
TABLE 1

Size ~ F~ial Average Search Time Relative Search Time Relative Cost
Set Old New Old New Old New

2 1.5 1.500000 1.2052 1.2052 1.8590 2.7886
3 2.0 1.888888 1.0138 . 9 5 7 5 1.1729 1.6616
4 2.5 2.208333 1.0043 . 8 8 7 1 1.0328 1.3684
5 3.0 2.479999 1.0381 - .8581 1.0008 1.2410
(i 3.5 2.716666 1.0878 . 8 4 4 4 1.0068 1.1722
7 4.0 2.926530 1.1448 . 8 3 7 5 1.0301 1.1304
8 4.5 3.115177 1.2052 . 8 3 4 3 1.0623 1.1031
9 5.0 3.286595 1.2673 . 8 3 3 0 1.0996 1.0842

10 5.5 3.443729 1.3302 . 8 3 2 9 1.1400 1.0706
12 6.5 3.723622 1.4568 . 8 3 4 5 1.2257 1.0532
14 7.5 3.967632 1.5827 . 8 3 7 2 1.3146 1.0431
16 8.5 4.184048 1.7073 . 8 4 0 4 1.4046 1.0371
18 9.5 4.378560 1.8304 . 8 4 3 6 1.4948 1.0334
20 10.5 4.555252 1.9520 . 8 4 6 8 1.5847 1.0312
25 13.0 4.937190 2.2492 .8542 1.8070 1.0294
30 15.5 5.256304 2.5380 . 8 6 0 6 2.0250 1.0300
35 18.0 5.530518 2.8196 . 8 6 6 3 2.2386 1.0317
40 20.5 5.771009 3.0949 . 8 7 1 2 2.4482 1.0338
45 23.0 5.985222 3.3649 . 8 7 5 6 2.6542 1.0360
50 25.5 6.178372 3.6302 . 8 7 9 5 2.8570 1.0383
55 28.0 6.354258 3.8913 . 8 8 3 0 3.0568 1.0405
60 30.5 6.515730 4.1487 . 8 8 6 2 3.2540 1.0427

The m e m o r y m a p cor responding to t h a t given by
Sussenguth is shown in F igure 3; the t ree i tself is shown
in F igure 4. On a va r i ab le word leng th compute r , such as
the R C A 501, this revis ion would d e m a n d a 50 percen t
increase in s torage r equ i remen t s ; less flexible machines
migh t d e m a n d a 100 percen t increase. Even in this l a t t e r
case, the p roposed me thod is super ior as ~,:ill be shown.

Cons ider a filial set of size s. I f the i ; h m e m b e r of the
set is selected as the s t a r t i ng po in t in the search, the
or iginal se t is p a r t i t i o n e d into three subse t s wi th 1, s - n

and n - 1 members . The average search t imes for these

LETTERS TO THE EDITOR

The Dangling "else"
Dear Editor:

I cannot help feeling that Kaupe [A Note on the Dangling
else in ALGOL 60, Comm. A C M . 6, 8 (Aug. 1963)] is tackling
the problem in the wrong way. Admittedly it is possible to
specify rules which allow us to interpret all his examples unam-
biguously, but is this really what is needed?

Computers and programmers exercise different processes in
analyzing a program, and the most desirable feature of a pro-
gramming language is that it should be impossible for a piece of
program to mean one thing to the programmer and another
quite different thing to the computer. One good example of this
is a string such as a/2 × c. Most, or at any rate many, mathe-
maticians would interpret this naturally as meaning a/(2 × c),
whereas an ALGOL compiler must treat it as (a/2) × c.

Equally in the case of the dangling else, the construction

i f . . . t h e n i f . . . t h e n . . . e l s e . . . ;

is inherently ambiguous in the same sense, and the vagaries of
layout on the page can do a great deal to add to the confusion.

I t seems clear that in this kind of situation the needs of the
programmer are much better served by a Restriction on what he
may write, rather than by a definition of the presumed meaning

sets are 1, 1 + T and 1 + T,_i respect ive ly . The ave rage
search t ime is therefore

T~ = - 1 [1 + (1 + 7' "~As - n) + (t. + T,~_~)(n -- 1)]
8

= 1 + _l [(T~_n)(s - - n) + (T,, 1) (n - 1)],
8

a funct ion of n. However , if the file is r andom, n could
have a s sumed tlre values 1 to s wi th equa | p robab i l i t y ;
therefore

1 '~
Ts = 1 + ~ ~., [(T~_~)(s -- n) + (Tn-1) (n -- 1)].

Because of s y m m e t r y , this is equ iva len t to

2
(T , ~ _ O (n - 1) .

I f we define i = n - - 1 , we have
S--1

T~ = 1 + ~ i T ~ ,
i=0

which is equ iva len t to
s--1

T~ = 1 -k ~ i T ~ .
i~1

Obvious ly , T~ = 1.

N o w t h a t the expected search t ime is known, re la t ive
cost can be c o m p u t e d on the same basis as Sussenguth
uses, for d i rec t compar ison . These are shown in the ac-
c o m p a n y i n g table . W i t h the 50 percen t increase in s torage
requi reu len ts a s smned in compu t ing re la t ive cost, the
p roposed me thod is super ior when the average filial se t
size exceeds 9. I f 100 percen t s to rage increase is required ,
the b reak -even po in t is 16.

S ~2 B Applications are continued on page 166

of what he does write. The obvious solution is to require the
insertion of brackets to define the required meaning. I t is possible
to do this in such a way as to allow Kaupe's constructions (2)
and (4) while forbidding the ambiguous ones (1) and (3). How-
ever, this is probably not worthwhile, and the simplest way to
rectify the situation seems to be to remove the construction
(if clause){for statement) from the definition of {conditional
statement} in Section 4.5.1. of the revised Report.

On the question of the spirit of ALGOL 60, it seems to me that
the omission of constructions (3) and (4) from ALGOL shows an
awareness of the potential ambiguity on the part of the authors,
and that the present ambiguity was the result of an oversight.
So far from "resorting" to the introduction of begin and end
symbols, I suggest that these are not only desirable but essential
to the well-being of users of the language. To indulge in a mis-
quotation, "Programs must not only be correct, they must be
seen to be correct."

J O H N H . MATTHEWMAN

The University Mathematical Laboratory
Corn Exchange St.
Cambridge, England

Letters are continued on page 190

Volume 7 / Number 3 / March, 1964 Communications of the ACM 165

http://crossmark.crossref.org/dialog/?doi=10.1145%2F363958.363990&domain=pdf&date_stamp=1964-03-01

what overlays what. Implementation is correspondingly simpli-
fied. Storage can be allocated during one pass over the program.
Compute time during compilation is reduced.

4. The size of a COMMON block is explicit in COMMON,
DIMENSION, and TYPE statements; it may not be extended
by EQUIVALENCE statements. This is particularly helpful in
using FORTRAN]V named COMMON blocks, whose size may
not vary from one subprogram to the next.

HAYDEN T. RICHARDS
Programmatics, Inc.
33 Malaga Cove Plaza
Palos Verdes Estates, Calif.

Letters to the Editor~Cont'd from .page 165

S o m e C o m m e n t s o n t h e A i m s o f M I R F A C

Dear Editor:
Recently H. J. Gawlik [1] published an article on MIRFAC:

A Compiler Based on Standard Mathematical Notation and
Plain English. Its author is aware of earlier projects along anal-
ogous lines (MADCAP and COLASL [2]). When I heard of these
earlier projects I was filled with amazement, for what they aimed
at hardly seemed to be sensible. I did not raise my voice then,
convinced and trusting that people would discover this for
themselves in a very short time. Now, two and a half years later
I am faced with the fact that the movement has not died its
natural death as I had supposed it would. This discovery has
given me some disappointment and I can only regret my earlier
silence on the subject.

The justification for the project MIRFAC seems to be based
on the opinion that what is right for communication from man
to man should also be right for communication from man to
machine. (This is the only interpretation which allows me to
attach a meaning to Gawlik's statement "that a compiler should
aim not merely to simplify programming, but to abolish it.")
But this opinion should not pass unchallenged!

If we instruct an "intelliger/t" person to do something for us,
we can permit ourselves all kinds of sloppiness, inaccuracy, in-
completeness, contradiction, etc., appealing to his understanding
and common sense. He is not expected to perform literally the
nonsense he is ordered to do; he is expected to do what we in-
tended to order him to do. A human servant is therefore useful
by virtue of his "disobedience." This may be of some convenience
for the master who dislikes to express himself clearly; the price
paid is the non-negligible risk that the servant performs, on his
own account, something completely unintended.

If, however, we instruct a machine to do something we should
be aware of the fact that for the first time in the history of man-
kind, we have a servant at our disposal who really does what he
has been told to do. In man-computer communication there is
not only a need to be unusually precise and unambiguous, there
is--at last--also a point in being so, at least if we wish to obtain
the full benefits of the powerful obedient mechanical servant.
Efforts aimed to conceal this new need for preciseness--for the
suppoaed benefit of the user--will in fact be harmful; at the same
time they will conceal the equally new possibilities in automatic
computing, of having intricate processes under complete control.

I go on quoting Mr. Gawlik: " . . . MIRFAC has been devel-
oped to satisfy the basic criterion that its problem statements
should be intelligible to nonprogrammers, with the double aim
that the user should not be required to learn any language that

he does not already know and that the 1)roblem statement can
be checked for correctness by somebody who understands the
probleln but who may know nothing of programming."

I do not see the point of Mr. Gawlik's "basie criterion." Else-
where [3] I have warned against, the " . . . tendency to design
programming languages so that the3" are easily readable for a
semiprofessional, semi-interested reader." (Symptoms of this
tendency are languages whose vocabulary includes a wild variety
of English words to be used in a nearly normal sense, and some
translators that even allow a steadily expanding list of synonyms
and misspellings for these words. Particularly, languages de-
signed under eomlnercial pressure haw} suffered seriously from
this tendency.) It looks so attractive Everybody can under-
stand it immediately." However, giving a plausible semantic
interpretation to a text which one assumes to be correct and
meaningful is one thing; writing down such a text and expressing
exactly what one wishes to say may be quite a different matter!
On comparable grounds, John McCarthy calls " C O B O L . . . a
step up a blind alley on account of its orientation towards English
which is not well suited to the formal description of proce-
dures." [4]

Furthermore, to accept Mr. Gawlik's double aim is a mistake.
Standard mathematical notation has been designed to describe
relations; we now have to define processes. Plain English has
grown out of a need of interhuman communication to be vague
and ambiguous, to tell jokes and to sing nursery rhymes, but is
obviously unfit to express what has to be expressed now. One
can borrow mathematical notations, one can borrow English
words, but completely new semantics must be attached to them
and despite superficial similarities one creates a new language.
I think the similarities are more misleading than clarifying.

The dangers are revealed by Mr. Gawlik's second aim of
having the problem statement checked for correctness by some-
body who understands the problem but who may know nothing
of programming. Of course such a person can check it, but the
crucial point is whether he will find the errors! Of course he will
not find them because in human communication one is con-
stantly trained to try to understand another's intentions and
not to notice the nonsense. The eorrector who understands the
problem but knows nothing of programming will be misled by
the familiarity of the characters and the words and he will, in
all probability, be satisfied if he recognizes the problem.

I am all in favor of clear and convenient algorithmic languages
but, please, let them honestly be so--to disguise them in clothes
which have been tailored to other purposes can only increase the
confusion.

t~EFERENCES :

1. GAWLIK, H. J. MIRFAC: A compiler based on standard
mathematical notation and plain]~2nglish. Comm. ACM 6, 9
(Sep. 1963).

2. WELLS, M. B. MADCAP: A scientific compiler for a dis-
played formula textbook language. Comm. ACM 4, (Jan. 1961).

3. DIJKSTRA E.W. On the design of machine independent pro-
gramming languages. In Annual Review in Automatic Pro-
tramming, Vol. III , Goodman, 1~. (Ed.), Pergamon Press, 1961.

4. McCARTHY, J. A basis for a mathematical theory of computa-
tion, preliminary report. Western Joint Comput. Conf., 1961.

E. W. DI.IKSTRA
Department of Mathematics
Technological University
Eindhoven, Netherlands

190 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 7 / N u m b e r 3 / M a r c h , 1954

