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Figure 1: The workflow of MathAssist: a) recognizes user’s input strokes and outputs a partial formula in latex; b) builds tree
structure according to the latex; c) matches the tree structure in our formula database; and d) selects a structure block (i.e.,
sub-tree structure) as recommendation from the entire structure of matched formula.
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ABSTRACT
Writing and editing mathematical expressions with complicated
structures in computer system is difficult and time-consuming. To
address this, we proposed MathAssist, a mathematical expression
autocomplete technique that recommends full formulas in real-
time based on the user’s input strokes. Our technique identifies
user’s input purpose by matching the structure of the current user
input to the structure of formulas in a database. To facilitate such
process, we propose a novel tree-based formalization to represent
formula. In comparison to a mathematical expression recognition
algorithm (SRD) and a commercial MicroSoft Ink Equation (InkEqu),
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our approach outperformed both of them on task completion time
(reduced by 37.14% and 37.58%) and accuracy (32.78% and 10.55%
higher). We also discuss our findings in using autocomplete to assist
formula editing.

CCS CONCEPTS
• Human-centered computing → Interactive systems and
tools; Interaction techniques.

KEYWORDS
Mathematical expression, Handwritten mathematical expression
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1 INTRODUCTION
Mathematical expression is an essential tool for formalizing re-
search questions, theories, and solutions in a variety of fields. For a
long time, efficiently writing expressions in computing system has
been a critical but unsatisfied demand. There are three typical ways
of writing and editing mathematical expressions: (1) constructing
and editing formulas with icons or widgets; (2) generating formulas
with a special Markup Language such as Latex; and (3) recognizing
formulas with handwritten mathematical expression recognition.
The first two are inefficient and difficult to input special symbols or
complex structures contained in mathematical expressions, particu-
larly for beginners [6, 10, 18]. In contrast, recognizing handwritten
mathematical expressions is a more natural and effiective way of
dealing with mathematical expressions, especially on the mobile or
large-screen devices [19, 34, 56].

Handwritten mathematical expression recognition (HMER) tech-
niques have gained increasing concern in the HCI and associated
communities recently[47, 66]. To improve the accuracy of HMER, re-
searchers created various methodologies, such as structured recog-
nition methods[3, 8], end-to-end recognition methods[61, 65], etc.
Despite this, themost advanced technology can only achieve roughly
60%-80% accuracy on a predefined public dataset with 101 symbols[60,
62], which makes it challenging to meet user requirements[7] and
restricts the use of handwritten mathematical expressions in inter-
active applications. Apart from that, there are other ways to use
interactive user interfaces or human involvement to assist math-
ematical expression recognition. A few of these include online
HMER based on human-in-the-loop [22], math boxes for writing
mathematical expression [52], and interactive correction for math
in OneNote [37]. However, despite the accuracy improved, these
techniques generally take longer time to complete the writing.

This paper proposes an alternative approach that incorporates
the idea of autocomplete, which is frequently used in text input,
into the writing of mathematical expressions, so as to obtain effi-
cient and accurate formula input. In our approach, there are three
major challenges in building such an autocomplete technique for
mathematical expressions. First, existing formalizationmethod such

as Latex are not suitable for matching mathematical expressions.
An ideal formalization method for autocomplete technique should
not only be capable of presenting mathematical expressions accu-
rately, but also facilitate quick locating and recommending sub-
expressions. Second, unlike text input, symbols (i.e., letters, num-
bers, etc.) in formulas are meaningless and often replaceable. For
matching formulas, we should not use methods like edit distance
[17] and cosine similarity [27], but rather devise a new way to
measure the structural similarity between the formulas. Third, it is
difficult to recommend the sub-expression that maintains semantic
similarity and coherence with formulas already written from the
most relevant mathematical expression is complex. This is because
it is not only necessary to match the contextual semantic informa-
tion of the user input formula with the most relevant mathematical
expressions [23, 30], but also to consider the correctness (whether
it conforms to the mathematical logic) of the new expressions after
autocomplete.

To address these challenges, we proposed MathAssist, a hand-
written mathematical expression autocomplete technique using
a tree-based formalization to describe formulas during its work-
flow (Figure 1 (a) and (b)). To determine the purpose of the user’s
input from the current input strokes, the input strokes are recog-
nized and transformed into tree-based structure form, then matched
with existing formulas in a database using an improved tree kernel
method [50] (Figure 1 (c)). In order to find an appropriate formula
completion that allows users to write formulas quickly and flexi-
bly, we designed recommendation rules that select an optimized
structure block from the structure of the matched formula in the
last step (Figure 1 (d)). To evaluate our approach, we conducted
a within-subject experiment, in which 17 participants completed
tasks using MathAssist, a recognition algorithm known as sequen-
tial relation decoder (SRD) [62] and a commercial MicroSoft Ink
Equation (InkEqu) [12]. Our results showed that MathAssist out-
performs SRD and InkEqu in terms of accuracy(32.78% and 10.55%
higher) and completion time (reduced by 37.14% and 37.58%). Impor-
tantly, we found that accuracy and task completion time remained
constant with the increasing formula’s lengths in MathAssist. In a
semi-structured interview, participants’ subjective evaluations are
consistent with the quantitative results. The contributions of this
paper are as follows:

• We made the first attempt to build a mathematical expres-
sion autocomplete technique that recommends the structure
blocks of mathematical expression based on input strokes
from user.

• We designed a tree-based formalization of mathematical ex-
pression, an improved tree kernel method, and a set of rec-
ommendation rules to solve the problems of formalizing,
matching and recommending mathematical expressions in
the autocomplete technique.

• We conducted a within-subject user study to evaluate the
performance of the proposed technique, and discussed its
rationality in a semi-structured interview.
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2 RELATEDWORK
2.1 Handwritten Mathematical Expression

Recognition
Handwritten Mathematical Expression Recognition (HMER) has
been an active research field in pattern recognition since the 1950s,
serving as a key component for systems such as physics, geometric
theorem proving, and algebraic intelligent tutoring systems [14]. In
essence, it functions as a translator, converting handwritten strokes
into machine-editable mathematical expressions.

Compared with handwriting text recognition, HMER is a more
challenging pattern recognition task, which requires handling simi-
lar looks of symbols, special symbols, various 2D nested structures
and highly relevant context [14, 55, 64]. Generally, HMER can be
divided into three tasks: symbol segmentation, symbol classifica-
tion, and structural analysis [3, 8, 47]. Traditional multi-stages
approaches solve these three problems with either sequential or
global methods. For the sequential methods [2], the activities of
each step are carried out successively in sequential ways, with the
output from one stage serving as the input for the next. Errors will,
of course, be propagated in the same way. For global methods [3, 8],
these tasks are handled simultaneously with global context infor-
mation. As a result, this also makes global methods more complex.
Additionally, both kinds of methods require domain knowledge.

To address the issues with traditional multi-stage methods, re-
searchers combine the three sub-problems of HMER into one prob-
lem (called stokes-to-sequence or image-to-sequence problem). End-
to-end methods with encoder, decoder and attention module as key
components were used to solve this problem [28, 63]. For example,
"watch, participate, and parse (WAP)" method [63] used a convolu-
tional neural network to encode input handwritten traces, and a
recursive neural network decoder to generate mathematical expres-
sions. "Sequential relation decoder (SRD)” model [62] employed a
RNN encoder with gated recurrent units to model the input strokes,
and a sequential relation decoder with attention model to generate
the LATEX expressions. "Track, attend and parse (TAP)" method
[61] used a stack of bidirectional recurrent neural networks with
gated recurrent units to recognize the handwritten mathematical
expressions. Position correction attention mechanism [16], drop
attention module [28], coverage model [49], self-attention [11],
and multi-head attention [14] are used to address the issues of
imprecise attention distribution in the decoder and different sizes
of symbols. To enhance the localization and classification of the
high-level features in HMER, a symbol classifier and beam search
process [54] are employed in the encoder-decoder framework. Addi-
tionally, tree-based decomposition and sub-expression interchange
[53], temporal alignment of the input feature sequence and corre-
sponding symbol label sequence [40], pattern generation strategy
[24], bi-directional mutual learning [9] and relation-based sequence
representation [41] are used to improve recognition capability with
data augmentation.

Overall, the embodiment of recognition capability in HMER
has undergone seismic shifts as technology and software based on
artificial intelligence continue to advance. Affected by some limita-
tions, which contains their limits in varied strokes styles[46] and
stroke order variations[26], their inability to accurately recognize
indistinguishably similar symbols [49], horizontal and subscript

problems[4], and other concerns [13], the average expression ac-
curacy on the public available datasets (CROHME 2014, CROHME
2016, and CROHME 2019) can only reach about 60%-80%. In our
technique, we minimize these problems through autocomplete tech-
nique.

2.2 Autocomplete technique
Autocomplete is a technique that presents a list of suggestions to
the user based on their input in a specific order [29, 39]. Autocom-
plete has been widely used in text editing, coding, and information
search to enhance the user experience by accelerating text entry
and reducing spelling errors [5, 15, 21, 44]. In these applications,
autocomplete is mainly targeted at flat text or string data. With the
development of artificial intelligence and big data, autocomplete
gradually expands to prototype virtual breadboard circuits [29],
painting repetition [59], auditing [44], animated sculpting [42], ag-
gregate elements [20]. But these autocomplete are mainly used for
tasks that already have a fixed workflow, like the workflow in 3D
sculpting often consist of predictable brush choices and operations
[43]. It needs to be said that both of them rely on the determination
of how similar the user input and the autocomplete results, such
as graph similarity is used to measure the elements consisting of
multiple samples [20], composite similarity consisting of samples,
operations and neighborhood to autocomplete repeated paintings
[59], edit distance and cosine similarity [17, 27] is common in text-
based autocomplete.

It is intuitive to use autocomplete to accelerate the input of hand-
written mathematical expressions. However, we found no previous
attempts to develop and evaluate such systems. This could be related
to the fact that there is a lot of room for improvement in current
HMER accuracy, which has led to the majority of research focusing
on developing new algorithms. There are a few researchers who
introduce human-in-the-loop [22] or intelligence widgets [52] to
improve mathematical expression recognition, but these methods
generally increase the completion time of writing formulas. Overall,
current HMER research is focused on developing new algorithms
for better recognition, with little emphasis on applying them to
mathematical expression autocomplete.

2.3 Formalization of mathematical expression
The formalization of mathematical expressions is mainly classified
into string-based [1, 38] and tree-based [31, 45]. The string-based
formalization is to translate mathematical expressions into flat
strings in accordance with specific rules, which are often used to
write mathematical expressions in code [1], or to parse mathemati-
cal expressions in HMER [55]. However, it is difficult to express the
structure of mathematical expressions and their relationships be-
tween symbols using the string-based formalization. The tree-based
formalization, as intermediate data for mathematical expression
processing, can effectively express the structures of mathematical
expression, such as in [64], they constructed a symbol relation tree
based on six spatial relationships ("Above", "Below", "Right", and
others), where the nodes in this tree are the input strokes and the
connections between the nodes represent the spatial relationships
between input strokes. In [3], a parse tree is given to describe the
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relationship between input sequences of strokes and mathemati-
cal expressions, where its leaf nodes are input strokes that make
up the single terminal symbol (like "x", "+"), other non-leaf nodes
are non-terminal symbols (like "Sym", "Exp"), and the connection
of nodes represents the derivation process of non-terminal sym-
bols to terminal symbols. The previous tree-based formalization
can not emphasize the structures of the mathematical expressions
themselves and cannot distinguish the attribute of the symbols in
mathematical expressions, where the symbols’ attribute contains
operand, operator and delimiter. In this paper, we design a new tree-
based formalization to autocomplete mathematical expressions.

3 TREE-BASED FORMALIZATION OF
MATHEMATICAL EXPRESSION

We design a method to convert the formalization of mathematical
expression from mathematical markup language (Latex) to a tree-
based structure (called inorder tree), which uses the trees/sub-trees
to represent relationships among different structures for quickly lo-
cating and recommending structures and sub-expression in mathe-
matical expression. Different from symbol relation tree [3, 31, 62, 64]
constructed based on strokes’ or symbols’ spatial relationships, such
as Above, Right, etc., the inorder tree [48] emphasizes structural
blocks of mathematical expression. To achieve this, we use the de-
limiter, a pair of symbols that separate text strings such as braces (’{’
and ’}’), in the Latex string to determine delimitation structures in
the mathematical expression, then construct the inorder tree with
inorder traversal. The delimitation structure mentioned above is a
structure made up of symbols or sub-expressions that are enclosed
by a pair of delimiters, which is used to distinguish structures be-
tween current and previous sub-expressions. In addition, inorder
traversal can ensure the bottom-up search information conforms
to user’s manner of writing and parsing mathematical expressions
from left to right, enable that the traversal result is consistent with
Latex string, and enhance the ability to predict the semantically
related symbols and structures of user’s subsequent input.

In details, we build the inorder tree as follows:

• String segmentation: Segment Latex string to separated
symbol from left to right with forward maximum matching
method [51] in 101 math symbols.

• Making tree node: Convert each symbol into a node and
mark the node with level 0. The order of these nodes is the
same as symbols in the Latex string.

• Obtaining delimitation structures: Traverses all the
nodes from left to right, finds all pairs of delimiters, defines
the nodes enclosed by a pair of delimiters as a delimitation
structure.

• Set the level for nodes in delimitation structures:
Increases the levels of all nodes in a delimitation structure by
1. If there are nested delimitation structures inside a delimi-
tation structure, nodes in the nested delimitation structures
should be further increased by 1.

• Tree merging: Traverse all the nodes, starting from the one
with the highest level, merge adjacent binary nodes that
have the same levels into one tree, and decrease the level of
the merged tree by 1. The merged tree is then treated as a
node in the next repeat.

• Repeat: Repeat the "Tree merging" step until there is only
one node left with level equal to 0.

The merging in "tree merging" can be described as: given the ad-
jacent merged nodes {𝑡𝑖 , ..., 𝑡 𝑗 } with same level, adding {𝑡𝑖+1, ..., 𝑡 𝑗 }
to parent node (referred to as a root) of 𝑡𝑖 or root’s right child in
turn. If root’s right child exists, it will be added to root’s parent
node. And repeat it until the subsequent 𝑗 − 𝑖 trees have merged
from bottom to top. In this process of sequential merging, we set
some tips to better construct a inorder tree. Firstly, we introduce
a "link" node between two merged nodes for connection if they
contain symbols with the same attribute or if the node inserted at
the root is a merged tree. Second, if there are paired delimiters, we
first merge symbols between delimiters and then insert delimiter
into child nodes of the leftmost and rightmost leaf nodes of the
merged tree. Third, if a fractional structure exists during the traver-
sal of nodes in the tree merging, such as "\frac {...} {...}", we merge
them in a "numerator-fraction-denominator" order rather than the
Latex-based order, making the numerator and denominator become
left and right subtrees of the fractional symbol. Finally, the merged
tree is then treated as a node in the next repeat, and its symbol’s
attribute is the attribute of the symbol corresponding to its root
node. The tree-based formalization of 1 − cos(𝑎 + 𝑏) = 1

3 is shown
in Fig 2.

In the follow, some terms utilized in our approach are defined:
• Inorder Tree: it is made up of numerous subpath with
symbol-based nodes. Its formal description is,

𝑡 = {𝑽 , 𝑷 }
where 𝑽 is nodes of tree, and 𝑷 is the all subpath of tree.

• Subpath: A subpath is a sequence of inorder traversals be-
tween two leaf nodes in the inorder tree. Starting with the
leftmost leaf, subpaths from each leaf node to other nodes
form the subpath set, as shown in Figure 3. The subpath set
of the inorder tree can be expressed as

𝑷 = {𝑝0, ..., 𝑝𝑛}
where 𝑷 is a subpath set that includes all of the subpaths. 𝑛
is the number of subpaths.

• Trunck: the trunk of the tree is the path from the root node
to the leftmost leaf node, and it is directly connected by each
left child in turn, As shown in Figure 3.

• The most relevant tree: it is a inorder tree constructed
by a mathematical expression in the database, which can
best match the currently written mathematical expression
in terms of structures and symbols.

• Structural block: A structural block is equivalent to a
sub-expression contained in mathematical expression, which
consists of two operands and an operator connecting these
two operands. If only one operand exists, it can also be seen
as a structural block.

For the inorder tree, its characteristics are that (1) a node in
inorder tree additionally provides details about strokes, priority
and symbol attributes that belong to this symbol. (2) The delimiter
nodes are kept when formalizing the tree to ensure consistency
between tree and Latex formula exchange, especially for compli-
cated structures with several nested delimiters. (3) Separation of
operand operators, all leaf nodes of the inorder tree are operand
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Figure 2: The tree-based formalization about " 1 − cos(𝑎 +
𝑏) = 1

3 ". A circle represents tree’s node, wherein a symbol on
horizontal line is single Latex symbol, and a number under
line denote its level.

Figure 3: The subpath set of "1 − cos(𝑎 + 𝑏) = 1
3 ", in which

one subpath is equivalent to a sequence of inorder traversals
between two leaves. The black paths in the tree are called
trunks.

nodes and all non-leaf nodes are operator or "link" nodes (if the
delimiter exists, its node will appear on the leftmost and right-
most leaf nodes of the inorder tree merged based on the nodes in
the delimitation structures). By doing so, the formula’s primary
structure will be reflected in the tree’s trunk, allowing for easy
location and recommendation; (4) Except for structure block con-
taining fractional symbols, the result of the inorder traversal of
the corresponding symbols in a inorder tree is a Latex string of
mathematical expression. (5) The right subtree of all nodes on the

trunk is a single symbol or structure blocks based on delimitation
structure. Finally, child nodes of two trunk nodes with the same
priority may be switched to one another.

4 MATHASSIST
4.1 The framework of MathAssist
The framework of MathAssist is shown in Figure 4. It mainly con-
sists of: (1) an input module for users to write required handwrit-
ten strokes; (2) a recognition module, which provides recognition
results of current strokes with an end-to-end method; (3) a auto-
complete module, which is mainly for assisting users in effectively
writing their required subsequent expressions through solving the
tree matching and structural block recommendation problems men-
tioned in the previous section; and (4) interaction module that
allows user to accept, reject and edit autocomplete results provided
by the autocomplete module. The four modules work together in
such a way that once user writes mathematical expressions in input
modules, the recognition module receives and recognizes them, and
then sends their recognition result to autocomplete module. After
obtaining the recognition result, the autocomplete module finishes
its task and then provides the corresponding autocomplete result
to user. Finally, user can process the autocomplete result through
the interaction module and interact with it in accordance with his
actual demands or can write new strokes into the input module.

Figure 4: The framework of MathAssist, in which interaction
module presents only the interaction with autocomplete re-
sult

In addition, the system keeps going through the entire procedure
for the user until there is no more input or interaction. In the
following subsections, we go into detail about each of the four
modules.
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4.2 Input Module
We employ the input module to receive both user’s handwrit-
ten strokes and autocomplete strokes, wherein the autocomplete
strokes are the handwritten strokes that MathAssist anticipates the
user will write later. To make it easier to distinguish between them
before accepting the autocomplete strokes, they are provided in
light gray, whereas the user’s handwritten strokes are presented in
black. Only after accepting or modifying the autocomplete strokes
will it turn black, otherwise it will be removed from the input
module.

4.3 Recognition Module
The purpose of the recognition module is to recognize handwritten
strokes from input module and transmit recognition result to the
autocomplete module. It will work once the user writes new strokes
or modifies already-existing strokes in the input module.

In this module, we used the “sequential relation decoder (SRD)”
model 1, which outperforms other online handwritten mathemati-
cal expression recognition with better accuracy [62]. SRD is built
on an encoder-decoder framework, where it employs a RNN en-
coder with gated recurrent units to model the input strokes, and a
sequential relation decoder with attention model to generate the
LATEX expressions. In essence, the SRD model can be viewed as a
converter from strokes to string-based expressions, and the accu-
racy of this conversion gradually declines with the increase of the
number of strokes [62].

To decrease the recognition errors caused by the increase of
strokes, we reorganize new input and standard strokes before the
subsequent round of recognition, in which standard strokes take
over the strokes of mathematical expressions that have been cor-
rectly recognized or automatically completed, as shown in Figure
5. There are three different types of standard strokes (the corre-
sponding mathematical expressions are 𝐴𝑎 , 𝐴 and 𝐴𝑎 , the three are
picked as they are easy to recognize and do not introduce other
errors) in our approach that are designed to match bottom number
in the preceding round of recognition results and reconstruct entire
results, especially for multi-nested super/subscript structure. The
matching and reconstruction process is equivalent to substitute
𝐴 or 𝑎 in outcome corresponding to the standard strokes. As for
how to select standard strokes, it depends on which of the three is
consistent in structure with the last structural block of the correct
mathematical expression.

4.4 Autocomplete Module
Based on mathematical expression database and recognition re-
sult for current input strokes, this module introduce autocomplete
technique to address two problems: matching problem of the most
relevant tree and recommendation problem of structural block, al-
lowing user to write mathematical expression more quickly and
accurately.

4.4.1 Database. Our database is part of CROHME 2016 competitive
dataset, which is the most widely used for online HMER [32, 62, 66].
The dataset has 9983 handwritten mathematical expressions and

1https://github.com/JianshuZhang/SRD

Figure 5: Strokes reorganization: standard strokes replace
strokes of mathematical expressions that had been correctly
recognized or automatically completed (in blue box), where
strokes in the red dotted line box represents the newly input
strokes.

101 math symbol classes. It is distributed as a set of Ink Markup Lan-
guage (InkML) files, each of which contains: ground-truth in LATEX
andMathML formats; strokes; the segmentation and assigned labels
of each symbol in the expression. In our experiment, mathematical
expressionwith strong semantic associations, contained summation
expressions, integral expressions, limit expressions, logarithmic ex-
pressions and trigonometric functions, were selected as data source
to obtain more reasonable autocomplete results, which together
account for around 36% of the all dataset. What is novel is that,
based on the fundamental logic and common sense of mathematical
expressions, we divide 101 symbols into operators, operands, and
delimiters to indicate symbols’ attribute, and set priority weight
among them.

4.4.2 Matching the most relevant tree. In our approach, the match-
ing problem of the most relevant mathematical expression can be
described as that: given a inorder tree 𝑡 constructed based on the
current input strokes and its corresponding string-based recogni-
tion result, find the most relevant tree 𝑡 ′ among all the inorder trees
𝑇 according to the function 𝐾 (𝑡, 𝑡𝑖 ).

𝑡 ′ = argmax
𝑡𝑖 ∈𝑇

(𝑡𝑖 |𝐾 (𝑡, 𝑡𝑖 ))

where 𝑡𝑖 is the 𝑖𝑡ℎ inorder tree in knowledge base.
To address this matching problem, we design a tree kernels

for measuring the relevance between two inorder trees. The idea
behind this kernels is to convert a inorder tree into subpaths in our
designed way that enables the kernel to operate on the tree directly.
For example, the subpath set of 1 − cos(𝑎 + 𝑏) = 1

3 is shown in Fig
3.

Let us assume that we define a tree kernel 𝐾 (𝑡, 𝑡𝑖 ) between 𝑡 and
𝑡𝑖 with the subpath sets, it can be defined as:

𝐾 (𝑡, 𝑡𝑖 ) =
∑︁
𝑝∈𝑷 ′

𝑛𝑢𝑚𝑝 (𝑡)𝑛𝑢𝑚𝑝 (𝑡𝑖 )𝑤 |𝑝 | , 𝑡𝑖 ⊆ 𝑻 , 𝑷 ′ = 𝑷𝒕∪𝑷𝒕𝒊−𝑷𝒕∩𝑷𝒕𝒊

where 𝑛𝑢𝑚𝑝 (𝑡) is the number of times subpath 𝑝 occurs in tree
𝑡 , 𝑷𝒕 is the subpath set of tree 𝑡 , 𝑷 ′ is the set of all subpaths set in 𝑡
and 𝑡𝑖 . The weight𝑤𝑝 of a subpath 𝑝 is measured as:

𝑤𝑝 = 𝑤𝑝𝑡 ·𝑤𝑝𝑡𝑖

where 𝑤𝑝𝑡 and 𝑤𝑝𝑡𝑖
is the weight of subpath in tree 𝑡 and 𝑡 ′. To

make the weight larger as the frequency of subpath occurrence
increases, we decide the weight of tree 𝑡 via:

571



MathAssist: A Handwritten Mathematical Expression Autocomplete Technique IUI ’24, March 18–21, 2024, Greenville, SC, USA

𝑤𝑝𝑡 =

{
−𝑙𝑜𝑔2 (𝑛𝑢𝑚𝑝 (𝑡)) + 1, 𝑛𝑢𝑚𝑝 (𝑡) ≥ 1
0, 𝑛𝑢𝑚𝑝 (𝑡) = 0

To reduce time complexity of tree kernels, we employ auxiliary
stacks and prefix arrays, which are used to store inorder traversal
nodes and subpaths, as well as a multikey quicksort algorithm to
achieve linearthmic time 𝑂 ( |𝑉𝑡 |𝑙𝑜𝑔 |𝑉𝑡 ′ |) on average, where |𝑉𝑡 | is
the number of nodes of tree 𝑡 .

4.4.3 Recommending the structural block. The structural block rec-
ommendation can be described that is to select the structural block’s
subpath 𝑝′ in the most relevant tree 𝑡 ′ that best matches the path
𝑝 of inorder tree 𝑡 according to the designed autocomplete rules
𝑅(𝑝, 𝑝𝑖 ).

𝑝′ = 𝑝𝑖 , 𝑠 .𝑡 .𝑅(𝑝, 𝑝𝑖 ), 𝑝 ⊆ 𝑷𝒕 , 𝑝𝑖 ⊆ 𝑷𝒕 ′

where 𝑝 is a path of 𝑡 , 𝑝𝑖 is the 𝑖𝑡ℎ subpath in 𝑡 ′, 𝑷𝒕 and 𝑷𝒕 ′ are
subpath sets of 𝑡 and 𝑡 ′. Final, the structural block’s path 𝑝 is

𝑝 = 𝑝′ − 𝑝
.

In details, the rules 𝑅 between 𝑡 and the most relevant tree 𝑡 ′ is
determined by location L, continuous value C and priority S.

𝑅(𝑝, 𝑝𝑖 ) = {𝑳, 𝑪, 𝑺}
where 𝑳, 𝑪, 𝑺 is calculated as follows:

• L: Locate the position 𝑳 = {𝑣𝑖 , ..., 𝑣 𝑗 } of 𝑡 in 𝑡 ′ based on a
equivalent replacement.

• C: Check the node corresponding to L is continuous in in-
order traversal. If not, a subpath from 𝑣𝑖 to 𝑣 𝑗 in 𝑡 ′ is 𝑝′, and
the path consisting of the remaining nodes after removing 𝑳
from 𝑝′ is final recommended result 𝑝 .

• S: Search best subpath in 𝑡 ′ if the position is continuous.
Based on 𝑳, we compare the priority between symbols rep-
resented by the previous node of 𝑣𝑖 and the next node of 𝑣 𝑗 ,
and then extend a structural block outward from the node (𝑣𝑖
or 𝑣 𝑗 ) with high priority. Finally, 𝑝′ is a subpath combined
nodes in L and extended structural block, 𝑝 is subpath com-
posed of the extended structural block and the node with
high priority.

About the equivalent replacement of the inorder tree 𝑡 in the
most relevant tree 𝑡 ′, as shown in Figure 6, we determine it only in
three cases: (1) 𝑡 ′ contains subpath 𝑝𝑟 which is a subpath holding
the rightmost leaf node in 𝑡 ; (2) 𝑡 ′ does not contain subpath 𝑝𝑟 , but
it contains the same subpath as 𝑝𝑠 = {𝑝𝑖 |𝑝𝑖 ⊆ 𝑷𝒕 , 𝑝𝑖 ≠ 𝑝𝑟 } of tree
𝑡 , and nodes that follow it have the same structural attribute; (3)
there is a subpath in 𝑡 ′ that have same structural attribute as the
last structural block of 𝑡 . Where the difference of operators make
significant distinct of expressions’ structure. In our recommenda-
tion, we use the priority sequence of symbols within subpath to
express the structural attribute.

4.4.4 Results Combination. Based on the relationship among 𝑝 , 𝑝′
and 𝑝 , we provide users with 5 candidate results. One of them is
the preferred result, containing a combined Latex string and cor-
responding autocomplete strokes, and the other four alternative
results provide strokes only if they are selected. Because the out-
put of Latex string is an overall replacement of old string, the it is

Figure 6: Some cases of equivalent replacement, where it has
same subpath in red boxes and same structural attribute in
blue boxes. The most relevant tree constructed by recom-
mended result (the second formula in each row) contained:
(1) the subpath holding the rightmost leaf node from the in-
order tree constructed by recognition result (the first formula
in each row), (2) the same subpath and nodes that follow it
have the same structural attribute, (3) the same structural
attribute as the last structural block from the inorder tree
constructed by recognition result.

equivalent to inorder traversal result of symbols in path 𝑝′. Stroke
information differs from Latex in that it outputs the autocomplete
strokes while preserving the original input, which is equivalent to
the presentation of the strokes corresponding to the inorder traver-
sal symbols in path 𝑝 . To keep their size and placement consistent
with the current input, the autocomplete strokes must be scaled
and moved.

4.5 Interaction module
This module provides users with some necessary ways to interact
with MathAssist, detailed manifestation of which is direct interac-
tion between users and their input strokes or autocomplete results.
Throughout the interaction process, users can have multiple rounds
of interaction in two ways. One is users’ modification of their own
written strokes, including undo, redo, erase and clear. The other is
the interaction with autocomplete results, which mainly contains
acceptance, rejection, selection and correction, where acceptance
means that user thinks the autocomplete result is completely cor-
rect, rejection means that user thinks it is incorrect or takes more
time to modify than to continue writing, selection allows user to
select the result they want from the candidate results, and correc-
tion indicates that user thinks it is similar to what he wants and
that it is easier to correct than to continue writing.

The four interaction are that, acceptance is primarily initiated
by clicking on the autocomplete result or "Accept" button, rejection
is caused by continuing to write or by clicking "Reject" button, se-
lection is done by touching down/up, while correction is consistent
with interaction of one’s writing strokes.

5 USER STUDY
To evaluate MathAssist, we compared it with two baseline meth-
ods: the sequential relation decoder (SRD) and the MicroSoft Ink
Equation (InkEqu). As mentioned earlier, the SRD is an end-to-end
state-of-the-art HMER algorithm, and it also contributes to the
recognition module in our approach. By comparing MathAssist
with SRD, we can access whether the introducing autocomplete
technology can improve the existing HMER algorithm. The other
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baseline, InkEqu, is a commercial HMER that can correct misrecog-
nized ink. We compared our approach with the InkEqu to further
discuss the feasibility of using autocomplete technique in formula
editing. Twenty mathematical expressions divided by two length
levels (i.e., short and long) were selected as the test bed, and the
three input methods were compared in terms of accuracy, comple-
tion time, and subjective rating. The study was designed to answer
the following research questions:

• RQ1: How doesMathAssist differ from the other twomethods
in terms of accuracy and completion time?

• RQ2: What effect does the length of equation have on the
performances of the three methods?

• RQ3: How do users feel about MathAssist in terms of ac-
curacy, efficiency, helpfulness, satisfaction, preference, and
cognitive load?

5.1 Apparatus
The evaluation of our experiment was conducted on a ThinkPad
X1 Yoga gen6 with an 11th Gen Intel® Core™ i7-1165G7 CPU
(2.80GHz) having 16.0G of RAM and the 14-inch, 1920×1200 Pixel
Sense display, running Microsoft Windows 10 Professional. The
device was equipped a pen and a reversible touch screen which
support with 10 touch points. It was rested upon a table and pitched
at an adjustable incline so that participants could sit and work
comfortably. The recognition method is run on the device which
has an Intel® Xeon® Silver 4114 CPU (2.20GHz) having 16.0G of
RAM, 2 × GeForce RTX 2080 and Ubuntu 18.04 system.

5.2 Participants
We recruited 17 participants (6 undergraduate students and 11
graduated students, and all of right hand) ranging in age from 21-
39 (M=26.47, SD=4.29). 9 participants are male and 8 are female,
and only one of the males had no experience with digital pens
and handwriting devices. The participants’ backgrounds included
designer, teacher, IT worker and researcher.

5.3 User Interface
To better compare the performance of MathAssist with the base-
line methods for handwritten mathematical expression input, we
built a user interface illustrated in Figure 7(a). Our user interface
consists of four widgets: display widget (Up), stroke input widget
(Lower left, Input), interactive widget (Lower right), and status
widget (Bottom). The Stroke input widget is mainly used for user
to write handwritten mathematical expressions or accept autocom-
plete mathematical expression strokes. The display widget shows
user some standard typesetting mathematical expression, which
contained a display area of final outcome (called Final Exp) and
two display areas of other alternative recommended results (called
R1 and R2) in the candidate results. If the desired mathematical
expression appears in R1 or R2, the user can click to select it. As
for the status widget, it shows the system’s current state, such as
RECOGNITION, INK ENTRY, SELECT, and so on.

Eight different ways to interact with input keys or autocomplete
results are available in the interactive widget, and each one is acti-
vated by clicking a button. The commands "RECOG" and "ACCEPT"
and "REJECT" allow the user to accept or reject an autocomplete

result, respectively, while "SAVE" is used to save the strokes in the
input widget and the Latex string in "Final Exp" into a file. The re-
maining four interactions are mostly for the input widget’s strokes.
"UNDO" and "REDO" are used to reverse or undo the most recent
stroke, while "ERASE" and "CLEAR" are used to remove individual
strokes from the input widget or to clear all strokes.

We used the same user interface in a comparison method SRD.
The only difference is that there are no results in "R1" and "R2", and
"Final Exp" merely displays a recognition result based on user’s
input strokes, while no strokes about subsequent strokes appear in
the input widget. For InkEqu, we used the default user interface as
shown in Figure 7(b). Participants were free to use all of InkEqu’s
features, including "Undo", "Redo" and "Select and Correct" for
accelerating the edit. To monitor task completion time with InkEqu,
we designed a timing tool with three main functions, including
"Timer Start","Timer End", and "next".

(a) (b)

Figure 7: The user interface for the three techniques. (a) The
user interface for SRD and MathAssist, contained display
widget (Final Exp, R1 and R2), stroke input widget (Lower
left, Input), interactive widget (Lower right), and status wid-
get (bottom). (b) The user interface for InkEqu, its source:
https://www.microsoft.com/en-us/microsoft-365

5.4 Procedure
The procedure for the experiment was as follows: First, participants
familiarized themselves with the three methods; second, the par-
ticipants used the three techniques to complete a mathematical
expressions writing task (detailed in the next section); third, partic-
ipants tried write any other mathematical expressions freely in an
open task; finally, the participants fill up a post-questionnaire and
follow with a semi-structure interview. The post-questionnaire, as
shown in Table 1, asked for participants’ feeling about accuracy,
efficiency, helpfulness, satisfaction, preference, and cognitive load
on the three techniques using a 5-point scale [25, 36, 52, 65]. Also,
we asked participants some question in post-questionnaire about
whether it was reasonable to add autocomplete in the expressions
writing, whether MathAssist introduced some troublesome such
as interrupting their thinking or difficult interaction, and could
MathAssist help them to understand their required expressions.
Finally, we ask the participants about their experience and attitude
towards MathAssist in the interviews. Example questions are like:

• What do you think of the MathAssist?
• How do you think the autocomplete capabilities when using
MathAssist to write mathematical expressions?
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Table 1: The post-questionnaire for the three techniques

ID Do you agree with the provided conclusions?
1 = strongly disagree, 5 = strongly agree

Q1 The technique can accurately recognize
handwritten mathematical expressions.

Q2 The technique is efficient in recognizing
handwritten mathematical expressions.

Q3 I am satisfied with the technique’s performance.
Q4 I prefer this technique out of the three.
Q5 The technique is helpful.

Q6 I feel that using the technique requ-
ires relatively higher cognitive load.

• What machine errors or limitations do you find unaccept-
able?

• Not limited to MathAssist, any other suggestions for auto-
complete technique?

Each participant took about 70 minutes to finish the experiment
and were compensated ¥150 for their time.

5.5 Mathematical Expressions Writing Task
In the mathematical expressions writing task, a participant was
asked to write 20 mathematical expressions three times, once for
each method. Those mathematical expressions are shown in Table
2 ordered by the number of symbols (symbols like tan, sin, etc. are
considered as one symbol), which contains summation expressions,
integral expressions, limit expressions, logarithmic expressions, and
trigonometric functions. The length of mathematical expressions is
divided into short and long depending on the number of symbols
and strokes. The short mathematical expressions have less than
12 symbols and fewer than 20 strokes, whereas long mathematical
expressions have more than 12 symbols and more than 20 strokes.
Each length has ten different mathematical expressions. For each
participant, the order of which method was employed first was
alternated. During the task, participants could correct clerical errors
or potential errors through the provided interactive tools to attain
more accurate results. If participants were still unable to obtain
their desired result after modifying the recognition or autocomplete
result multiple times, they could end the current task and move to
the next task. There is no explicit time limit on the input of one
mathematical expression.

5.6 Collected Data and Metrics
We recorded the recognition result, written time, recognition time,
autocomplete time and interactive time for each expression. We
also recorded all of the inputed strokes for each expression.

Expression Recognition Rate (ExpRate) [66] and Time To Com-
pletion (TTC) [52] were computed to evaluate the performances
our method in accuracy and time.

ExpRate is defined as the percentage of correctly recognized
mathematical expressionsmatching ground-truth up to the symbols,
relations, and structure:

Table 2: Mathematical expressions used in the evaluation

Num Mathematical expression

E1 𝑛 log(𝑛)
E2 log2 8 = 3

E3 tan 𝑧 = sin𝑧
cos𝑧

E4 cos𝜃1 + 𝑖 sin𝜃1
E5

∫ 𝑏

𝑎

√
𝑥
2 𝑑𝑥

E6 sin2 𝜃 + cos2 𝜃 = 1

E7 cos𝑥 + 𝑖 sin𝑥 = 𝑒𝑖𝑥

E8 𝑒 =
∑∞
𝑘=0

1
𝑘!

E9
∑10
𝑖=2𝑛+3𝑚 𝑖𝑥

E10
∫ 0
log 3

1
𝑒𝑡+1𝑑𝑡

E11 log2 8 + log3 9 + log4 16

E12 tan𝛼−tan 𝛽
1+tan𝛼 tan 𝛽

E13 𝜋
∫ 𝑑

𝑐
{𝑔(𝑦)}2𝑑𝑦

E14 lim𝑛→∞ 𝑡3𝑛 = 1
2 log 2

E15 lim𝑥→ 𝜋
2 +0 tan𝑥 = −∞

E16 log 𝑧 = log 𝑟 + 𝑖 (𝜃 + 2𝑛𝜋)
E17 cos(𝑎 + 𝑏) = cos𝑎 cos𝑏 − sin𝑎 sin𝑏

E18 lim𝑥→∞
∫ 𝑥

0 𝑒−𝑦
2
𝑑𝑦 =

√
𝜋
2

E19 𝑎(𝑛) = ∑𝑛
𝑘=1 (−1)

𝑛−𝑘𝑘!

E20 lim𝑛→∞ 1
𝑛

∑
𝑓 ( 𝑟𝑛 ) =

∫ 1
0 𝑓 (𝑥)𝑑𝑥

𝐸𝑥𝑝𝑅𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑠

The ExpRate is a recognized metric for evaluating the perfor-
mance of handwritten mathematical expression recognition used
in the CROHME competitions [33, 58, 61]. Instead of characterizing
partially correct recognition in words or structures, the ExpRate
can enables us to concentrate on assessing whether the final result
is precisely correct.

TTC is the total time spent from the beginning of the input
formula to its ending.
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6 DATA ANALYSIS
To perform statistical analysis, we organized the collected data
into a dataset consisting of two independent variables: Technique
(SRD, MathAssist and InkEqu) and Length (short and long), and
two dependent variables: ExpRate and TTC. Specifically, ExpRate
and average TTC for one participant in one Technique × Length
condition (10 mathematical expressions) were treated as samples
in the dataset. As a result, the dataset consisted of 3 Technique ×
2 Length × 17 Participant values. The analyses of the two depen-
dent variables were performed separately according to the same
procedure as follows:

First of all, a Kolmogorov-Smirnov test (alpha = 0.05) was used
for normality test. Then, repeated measures ANOVAs and post-hoc
multiple comparisons with Bonferroni were performed if the data
were normally distributed. For the data that were not normally
distributed, an ART method was used to data transformation before
statistical analysis as suggested in [35, 57]. In addition to investigat-
ing the effects of Technique and Length on ExpRate and TTC, we
also performed paired comparisons of the five subjective indicator
among the three techniques. In this case, paired t-tests were used
for normally distributed data.

6.1 Expression Recognition Rate

(a) ExpRate under
three techniques

(b) ExpRate at two
length levels

(c) ExpRate of the three
techniques at two length
levels

Figure 8: Comparison of all formulas’ ExpRate.

The result of ExpRate is presented in Figure 8 Repeated-measure
ANOVA showed a significantmain effect of Technique (F(2,14)=35.724,
p<0.001, partial𝜂2=0.691), but not on Length (F(1,15)=1.584, p=0.226,
partial 𝜂2=0.090). In paired comparison on Length, it was found that
there was significant difference in MathAssist and InkEqu (p<0.01),
but not on SRD (p=0.868). Interaction effect between Technique and
Length was significant (F(2,14)=17.659, p<0.001, partial 𝜂2=0.525).

As shown in Figure 8(a), MathAssist achieved the highest Ex-
pRate of 85.05% (SD=0.14), followed by 74.5% (SD=0.11) for InkEqu
and 52.26% (SD=0.15) for SRD. Post-hoc tests showed that the dif-
ferences between MathAssist and SRD, between SRD and InkEqu
are all significant (all p<0.001), but there is not significant differ-
ences between MathAssist and InkEqu. As shown in Figure 8(b),
participants generally had lower input accuracy in long formulas
(64.77% (SD=0.14)) compared to short formulas (76.42% (SD=0.12)).

Figure 8(c) shows the interaction effect between Technique and
Length. For SRD and InkEqu, a much lower ExpRate was oberved
in long formulus compared to the short ones, while MathAssist got
similar ExpRate in long and short formulas.

By calculating the ExpRate for all participants in one equation un-
der different techniques, we can compare the performance of three
techniques in different formulas. As shown in Figure 9, MathAssist

Figure 9: The ExpRate of each mathematical expression
among three techniques.

outperformed the other two techniques on most mathematical ex-
pression. The reason was that MathAssist can autocomplete results
based on partial user input strokes, which helped reduce recognition
errors caused by the user inputting strokes of special characters
or complex structures. Between SRD and MathAssist, the latter
maintained the lead in ExpRate on all formulas, except for E3 and
E11. For E3, participants are accustomed to writing the cut-off line
first, whereas this line lacking contextual semantics was difficult
to recognize, and then led to recommendations based on incorrect
results. While E11 contains too many numbers, it was challeng-
ing to discover the more qualified expressions in the knowledge
base, especially in the case of "log" as in Figure 13(a). Additionally,
SRD performed poorly on ExpRate of long formulas, particularly
on E14, E18 and E19. The possible cause was that (1) As stated in
[62], SRD becomes less accurate as the length of the formulas and
the number of symbols increase; (2) these three formulas contain
multiple similar-looking ("2" and "z") or special symbols ("!", which
is generally recognized as 1 due to a too small or missing dot) that
are challenging to recognize correctly ; 3) SRD’s weak performance
in dense strokes recognition, mainly caused by the participants’
choice to write the last part of formulas densely in the input space
in order to write long formulas completely. This is also stated in [52]
(sometimes users don’t leave enough room to write a large formula).
MathAssist, in contrast, avoided issues where it was challenging
to recognize special or similar-looking symbols found in SRD by
autocomplete partial formulas based on partial recognition results
or recombined results. Second, long formulas can also give auto-
completion more semantic information. In addition, MathAssist
provides 5 most likely autocomplete formulas to choose from, and
participants could correct the closest formula to get the required
if they could not get the exact result from candidates. These were
the reasons why MathAssist’s performance on complex formulas
had not deteriorated. Between MathAssist and InkEqu, MathAssist
also maintained the lead in ExpRate on all formulas, except for E1,
E3, E4 E6, E14. Notably, there is very little difference on ExpRate
for E3 and E4 between the two methods. Since E1 contains only 3
characters and a pair of brackets, MathAssist is unable to accurately
recommend subsequent formulas with very little input (perhaps
just the strokes of ’n’). Additionally, misrecognized result within
the first half of the brackets can also impact subsequent autocom-
plete. For E6 and E14, InkEqu can select and correct the symbol of
similar-look ("2"), special symbols ("𝜃 ") and misrecognized symbol
of scribbled strokes ("log") by provided candidates. However, Math-
Assist can only autocomplete the formulas based on the recognition
of these symbols, which may be incorrect.
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6.2 Time To Completion
The result of TTC is presented in Figure 10. Repeated-measure
ANOVA showed a significantmain effect of Technique (F(2,14)=34.477,
p<0.001, partial 𝜂2=0.683) and Length (F(1,15)=40.961, p<0.01, par-
tial 𝜂2=0.719). Interaction effect between Technique and Length
was also significant (F(2,14)=10.712, p<0.001, partial 𝜂2=0.401).

As shown in Figure 10(a), MathAssist got a lowest average TTC
of 22.01s (SD=12.34), followed by 35.01s (SD=16.34) for SRD and
35.26s (SD=9.61) for InkEqu. Post-hoc tests showed that the differ-
ences between MathAssist and SRD and between MathAssist and
InkEqu are all significant (all p<0.001), but no statistical difference
between InkEqu and SRD (p=1.00). As shown in Figure 10(b), partic-
ipants spent more time in editing long formulas (34.54s (SD=5.67))
compared to short formulas (26.97s (SD=8.12)) as expected.

Figure 10(c) shows the interaction effect between Technique and
Length. For SRD and InkEqu, their TTCs show essentially the same
pattern of change, that is, they both increase rapidly with increasing
formula lengths. In contrast, MathAssist’s TTC remains relatively
constant on both short and long formulas.

(a) TTC under three
techniques

(b) TTC at two length
levels

(c) TTC of the three tech-
niques at two length levels

Figure 10: Comparison of all formulas’ TTC.

Figure 11 shows the TTC in each equation under different tech-
niques. The results show that of the three techniques, MathAssist
takes the least time for each formula, with the exceptions of E1, E3,
and E12, which take longer than SRD, and E8, which take longer
than InkEqu. For E1 and E12, the subjects’ different writing orders
in fractional structure affected the recommendation of MathAssist.
For E1, which has few symbols and handwritten strokes, the partic-
ipants would save more time by writing directly than by correcting
the wrong recommendation. For E8, it contains the special charac-
ter "!" in a very short formulas, which makes it difficult for SRD
to recognize and results in poor performance for MathAssist. This
effect is also reflected in the increased TTC spent on E8 by both
SRD and MathAssist. Additionally, We delineate the sources of TTC
in detail to derive where delays exist in MathAssist. MathAssist’s
TTC consists of four parts: writing, recognition, recommendation,
and interaction. We also report detailed results for these four parts,
where the average writing time was 4.03s (SD=1.63), accounting for
18.33% of TTC; the average recognition time was 10.60s (SD=4.80)
and accounting for 48.17% of TTC; the average recommendation
time was 0.75s (SD=0.38), accounting for 3.42% of TTC; and the
average interaction time was 6.62s (SD=2.67), accounting for 30.08%
of TTC. It was important to note that MathAssist recognized for-
mulas once every 1172.03ms on average. The average number of
formula identifications per formula was 8.94 (SD=2.88), ranging
from 2 to 14 depending on the length of the formulas. As a result of
recommendation being a subtask that comes after recognition, the

Figure 11: The TTC of each mathematical expression among
the three techniques.

frequency was consistent with recognition. Thus, the time per rec-
ommendation was 84.21ms, which maintained a very low latency.
Last but not least, it should be mentioned that the time delay of
our method originates from the recognition and recommendation,
which took an average of 1.25s (1256.24 ms) each, of which 6.7%
was for recommendation. The low recommendation latency also
reflects the fact that the choice of dataset has little impact on the
total latency of MathAssist.

6.3 Qualitative evaluation
We used a paired t-test to analysis the post-questionnaire data
as the data was normally distributed. As shown in Figure 12, the
paired t-test showed significant difference on all sixmetrics between
MathAssist and InkEqu, and Between MathAssist and SRD (p<0.05).
The t-value are shown in Table 3. Between SRD and InkEqu, there
were also no significant difference on accuracy (t=-0.114, p=0.911),
efficiency(t=-0.52, p=0.959),satisfaction(t=0.407, p=0.689),perference(t=0.049,
p=0.962) between SRD and InkEqu, but there were significant dif-
ference on helpfulness(t=-2.762,p<0.05) and cognitive load (t=9.935,
p<0.05). Also, results of the showed that the participants gave
MathAssist positive feedback. They thought it is reasonable to add
autocomplete in MathAssist (Mean=4.6, SD=0.59), and could help
them understand their input (Mean=3.88, SD=0.75). On the question
of whether to introduce troublesome, participants rated it relatively
low (Mean=3.24, SD=0.72).

Table 3: The t-values on all six metrics between MathAssist
and InkEqu, and between MathAssist and SRD

Item Technique MathAssist
t p

Accuracy SRD -10.182 .000
InkEqu 3.871 .001

Efficiency SRD -11.662 .000
InkEqu 8.732 .000

Helpfulness SRD -9.200 .000
InkEqu 3.169 .006

Satisfaction SRD -4.747 .000
InkEqu 2.967 .009

Preference SRD -6.061 .000
InkEqu 2.880 .011

Cognitive Load SRD 4.226 .001
InkEqu 2.167 .046

In the semi-structured interviews, participants dished out what
they saw as the troubles, such as "I saw the correct result when I was
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Figure 12: The subjective evaluation among the three tech-
niques (when it comes to cognitive load, lower scores indicate
that the method is superior).

writing, but it was replaced when I was ready to select it"(P9), and "I
wished there were more recommended options" (P10). The reason why
the result is replacedwas that autocomplete result would be updated
again based on the new input strokes. If the user abandoned the full
input of the current stroke because he glimpsed the correct result,
this would affect both the recognition result and the autocomplete
result. As for recommended options, we provide users with five
alternative options, which need to be selected by touch up/down
within limited user interface. However, users preferred to select
some options presented directly on the UI during experiment.

In general, the participants acknowledged that the MathAssist
performed better than the other two techniques based on HMER in
terms of accuracy and TTC. Between SRD andMathAssist, most par-
ticipants acknowledged that autocomplete in MathAssist brought
better accuracy and efficiency in its role as an assistant than relying
solely on recognition: "as more strokes were input, the autocomplete
result would become more accurate" (P1), "thanks to autocomplete, it
effectively improved the accuracy and efficiency of my expressions
input" (P5). P17 confirmed the benefit of our autocomplete with
structural block with "I felt very advanced that MathAssist could
autocomplete some symbols and strokes of the denominator when I
finished the numerator" and P15 thought it was reasonable to intro-
duce autocomplete technique, and stated that "the worst case was
not to accept the autocomplete result, I think I could live with that".
Some participants also wanted MathAssist to introduce the "select
and correct" of InkEqu: The ’select and correct’ provided by InkEqu
is convenient for correct symbols like ’𝜃 ’ and ’!’. I hope MathAssist
can introduce it"(P2), "MathAssist should provide some ability to edit
the recognition results directly, so that it is easy to resolve recognition
errors for symbols like ’log’, ’z’, and ’𝜃 ’"(p8). Compared to InkEqu,
participants preferred MathAssist. they states "I like MathAssist be-
cause it allows me to write fewer formulas" (p8) and "InkEqu is better
than SRD, but not as good as MathAssist"(p10). Of course, there was
a downside to introducing a new novelty: "sometimes, there were
grammatical errors in autocomplete results" (P5, P6), "the autocom-
plete result was sometimes delayed, it didn’t appear until I started
input" (P16). As well as some expectations of AI: "I wish MathAssist
could self-correct ambiguous symbols in expressions" (P14) and "I
hope MathAssist could understand my behavior. "It should know what
I intended when it encountered symbols that I had previously written
several times" (P10).

Through a narrow opening in MathAssist, we found that par-
ticipants think it is a trend for AI techniques like autocomplete to
better assist humans. such as "tasks that previously needed human

memory, time, or talent could partly be solved by AI." (P3), "autocom-
plete could provide us with more flexible choices and prevent us from
making poor decisions in the blind spot of knowledge" (P7).

7 DISCUSSION
This paper is the first attempt to propose an autocomplete technique
for mathematical expressions. We formalized the mathematical ex-
pression with an inorder tree and solved the two problems of tree
matching and structural block recommendation in the automatic
completion process. The advantages of doing so include: 1) convert-
ing a flat stringwith obfuscated structure into an inorder tree, which
makes expressions’ structure more explicit; 2) with the inorder tree,
we can use tree kernels to compare the similarity between the
structures of two mathematical expressions; and 3) recommending
symbol or structural blocks in the most relevant tree by search
subpath allows a more flexible way to write formula. Compared
to the two baseline methods, MathAssist enabled participants to
obtain more precise formulas in less time. Following are answers
to the three research questions of this study:

• To RQ1: MathAssist is 32.78% and 10.55% higher than SRD
and InkEqu in ExpRate. Additionally, MathAssist is 37.14%
and 37.58% faster than SRD and InkEqu on TTC.

• To RQ2: The TTC of SRD and InkEqu increases with formula
length while ExpRate of SRD and InkEqu decreases with
formula length. TTC and ExpRate of MathAssist remained
relatively constant under different formula lengths.

• To RQ3: MathAssist was rated higher on accuracy, efficiency,
helpfulness, satisfaction, and preference compared to SRD
and InkEqu, whileMathAssist performed poorly on cognitive
load compared to InkEqu (higher ratings indicate a greater
cognitive load required by the participants). The subjects
also praised MathAssist’s autocomplte technique in the semi-
structured interviews.

7.1 Possible influence on MathAssist
There are a few potential causes influencing mathAssist’s perfor-
mance, 1) Incorrect recognition outcomes may result in poor per-
formance of autocomplete. As shown in Figure 13(a), three items
(log2, sin, cos) written by a participants are not correctly recognized
by recognition module, which prevents MathAssist from appropri-
ately recommending the mathematical expressions including these
three items (e.g., E11, E7). 2) Delayed results could interrupts users’
writing and thinking. As shown in Figure 13(b), an autocomplete
result for "cos𝑥" is provided only after the participant writes down
the subsequent symbol "+" for "cos𝑥". In the worst cases, the recog-
nition can take as long as 2000 ms to complete. 3) It was possible to
autocomplete unreasonable mathematical expressions. As shown in
Figure 13(b), the autocomplete result 1

𝑥 does not quite fit the logic
of the trigonometric function. The reason is that MathAssist did not
consider the semantic information in the current structure. For in-
stance, the mathematical expression "sin𝑥" should be automatically
completed with "+ cos𝑥" rather than " 1𝑥 ". 4) Some autocomplete
strokes were not displayed correctly. As shown in Figure 13(b), the
strokes of "t" in 𝑡𝑎𝑛 extends vertically into the numerator strokes.
This error may be caused by improper strokes coordinates in data-
base. To address the above four issues, we may need to improve
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the efficiency and accuracy of the recognition module, add domain
knowledge to the system, or enlarge the mathematical expression
dataset.

(a) Errors caused by personalized
writing.

(b) Some examples where MathAssist is
difficult to be competent.

Figure 13: Possible errors or deficiencies in MathAssist.

The performance of our approaches may also be impacted by the
unfriendly display of autocomplete results. We found that when the
current autocomplete result is not the one the participants want,
they sometimes choose to continue writing and easily ignore other
alternative results listed above the input widget. As participants
commented, "sometimes I overlook checking the other alternative
autocomplete results", "the alternative formulas are far away from
my input strokes, which affects the visual experience", "recommended
tips are best displayed in a centralized view", and "in the case that
the recommended strokes are not reasonable, I may continue to write
and thus forget to check other alternative results". While not to limit
participants’ free writing, the input widget takes up more space
in the UI, which may force us to provide fewer candidate results
and far from the center of the input widget, making it easier for
participants to abandon the selection of candidate results during the
process. This could pose a problem in how to provide more optional
results in a constrained space, especially for results that require
more room, like standard typesetting of mathematical expressions.

Finally, the choice of the core algorithm will also have an im-
pact on MathAssist. The primary reason for choosing SRD as the
core algorithm over the current best USTC-iFLYTEK[32] is its supe-
rior recognition accuracy among the current open-source methods,
making it convenient for us to use for reproduction and reuse. Addi-
tionally, USTC-iFLYTEK utilizes data augmentation in the training
phase to alleviate the problem of limited training data[32].

7.2 Reasonableness of the MathAssist
One point worth discussing about the results recommended by
MathAssist is that why could the recommended result be the for-
mula that the user intends to write? We attribute this as follows:
Firstly, by obtaining the same or more similar outcomes to the cur-
rent input from semantically relevant mathematical expressions
in the database, MathAssist provides five potential results: Second,
our experiments currently are only focused on the 4 types of ex-
pression mentioned before, as they can infer some semantic links
from expression alone; And most importantly, to prevent seman-
tically irrelevant results, we use structural recommendations as

the core in the case of associating symbols in the input. Another
issue worth discussing is whether MathAssist will remain helpful if
the accuracy of the basic recognition method improves. We believe
this concern is unnecessary. First, despite the fact that HMER can
overcome problems brought on by similar symbols and complicated
structures, it is challenging to completely eliminate errors resulting
from human differences. Second, the performance of MathAssist
will be better based on the great accuracy of its basic method, which
can avoid tedious writing and shorten the completion time.

7.3 Findings
We observed that participants spent a relatively short amount of
time when using the SRD technique to write E18 and E19 while
achieving zero recognition accuracy on these two formulas. We
suspect that participants may have lost patience when using the
SRD technique to write these two formulas. In contrast, technolo-
gies with higher recognition accuracy (i.e., MathAssist and InkEqu)
did not exhibit this phenomenon. This may indicate that the algo-
rithm’s recognition accuracy influences participants’ confidence.
Participants have more confidence in an algorithm with higher
recognition accuracy; conversely, participants could lose confidence
in algorithms with lower recognition accuracy, leading them to be
unwilling to spend time repeatedly modifying their input.

Some interesting things was also found. A few participants at-
tempt to adapt to MathAssist by discovering rules of cooperation.
such as "I think it can recognize more accurately when I write larger
symbols" or "I should not write in cursive handwriting". Result-wise,
it is a positive that participants go to adapt MathAssist, but it is
worth investigating whether it is advantageous for autocomplete
technique to change user behavior. Because some participants wor-
ried that MathAssist would breed laziness and make them unwilling
to think. So, what kind of assistance should assistive HMER tech-
nique provide to humans, and how the role of humans in technique-
assisted cooperation should be transformed, is an open ultimate
proposition that should be explored in future research.

We also found that the participants had exorbitant expectation
about MathAssist. In most cases, participants expected that Math-
Assist would have limitless powers, such as correctly recognizing
their scribbled strokes or supporting them create formulas, to help
them acquire the results they needed. Participants also expressed a
desire for MathAssist to autonomously raise its autocomplete abil-
ity with continued use. Furthermore, participants provided some
fresh advice about our technique and possible requirements in
mathematical expression input application, such as personalized
autocomplete for formula strokes, automatic deduction and calcula-
tion. Those findings gave us direction for enhancing the capabilities
of our technique.

8 LIMITATIONS AND FUTUREWORK
Our work also has some limitations. In our study, considering par-
ticipant fatigue, we chose only four categories, totaling 20 mathe-
matical formulas, as the test bed. The performance of MathAssist
on mathematical expressions involving other categories, such as
matrices and set operations, has not been verified. Second, SRD is
the only basic method we employed for the recognition module.
We do not validate other candidate HMER methods on recognition
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module which could potentially further improve MathAssist’s per-
formance. Third, we did not assess how well MathAssist performed
on the free creation of mathematical expression, which may limit
the capabilities that MathAssist delivers in practice. Furthermore,
the basic method SRD used in this paper is trained on the CHROME
public dataset, which includes only 101 mathematical symbols. This
limitation results in MathAssist supporting autocompletion for a
relatively smaller number of symbols. In future work, we will in-
troduce alternative HMER methods in the recognition module to
improve the reliability of our autocomplete. We are also interested
in evaluating MathAssist in term of free writing of mathematical
expressions.

9 CONCLUSION
In this paper, we present MathAssist, a technique that autocomplete
mathematical expressions based on partial users’ input strokes by
using a tree-based mathematical expression formalization, a im-
proved tree kernel method, and a structural block recommendation.
In our evaluation, participants who used MathAssist were able to
obtain mathematical expressions more accurately and efficiently.
In addition, MathAssist received positive feedback from subjective
evaluations. Participants believed that it was beneficial to introduce
autocomplete technique into mathematical expression recognition.
We also found some interesting issues that demand further research,
such as exploring how MathAssist would be affected by enhanced
recognition capabilities of the recognition module.
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