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ABSTRACT
Energy trading in the day-ahead and continuous energy market
enables the maximization of profits for market participants, such
as utility companies/suppliers and residential/industrial consumers.
However, in practice, the AI-based decision-making process for
accepting or rejecting bids/offers from customers/suppliers, com-
monly referred to as bidding decisions, often experiences perfor-
mance degradation due to the fluctuation of renewable energy
resources and the intermittent demand behavior of customers. This
phenomenon is widely recognized as a data distribution shift in
machine learning. One conventional approach involves training
the model from scratch over an extended historical period, incur-
ring significant computational and storage costs. To address this
challenge more effectively, we propose a Continual Learning-based
Energy Bidding framework (CLEB). This framework employs a
relay-based continual learning method, utilizing a combination of
a small portion of historical data and the most recent data with
different distributions to enhance the accuracy of bidding decisions.
The framework consists of predictive neural networks, specifically
a Multi-Layer Perceptron (MLP), as well as data buffers for storing
newly acquired data from a non-stationary data stream within an
application. Subsequently, the evolving probability distribution of
the data stream identified by the framework is utilized to retrain
the model. Our evaluation in a public European energy trading
dataset shows that the framework significantly improves accuracy
performance of prediction model under the data distribution shift
occurrences, allowing the model adaptively itself to deal with non-
stationary data distributions in dynamic environments.
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1 INTRODUCTION
Energy trading involves transactions between utility compa-
nies/suppliers (a.k.a. power generators) that produce electricity
and industrial suppliers, who purchase power from suppliers to sell
it to residential consumers, as depicted in Figure 1. Energy trading
plays a vital role in alleviating power shortages and ensuring the
stable operation of the electricity market. Energy trading in both
the day-ahead and continuous markets is susceptible to various
uncertainties, including the intermittent behavior of renewable
energy resources influenced by climate change and fluctuations in
customer demand [1]. This phenomenon is commonly recognized
as a data distribution shift in the field of machine learning. An
effective energy trading strategy should maximize the profits of all
participants while maintaining an instantaneous energy balance
amid various uncertainties [2].

Various research interests and publications on energy bidding
strategies have been explored, categorized into two primary ap-
proaches: conventional optimization [3] and deep learning-based
method [5]. While the approach proposed in [3] finds an optimal
bidding strategy for each participant by solving amulti-objective op-
timization problem through a central entity (i.e., an energy market
operator), reinforcement learning (RL) [5] is employed to determine
an optimal bidding strategy, aiming to maximize rewards by infer-
ring the best action for a given state. Nonetheless, most of these
approaches do not consider the challenge of data distribution shifts,
leading to previously trained models performing suboptimally with
real-time data. Continual learning (CL) algorithms are considered
as promising solutions to address this challenge. CL algorithms
learn concepts and tasks sequentially without degrading perfor-
mance on prior tasks. Several CL strategies are described in [6]:
(1) regularization strategies, (2) rehearsal strategies (also known
as relay-based buffer/memory), and (3) architectural strategies. CL
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Figure 1: The energy bidding application scenario.

algorithms have demonstrated success in various domains since the
models continuously adapt and update its parameters to account
for such dynamic situations within the application.

Based on these observations, this work aims to introduce a
framework called CLEB (Continual Learning-based Energy Bid-
ding) that leverages continual learning algorithms, specifically the
relay buffer strategy, to continually adapt to distribution changes
in non-stationary data streams. The CLEB framework includes a
multi-layer perceptron network (MLP) for bidding prediction and
buffers for storing new data. Addressing data distribution shifts
involves the use of an adaptive sliding window method [8], with
a relay buffer employed to store detected distribution shifts. Ad-
ditionally, the prediction output is estimated and compared to an
adjustable threshold to identify performance shifts. Similarly, if
model performance degrades suddenly, the present input data is
stored in the relay buffer; otherwise, it is stored in a sampling buffer.
When the relay buffer is full, model adaptation is triggered. The
MLP is subsequently retrained on the data retrieved from the relay
buffer and sampling buffer, with the goal of mitigating catastrophic
forgetting [9]. Subsequently, the CLEB framework is benchmarked
in terms of model accuracy in a continual learning strategy within
the context of energy bidding, using a publicly available European
energy trading dataset. The results indicate
that the CLEB framework has the potential to effectively manage
energy bidding in non-stationary data streams.

2 RELATEDWORK
2.1 Energy Bidding Strategy
Numerous recent studies have explored various methodologies
within the realm of energy bidding strategy research.

A game theory-based approach [4] have been introduced for con-
ducting transactions within the energy market. Participants submit

information to a central entity, which then formulates the energy
bidding strategy and communicates it to all stakeholders. However,
as the number of participants increases, the data volume grows
exponentially, intensifying the challenges associated with real-time
resource scheduling in energy management. In [10], the authors
introduced an energy market framework in which participating
participants disclose their cost functions to the market operator.
Subsequently, the optimization of the distribution network is col-
lectively resolved through a decentralized approach. An additional
investigation [11] unveiled a framework for a distributed system
operator within the context of an energy market. This framework
has demonstrated its ability to reduce supply costs for prosumers
within a localized distributed area while simultaneously enhancing
the payoffs of generation companies. Moreover, several research
endeavors have delved into the application of Reinforcement Learn-
ing techniques to refine bidding strategies in the energy market. In
[12], the authors harnessed Deep Reinforcement Learning (DRL)
within the wholesale market, aiming to optimize generator bids
based on limited, readily available information. Meanwhile, in [13],
the authors employed a deep neural network to ascertain the best
power trading dynamics amongst multiple microgrids featuring
batteries and power generation. In [14], the authors adopted the
multiagent deep deterministic policy gradient (DDPG)methodology
to estimate the Nash equilibrium within the competitive bidding
landscape involving power suppliers.

2.2 Continual Learning
This section provides an overview of several studies on classification
and regression tasks within the domain of CL.

This section provides an overview of several studies on classifi-
cation and regression tasks within the domain of CL. In [15], the
MNIST dataset is divided into five distinct tasks, with one of them
containing a pair of unique labels representing different digits. The
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Figure 2: The proposed CLEB framework.

proposed model continually learns to effectively solve a sequence
of tasks using a transfer learning strategy. CL algorithms have
been studied in various energy-related sectors. For example, in
[7], neural networks are developed to predict renewable energy
generation using a CL architecture-based strategy. This forecasting
depends on power consumption, which is subject to fluctuations
due to various factors, such as acquiring new electrical devices or an
increase in occupants in a building or factory. Additionally, weather
data exhibits non-stationary behavior, including extreme weather
conditions. Moreover, in [16], two distinct CL application scenarios
are outlined in the context of setting up local smart grids. These
scenarios encompass the task-domain incremental scenario and
the data-domain incremental scenario. Both scenarios are relevant
to power forecasting, covering aspects such as predicting energy
generation and load consumption levels. The research also delves
into the performance evaluation of various regularization-based CL
algorithms, specifically Elastic Weight Consolidation (EWC) and
Online-EWC.

However, none of these studies consider employing CL algo-
rithms for energy bidding applications, where the bidding decisions
are significantly impacted by the uncertainty factors of the environ-
ment, such as power generation, load consumption, or electricity
market prices.

3 CLEB FRAMEWORK OVERVIEW
The proposed CLEB framework consists of three fourth compo-
nents: (i) Model, (ii) Input Distribution Shift Detection, (iii) Output
Distribution Shift Detection, and (iv) Adaptation, as shown in Fig-
ure 2. In this context, the Model component incorporates an MLP
neural network to predict bidding decisions. For example, it de-
termines which bidding transactions from industrial consumers
and offer transactions from utility suppliers should be accepted or

rejected based on the incoming trading transaction data stream.
The Input Distribution Shift Detection component is utilized to
identify changes in the probability distribution of the input data,
% (- ). Similarly, the Output Distribution Shift component is
designed to detect changes in bidding prediction values, % (. |- ).
Furthermore, we adapt a relay-based continual learning strategy in
the Adaptation component to update the model and dynamically
adjust the threshold following each update. The CLEB framework
can flexibly integrate various data detection shift methods as well
as prediction models, tailoring its approach to specific application
scenarios and data types.

3.1 Model
The bidding decision prediction task is regarded as a classification
problem, specifically determining which bids/offers are accepted
or rejected. To address this, an MLP neural network is employed,
comprising an input layer, multiple hidden layers, and an output
layer with fully connected neural networks extending from the
input to the output layer. We consider a data stream ^t for C ∈
{1, 2, ..,) }, where each input ^t is a
sequence of bidding transactions and offer transactions submitted
by consumers and suppliers. Let] ∈ R3 be the parameter space
for our model. The total binary cross-entropy loss on the training
set �CA08= = {(^t

′ , _t ′ ) |C
′
< C}=

C
′
=1

is represented as:

!C ′ (] ) = − 1
=

=∑
C
′
=1

[
_t ′ × log

(
ℎ\

(
^t

′

))
+
(
1 − _t ′

)
× log

(
1 − ℎ\

(
^t ′

) ) ] ,
where n stands for number of training examples, _t ′ refers to the
target label for training example C

′
, ^t ′ represents the input for

training example C
′
, andℎ\ denotes themodel with learnable weight

\ . The predictor is used to infer the bidding decision _̂C , given that
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Figure 3: An example output of ADWIN method.

the MLP neural network is fully trained with optimized neural
network weight ℎ\∗ and the current input at time C is ^C .

3.2 Input Distribution Shift Detection
A non-stationary data stream undergoes changes in properties over
time, posing challenges for energy bidding prediction models. To
determine the stationarity of the data stream, meaning whether
the distribution of the current data ^C is similar with the old data
^C

′ , various data distribution shift detection methods have been
proposed in the literature, such as Adaptive Windowing (ADWIN)
[8], Page-Hinkley [17], and Drift Detection (DDM) [18]. Since AD-
WIN is more tolerant of various drift types (such as concept drift,
covariate drift, and others) compared to the remaining methods
[19], we employ ADWIN as our primary method for detecting data
distribution shifts. Essentially, the ADWIN method utilizes sliding
windows of variable sizes based on observed data changes. When
the difference between the statistics within these windows, such as
the mean of the observed data window, surpasses a predetermined
threshold, it indicates the detection of a data distribution drift. Fig-
ure 3 illustrates how ADWIN operates, with the red lines denoting
data sample
indexes at which distribution shifts are detected. One of the features
in the training dataset is the ”Price” attribute, which is described in
more detail in section 4.

When the data distribution shift is detected, the data ^t is store
in the relay buffer. The relay buffer retains samples that exhibit a
probability distribution shift in the data stream and uses them as
inputs for retraining the model when model updates are triggered.
Conversely, the sampling buffer stores data with a distribution sim-
ilar to the old data^t

′ . The data in the sampling buffer is employed
to preserve previous knowledge for the updated model. A continu-
ally learning energy bidding model can be seen as an accumulation
of knowledge aimed at enhancing prediction performance. It’s
important to note that the relay buffer has a finite size, whereas
the sampling buffer is designed to be larger compared to the relay
buffer.

3.3 Output Distribution Shift Detection
Even if data ^C exhibits a similar distribution to the previous data
^t ′ , there is still a chance that the model’s performance may signif-
icantly deteriorate if the data input -C contains noise. For instance,
this could occur if essential attributes are missing due to errors
in the data collection process, leading to prediction shift issues.
Therefore, it is crucial to inspect the prediction output to ensure
that prediction shifts are effectively managed.

Given the prediction output _̂C the framework assesses the
model’s performance using the following Supply-Demand Equilib-
rium (SDE) equation:

(��
(
_̂t
)
=

������ <∑8=1 ~> 5 5 4AB8
∗ @> 5 5 4AB

8
−

:∑
9=1

~183B9 ∗@183B9

������
where ~183B

9
and ~> 5 5 4AB

8
∈ {0, 1} are elements of vectors output _̂t ,

represent bidding decisions corresponding to a sequence of bid-
ding and offer transactions in the input ^t . Meanwhile, @183B

9
and

@
> 5 5 4AB

8
denote the power quantity of the bidding and offer transac-

tions, respectively, acquired from the data input ^t . Detailed input
attributes are further described in section 4. It is important to note
that<+: = |_̂t |. The value of (�� (_̂t ) serves as an indicator of the
supply-demand balance once the bidding decisions are determined
by the prediction model.

Subsequently, (�� (_̂t ) is compared to a threshold Y@D0;8C~ ,
which is denoted by:

Y@D0;8C~ = argmax
C ′∈�CA08=

(
(��

(
_̂1
)
, . . . , (��

(
_̂t ′

) )
,

where the value of Y@D0;8C~ establishes the boundary for the quality
of an energy bidding prediction output. If (�� (_̂t ) < Y@D0;8C~ , the
current input ^t is stored in the sampling buffer; otherwise, it is
stored in the relay buffer. The threshold Y@D0;8C~ value is adjusted
after each model update, based on the new data used for retraining
the model.

3.4 Adaptation
This component plays a crucial role in the CLEB framework by
retraining the model to adapt to the non-stationary data stream
within the dynamic environments of the energy bidding application.
As mentioned earlier, we employ a relay-based continual learning
approach that utilizes a small portion of old data (i.e., data with
a distribution similar to what is learned by the current model at
time C ) along with newly acquired data (i.e., data with distribution
shifts or noise) to update the model. This strategy is considered a
suitable method for the energy bidding prediction task, address-
ing distribution shifts and mitigating catastrophic forgetting. It
allows the model to acquire new knowledge without forgetting past
knowledge. Once the model update is completed, it replaces the
current model with the latest version, ℎ\∗D?30C4 .

It’s important to note that, since the energy bidding application
in this work doesn’t have access to ground-truth labels in prac-
tice, unlike other applications such as recommendation systems or
energy load forecasting, we rely on a heuristic-based labeling tech-
nique (i.e., the electricity market clearing process), as mentioned
in [20], to label the data in the relay buffer before retraining the
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Table 1: Summary table of the considered datasets

Dataset Name Description

OMIE Submitted Bids [21] Include bids/offers submitted to an electricity market operator in the
continuous intraday market for Spain.

OMIE Transactions Made [21] Contain successfully matched pairs of bids and offers in the OMIE
Submitted Bids dataset.

ENTSOE Energy Consumption & Generation [22] Consist of electrical consumption, generation, and weather data for Spain.
ESIOS Energy Market Price [23] Include the electrical market price for Spain.

Figure 4: The fourth subfigures illustrate the data distribution shift generated to Price,Quantity, Forecasted Load, and Total
Generation attributes, respectively.

model. Other labeling methods fall outside the scope of this work
but could be subjects of further research in the future.

4 EXPERIMENT
4.1 Dataset
To conduct an empirical study, we have considered a total of four
electricity datasets from the Spain market, as outlined in Table 1.

All four datasets span a 1-year period, from January 1, 2019, to
December 31, 2019, and are organized based on hourly intervals.
From the first two datasets presented in Table 1, we extracted the
ground-truth labels for each bid and offer transaction, indicating
whether they were accepted or rejected. Subsequently, we merged
this dataset with attributes selected from the ENTOSE and ESIOS
datasets, including total energy
generation (supply), forecasted load consumption (demand), and
energy market prices, ensuring time synchronization. The final
dataset, denoted as � , comprises over 5 million trading transaction
samples and includes 16 attributes, with key attributes listed as
follows:

• Price (€ /MWh): This refers to the price at which a utility
supplier or industrial consumer is willing to sell or buy a
certain quantity of electricity during a specific period.

• Quantity (MW): This indicates the amount of electricity that
market participants are willing to buy or sell at a specific
price during a particular period.

• Energy Generation (MW): This pertains to the total amount
of electrical energy generated within a specific region, coun-
try, or system over a given period.

• Forecasted Load Consumption (MW): This represents fore-
casts of expected electricity consumption or demand within
a specific region, country, or electrical system over a defined
time period.

• Energy Market Price (€ /MWh): This refers to the price at
which electricity is bought and sold in the electricity market
in Spain.

4.2 Synthetic Dataset
To simulate the data distribution shift scenario, we created a syn-
thetic dataset with the goal of altering the probability distribution
of numeric columns in dataset � at specific points. The underlying
generation of the synthetic dataset is shown as follows:

^C (=) ∼ # (<40=C (=) + U, E0AC (=) ∗ V)
where ^C (=) is sampled from a Gaussian distribution with a time-
dependent mean and variance, representing the =th attribute of
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Figure 5: The performance of the CLEB framework when a distribution shift occurs, without taking the concept of CL into
account.

sample^C in the dataset� . The result of synthetic dataset�B~Cℎ4C82

for each attribute are displayed in Figure 4.
In total, we divided the original dataset � into training (80%)

and testing (20%) sets, denoted as � = �CA08= ∪ �C4BC . For the data
distribution shift scenario, we combined a portion of samples from
�C4BC with a with
a segment of samples from the synthetic dataset �B~Cℎ4C82 , aligning
them with continuous timestamps, resulting in what we refer to as
�
B~Cℎ4C82
C4BC .

4.3 Metrics
Since the energy bidding prediction is considered as classification
task, we employ the Jaccard score to measure the accuracy perfor-
mance

��� (^ ) = 1
=

=∑
8=1

)! (^8 ) ∩ %! (^8 )
)! (^8 ) ∪ %! (^8 )

,

where )!(^8 ) represents the true label set of 8th input sample ^8 ,
and %!(^8 ) refers to the predicted label set of 8th input sample
^8 . A higher value of this evaluation metric indicates better model
performance.

4.4 Result
Figure 5 illustrates the accumulated daily accuracy performance
of the CLEB framework using �

B~Cℎ4C82
C4BC as data streaming input.

We can observe that, starting from December 1, 2019, the model’s
performance undergoes a significant degradation. The cause of this
decline is the detection of a data distribution shift. If the model is
not updated, its performance steadily deteriorates.

On the other hand, Figure 6 demonstrates that the performance
of the CLEB framework experiences a remarkable improvement

through the utilization of continual learning methods. As the per-
formance degrades suddenly, the CLEB framework starts recording
samples that indicate a distribution shift in the relay buffer. When
the relay buffer is full, the adaptation component shown in Figure
2 is triggered to retrain the model using the relay-buffer contin-
ual learning strategy. The newly trained model, once retraining is
complete, is
deployed to perform model inference for new incoming sequence
data. Since the updated model has learned new data distribution
patterns, it quickly enhances accuracy performance.

5 DICUSSION
The outcome of experiments showed that the performance of the
relay-based continual learning strategy depends on the size of the
buffers. If the size of the buffer is larger, the CLEB requires a
longer time to reflect changes in data distribution, as the retrain
process is only invoked when the buffer is full, and vice versa.
Therefore, the optimal buffer size is also considered a factor that
affects the efficiency of the proposed method. This generates a need
for modeling the buffer size adaptively, allowing the buffer size to
adjust itself during the continual learning process by observing the
circumstances.

Due to the absence of preliminary experiments on a dataset
related to continual learning-based energy bidding, a direct com-
parison of our experiment results with those of other studies is
not feasible. Consequently, the outcomes of our experiments and
the performance metrics for energy bidding are exclusively based
on the utilization of a synthetic dataset and algorithms tailored
specifically for this research.

Several challenges had to be overcome to implement this study.
One of the main limitations is labelling data stored in the relay
buffer due to limited information on bidding constraints, such as

51



CLEB: A Continual Learning Energy Bidding Framework For An Energy Market Bidding Application AICCC 2023, December 16–18, 2023, Kyoto, Japan

Figure 6: The performance of the CLEB framework when a distribution shift occurs, considering the concept of CL.

regulations, policies (i.e., renewable energy quotas), or capacity
constraints (i.e., the maximum amount of energy that can be bid
or generated within a specific time frame) in the Spanish market.
Since the quality of the supervised-based learning model depends
on the quality of labels, the results of the experiment may not fully
reflect the applicability of continual learning to bidding decisions
in case a data distribution shift occurs. Additionally, the artifi-
cial dataset generated to demonstrate the concept of continually
learning algorithms in this study is not generalizable in practice,
which might necessitate starting our experiments from scratch for
different energy bidding datasets.

6 CONCLUSION
We propose the CLEB framework, which is designed to enhance
the performance of the energy bidding decision model under non-
stationary data streams using the relay buffer continual learning
strategy. The CLEB framework monitors the data stream to detect
changes in probability distribution using the adaptive sliding win-
dow method, namely ADWIN. All samples that cause a distribution
shift are stored in the finite relay buffer. When this buffer is full,
the adaptation component is invoked to update the model using the
data stored in the relay buffer. The experimental results illustrate
that the CLEB framework enables the prediction model to adapt
itself to uncertain conditions in the energy bidding application.

However, the framework can be further improved in our future
research. For instance, data distribution shifts in practice may ex-
hibit various types, and it is necessary to propose a new approach
for effectively detecting distribution shifts with low detection delay
and high precision. The labeling technique is also of importance to
explore further since it impacts the performance of model retrain-
ing. Additionally, rigorous experiments are required to evaluate
the performance of the CLEB framework in terms of forgetting

ratio. Moreover, conducting more ablation experiments is neces-
sary to simulate and identify the impact of thresholds on overall
performance.
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