
 ,
subject to the constraints

x (t )i, j ≤ x (t )
i,k
+ x (t )

j,k
∀{i, j,k} ∈

(
S

3

)
, t ∈ [�], (5)

x (t )i, j ≥ x (t+1)
i, j ∀{i, j} ∈

(
S

2

)
, t ∈ [� − 1], (6)

x (t )i, j ∈

{
{0, 1} if IP
[0, 1] if LP

∀{i, j} ∈
(
S

2

)
, t ∈ [�]. (7)

Concerning the IP, the values x (t )i, j encode the hierarchical partitions, with x (t )i, j = 0, meaning that

i, j are in the same part of the partition at level t , and x (t )i, j = 1, meaning that they are not. Inequal-
ity (5) ensures that the property of being in the same part of a partition is transitive. Inequality (6)
ensures that the partitions are hierarchical.

In the LP, where fractional values are allowed, x (t )i, j is said to be the LP-distance between i, j at
level t . If their LP-distance is small, then one should think of it as the LP suggesting that i, j should
be in the same part of the output partition, while a large LP-distance suggests that they should not.
Notice that for any given level t , the LP-distances satisfy the triangle inequality, by inequality (5).

We also note that the Correlation Clustering problem directly corresponds to the case where
� = δ1 = 1.

3 FROM HIERARCHICAL CORRELATION CLUSTERING TO

HIERARCHICAL CLUSTER AGREEMENT PROBLEM

Our main technical contribution is proving the following theorem.

Theorem 3.1. The Hierarchical Correlation Clustering problem can be solved in deterministic poly-

nomial time within a constant approximation factor.

In this section, we present a deterministic reduction from Hierarchical Correlation Clustering
to Hierarchical Cluster Agreement that guarantees:

HierCorrClust ≤ (CorrClust + 1)(HierClustAgree + 1) − 1. (C) from Figure 1

In Sections 4 and 5 we present a deterministic polynomial time constant factor approximation
algorithm for Hierarchical Cluster Agreement; combined with a known deterministic polynomial
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time constant factor approximation algorithm for Correlation Clustering [52], it completes the
proof of Theorem 3.1.

Assume that Correlation Clustering can be approximated within a factor α and that Hierarchical
Cluster Agreement can be approximated within a factor β (Section 4). We prove Inequality (C),
by providing an algorithm to approximate Hierarchical Correlation Clustering within a factor
(α + 1)(β + 1) − 1.

Suppose we have a Hierarchical Correlation Clustering instance S,δ (1), . . . ,δ (�),E(1), . . . ,E(�).
Our algorithm first solves the Correlation Clustering instance S,E(t ) to acquire partition Q (t ),
for every level t . Then, we solve the Hierarchical Cluster Agreement instance S,δ (1), . . . ,δ (�),
E(Q (1)), . . . , E(Q (�)) and obtain hierarchical partitions P (1), . . . , P (�).

The proof that the hierarchical partitions P (1), . . . , P (�) are a good approximation to the Hier-
archical Correlation Clustering instance follows from two observations. First, by definition, the
cost of Hierarchical Correlation Clustering is related to certain symmetric differences. Since the
cardinality of symmetric differences satisfy the triangle inequality, as seen by the connection to
the Hamming distance, we can switch between the cost of Hierarchical Correlation Clustering
and Hierarchical Cluster Agreement under the same output, with only an additive term related to
|E(t )	E(Q (t ))| and not related to the output. Second, by definition of Q (t ), the cardinality of the
symmetric difference |E(t )	E(Q (t ))| is minimized within a factor α .

More formally, for this proof we need to define the following three concepts:

— For any t ∈ [�], OPT (t )
CorrClust

is an optimal solution to the Correlation Clustering instance
at level t , that is, a partition minimizing���E(t )	E (

OPT (t )
CorrClust

)��� .
—OPTHierCorrClust = (OPT

(1)
HierCorrClust

, . . . ,OPT (�)
HierCorrClust

) is an optimal solution to the
Hierarchical Correlation Clustering instance, that is, a sequence of hierarchical partitions
minimizing

�∑
t=1

δ (t )
���E(t )	E (

OPT (t )
HierCorrClust

)��� .
—OPTHierClustAдr ee = (OPT

(1)
HierClustAдr ee

, . . . ,OPT (�)
HierClustAдr ee

) is an optimal solution to

the Hierarchical Cluster Agreement instance, that is, a sequence of hierarchical partitions
minimizing

�∑
t=1

δ (t )
���E(Q (t ))	E (

OPT (t )
HierClustAдr ee

)��� .
Notice, for any t , the difference between OPT (t )

CorrClust
and OPT (t )

HierCorrClust
. The first one opti-

mizes locally (per level), meaning that |E(t )	E(OPT (t )
CorrClust

)| ≤ |E(t )	E(OPT (t )
HierCorrClust

)|, and
therefore

�∑
t=1

δ (t )
���E(t )	E (

OPT (t )
CorrClust

)��� ≤ �∑
t=1

δ (t )
���E(t )	E (

OPT (t )
HierCorrClust

)��� .
This does not contradict the definition of OPTHierCorrClust , as OPT (1)

CorrClust
, . . . ,OPT (�)

CorrClust
is

not a sequence of hierarchical partitions.
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The cost of our solution is
�∑

t=1

δ (t ) |E(t )	E(P (t ))| ≤
�∑

t=1

δ (t ) |E(t )	E(Q (t ))| +
�∑

t=1

δ (t ) |E(Q (t ))	E(P (t ))|. (8)

By definition of P (1), . . . , P (�), they minimize the second term of inequality (8)
within a factor β . Therefore, the second term can be rewritten as β

∑�
t=1 δ

(t ) |E(Q (t ))	

E(OPT (t )
HierClustAдr ee

)|, which, by optimality of OPTHierClustAдr ee , is upper bounded by

β
∑�

t=1 δ
(t ) |E(Q (t ))	E(OPT (t )

HierCorrClust
)|.

Using the triangle inequality again, we further upper bound the second term by

β
�∑

t=1

δ (t ) |E(Q (t ))	E(t ) | + β
�∑

t=1

δ (t )
���E(t )	E (

OPT (t )
HierCorrClust

)��� .
Therefore, we can rewrite inequality (8) as

�∑
t=1

δ (t ) |E(t )	E(P (t ))| ≤ (β + 1)
�∑

t=1

δ (t ) |E(t )	E(Q (t ))| + β
�∑

t=1

δ (t )
���E(t )	E (

OPT (t )
HierCorrClust

)��� .
Since Q (t ) is obtained by solving Correlation Clustering at level t within a factor α , we get

�∑
t=1

δ (t ) |E(t )	E(Q (t ))| ≤ α
�∑

t=1

δ (t )
���E(t )	E (

OPT (t )
CorrClust

)��� .
By optimality of OPT (t )

CorrClust
, for each t ∈ [�], we have

�∑
t=1

δ (t )
���E(t )	E (

OPT (t )
CorrClust

)��� ≤ �∑
t=1

δ (t )
���E(t )	E (

OPT (t )
HierCorrClust

)��� ,
which proves that

�∑
t=1

δ (t ) |E(t )	E(P (t ))| ≤ ((β + 1)α + β)
�∑

t=1

δ (t )
���E(t )	E (

OPT (t )
HierCorrClust

)���
= ((α + 1)(β + 1) − 1)

�∑
t=1

δ (t )
���E(t )	E (

OPT (t )
HierCorrClust

)��� .
4 CONSTANT APPROXIMATION ALGORITHM FOR HIERARCHICAL CLUSTER

AGREEMENT

In this section, we introduce our main algorithm, which consists of three parts: Solving the LP
formulation of the problem, the LP-Cleaning subroutine, and the Derive-Hierarchy subroutine.

Informally, the LP-Cleaning subroutine uses the fractional solution of the LP relaxation of Hier-
archical Cluster Agreement to decide which of our input-sets are important and which are not. The
decision is not a binary one, because important sets are also cleaned, in the sense that bad parts
of them may be removed. However, at least a 0.9 fraction of them is left intact, while unimportant
sets are completely discarded.

The Derive-Hierarchy part then receives the cleaned input-sets by LP-Cleaning and applies a
very simple combinatorial algorithm on them to compute the output.

We notice that the weights δ (∗) are only used for solving the LP. Moreover, the fractional LP-
solution is only used by LP-Cleaning to guide this “nearly-binary” decision for each input-set. The
rest of the algorithm is combinatorial and does not take the LP-solution into account.
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4.1 LP Definitions for Hierarchical Cluster Agreement

The IP-formulation of Hierarchical Cluster Agreement is akin to the IP-formulation of Hierarchi-
cal Correlation Clustering. Namely, the constraints are exactly the same for both problems. The
only difference is in the objective function where we replace the general edge-sets E(1), . . . ,E(�)

with the disjoint clique edges from E(Q (1)), . . . ,E(Q (�)) and similarly for the LP-relaxation of Hi-
erarchical Cluster Agreement. Here each component in Q (t ) is called a level-t input-cluster.

To simplify our discussion, we use x (∗) to denote a fractional solution to the LP-relaxation of

Hierarchical Cluster Agreement, that is, a vector containing all x (t )i, j , {i, j} ∈
(S
2

)
, t ∈ [�]. One can

think of x (∗) as the optimal fractional solution, but in principle it can be any solution.

We use x (t ), for some particular t ∈ [�], to denote the vector containing all x (t )i, j , {i, j} ∈
(S
2

)
.

As previously, we use the term LP distances to refer to the entries of x (∗) and notice that for any
particular t ∈ [l] the LP distances even satisfy the triangle inequality by the LP constraints.

Given x (∗), we define B(t )<r (i) to be the ball of species with LP-distance less than r from i at level

t . More formally, B(t )<r (i) = {j ∈ S | x (t )i, j < r }. Similarly, for a subset S ′ of S we define the ball

B(t )<r (S
′) = {j ∈ S | ∃i ∈ S ′ s.t. x (t )i, j < r }.

We also define the LP cost of species i, j at level t as

cost (t )i, j =

{
δ (t )x (t )i, j if {i, j} ∈ E(Q (t ))

δ (t )(1 − x (t )i, j ) otherwise
,

as well as the LP cost of species in a set S ′ ⊆ S at level t as

cost (t )
S ′
=

∑
{i, j }∈(S2)

i ∈S ′ or j ∈S ′

cost (t )i, j ,

and in case S ′ only contains a single species i , we write cost (t )i instead of cost (t )
{i }

.

Then the LP cost at level t is denoted as cost (t ) = cost (t )
S

.

Finally, the LP cost is simply cost (∗) =
∑�

t=1 cost
(t ).

4.2 Main Algorithm

The pseudocode for our main algorithm for Hierarchical Cluster Agreement is given in
Algorithm 1.

ALGORITHM 1: Hierarchical Cluster AgreementAlgorithm

Input A set S , a sequence Q (∗) = (Q (1), . . . ,Q (�)) of partitions of S , and weights
δ (∗) = (δ (1), . . . ,δ (�))

Returns A sequence P (∗) = (P (1), . . . , P (�)) of hierarchical partitions of S

1: x (∗) ← Solve(LP-relaxation(S,Q (∗),δ (∗)))
2: L(∗) ← LP-Cleaning(S,Q (∗),x (∗))
3: return Derive-Hierarchy(S,L(∗))

Our LP relaxation has size polynomial in S, �, and the two subroutines also run in polynomial
time, as we show later. Therefore, the whole algorithm runs in polynomial time.
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4.3 LP Cleaning Algorithm

In Algorithm 2, we provide the pseudocode of the LP Cleaning step of our algorithm.
Intuitively, the aim of this algorithm is to clean the input sets so that (ideally) all species remain-

ing in a set have small LP distances to each other and large LP distances to species not in the set.

ALGORITHM 2: LP-Cleaning

Input A set S , a sequence Q (∗) = (Q (1), . . . ,Q (�)) of partitions of S ,
and a fractional solution x (∗)

Returns A sequence L(∗) = (L(1), . . . ,L(�)) of families of disjoint subsets of S

1: for t ← 1, . . . , � do

2: L(t ) ← ∅
3: for CI ∈ Q

(t ) do

4: CLP ←

{
i ∈ CI

����� |B(t )<0.1(i) ∩CI | >
1
2 |CI |,

|B(t )<0.6(i) \CI | ≤ 0.05|CI |

}
5: if |CLP | ≥ 0.9|CI | then

6: L(t ) ← L(t ) ∪ {CLP }

7: return L(∗) = (L(1), . . . ,L(�))

Formally, Algorithm 2 takes a sequenceQ (∗) = (Q (1), . . . ,Q (�)) of partitions of S and a fractional
solution x (∗) containing LP distances. It outputs a sequence of families of disjoint subsets of S ,
L(∗) = (L(1), . . . ,L(�)). Here each component of L(t ) is called a level-t LP-cluster.

In the algorithm, for each input partition Q (t ) we process every level-t input-cluster CI ∈ Q
(t )

separately. For this, we remove all the species in CI that do not have very small LP distance to at
least half the species inCI or that have small LP distance to many species not inCI . More formally,
we remove all the species in CI with LP distance less than 0.1 to at most half the species in CI or
with LP distance less than 0.6 to more than 0.05|CI | species not in CI .

After the cleaning step, we discard CI if smaller than a 9/10 fraction of the species survive.
Otherwise, we create an LP-clusterCLP containing the species inCI that survive. Next, we add the
level-t LP-cluster CLP to L(t ).

Of several properties that we prove concerning the output of the LP-Cleaning, we briefly men-
tion the following one: The output sequence L(∗) is hierarchy-friendly in the sense that no two
LP-clusters at the same level t can be intersected by the same LP-cluster at level t ′ < t . We for-
mally prove this in Lemma 5.4.

The LP-Cleaning subroutine trivially runs in time polynomial in S, �.

4.4 Derive-hierarchy Algorithm

In this section, we introduce Derive-Hierarchy (Algorithm 3). It takes as input a hierarchy-
friendly sequence L(∗) = (L(1), . . . ,L(�)) of families of disjoint subsets of S and outputs a sequence
P (∗) = (P (1), . . . , P (�)) of hierarchical partitions of S . The execution of the algorithm can be seen,
via a graphical example, in Figure 2.

The algorithm works bottom-up while performing � iterations for t = 1, . . . , �. In the process,
it incrementally builds a forest F . Throughout the algorithm, each non leaf node u in F can be
identified by an LP-cluster in L(∗). Moreover, for each node u the algorithm maintains two sets
C(u) ⊆ S , called the core-cluster of u, and C+(u) ⊆ S , called the extended-cluster of u.

The algorithm starts by initializing F with |S | trees where each tree contains a single node ui

identified by a species i ∈ S . Also, it initializes both sets C(ui ),C
+(ui ) with {i}. Next, in iteration

t the algorithm processes the LP-clusters in L(t ) and at the end of the iteration, the C+() sets
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Fig. 2. Example of Derive-Hierarchy (Algorithm 3). Nodes 1, 2, 3, 4 (left) are the roots of the forest before

inserting the new LP-cluster L(u) (dashed line). Each node is described by its extended-cluster, with the

shaded part being the core-cluster. Core-cluster of nodes 2 and 3 intersect L(u); thus they become children

of u and the extended-cluster of u covers the extended-clusters of 2, 3 (right). Notice that the core-cluster of

u is reduced due to node 1.

associated with the root nodes in F define the partition P (t ). Precisely here, the C+() set of a root
node contains all the species descending from the respective root and will thus be the sets in the
final partitions.

In the t th iteration, for each clusterCLP ∈ L
(t ) the algorithm adds a root nodeu to forest F while

initializing the set C(u) with CLP . Next for the root node u the algorithm decides on its children
by processing the pre-existing roots in the following way. For consistency, first it detects all the
pre-existing root nodesv such thatC(u) does not intersectC(v). Then it removes fromC(u) all the
species that are descending from v , i.e., sets C(u) ← C(u) \C+(v). Last, it sets u as a parent of all
other pre-existing root nodesv such thatC(u) intersectsC(v). Also, accordingly, it modifies the set
of leaf nodes of the subtree rooted at u by setting C+(u) ← C+(u) ∪C+(v). Notice here that some
of the root-nodes may correspond to sets from levels lower than t , in case no parent was assigned
to them.

At the end of iteration t , the algorithm completes processing all the LP-clusters in L(1), . . . ,L(t )

and constructs partitions P (1), . . . , P (t ). At the end of the � iterations it outputs the � partitions
P (∗) = (P (1), . . . , P (�)).

The Derive-Hierarchy subroutine trivially runs in time polynomial in S, �.

5 ANALYSIS OF HIERARCHICAL CLUSTER AGREEMENT ALGORITHM

In this section, we proceed with our analysis. We first lay out some terminology and then provide
some results related to the LP Cleaning, then some structural results, and finally prove that our
algorithm is a constant factor approximation for Hierarchical Cluster Agreement.
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ALGORITHM 3: Derive-Hierarchy

Input A set S , and a hierarchy-friendly sequence L(∗) = (L(1), . . . ,L(�))
of families of disjoint subsets of S

Returns A sequence P (∗) = (P (1), . . . , P (�)) of hierarchical partitions of S

1: Construct an empty forest F
2: for i ∈ S do

3: Create a singleton tree T with a node ui and add it to F
4: Set C(ui ) ← {i},C

+(ui ) ← {i}

5: for t ← 1, . . . , l do

6: for CLP ∈ L
(t ) do

7: Create a node u and set C(u) ← CLP

8: for all roots v ∈ F s.t. C(v) ∩C(u) = ∅ do

9: C(u) ← C(u) \C+(v)

10: C+(u) ← C(u)
11: for all roots v ∈ F s.t. C(v) ∩C(u) � ∅ do

12: C+(u) ← C+(u) ∪C+(v)
13: Make v a child of u in F
14: Set P (t ) to contain the extended-clusters C+(v) of all roots v ∈ F

15: return P (∗) = (P (1), . . . , P (�))

5.1 Terminology

Notice that throughout the execution of the algorithm, F is an incrementally updated graph (that
is, no deletions occur). In fact, it is always a forest, as we start with |S | isolated nodes and only
introduce new nodes as parents of roots of some of the existing trees. Moreover, this process
implies that the subtree rooted at any specific node is never modified.

From now on, we use F to refer to the final instance of the incrementally updated forest. We
use F (u) to refer to the state of this incrementally updated forest after introducing u; therefore,
F (u) \ {u} denotes the state of the forest exactly before introducing node u. We naturally identify
the leaves of F with the species of S .

For any node u in the forest F , the Derive-Hierarchy algorithm definesC(u), which we call the
core-cluster ofu, andC+(u), which we call the extended-cluster ofu. Furthermore, notice that each
core-clusterC(u) is a subset of some LP-clusterCLP (Lines 7–9 of Algorithm 3); we call this the LP-
cluster of u and denote it by L(u). Moreover, each LP-cluster L(u) is a subset of an input-clusterCI

(Line 3 of Algorithm 2); we call this the input-cluster of u and denote it by I (u). These concepts are
well defined for any new nodeu and never change throughout the algorithm. We remind the reader
that LP-Cleaning discards some of the input-clusters, in the sense that they have no corresponding
LP-cluster, and therefore they do not match I (u), for any node u.

Directly from the algorithm we get that

C(u) ⊆ L(u) ⊆ I (u)

C(u) ⊆ C+(u).

To help with our discussion, we also define the following variables related to the Derive-
Hierarchy algorithm (Algorithm 3):

Δ−(u) = L(u) \C(u)

Δ+(u) = C+(u) \C(u).
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For a node u ∈ F , we define its level t(u) to be the value of iteration t in Algorithm 3 when
internal node u was introduced, and 0 when u is a leaf node.

5.2 LP-Cleaning Results (Algorithm 2)

We start with some observations that are heavily used in proving structural results regarding the
core and the extended-clusters. These are in turn used for lower-bounding the LP cost.

The most important reason we are using the LP-Cleaning subroutine is so that any two species
belonging in the same LP-Cluster at level t have small LP-distance.

Lemma 5.1. Given a node u ∈ F and a species i in u’s LP-cluster L(u), it holds that the LP-distance

from i to any other species in L(u) is less than 0.2 for all levels t ≥ t(u), that is, B(t )<0.2(i) ⊇ L(u).

Proof. It suffices to prove that x (t )i, j < 0.2 for all j ∈ L(u) only for level t = t(u), as the LP

constraints enforce x (t+1)
i, j ≤ x (t )i, j .

Since both B(t )<0.1(i)∩ I (u) and B(t )<0.1(j)∩ I (u) have size more than |I (u)|/2 (Line 4 of Algorithm 2),

there exists a node k ∈ I (u) for which both x (t )
i,k

and x (t )
j,k

are less than 0.1. Since the LP-distances in

x (t ) satisfy the triangle inequality, it follows that x (t )i, j < 0.2 (enforced by the LP constraints). �

For the analysis, it is convenient that our relations involve the LP-clusters instead of the input-
clusters. Therefore, we rephrase Line 4 of Algorithm 2 in terms of LP-clusters, effectively proving
that few species outside of an LP-cluster L(u) have small LP-distances to L(u).

Lemma 5.2. For any node u ∈ F it holds that |B(t (u))<0.4 (L(u))| ≤ (1 +
1
6 )|L(u)|. In particular,

|B(t (u))<0.4 (L(u)) \ L(u)| ≤
1
6 |L(u)|.

Proof. Let t = t(u). We claim that species close to some species in L(u) are still reasonably close
to all species in L(u). Formally, we claim that for any i ∈ L(u)

B(t )<0.4(L(u)) ⊆ B(t )<0.6(i).

Let j ∈ B(t )<0.4(L(u)). We bound the LP-distance between i, j by finding an intermediate i ′ that is
close to both and applying the triangle inequality forced by the LP constraints. By definition of j,
there exists a species i ′ ∈ L(u)with LP-distance less than 0.4 from j. By Lemma 5.1, the LP-distance

between i and i ′ is less than 0.2, and thus by triangle inequality x (t )i, j < 0.6.
Line 4 of Algorithm 2 gives that

|B(t )<0.6(i) \ I (u)| ≤ 0.05|I (u)| =⇒ |B(t )<0.6(i)| ≤ 0.05|I (u)| + |I (u)|.

Combining these two relations, and by |L(u)| ≥ 0.9|I (u)| (Line 5 of Algorithm 2),

|B(t )<0.4(L(u))| ≤ |B
(t )
<0.6(i)| ≤

(1 + 0.05)

0.9
|L(u)| =

(
1 +

1

6

)
|L(u)|. �

The following lemma is just a convenient application of the triangle inequality of our LP, that
is heavily used in subsequent proofs. Informally, it states that, under certain mild conditions, the
LP-distance is small not only if i, j belong in the same LP-cluster (or core-cluster), but even if they
happen to be in different clusters that are both intersected by the same third cluster.

Lemma 5.3. Letu,v,w ∈ F be three arbitrary nodes. Assume that the LP-cluster ofv intersects the

LP-clusters of u and w and tmax = max{t(u), t(v), t(w)}. Then for any i, j ∈ {L(u) ∪ L(v) ∪ L(w)}

their LP-distance at level tmax is less than 0.6, and B(tmax )
<0.4 (L(u)) ⊇ L(u) ∪ L(v) ∪ L(w).
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Proof. If both i, j are in L(u), L(v), or L(w), then the claim follows trivially from Lemma 5.1.
Otherwise, we use triangle inequality twice, with species in the intersections of the clusters as
intermediates. More formally, let k ∈ L(u)∩L(v),k ′ ∈ L(v)∩L(w). Lemma 5.1 implies three things:

(1) x (tmax )

i,k
< 0.2, for any i ∈ L(u) ∪ L(v)

(2) x (tmax )

k,k ′
< 0.2, as both k,k ′ ∈ L(v)

(2) x (tmax )

k ′, j
< 0.2, for any node j ∈ L(v) ∪ L(w).

Since the LP-distances x (tmax ) respect the triangle inequality, it holds that x (tmax )
i, j < 0.6. The

claim about the ball of L(u) follows by taking the distance from k to j. �

We are now ready to prove the hierarchy-friendly property of the output of LP-Cleaning, as we
informally claimed when introducing the algorithm. We claim that two LP-clusters of the same
level cannot be intersected by the same lower level LP-cluster.

Lemma 5.4. Given two nodes v,w ∈ F on the same level, there is no lower level node u such that

L(u) intersects both L(v) and L(w).
In particular, there is also no C(u) intersecting both L(v) and L(w).

Proof. The intuition is that L(v),L(w) are close and thus Algorithm 2 would discard at least
one of them.

Without loss of generality, let |L(v)| ≥ |L(w)|. L(v),L(w) are disjoint, as they are subsets of
different parts of the partition Q (t (v)), by Algorithm 2.

By Lemma 5.3 |B(t (w ))<0.4 (L(w))| ≥ |L(v)| + |L(w)| ≥ 2|L(w)|, which contradicts Lemma 5.2. �

We finally present a simple lower bound on the LP cost. Recall that

cost (t )i, j =

{
δ (t )x (t )i, j if {i, j} ∈ E(Q (t ))

δ (t )(1 − x (t )i, j ) otherwise

and
cost (t )

S ′
=

∑
{i, j }∈(S2)

i ∈S ′ or j ∈S ′

cost (t )i, j .

Lemma 5.5. Let CI ∈ Q
(t ) be an input-cluster at level t , and CLP be the respective LP-cluster from

Algorithm 2. Fix a species i ∈ CI \CLP . Then the fractional LP cost cost (t )i = Ω(δ (t ) |CI |).

Proof. There are two reasons for i to be in CI \CLP , by Line 4 of Algorithm 2. Either half the
species inCI are at distance at least 0.1 from i or more than 0.05|CI | species not inCI are at distance
at most 0.6 from i .

In the first case, cost (t )i ≥ 0.1 · ( 12 |CI |)δ
(t ), and in the second case, cost (t )i ≥ (1 − 0.6) · 0.05|CI |

δ (t ). �

5.3 Derive-Hierarchy results (Algorithm 3)

In this section, we present several structural results related to our algorithm.
We start with pointing out that our algorithm ends up with the same output, no matter the

order in which we process LP-clusters of the same level. This is due to the input sequence L(∗)

being hierarchy-friendly.

Lemma 5.6. The output of Algorithm 3 is the same, irrespective of the order in which LP-clusters of

the same level are processed in Line 6.
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Proof. For each level, fix any ordering in which LP-clusters of the same level are processed and
run the algorithm. For any t ∈ [�], let Ft−1 be the state of the forest just before processing the first
node of level t . We show that for any level-t LP-cluster CLP with corresponding node u (that is
t(u) = t and L(u) = CLP ), no matter when it was actually processed due to the ordering we fixed,
the effect is the same as if it was the first level-t LP-cluster processed. More formally, let N (u) be
the set of children of u, andCt−1(u),C+t−1(u), and Nt−1(u) be the core-cluster, the extended-cluster,
and the set of children ofu in the case whereCLP was the first LP-cluster of level-t to be processed.
Then C(u) = Ct−1(u), C+(u) = C+t−1(u), and N (u) = Nt−1(u).

The main idea is that if a root v ∈ Ft−1 has a core-cluster intersecting L(u), then it is still a root
just before inserting u; else v would have another parent w of level t , meaningC(v) ⊆ L(v) would
also intersect C(w) ⊆ L(w) (Line 11), which contradicts that L(∗) is hierarchy-friendly.

Foru’s children, we first show that N (u) ⊆ Nt−1(u). Suppose this was not true, then there would
exist a level-t node v ∈ N (u) \ Nt−1(u). That would imply that u’s and v’s core clusters intersect
(Line 11). But core-clusters are always subsets of their corresponding LP-clusters, and LP-clusters
of the same level are disjoint.

Before proving Nt−1(u) ⊆ N (u), we need to show that C(u) = Ct−1(u). We show it by proving
that L(u) \C(u) = L(u) \Ct−1(u). If a species i is in L(u) \C(u), then it is in the extended-cluster of
some node v processed before u such that their core-clusters do not intersect (Line 8). If t(v) = t ,
then i is either inC(v) (contradiction as it would then not be in L(u)) or in the extended-cluster of
one of its children w , which we proved are of lower-level. Thus, w was a root in Ft−1. Again, by
L(∗) being hierarchy-friendly, C(w) ⊆ L(w) does not intersect L(u), meaning it does not intersect
Ct−1(u) ⊆ L(u), and so i would also be in L(u) \Ct−1(u) (Line 8). If t(v) < t , then v itself was a root
in Ft−1. The same argument in reverse order is used to prove that if i is in L(u) \Ct−1(u), then it is
in L(u) \C(u).

We now see that Nt−1(u) ⊆ N (u); that is, because if v ∈ Nt−1(u), then v is a root in Ft−1 with
a core-cluster intersecting L(u), and by L(∗) being hierarchy-friendly it is also a root in F (u) \ {u}.
As C(v) intersects Ct−1(u) = C(u), we get v ∈ N (u) (Line 11).

Finally, a species i in C+t−1(u) \Ct−1(u) is part of the extended cluster of a node in Nt−1(u); this
child is still a root in F (u) \ {u} by L(∗) being hierarchy-friendly; therefore, i ∈ C+(u) \C(u). The
other way around, a species i inC+(u) \C(u) is part of the extended cluster of a node in N (u); this
child is a root in Ft−1 as u has no children of level t ; therefore, i ∈ C+(u) \Ct−1(u). �

Next, we prove two claims that we have already mentioned informally while introducing Algo-
rithm 3 (Derive-Hierarchy). First we claim that the incrementally built graph is always a forest and
also for any node u in F , its extended-cluster contains exactly the species that are identified with
leaves descending from u in F . We call these species the descending species of u. We note that the
results of Section 5.2 do not require these properties.

Lemma 5.7. For anyu ∈ F , F (u) is a forest of rooted trees with |S | leaves identified with the species

of S . Moreover, for each u ∈ F , C+(u) is the set of u’s descending species.

Proof. We prove this inductively based on the order in which the nodes are added to F . The
base case for both the claims follows by the initialization of the forest with |S | leaves identified
with the species of S .

When we insert a node, it becomes the parent of some of the existing roots, and therefore the
forest structure is preserved.

Next let u be some node in F , and let v1, . . . ,vk be the children of u. Then, by construction,
all these children nodes are added to F before u, and thus by an inductive argument for each vm

the set of descending species of vm is exactly the set C+(vm). Now we need to prove the same for
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node u. Note that the set of descending species of u is precisely the set
⋃

m∈[k]C
+(vm). Moreover,

by construction, C+(u) = C(u) ∪ (
⋃

m∈[k]C
+(vm)). Hence, to prove the claim, we need to show

that C(u) ⊆
⋃

m∈[k]C
+(vm). For the sake of contradiction, let w ∈ C(u) be a species such that

w �
⋃

m∈[k]C
+(vm). As F (u) \ {u} is a forest, there exists a unique node r that is the root node

of the tree of F (u) \ {u} that contains w . Hence, again by induction argument w ∈ C+(r ). By our
assumption, as r is not a child of u, C(u) ∩ C(r ) = ∅. Thus, Algorithm 3 (Line 8) sets C(u) ←
C(u) \C+(r ), and hence w � C(u), which is a contradiction. �

This simple lemma alone is enough to prove the following corollaries:

Corollary 5.8. For any u ∈ F , the extended-clusters of the root nodes in F (u) form a partition

of S .

Proof. AsF (u) is a forest, each species is a descendant of exactly one such root and thus belongs
in exactly one such extended cluster. �

Corollary 5.9. The output of our algorithm is a sequence of hierarchical partitions of S .

Proof. By Corollary 5.8, the output of the algorithm is a sequence of partitions of S . To see that
the output partitions are hierarchical, notice that if two species are in the same rooted tree at some
point in the algorithm, then they are never separated as we only add nodes in the forest. �

Corollary 5.10. For any node u ∈ F , the species removed from its LP-cluster and the species

inserted in its core cluster are disjoint, Δ−(u) ∩ Δ+(u) = ∅.

Proof. For the sake of contradiction, let i ∈ Δ−(u) ∩ Δ+(u). Since the extended clusters of root
nodes in F (u) \ {u} form a partition, let v be the unique such root for which i ∈ C+(v). Now as
i ∈ Δ−(u), C(v) ∩C(u) = ∅ (Line 8 of Algorithm 3). But, again, i ∈ Δ+(u) implies C(v) ∩C(u) � ∅
(Line 11 of Algorithm 3), and both of these can never be satisfied together. �

Corollary 5.11. If two nodes u,v ∈ F do not have an ancestry-relationship, then their extended

clusters do not intersect.

Proof. If their extended clusters intersected, then they would have a descending species in
common, which implies an ancestry-relationship. �

We also need the following result.

Lemma 5.12. For any node u ∈ F , its extended-cluster is equal to the union of the core clusters of

all descendant nodes v of u.

Proof. We prove this inductively. As a base-case, the claim trivially holds for the |S | initial
leaves. For an internal node u, let v1, . . . ,vk be the children of u and let D(u) be the descendant
nodes of u. Then D(u) = ∪m∈[k]D(vm). Also, by induction, for each vm , C+(vm) = ∪w ∈D(vm )C(w).
Now as C+(u) = C(u) ∪ (∪m∈[k]C

+(vm)) we have C+(u) = C(u) ∪ (∪w ∈D(u)C(w)), which proves
our claim. �

5.4 Managing Removals and Extensions

Using the developed toolkit of structural results, we are ready to show that for any node u ∈ F ,
all three of the LP-cluster L(u), the core-cluster C(u), and the extended-cluster C+(u) are similar;
more than that, we show lower bounds of the LP cost related to Δ−(u) = L(u) \C(u) and Δ+(u) =
C+(u) \C(u).

In particular, we claim that the following inequality holds for every u ∈ F ,

|Δ+(u)| ≤ 0.3|C(u)|. (9)
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Fig. 3. Part of the forest F (a). Intervals around nodes denote core-clusters (two core-clusters intersect if

a vertical line intersects both); colored nodes {d, e, f ,h, i, j} have core-clusters not intersecting the core-

cluster of a. In particular, the circle-shaped colored nodes are a’s top-non-intersecting descendants (denoted

by J = {d, e, f ,h}). Their proper descendants define J+ = {д, i, j}. R = {b, c} contains all other proper

descendants of a.

We prove this claim inductively, based on the order in which nodes are added in F . As a base
case, we initially create a node ui for each species i ∈ S with C(ui ) = C+(ui ) = {i}, meaning that
Δ+(ui ) = ∅.

For any other node u, we argue about the size of its extended-clusterC+(u) in relation with the
core-clusters of its descendants, as suggested by Lemma 5.12. We now partition the descendants
of u in three parts and argue about each one of them.

For a node u, we define its top-non-intersecting descendants J as the set of highest level descen-
dant nodes in F whose core-clusters do not intersect C(u) (the reader is encouraged to consult
Figure 3 before proceeding). More formally, using v ≺F u to denote that v is a descendant of u in
forest F , we have

J =

⎧⎪⎪⎨⎪⎪⎩v ∈ F
������ v ≺F uC(u) ∩C(v) = ∅
C(u) ∩C(w) � ∅,∀w s.t. v ≺F w ≺F u

⎫⎪⎪⎬⎪⎪⎭ .
Notice that, by definition, if two nodes v,w belong in u’s top-non-intersecting descendants,

then none is an ancestor of the other. Therefore u’s top-non-intersecting descendants J naturally
partitions the proper descendants of u in three parts: J itself, the set J+ of proper descendants of
nodes in J , and R containing the rest of the proper descendants of u (i.e., the proper descendants
of u that are not descendants of any node in J ). We also define sets of species related to these sets,

S J =
⋃
v ∈J

C(v) (10)

S J + =
⋃

v ∈J +

C(v) \ (C(u) ∪ S J )

SR =
⋃
v ∈R

C(v) \ (C(u) ∪ S J ∪ S J + ).
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The apparent asymmetry of not excluding C(u) from S J follows from the definition of u’s top-
non-intersecting descendants J ; the core-clusters of nodes in J are disjoint from C(u), meaning
that S J would be the same even if we excluded species inC(u). Note that this is not the case for the
core-clusters in J+, as proper descendants of nodes in J might still intersect C(u), as in Figure 3.

Notice that by Lemma 5.12 we have C+(u) = C(u) ∪ (S J ∪ S J + ∪ SR ), and thus

Δ+(u) = S J ∪ S J + ∪ SR . (11)

If v ∈ J ∪ J+ ∪ R, and its core-cluster does not intersect the core-cluster of u, then by definition
of J we have that v is in descendants (not necessarily proper) of J . Therefore, v ∈ J ∪ J+, meaning
that nodes in R have core-clusters that intersect C(u). Furthermore, by definition, each node v in
u’s top-non-intersecting descendants has a parent whose core-cluster intersects C(u). Therefore,
for any species i ∈ C(u) and any species j ∈ S J ∪ SR , by Lemma 5.3 we have that their LP-distance
is small, that is,

x (t (u))i, j < 0.6,∀i ∈ C(u), j ∈ S J ∪ SR . (12)

Species in S J ∪ SR are not in C(u), and so by Corollary 5.10 they are not in L(u), as they belong
in Δ+(u). Then Lemma 5.2 gives

|S J ∪ SR | <
1

6
|L(u)|. (13)

We are left to argue about species in J+, that is, in core-clusters of the descendants of u’s top-
non-intersecting descendants. By Lemma 5.12, these species all belong in the extended-clusters of
u’s top-non-intersecting descendants,

⋃
v ∈J C

+(v) ⊇ S J
⋃
S J + . By Corollary 5.11, these extended-

clusters are disjoint, and thus S J + ⊆
⋃

v ∈J Δ+(v). By the inductive hypothesis (9), we get

|S J + | ≤ 0.3|S J |. (14)

Therefore, by Inequality (13) we get that

|S J + | <
1

6
· 0.3|L(u)| =

1

6
· 0.3|C(u) ∪ Δ−(u)|. (15)

By Equations (13) and (15), we bound the size of Δ+(u),

|Δ+(u)| < 1.3 ·
1

6
|L(u)|. (16)

We are only left with bounding |L(u)|. For this, we prove that

|Δ−(u)| < 0.1|C(u)|, (17)

which, combined with Equation (16), proves our initial claim, as we have

|Δ+(u)| < 1.3 ·
1

6
|L(u)| < 1.3 ·

1

6
|Δ−(u) ∪C(u)| ≤ 1.3 ·

1

6
· 1.1|C(u)| < 0.3|C(u)|. (18)

Before proving Equation (17), we make some definitions (see Figure 4). Roughly speaking, we
want to identify an appropriate set K of nodes such that the union of their extended-clusters both
contains Δ−(u) and its cardinality is reasonably boundable. In fact, the nodes in K are descendants
of roots of F (u) \ {u} that satisfy the condition in Line 8 of Algorithm 3 (i.e., nodes v such that
C(v) ∩C(u) = ∅, and C+(v) ∩ L(u) � ∅).

We now give a formal constructive definition of the set K . Let M be the set containing all the
non-descendants of u at level at most t(u) whose core-clusters intersect L(u). We define K ′ to be
the set of parents of the nodes in M . Finally, K is obtained from K ′ by removing the nodes who
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Fig. 4. Part of the forest F (a). Intervals around nodes denote core-clusters (two core-clusters intersect if a

vertical line intersects both); for node a we also denote its LP-cluster by horizontal dotted lines. All other

depicted nodes are not descendants of a. The diamond-shaped nodes {c, f ,д, j} are contained in M , colored

nodes {b,d, e,д} are contained in K ′, and circle-shaped nodes {b,d} are contained in K ⊆ K ′.

have a proper ancestor in K ′. Notice by Corollary 5.11 that their extended-clusters are disjoint. We
also define sets of species associated with K as follows:

SK =
⋃
v ∈K

C(v), (19)

SK+ =
⋃
v ∈K

C+(v).

Note Δ−(u) ⊆ SK+ . Next, we claim for each node v ∈ K , C(v) ∩ L(u) = ∅. Now if we can prove
this claim, then it implies SK ∩ L(u) = ∅, and thus we can write Δ−(u) ⊆ SK+ \ SK . Next, we prove
the claim. Notice that for any node v ∈ M , v is not a descendant of u but C(v) ∩ L(u) � ∅; thus
there always exists a node w ∈ K such that w is an ancestor of v and C(w) ∩ L(u) = ∅.

Now, for the sake of contradiction, assume there exists a nodew ∈ K such thatC(w) ∩ L(u) � ∅.
But then w ∈ M , and following the previous argument there exists a node w ′ ∈ K such that w ′ is
an ancestor of w and C(w ′) ∩ L(u) = ∅. This is a contradiction, as by construction both w and w ′

cannot be present in K .
Furthermore, notice that no node w ∈ K is at level t(w) = t(u), as that would imply a child

w ′ ∈ M of w , but C(w ′) intersects C(w) (and therefore L(w)) as w ′ is a child of w , and C(w ′)
intersects L(u), since w ∈ M . By Lemma 5.4, this is a contradiction.

We conclude thatK contains nodes at level at most t(u)−1, which allows us to apply the inductive
hypothesis |Δ+(w)| ≤ 0.3|C(w)| for nodes w ∈ K . Thus, from Δ−(u) ⊆ SK+ \ SK , we get

|Δ−(u)| ≤ 0.3|SK |. (20)

Furthermore, all nodes inK have a child whose core-cluster intersectsC(u), and so by Lemma 5.3

the LP-distance between a species i ∈ L(u) and a species j ∈ SK is small, x t (u)
i, j < 0.6. By Lemma 5.2,

we get |SK | <
1
6 |L(u)|, which gives us |Δ−(u)| ≤ 1

6 · 0.3|L(u)|.
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By the definition of Δ−(u) = L(u) \C(u), we get |C(u)| ≥ (1 − 1
6 · 0.3)|L(u)|, by which

|Δ−(u)| ≤
1
6 · 0.3

1 − 1
6 · 0.3

|C(u)|, (21)

which concludes the proof of claim (17) and, as previously argued, the proof of claim (9).
As a by-product of this analysis, we can also give some lower bounds on the LP cost.

Lemma 5.13. Given a node u ∈ F , cost (t (u))
I (u)

= Ω(δ (t (u)) |L(u)| |Δ−(u)|).

Proof. Fix a j ∈ SK , as defined in Equation (19). We have shown that for all i ∈ L(u), the LP-

distance with j is small, x (t (u))i, j < 0.6. If j ∈ SK is not in the input-cluster I (u), then cost (t (u))i, j =

δ (t (u))(1 − x (t (u))i, j ) > δ (t (u))(1 − 0.6) for each {i, j} pair with i ∈ L(u). Else, it was removed from the

input-cluster in the LP-Cleaning step, cost (t (u))j = Ω(δ (t (u)) |I (u)|), by Lemma 5.5.

By the algorithm, I (u) ⊇ L(u), so summing these costs gives cost (t (u))
I (u)

= Ω(δ (t (u)) |L(u)| |SK |),

which is Ω(δ (t (u)) |L(u)| |Δ−(u)|) by Equation (20). �

Lemma 5.14. Given a node u ∈ F , cost (t (u))
I (u)

= Ω(δ (t (u)) |C(u)| |Δ+(u)|).

Proof. Let S J , S J + , SR be defined as in Equation (10). It holds that Δ+(u) = S J ∪ S J + ∪ SR by
Equation (11), and these three sets are pairwise disjoint by definition. By Equation (14), the size of
S J + is small compared to |S J |, which implies that |Δ+(u)| = O(|S J ∪SR |). Furthermore, by Equation

(12), for any i ∈ C(u), j ∈ S J ∪ SR , we have that their LP-distance is small, that is, x (t )i, j < 0.6.
We fix such a j ∈ S J ∪ SR ; therefore, j � C(u). If j ∈ S J ∪ SR is not in the input-cluster I (u), then

cost (t (u))i, j = δ (t (u))(1 − x (t (u))i, j ) > δ (t (u))(1 − 0.6) for each {i, j} pair with i ∈ C(u). Else, j ∈ I (u), but
j � L(u). That is because j is not inC(u), and if it was in L(u), then it would contradict Corollary 5.10.
Therefore j was removed from the input-cluster in the LP-Cleaning step (Line 4 of Algorithm 2),

and cost (t (u))j = Ω(δ (t (u)) |I (u)|) by Lemma 5.5. Summing these costs proves our claim. �

5.5 Approximation Factor

In this section, we prove that Algorithm 1 is an O(1) approximation of the LP cost.
We first make some definitions. Let t ∈ [�]. An input-cluster CI ∈ Q

(t ) is strong if there exists
a level-t node u ∈ F such that I (u) = CI . Similarly, a part P of the output partition P (t ) is strong
if there exists a level-t node u ∈ F such that C+(u) = P . In both cases, we say that u is the
corresponding node. We characterize an input-cluster as weak if it is not strong, and similarly a
part of the output partition P (t ) as weak if it is not strong.

We start with upper bounding the cost of Algorithm 1. The upper bound is related to the input-
clusters (distinguishing between strong and weak) and the parts of the output partitions (again
distinguishing between strong and weak). Informally, for weak input-clusters and weak parts, the
cost of our algorithm is proportional to the sum of squares of their size. For a strong input-cluster
with corresponding node u, the cost of our algorithm is proportional to its size times the number
of species of the input-cluster that did not end up inu’s core-cluster. For a strong part of the output
partitions, the cost of our algorithm is proportional to its size times the number of its species that
did not end up in u’s core-cluster.
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Lemma 5.15. Suppose we are given a Hierarchical Cluster Agreement instance S,Q (∗),δ (∗) and LP-

distances x (∗). Then the cost of the output of Algorithm 1 at level t is at most

δ (t )
�����

∑
CI ∈Q

(t )

CI is weak

(
|CI |

2

)
+

∑
P ∈P (t )

P is weak

(
|P |

2

)
+

∑
u ∈F

t (u)=t

(
|I (u) \C(u)| |I (u)| + |Δ+(u)| |C+(u)|

)�			
 .
Proof. The cost at level t is δ (t ) times the number of pairs {i, j} that do not end up in the same

part of the output partition P (t ) but {i, j} ∈ E(Q (t )), plus the number of pairs {i, j} that end up in
the same part of the output partition but {i, j} � E(Q (t )). This is

δ (t ) |E(Q (t )) \ E(P (t ))| + δ (t ) |E(P (t )) \ E(Q (t ))|

= δ (t )
∑

CI ∈Q (t )

����(CI

2

)
\ E(P (t ))

���� + δ (t ) ∑
P ∈P (t )

����(P2)
\ E(Q (t ))

����
= δ (t )

∑
CI ∈Q

(t )

CI is weak

����(CI

2

)
\ E(P (t ))

���� + δ (t ) ∑
CI ∈Q

(t )

CI is strong

����(CI

2

)
\ E(P (t ))

����
+δ (t )

∑
P ∈P (t )

P is weak

����(P2)
\ E(Q (t ))

���� + δ (t ) ∑
P ∈P (t )

P is strong

����(P2)
\ E(Q (t ))

����.
Notice that if i, j are in the same core-cluster C(u) of some node u at level t(u) = t , then {i, j} ∈
E(Q (t )) ∩ E(P (t )). Also, for each strong input-cluster there exists a corresponding node u and vice
versa (similarly for strong parts of the output-partitions). Therefore,

δ (t )
∑

CI ∈Q
(t )

CI is strong

|

(
CI

2

)
\ E(P (t ))| ≤ δ (t )

∑
u ∈F

t (u)=t

(
|I (u)|

2

)
−

(
|C(u)|

2

)

δ (t )
∑

P ∈P (t )

P is strong

|

(
P

2

)
\ E(Q (t ))| ≤ δ (t )

∑
u ∈F

t (u)=t

(
|C+(u)|

2

)
−

(
|C(u)|

2

)
.

For an input-cluster CI with a corresponding node u at level t such that I (u) = CI , and since
always C(u) ⊆ I (u),(

|I (u)|

2

)
−

(
|C(u)|

2

)
= |I (u) \C(u)| |I (u)| −

(
|I (u) \C(u)|

2

)
≤ |I (u) \C(u)| |I (u)|.

Notice that subtraction is needed, since |I (u) \C(u)| |I (u)| double-counts the pairs in
(I (u)\C(u)

2

)
.

Similarly, for a part P of the output partition P (t ) with a corresponding node u at level t such
that C+(u) = P , and since always C(u) ⊆ C+(u),(

|C+(u)|

2

)
−

(
|C(u)|

2

)
= |C+(u) \C(u)| |C+(u)| −

(
|C+(u) \C(u)|

2

)
≤ |C+(u) \C(u)| |C+(u)|

= |Δ+(u)| |C+(u)|. �

For each term of Lemma 5.15, we show a matching lower bound for the LP cost. First, we give
a lower bound of the LP cost related to the weak input-clusters.
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Lemma 5.16. The LP cost at level t cost (t ) is

Ω
�����δ
(t )

∑
CI ∈Q

(t )

CI is weak

(
|CI |

2

)�			
 .
Proof. Let CI ∈ Q (t ) be an input-cluster and CLP be the corresponding LP-cluster by

Algorithm 2. By Lemma 5.5, cost (t )
CI \CLP

= Ω(δ (t ) |CI \CLP | |CI |).

If CI has no corresponding node u with I (u) = CI , t(u) = t , then this means that |CLP | <
0.9|CI |, and therefore |CI \ CLP | = Ω(|CI |), which makes the aforementioned cost Ω(δ (t ) |CI |

2) =

Ω(δ (t )
( |CI |

2

)
).

Summing over all these input-clusters may only double-count each pair, which completes the
proof. �

Next, we give a lower bound of the LP cost related to the strong input-clusters.

Lemma 5.17. The LP cost at level t cost (t ) is

Ω
�����δ
(t )

∑
u ∈F

t (u)=t

(|I (u) \C(u)| |I (u)|)
�			
 .

Proof. Summing the cost of Lemma 5.13 over all nodes u at level t(u) = t gives a cost of

Ω
�����δ
(t )

∑
u ∈F

t (u)=t

(|L(u) \C(u)| |L(u)|)
�			
 ,

since we may only double-count some pairs. Similarly, summing the cost of Lemma 5.5 over all
species in such nodes gives a cost of

Ω
�����δ
(t )

∑
u ∈F

t (u)=t

(|I (u) \ L(u)| |I (u)|)
�			
 .

We prove our claim by summing these two and noticing that |L(u)| ≥ 0.9|I (u)| by Line 5 of
Algorithm 2. �

The following lemma lower bounds the LP cost in relation to the strong parts of the output
partition P (t ).

Lemma 5.18. The LP cost at level t cost (t ) is

Ω
�����δ
(t )

∑
u ∈F

t (u)=t

(
|Δ+(u)| |C+(u)|

)�			
 .
Proof. Summing the cost of Lemma 5.14 over all nodes u at level t(u) = t proves our claim,

since we may only double-count some pairs. �

The following lemma lower bounds the LP cost in relation to the weak parts of the output
partition P (t ).
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Lemma 5.19. The LP cost at level t cost (t ) is

Ω
�����δ
(t )

∑
P ∈P (t )

P is weak

(
|P |

2

)�			
 .
Proof. Fix any such part P . By Algorithm 3, each part of the output-partition P (t ) corresponds

to the extended-cluster of some node u ∈ F . We use CP to refer to the core-cluster of this node
corresponding to P , and notice that |CP | = Ω(|P |) by Equation (9). Furthermore, by Lemma 5.1 any

two species i, j ∈ CP ⊆ P have x (t )i, j < 0.2.

We take two cases based on whether there exists an input-clusterCI ∈ Q
(t ) such that |CI ∩CP | >

|CP/2|. Since Q (t ) is a partition, there may be at most one such CI for each part P . If none exists,
then there exist Ω(

( |CP |
2

)
) pairs of species in CP that belong in different input-clusters, and thus

cost (t )
CP
= Ω(δ (t )

( |CP |
2

)
) = Ω(δ (t )

( |P |
2

)
) by Equation (9).

For the remaining parts, we first partition them based on parts that have the same corresponding
input-cluster. Let P1, . . . , Pk be such a maximal group with the same corresponding input-cluster
CI , meaning that |CI | = Ω(

∑k
r=1 |CPr

|) = Ω(
∑k

r=1 |Pr |). If CI does not correspond to any node u at

level t such that I (u) = CI , then cost (t )
CI
= Ω(δ (t )

( |CI |
2

)
) by Lemma 5.5, which is Ω(δ (t )

∑k
r=1

( |Pr |
2

)
).

Else there exists such a node u with I (u) = CI , while by the statement of our Lemma there is no
v such thatC+(v) = Pr for r ∈ [k]. Therefore, all these parts are disjoint fromC+(u) (Corollary 5.9)
and thus disjoint from C(u). This implies

k⋃
r=1

CPr
∩ I (u) ⊆ I (u) \C(u).

Then

|I (u) \C(u)| ≥

����� k⋃
r=1

CPr
∩ I (u)

����� > k∑
r=1

|CPr
|/2 = Ω

(
k∑

r=1

|Pr |

)
.

By Lemma 5.17 the LP cost at level t is Ω(δ (t ) |I (u) \C(u)| |I (u)|) = Ω(δ (t )
∑k

r=1

( |Pr |
2

)
). �

We are now ready to prove the following lemma:

Lemma 5.20. Given a Hierarchical Cluster Agreement instance S,Q (∗),δ (∗) and LP-distances x (∗),
the output of Derive-Hierarchy(S ,LP-Cleaning(S,Q (∗),x (∗))) is a sequence of hierarchical partitions

P (∗) with cost O(cost (∗)).

Proof. By Corollary 5.9, the output is a sequence of hierarchical partitions of S .
For any level t , by Lemma 5.15 the cost of Derive-Hierarchy(S ,LP-Cleaning(S,Q (∗),x (∗))) is at

most

δ (t )
�����

∑
CI ∈Q

(t )

CI is weak

(
|CI |

2

)
+

∑
P ∈P (t )

P is weak

(
|P |

2

)
+

∑
u ∈F

t (u)=t

(
|I (u) \C(u)| |I (u)| + |Δ+(u)| |C+(u)|

)�			
 .
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By summing the LP cost at level t by Lemmas 5.16, 5.17, 5.18, and 5.19, we have that the LP cost
at level t is

Ω
�����δ
(t )

�����
∑

CI ∈Q
(t )

CI is weak

(
|CI |

2

)
+

∑
P ∈P (t )

P is weak

(
|P |

2

)
+

∑
u ∈F

t (u)=t

(
|I (u) \C(u)| |I (u)| + |Δ+(u)| |C+(u)|

)�			

�			
 .

We conclude that the cost of the output of Derive-Hierarchy(S ,LP-Cleaning(S,Q (∗),x (∗))) is
within a constant factor from the LP cost. Summing over all levels t proves our lemma. �

Lemma 5.20 directly proves
HierClustAgree = O(1), (E) from Figure 1

as Algorithm 1 simply picks x (∗) to be an optimal fractional solution to the LP relaxation.
Combining this with Inequality C concludes the proof of Theorem 3.1.

6 CONSTANT INTEGRALITY GAP

In this section, we prove that the LP formulation for Hierarchical Correlation Clustering (Section 2)
has constant integrality gap. This directly extends to the integrality gap of the LP formulation used
by Ailon and Charikar for ultrametrics [3], as the LP formulation for Hierarchical Correlation Clus-
tering is a generalization of the one for ultrametrics (implicit in References [3, 40], discussed in
Section 7).

Notice that this is not direct from our algorithm, as for Hierarchical Correlation Clustering we
do not directly work with the LP from Section 2; we rather reduce our problem to an instance of
Hierarchical Cluster Agreementand then round the LP of this instance.

We start with some definitions. Suppose we have an instance of Hierarchical Correlation Clus-
tering S,δ (∗) = (δ (1), . . . ,δ (�)),E(∗) = (E(1), . . . ,E(�)). We say that x is an LP vector if it consists of
LP distances xi, j satisfying the triangle inequality and being in the interval [0, 1] for all species
i, j ∈ S . For any E ⊆

(S
2

)
, we extend the previously used notion of LP cost as

cost (t )(E,x) = δ (t )
���

∑
{i, j }∈E

(xi, j ) +
∑
{i, j }�E

(1 − xi, j )
�	
.

Notice that for any LP vector x and edge-sets E1,E2 ⊆
(S
2

)
, we have that

cost (t )(E1,x) ≤ cost (t )(E2,x) + δ
(t ) |E1	E2 |. (22)

That is because only pairs in the symmetric difference may be charged differently by
cost (t )(E1,x) and cost (t )(E2,x), and the maximum such difference is δ (t ), as the LP-distances are
between 0 and 1.

The LP formulation of Correlation Clustering, which is a special case of the formulation of
Hierarchical Correlation Clustering, has constant integrality gap [17]. Therefore, for a Correlation
Clustering instance S,E, integral solutionQ whose cost is within a constant factor from the optimal
integral solution OPT , and any t and LP vector x , it holds that

δ (t ) |E	Q | = O(δ (t ) |E	OPT |) = O(cost (t )(E,x)). (23)

Finally, letQ (∗) = (Q (1), . . . ,Q (�)) be partitions of S such that for each t ∈ [�],Q (t ) is a solution to
Correlation Clustering with input S,E(t ) whose cost is within a constant factor from the optimal.
Let x (∗) = (x (1), . . . ,x (�)) be � LP vectors satisfying Equation (6) that are an optimal fractional
solution to Hierarchical Correlation Clustering.
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We need to prove that some integral solution P (∗) = (P (1), . . . , P (l )) to Hierarchical Corre-
lation Clustering has cost within a constant factor of the optimal fractional solution. We pick
P (∗) = Derive-Hierarchy(S, LP-Cleaning(S,Q (∗),x (∗))), that is, the integral solution suggested by
Lemma 5.20. Formally, we prove

�∑
t=1

δ (t ) |P (t )	E(t ) | = O

(
�∑

t=1

cost (t )(E(t ),x (∗))

)
.

It holds by the triangle inequality that

�∑
t=1

δ (t ) |P (t )	E(t ) | ≤
�∑

t=1

δ (t )(|P (t )	E(Q (t ))| + |E(Q (t ))	E(t ) |).

By Lemma 5.20, we have that

�∑
t=1

δ (t ) |P (t )	E(Q (t ))| = O

(
�∑

t=1

cost (t )(E(Q (t )),x (∗))

)
≤ O

(
�∑

t=1

(
cost (t )(E(t ),x (∗)) + δ (t ) |E(t )	E(Q (t ))|

))
,

with the latter inequality following by Equation (22). Therefore, we bound
∑�

t=1 δ
(t ) |P (t )	E(t ) |:

�∑
t=1

δ (t ) |P (t )	E(t ) | ≤
�∑

t=1

δ (t )(|P (t )	E(Q (t ))| + |E(Q (t ))	E(t ) |)

= O

(
�∑

t=1

(
cost (t )(E(t ),x (∗)) + δ (t ) |E(t )	E(Q (t ))|

))
= O

(
�∑

t=1

cost (t )(E(t ),x (∗))

)
,

with the last step following from Equation (23).

7 FROM L1-FITTING ULTRAMETRICS TO HIERARCHICAL CORRELATION

CLUSTERING

For completeness, we here review the reduction from ultrametrics to hierarchical correlation clus-
tering implicit in previous work [3, 40].

Given an L1-fitting ultrametrics instance with input D :
(S
2

)
→ R>0, we construct an input to

the Hierarchical Correlation Clustering instance as follows. Let D(1) < . . . < D(�+1) be the distinct
distances that appear in the input distance function D. For t = 1, . . . , �, define

δ (t ) = D(t+1) − D(t ) and E(t ) =

{
{i, j} ∈

(
S

2

)
| D(i, j) ≤ D(t )

}
. (24)

Now given the solution to this hierarchical correlation clustering problem, to construct a corre-
sponding ultrametric tree, we first complete the partition hierarchy with P (0) partitioning S into
singletons and P (�+1) consisting of the single set S . Moreover, we set δ (0) = D(1).

To get the ultrametric treeU , we create a node for each set in the hierarchical partitioning. Next,
for t = 0, . . . , �, the parent of a level t nodeu is the node on level t+1 whose set contains the set ofu,
and the length of the parent edge is δ (t )/2. Then nodes on level t are of height

∑t−1
i=0 δ

(t )/2 = D(t )/2,
and if two species have their lowest common ancestor on level t , then their distance is exactly D(t ).
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The construction is reversible in a manner that given any ultrametric treeU with leaf set S and
all distances from {D(1), . . . ,D(�+1)}, we get the partitions P (1), . . . , P (�) as follows. First, possibly
by introducing nodes with only one child, for each species i we make sure it has ancestors of
heights D(t )/2 for t = 1, . . . , � + 1. Then, for t = 1, . . . , �, we let partitions P (t ) consist of the sets
of descendants for each level t node in U .

With this relation between U and P (1), . . . , P (�), it follows easily that they have the same cost
relative to D in the sense that

�∑
t=1

δ (t ) |E(t ) Δ E(P (t ))| =
∑

{i, j }∈(S2)

|distU (i, j) − D(i, j)|.

Thus, with Equation (24), the hierarchical correlation clustering is equal to L1-fitting ultrametrics
with ultrametric distances from the set of different distances in D.

Finally, from Lemma 1(a) in Reference [40], we have that among all ultrametrics minimizing
the L1 distance to D, there is at least one using only distances from D. This implies that an α-
approximation algorithm for hierarchical correlation clustering implies an α-approximation algo-
rithm for L1-fitting ultrametrics (but not the other way around, as hierarchical correlation cluster-
ing is a more general problem). Therefore,

UltraMetric ≤ HierCorrClust. (B) from Figure 1

Combining this with Theorem 3.1 concludes the second part of Theorem 1.1, namely that the
L1-fitting ultrametrics problem can be solved in deterministic polynomial time within a constant
approximation factor.

8 TREE METRIC TO ULTRAMETRIC

Agarwala et al. [2] reduced tree metrics to certain restricted ultrametrics. In fact, their reduction
may make certain species have distance 0 in the final tree, which means that it is actually a reduc-
tion from tree pseudometrics7 to certain restricted ultrametrics. In this section, we show that the
restrictions are not needed and that the reduction can be made in a way that does not introduce
zero-distances. While none of this is hard, note that for completeness we have to deal with these
issues for L1 to claim the results presented in this article. Here we get a clean black-box reduction
for all Lp , p ≥ 1. Thus, in the future, if, say, we get a constant factor approximation for ultrametrics
in L2, then we can immediately claim a constant factor for tree metrics in L2 as well.

8.1 Reducing the Tree Pseudometric Problem to the (Unrestricted) Ultrametric

Problem

The claim from Reference [2] is that approximating a certain restricted ultrametric within a factor
α can be used to approximate tree pseudometric within a factor 3α . Here we completely lift these
restrictions for L1 and show that they can be lifted for all Lp with p ∈ {2, 3, . . .} with an extra
factor of at most 2.

We will need the well-known characterization of ultrametrics discussed in the Introduction that
U is an ultrametric iff it is a metric and ∀{i, j,k} ∈ (S

3

)
: U (i, j) ≤ max{U (i,k),U (k, j)}.

For simplicity, we prove the theorem only for p < ∞, as for L∞ the 3 approximation [2] cannot
be improved by our theorem.

7Pseudometrics are a generalization of metrics that allow distance 0 between distinct species.
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Theorem 8.1. For any integer 1 ≤ p < ∞, a factor α ≥ 1 approximation for Lp -fitting ultrametrics

implies a factor 3 · 2(p−1)/p · α approximation for Lp -fitting tree pseudometrics.

In particular, for L1 it implies a factor 3α .

Proof (Extending proof from [2]). The restriction from Agarwala et al. [2] is as follows. For
every species i ∈ S , we have a “lower bound” βi . Moreover, we have a distinguished species κ ∈ S
with an upper bound γκ .

We want an ultrametric U such that

γκ ≥ U (i, j) ≥ max{βi , βj } ∀{i, j} ∈
(
S

2

)
.

βκ = γκ

We note that the conditions can only be satisfied if γκ ≥ βi for all i ∈ S , so we assume this is the
case.

The result from Reference [2] states that for any p and D :
(S
2

)
→ R>0, if we can minimize the

restricted ultrametric Lp error within a factor α in polynomial-time, then there is a polynomial-
time algorithm that minimizes the tree pseudometric Lp error within a factor 3α .

We start with creating a new distance function D′,

D′(i, j) = min{γκ ,max{D(i, j), βi , βj }}.

Intuitively, we squeeze D′ to satisfy the restrictions. For any restricted ultrametric U , the error
between U and D′ can never be larger than the error between U and D, no matter the norm Lp .
Formally, since U is restricted, we have max{βi , βj } ≤ U (i, j) ≤ γκ ,

— If D(i, j) > γκ , then D′(i, j) = γκ ≥ U (i, j) and |U (i, j) − D′(i, j)|p < |U (i, j) − D(i, j)|p .
— If D(i, j) < max{βi , βj }, then D′(i, j) = max{βi , βj } ≤ U (i, j) and |U (i, j) − D′(i, j)|p <
|U (i, j) − D(i, j)|p .

— If max{βi , βj } ≤ D(i, j) ≤ γκ , then D′(i, j) = D(i, j) and |U (i, j) − D′(i, j)|p = |U (i, j) −
D(i, j)|p .

We now ask for an arbitrary ultrametric fitU ′ forD′. With exactly the same reasoning, we can
only improve the cost if we replace U ′ with

U (i, j) = min{γκ ,max{U ′(i, j), βi , βj )}}.

Clearly,U now satisfies the restrictions (in the end of the proof we show that it is an ultrametric).
Our solution to Lp -fitting tree pseudometrics is to first create D′ from D, obtain ultrametric

U ′ by an α approximation to Lp -fitting ultrametrics, and then obtain the restricted ultrametric U
from U ′. Finally, we apply the result from Reference [2] to get the tree pseudometric.

Let OPTD,R be the closest restricted ultrametric to D and OPTD′ be the closest ultrametric to
D′. It suffices to show that ‖U − D‖p ≤ 2(p−1)/pα ‖OPTD,R − D‖p (equivalently ‖U − D‖pp ≤

2p−1αp ‖OPTD,R − D‖
p
p ) and that U is indeed an ultrametric.

By the above observations, it holds that

‖D′ −U ‖p ≤ ‖D
′ −U ′‖p ≤ α ‖D′ −OPTD′ ‖p ≤ α ‖D′ −OPTD,R ‖p =⇒

‖D′ −U ‖
p
p ≤ αp ‖D′ −OPTD,R ‖

p
p .

By definition of D′, and since U is restricted, for any species i, j it holds min{D(i, j),U (i, j)} ≤
D′(i, j) ≤ max{D(i, j),U (i, j)}. The proof follows by a direct case study of the three casesD(i, j) ≤
max{βi , βj }, max{βi , βj } < D(i, j) ≤ γκ , and γκ < D(i, j). Therefore,

|D(i, j) −U (i, j)| = |D(i, j) − D′(i, j)| + |D′(i, j) −U (i, j)|.
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For p ≥ 1, we have |x |p + |y |p ≤ (|x | + |y |)p , meaning |D(i, j) −D′(i, j)|p + |D′(i, j) −U (i, j)|p ≤
|D(i, j) −U (i, j)|p .

Moreover, by the convexity of |x |p for real x , we get ((x + y)/2)p ≤ (|x |p + |y |p )/2, meaning
|D(i, j) −U (i, j)|p ≤ 2p−1(|D(i, j) − D′(i, j)|p + |D′(i, j) −U (i, j)|p ). Therefore,

|D(i, j) − D′(i, j)|p + |D′(i, j) −U (i, j)|p ≤ |D(i, j) −U (i, j)|p

≤ 2p−1(|D(i, j) − D′(i, j)|p + |D′(i, j) −U (i, j)|p ).

The same holds if we replaceU withOPTD,R , as we only used thatU is restricted. We now have

‖D −U ‖
p
p =

∑
{i, j }∈(S2)

|D(i, j) −U (i, j)|p

≤
∑

{i, j }∈(S2)

2p−1(|D(i, j) − D′(i, j)|p + |D′(i, j) −U (i, j)|p )

= 2p−1
����

∑
{i, j }∈(S2)

|D(i, j) − D′(i, j)|p + ‖D′ −U ‖
p
p

�		

≤ 2p−1

����
∑

{i, j }∈(S2)

|D(i, j) − D′(i, j)|p + αp ‖D′ −OPTD,R ‖
p
p

�		

≤ 2p−1αp

����
∑

{i, j }∈(S2)

|D(i, j) − D′(i, j)|p + ‖D′ −OPTD,R ‖
p
p

�		

= 2p−1αp

∑
{i, j }∈(S2)

(|D(i, j) − D′(i, j)|p + |D′(i, j) −OPTD,R (i, j)|
p )

≤ 2p−1αp
∑

{i, j }∈(S2)

(|D(i, j) −OPTD,R (i, j)|
p )

= 2p−1αp ‖D −OPTD,R ‖
p
p .

Finally, we need to prove that U inherits that it is an ultrametric. This is clear if we proceed in
rounds; in each round we construct a new ultrametric, and the last one will coincide with U .

More formally, let U0 = U ′. In the first |S | rounds, we take out a different i ′ ∈ S at a time and
let

Ur (i
′, j) = max{Ur−1(i

′, j), βi′ } ∀j � i .
Suppose r > 0 is the first round whereUr is not an ultrametric. Then there exists a triple {i, j,k}

such that Ur (i, j) > max{Ur (i,k),Ur (k, j)}. As we only increase distances, this may only happen
if Ur (i, j) > Ur−1(i, j). But this means that at round r we picked either i or j (w.l.o.g. assume it
was i) and set Ur (i, j) = βi . However, this would also give Ur (i,k) ≥ βi = Ur (i, j), contradicting
Ur (i, j) > max{Ur (i,k),Ur (k, j)}.

Finally, U is simply

U (i, j) = min{γκ ,U |S | (i, j)}.
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Suppose there exists a triple {i, j,k} that now violates the ultrametric property; then it holds
that

U (i, j) > max{U (i,k),U (k, j)}.

As we did not increase any distance, this means that both U (i,k) < U |S | (i,k) and U (k, j) <
U |S | (k, j); but distances can only reduce to γκ , which is an upper bound on U (i, j) by
construction. �

8.2 From Tree Metric to Tree Pseudometric

In this section, we prove that to find a good tree metric, it suffices to find a good tree pseudo-
metric. This is a minor detail that we add for completeness. Informally, the construction simply
replaces 0 distances with some parameter ϵ and accordingly adapts the whole metric. By making
the parameter ϵ very small, the cost is not significantly changed.

Technically, our main lemma is the following.

Lemma 8.2. Given is a set S , a distance function D :
(S
2

)
→ R>0, a tree T with non-negative edge

weights describing a tree pseudometric on S , and a parameter α ∈ (0, 1]. In time polynomial in the

size ofT we can construct a treeT ′ with positive edge weights describing a tree metric on S , such that

for any p ≥ 1, it holds that ‖T ′ − D‖p ≤ (1 + α)‖T − D‖p .

Proof. We constructT ′ fromT as follows. First, we contract all edges with weight 0. This may
result in several species from S coinciding in the same node. For each such node u and species i
coinciding with some other species in u, we create a new leaf-node ui connected only with u with
edge-weight ϵ > 0 (to be specified later). We identify i with ui , instead of u.
T ′ describes a tree metric on S , as by construction each species i ∈ S is identified with a distinct

node in T ′, and T ′ only contains positive edge-weights.
IfT matchesD exactly, that is, ‖T −D‖p = 0, then no pair of species i, j ∈ S have distT (i, j) = 0,

as D(i, j) > 0. But then no species coincided in the same node due to the contractions, meaning
that no distances changed, which proves our claim. From here onward we assume that at least one
pair has distT (i, j) � D(i, j).

To specify the parameter ϵ we first make some definitions. LetY be the set containing all species
i ∈ S for which we created a new leaf node in T ′. Moreover, let dmin be the smallest positive
|distT (i, j) − D(i, j)| among all i, j ∈ S . Then,

ϵ = αdmin/(8|S |).

For any two species i, j, their distance stays the same, increases by ϵ , or increases by 2ϵ . There-
fore, for p = ∞ we directly get ‖T ′ − D‖p ≤ ‖T − D‖p + 2ϵ . By definition of dmin , we also have
‖T −D‖p ≥ dmin =⇒ 2ϵ ≤ α ‖T −D‖p/(4|S |) < α ‖T −D‖p , which proves our claim. Therefore,
we can assume that p < ∞.

We start with a lower bound related to ‖T − D‖p . By definition of Y , for any i ∈ Y there exists
a j ∈ Y such that distT (i, j) = 0, meaning that |distT (i, j) − D(i, j)| = |D(i, j)| ≥ dmin . Therefore,

‖T − D‖
p
p ≥
|Y |

2
d

p
min .

We now upper bound ‖T ′ − D‖p . If distT (i, j) � D(i, j), then |distT (i, j) − D(i, j)| ≥ dmin by
definition of dmin . For the rest of the pairs i, j, if their distance increased, then either i ∈ Y or j ∈ Y
by construction; thus, there are at most |Y | |S | such pairs. Using these observations, we take the
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following three cases (where the first one uses ϵ = αdmin/(8|S |)):∑
{i, j }∈(S2)

distT (i, j)�D(i, j)

|distT ′ (i, j) − D(i, j)|
p ≤

∑
{i, j }∈(S2)

distT (i, j)�D(i, j)

(|distT (i, j) − D(i, j)| + 2ϵ)p

≤
∑

{i, j }∈(S2)
distT (i, j)�D(i, j)

(
|distT (i, j) − D(i, j)| +

α

4
dmin

)p

≤
∑

{i, j }∈(S2)
distT (i, j)�D(i, j)

(
1 +

α

4

)p

|distT (i, j) − D(i, j)|
p

∑
{i, j }∈(S2)

distT (i, j)=D(i, j)
distT (i, j)=distT ′ (i, j)

|distT ′ (i, j) − D(i, j)|
p = 0

∑
{i, j }∈(S2)

distT (i, j)=D(i, j)
distT (i, j)<distT ′ (i, j)

|distT ′ (i, j) − D(i, j)|
p ≤

∑
{i, j }∈(S2)

distT (i, j)=D(i, j)
distT (i, j)<distT ′ (i, j)

|2ϵ |p ≤ |Y | |S | |2ϵ |p .

Adding these three upper bounds ‖T ′ − D‖pp by∑
{i, j }∈(S2)

distT (i, j)�D(i, j)

(
1 +

α

4

)p

|distT (i, j) − D(i, j)|
p + |Y | |S | |2ϵ |p .

Using our lower bound and the definition of ϵ ,

|Y | |S | |2ϵ |p = |Y | |S |

(
αdmin

4|S |

)p

<
|Y |

2

(α
2

)p

d
p
min ≤

(α
2

)p

‖T − D‖
p
p .

Therefore, we get

‖T ′ − D‖
p
p ≤

∑
{i, j }∈(S2)

distT (i, j)�D(i, j)

(
1 +

α

4

)p

|distT (i, j) − D(i, j)|
p + (α/2)p ‖T − D‖pp

≤
(
1 +

α

4

)p

‖T − D‖
p
p + (α/2)

p ‖T − D‖
p
p

< (1 + α)p ‖T − D‖pp

and thus ‖T ′ − D‖p ≤ (1 + α)‖T − D‖p . �

Therefore, for any p ≥ 1, we can approximate Lp -fitting tree metrics by using an approximation
to Lp -fitting tree pseudometrics. The error is at most (1+α) times the approximation factor of the
tree pseudometric, as any tree metric is also a tree pseudometric.

Setting α = 1
|S |

and using the result from Reference [2], we conclude that

TreeMetric ≤ (3 + o(1)) · UltraMetric. (A) from Figure 1

This concludes the proof of Theorem 1.1.
As a final note, in the case of L0 (that is, we count the number of disagreements betweenD and

T ′) one cannot hope for a similar result. To see this, let S be a set of species, and let c1, c2 ∈ S be
two special species. The distance between any pair of species is 2, except if the pair contains either
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c1 or c2, in which case the distance is 1. The optimal tree pseudometric simply sets the distance
between c1 and c2 to 0 and preserves everything else (1 disagreement).

Any tree metric requires at least |S | −3 disagreements: We say that a non-special species is good
if it has tree-distance 1 to both c1 and c2 and bad otherwise. Bad species have distance different
than 1 to at least one special species, while good species have distance less than 2 with each other;
the disagreements minimize at |S | − 3, when there is either one or two good species.

9 APX-HARDNESS

The problems of L1-fitting tree metrics and L1-fitting ultrametrics are regarded as APX-Hard in the
literature [3, 40]. However, we decided to include our own versions of these proofs for a multitude
of reasons: First and foremost, Reference [3] attributes the APX-hardness to Reference [53], which
is an unpublished Master thesis that is non-trivial to read. Also Reference [40] claims that APX-
Hardness of L1-fitting ultrametrics follows directly by the APX-Hardness of Correlation Clustering
[17], but this is only true if all the distances in the ultrametric are in {1, 2}. Second, we think that
our proofs are considerably simpler and more direct. Finally, our constant factor approximation
algorithms for these problems make it important to have formal proofs of their APX-Hardness,
since the combination settles that a constant factor approximation is best possible in polynomial
time unless P=NP.

9.1 L1-Fitting Ultrametrics

The correlation clustering problem has been shown to be APX-Hard in Reference [17]. As noted
in References [3, 40] correlation clustering is the same as the L1-fitting ultrametrics in case both
the input and the output are only allowed to have distances in {1, 2}. We refer to this problem as
L1-fitting {1, 2}-ultrametrics. Therefore, the L1-fitting {1, 2}-ultrametrics is also APX-Hard.

For completeness, we sketch this relation here. Let E ⊆
(S
2

)
be an instance of correlation cluster-

ing; then D(i, j) is an instance to L1-fitting {1, 2}-ultrametrics, where D(i, j) = 1 if {i, j} ∈ E, and
D(i, j) = 2 otherwise. Similarly, givenD we can obtain E by setting {i, j} ∈ S iffD(i, j) = 1. Given
any solution to correlation clustering (permutation P of S), we get a solutionT to L1-fitting {1, 2}-
ultrametrics with T (i, j) = 1 if i, j are in the same part of P and T (i, j) = 2 otherwise. As T is an
ultrametric, we are guaranteed thatT (i, j) ≤ max{T (i,k),T (j,k)}; therefore, ifT (i,k) = T (j,k) = 1,
then T (i, j) = 1 as only distances in {1, 2} are allowed. Thus distance-1 is a transitive relation and
P can be obtained by the equivalence classes of species with distance 1 inT . The observation from
Reference [3] is that |E	E(P)| = ‖T − D‖1, which follows by trivial calculations.

The bird’s eye view of our approach for showing APX-Hardness of L1-fitting ultrametrics is
the following. For the sake of contradiction, we assume that L1-fitting ultrametrics is not APX-
Hard. We then show how to solve the L1-fitting {1, 2}-ultrametrics problem in polynomial time
within any constant factor greater than 1, contradicting the fact that it is APX-Hard. The main
idea is that we first solve the general L1-fitting ultrametrics problem. Then we apply a sequence
of local transformations that converts the general ultrametric to an ultrametric with distances in
{1, 2} without increasing the error. To achieve this, we first eliminate distances smaller than 1,
then eliminate distances larger than 2, and then eliminate distances in (1, 2).

We first prove the following result concerning the local transformations. We remind the reader
that an ultrametric T is defined as a metric with the property that for i, j,k ∈ S we have T (i, j) ≤
max{T (i,k),T (j,k)}.

We note that the ideas in Lemma 1 of Reference [40] can be directly used to prove Lemma 9.1.
We only include Lemma 9.1, because we need these ideas applied to any ultrametric, not just to
optimal ones, as Lemma 1 of Reference [40] does.
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Lemma 9.1. Let S be a set of species, D :
(S
2

)
→ {1, 2} be a distance function with distances

only in {1, 2}, and T be a rooted tree such that each species i ∈ S corresponds to a leaf in T (more

than one species may correspond to the same leaf) and all leaves are at the same depth. Then, in

polynomial time, we can create a treeT1,2 describing an ultrametric with distances only in {1, 2} such

that ‖T1,2 − D‖1 ≤ ‖T − D‖1.

Proof. We set T ′ = T and apply the following local transformation to T ′. If T (i, j) < 1, then
we set T ′(i, j) = 1. It holds that ‖T ′ − D‖1 ≤ ‖T − D‖1 as D(i, j) ≥ 1 and T (i, j) < 1 implies
|1 − D(i, j)| < |T (i, j) − D(i, j)|. Furthermore, T ′ still describes an ultrametric. To see this, notice
that max{T ′(i,k),T ′(j,k)} ≥ max{T (i,k),T (j,k)} ≥ T (i, j) as we do not decrease distances andT is
an ultrametric. Therefore, if T ′(i, j) > max{T ′(i,k),T ′(j,k)}, then this means that T ′(i, j) > T (i, j).
But this only happens if T ′(i, j) = 1, which is a lower bound on T ′(i,k),T ′(j,k) by construction.
This contradicts that T ′(i, j) > max{T ′(i,k),T ′(j,k)}, and therefore T ′ describes an ultrametric.
Notice that no two species in S coincide in the same node inT ′ as the minimum distance between
any two distinct species is 1.

Similarly, we set T ′′ = T ′ and apply the following local transformation to T ′′. If T ′(i, j) > 2,
then we set T ′′(i, j) = 2. It holds that ‖T ′′ − D‖1 ≤ ‖T ′ − D‖1 as D(i, j) ≤ 2 and T ′(i, j) > 2
imply |2 − D(i, j)| < |T ′(i, j) − D(i, j)|. Furthermore T ′′ still describes an ultrametric. To see this,
notice that T ′′(i, j) ≤ T ′(i, j) ≤ max{T ′(i,k),T ′(j,k)}. If T ′′(i, j) > max{T ′′(i,k),T ′′(j,k)}, then
max{T ′′(i,k),T ′′(j,k)} < max{T ′(i,k),T ′(j,k)}, which only happens if either ofT ′(i,k) orT ′(j,k)
dropped to 2, meaning that max{T ′′(i,k),T ′′(j,k)} = 2. But 2 is an upper bound on T ′′(i, j). This
contradicts that T ′′(i, j) > max{T ′′(i,k),T ′′(j,k)}, and therefore T ′′ describes an ultrametric.

Now, by construction, the ultrametric tree describing T ′′ has leaves at depth 1 (the maximum
distance is 2) and internal nodes at depth between 0 and 0.5 (the minimum distance is 1). If an
internal node u has depth du ∈ (0, 0.5), then let x1 be the number of pairs {i, j} ⊆

(S
2

)
whose

nearest common ancestor is u and D(i, j) = 1 and x2 be the number of pairs {i, j} ⊆
(S
2

)
whose

nearest common ancestor is u and D(i, j) = 2. If x2 ≥ x1, then we remove u and connect the
children of u directly with the parent of u. We still have an ultrametric, as we have an ultrametric
tree describing the metric. The L1 error is not larger, as the error of x2 pairs drops by twice the
absolute difference in depths betweenu and its parent (their distance increases but does not exceed
2), and the error of x1 ≤ x2 pairs increases by the same amount; otherwise, x2 < x1. In this case,
we increase the depth ofu until it coincides with the depth of some of its children and merge these
children with u. Similarly with the previous argument, we still have an ultrametric with smaller
L1 error.

Each time we apply the above step, we remove at least one node from our tree. Therefore, when
we can no longer apply this step, we spent polynomial time and acquired an ultrametric T1,2 with
distances only in {1, 2} whose L1 error from D is ‖T1,2 − D‖1 ≤ ‖T

′′ − D‖1 ≤ ‖T
′ − D‖1 ≤

‖T − D‖1. �

Theorem 9.2. L1-fitting ultrametrics is APX-Hard. In particular, L1-fitting ultrametrics where the

input only contains distances in {1, 2} is APX-Hard.

Proof. Let D :
(S
2

)
→ {1, 2} be a distance function, OPT be the optimal ultrametric for the

L1-fitting ultrametrics problem, and OPT1,2 be the optimal ultrametric for the L1-fitting {1, 2}-
ultrametrics. We solve this L1-fitting ultrametrics instance in polynomial time and obtain T such
that ‖T − D‖1 ≤ (1 + ϵ)OPT for a sufficiently small constant ϵ , as we assumed that L1-fitting
ultrametrics is not APX-Hard. Notice that any solution to the L1-fitting {1, 2}-ultrametrics is also
a solution to the L1-fitting ultrametrics, meaning that ‖T − D‖1 ≤ (1 + ϵ)OPT ≤ (1 + ϵ)OPT1,2.
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LetT1,2 be the ultrametric we get fromT by applying Lemma 9.1. ThenT1,2 is a solution to the L1-
fitting {1, 2}-ultrametrics instance, and ‖T1,2 −D‖1 ≤ ‖T −D‖1 ≤ (1 + ϵ)OPT1,2. This contradicts
the fact that L1-fitting {1, 2}-ultrametrics is APX-Hard. �

9.2 L1-Fitting Tree Metrics

In this section, we show that L1-fitting tree metrics is APX-Hard. Our reduction is based on the
techniques used in Reference [28] to prove NP-Hardness of the same problem. The bird’s eye view
of our approach is that we solve L1-fitting ultrametrics by solving L1-fitting tree metrics on a
modified instance. In this instance, we introduce new species having small distance to each other
and large distance to the original species. Through a sequence of local transformations, we show
that we can modify the tree describing the obtained tree metric so as to consist of a star connecting
the new species and an ultrametric tree connecting the original species (the center of the star and
the root of the ultrametric tree are connected by a large edge). This ultrametric would refute APX-
Hardness of L1-fitting ultrametrics in case L1-fitting tree metrics was not APX-Hard.

Theorem 9.3. L1-fitting tree metrics is APX-Hard.

Proof. Let D :
(S
2

)
→ {1, 2} be an input to L1-fitting ultrametrics, such that all distances in D

are in {1, 2}. Moreover, let n = |S | and OPTD,U be the ultrametric minimizing ‖OPTD,U − D‖1.
By Theorem 9.2, this problem is APX-Hard. For the sake of contradiction, assume L1-fitting tree
metrics is not APX-Hard.

Let ϵ ∈ (0, 1) be a sufficiently small constant and M = 2(1 + ϵ)
(n

2

)
+ 1. We extend S to S ′ ⊇ S

such that |S ′ | = 2n. For {i, j} ∈
(S
2

)
, we set D′(i, j) = D(i, j). For i, j ∈

(S ′\S
2

)
, we set D′(i, j) = 2.

For all other i, j we set D′(i, j) = M . As we assumed L1-fitting tree metrics not to be APX-Hard,
in polynomial time we can computeT , a tree metric such that for any other tree metricT0 it holds
that ‖T − D′‖1 ≤ (1 + ϵ)‖T0 − D

′‖ for sufficiently small ϵ such that 0 < ϵ < 1.
We first show that each species k ∈ S ′ \ S has an incident edge contained in all paths from

this species to any species in S . To do so, we need to upper bound ‖T − D′‖1. If we make a star
whose leaves are the species in S with distance 1 from the center, a second star whose leaves
are the species in S ′ \ S with distance 1 from the center, and connect the two centers with an
edge of weight M − 2, then only pairs with both species in S may have the wrong distance, and
the error for each such pair is at most 1. Therefore, ‖T − D′‖1 ≤ (1 + ϵ)

(n
2

)
. This means that

if k ∈ S ′ \ S , then in the tree describing T there exists a path Πk starting from k and having
weight larger than 1, such that the path from k to any species i ∈ S has Πk as a prefix. To see
why this is true, notice that otherwise two species i, j would exist such that the paths from k to i
and from k to j only share a prefix Πi, j of weight wΠi, j

≤ 1. But T (i,k) > M/2, as otherwise we
would have ‖T −D′‖1 ≥ |T (i,k) −D′(i,k)| ≥ M/2 > (1+ ϵ)

(n
2

)
and similarlyT (j,k) > M/2. Then

T (i, j) = T (i,k)+T (j,k)−2·wΠi, j
> M−2, meaning, again, ‖T−D′‖1 > |T (i, j)−D′(i, j)| > (1+ϵ)

(n
2

)
.

Using the aforementioned structural property, we show how to modify our tree so that all species
in S are close to each other, all species in S ′ \S are close to each other, but species in S are far from
species in S ′ \S . Let k ∈ S ′ \S be the species minimizing

∑
i ∈S |T (i,k)−D

′(i,k)|. We transform the
tree describingT by inserting a node u in the path Πk at distance 1 from k and creating a star with
u as its center and all species in S ′ \ S as leaves at distance 1. Let T ′ be the resulting tree metric
and notice that ‖T ′ − D′‖1 ≤ ‖T − D′‖1, because the errors from species in S ′ \ S to species in S
did not increase (by definition of k), the errors between species in S ′ \ S are exactly zero, and the
errors between species in S stay exactly the same (we did not modify the part of the tree formed
by the union of paths between species in S).

Then, we modify the tree describing T ′ to obtain T ′′ so that the distance from any species in S
to any species in S ′ \ S is M . If for any i ∈ S we haveT ′(i,k) � M , then we move i in the tree so as
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to make its distance with k equal to M : If T ′(i,k) < M , then we create a new leaf node connected
with i with distance M −T ′(i,k) and move i to this new leaf node. Else if T ′(i,k) > M , then there
exists an i ′ (possibly by subdividing an edge) in the path from k to i having distance M from k ,
and we move i to this node. Notice that ‖T ′′ − D′‖1 ≤ ‖T ′ − D′‖1, because we move each i ∈ S
by |M − T ′(i,k)| so that it has zero error with each k ′ ∈ S ′ \ S , meaning that the error drops by
|S ′ \ S | |M −T ′(i,k)| = n |M −T ′(i,k)| (|M −T ′(i,k)| for each k ′ ∈ S ′ \ S) and increases by at most
(n − 1)|M −T ′(i,k)| (|M −T ′(i,k)| for each i ′ ∈ S \ {i}).

If we remove all nodes not in a path from k to any i ∈ S in the tree describing T ′′, then by
construction we have a treeTD,U rooted at k , having leaves identified with the species in S and all
leaves having depth M . By the above discussion, its error is ‖TD,U −D‖1 = ‖T ′′ − D′‖1. As some
species may coincide in the same nodes, we get an ultrametricT ′

D,U of S having the aforementioned
properties so that no two species coincide in the same node, using Lemma 9.1.

Notice that OPTD,U has maximum distance between species less than M ; otherwise, its error
would be at least M − 2, which is a contradiction to the fact that an ultrametric where all species
have distance 1 has error at most

(n
2

)
< M − 2. But then we can take the tree describing this

optimal ultrametric, connect its root with a node u so that u has distance M − 1 to all species in S ,
and identify each species k ′ ∈ S ′ \ S with a leaf u ′

k ′
connected with u with an edge of weight 1. If

the resulting tree metric isT1, then ‖OPTD,U −D‖1 = ‖T1−D
′‖1. We conclude that ‖T ′

D,U −D‖1 =

‖TD,U −D‖1 = ‖T
′′−D′‖1 ≤ ‖T

′−D′‖1 ≤ ‖T −D
′‖1 ≤ (1+ϵ)‖T1−D

′‖1 = (1+ϵ)‖OPTD,U −D‖1.
This contradicts Theorem 9.2. �

10 CONCLUSION

We have given, to the best of our knowledge, the first constant factor approximation for L1-fitting
tree metrics, the first improvement on the problem since the late 2000s. This problem was one of the
relatively few remaining problems for which obtaining a constant factor approximation or show-
ing hardness was open. Breaking through the best-knownO((logn)(log logn))-approximation had
thus been stated as a fascinating open problem.

In this article, we set the parameters related to our algorithm in a way that makes the presenta-
tion clearer. Given the current non-optimized parameters, it can be verified that the approximation
factor for Hierarchical Cluster Agreement is less than 400, for Hierarchical Correlation Clustering
(and thus also for L1-fitting ultrametrics) it is less than 1,600, and for L1-fitting tree metrics it is
less than 4,800.

Interestingly, our journey brought us to the study of a natural definition of hierarchical cluster
agreement that may be of broader interest, in particular to the data mining community where
correlation clustering has been a successful objective function and where hierarchical clustering
is often desired in practice.

Finding a polynomial time constant factor approximation (or showing that this is hard, e.g., by
reduction to unique games) for L2-fitting tree metrics is a great open problem. Recall from Section 8
that it suffices to focus on approximating the problem of fitting into an arbitrary ultrametric (no
need for restricted versions). Finally, the O((logn)(log logn))-approximation algorithm of Ailon
and Charikar for the weighted case (where the cost of an edge is weighted by an input edge weight)
could potentially be improved toO(logn)without improving multicut, and it would be interesting
to do so. Going even further would require improving the best-known bounds for multicut, a
notoriously hard problem.
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