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ABSTRACT
Exploratory search is characterized by open-ended search tasks
and uncertainty with respect to the clarity of users’ information
needs. In the context of image retrieval, generative adversarial net-
works (GANs) present numerous opportunities for satisfying the
information needs of users engaged in exploratory search com-
pared to a collection of images. In this article, we present a novel
approach for performing exploratory search on a GAN’s image
space using interpretable GAN controls that can be summarized
as sample, nudge, and rank. At each search iteration, we sample
images from the GAN’s latent space. We implement faceted search
by nudging the sampled images towards regions of the latent space
containing the attributes associated with selected facets. Lastly,
we rank the nudged images using reinforcement learning with rel-
evance feedback. We present a comprehensive evaluation of the
proposed approach, incorporating results from simulations and a
user study. In simulation, we show that our approach efficiently
adapts to user preferences, while preserving a high-level of image
diversity. In the user study (N=30), a majority of participants (23/30)
preferred our system to the baseline. Concordant with simulation
results, users reported both higher perceived search efficiency and
image diversity compared to the baseline. Indeed, due to the base-
line system’s dependence on a warm-start procedure, users of our
system examined significantly fewer images while achieving task
outcomes of similar subjective quality.
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1 INTRODUCTION
Exploratory search is a broadly defined search process that in-
volves significant cognitive processing and interpretation [62]. Un-
like known item search, where users search for discrete, well-
defined facts or specific documents, exploratory search tasks are
open-ended and have ill-defined success criteria [2, 40]. Indeed,
exploratory search is characterized by uncertainty with respect
to the clarity of users’ information needs, the scope of available
documents and the nature of appropriate search outcomes [62, 63].
Exploratory search is, therefore, considered challenging [2, 16, 41]
and requires search systems to provide additional support to help
users achieve their search goals [3, 42].

In the context of image retrieval, generative adversarial networks
(GANs) present numerous opportunities for satisfying the complex
information needs associated with exploratory search [32]. First,
GANs are generative models that map points in a continuous latent
space to photorealistic images of, for example, human faces [25, 26].
This representation allows GANs to smoothly interpolate between
images and, therefore, provides a significantly expanded search
space for users to explore. Second, GANs generate images with uni-
form attributes, such as image dimensions, resolution and similar
subject orientations [23], making it easier for users to compare and
provide feedback on different images. Third, recent advances in
interpretable GAN controls allow for fine-grain control over the
image generation process [64], making it possible, for example, to
manipulate an image by changing a person’s hair color, while keep-
ing other facial attributes constant. This potentially allows users
to truly satisfy their search goals, without needing to compromise
on a “close enough” image that is merely adequate – as is often
the case with traditional interactive image retrieval systems based
on collections of discrete images [11]. To our knowledge, however,
there are only two studies that have investigated using GANs for
interactive image retrieval [32, 58]. Ukkonen et al. used an aug-
mented version of Rocchio’s algorithm to perform a greedy search
of the latent space [58]. Their system, however, did not provide any
support for users performing exploratory search. Kropotov et al. in-
vestigated how Gaussian Process bandits could be used to support
exploratory search of GANs [32]. Unfortunately, this approach is
computationally intensive and was only evaluated in simulation.

In this article, we present a novel approach for exploratory search
of GAN image space called Sample, Nudge, and Rank (SNR). At
each search iteration, we sample images from the GAN’s latent
space. We implement faceted search [67] using supervised inter-
pretable GAN controls [53]. In our system, facets work by nudging
the sampled images towards regions of the image space that con-
tain the specific attribute associated with selected facets. Next,
the nudged images are ranked using reinforcement learning with
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relevance feedback [34]. We use unsupervised interpretable GAN
controls to extract features [15] and Thompson sampling, a linear
contextual bandit algorithm, to balance exploration (showing more
diverse images) and exploitation (showing images predicted to be
relevant) [7]. To achieve high performance, all computations are
performed in the latent space, only performing the costly image
generation procedure for images that are shown to the user. The
main contributions of this paper are as follows:

• We present a novel approach for exploratory search of GAN
image spaces called Sample, Nudge and Rank. More broadly,
our approach can be viewed as a general framework for
integrating generative models into interactive systems, and
facilitating users’ exploration of complex latent spaces.

• We demonstrate how to implement faceted search and rele-
vance feedback - two fundamental interaction mechanisms
in exploratory search - using supervised and unsupervised
interpretable GAN controls, respectively.

• We validate the effectiveness of our approach in simulation
and show that our approach efficiently accommodates user
preferences while maintaining image diversity.

• We present a comprehensive user study (N=30), where par-
ticipants where situated as the casting director of a future
Harry Potter movie. A majority of study participants (23/30)
preferred using our system to complete the search tasks
compared to the baseline.

2 RELATEDWORK
In this section, we review related research on interactive image
retrieval, GAN architectures and manipulation, and their use in
information retrieval.

2.1 Interactive Image Retrieval
Interactive image retrieval describes the iterative process of search-
ing for images through a dialog between users and search sys-
tems [57]. While early image retrieval systems used textual search
queries [20], users had difficulties specifying their search goals in
a way that would match their query terms with textual tags as-
sociated with specific images [39, 57]. The shortcomings of these
systems lead to increased interest in content-based image retrieval
(CBIR), where image features are derived from the images them-
selves [56, 72]. CBIR was initially based on hand-crafted features
(e.g. [38, 56]), but more recent systems use deep learning techniques
for image representation learning [31, 55] or rely on cross-modal
interactions as in image-text retrieval [48, 59, 71]. In the case of
GANs, the representation space is not designed with interactive
image retrieval in mind and overcoming this issue is the focus of
this article.

User interface design is an important topic in CBIR, with sub-
stantial effort going into developing methods for specifying visual
queries based on, for example, images [60, 72], sketching [6], color
maps [60] and concept maps [65]. Despite such advances, CBIR
can still fail to capture users’ underlying search intents due to the
“semantic gap” that comes from trying to describe high-level se-
mantic concepts with low-level visual features [66, 72]. Alternative
approaches based on relevance feedback have been developed to
allow searchers to flag relevant images to iteratively refine the

scope of their search without needing to explicitly describe their
search goals [34, 66]. Relevance feedback has been combined with
reinforcement learning to trade off exploration and exploitation in
CBIR [29, 34] and in exploratory search more generally [18, 19]. Re-
cent approaches have started to move beyond relevance feedback to
using relative attributes [30] and natural language [14] to critique
search results, however, such techniques may be unsuitable for
search tasks that involve browsing and exploration. In this paper,
we use both faceted search and relevance feedback to bridge the
semantic gap for users performing interactive image retrieval for
exploratory search tasks.

2.2 GAN Architectures and Manipulation
Generative adversarial networks (GANs) are deep generative mod-
els that learn a mapping function from a latent space (𝒵-space) to
image space [13]. GANs use adversarial training to produce two
networks: a generator, that learns to generate synthetic data with
the same distributional properties as the training data, and a dis-
criminator, that is trained to distinguish between real and synthetic
data [13]. In this section, we briefly introduce relevant research
about GAN architectures and manipulation.

2.2.1 GAN Architectures. Research into GANs initially focused on
developing better architectures and training schemes to improve
the quality of generated images [64]. For example, DCGAN uses
convolutions in both the generator and discriminator to improve
image quality [68]. BigGAN adopted the self-attention module from
SAGAN [69] and introduced the “truncation trick” to trade off
image fidelity and diversity [5]. PCGAN progressively grows its
architecture during training, facilitating image synthesis at higher
resolutions [23]. More recently, StyleGAN [24–26] introduced an
additional intermediate latent space, 𝒲-space, to enable better
control over image generation by disentangling features.

2.2.2 GAN Manipulation. Recent studies have investigated how
GAN image synthesis can be manipulated using vector arithmetic
in latent space, i.e. by adding a vector corresponding to a given
attribute [1, 12, 21, 53]. These vectors are often referred to as in-
terpretable directions or controls, and have been identified using
both supervised and unsupervised approaches [64]. For example,
Shen et al. trained a classifier and used the normal vector of the
separating hyperplane as an interpretable direction [53]. Whereas
Härkönen et al. identified interpretable directions using principal
component analysis (PCA) on an intermediate representation of
the GAN [15]. In our work, we used a combination of these two
approaches to implement faceted search and relevance feedback.
Other approaches for GAN manipulation include GANalyze [12],
StyleFlow [1] and SeFa [54]. We refer readers to a recent survey by
Xia et al. [64] for more details.

2.3 GANs in IR
Previous studies of applying GANs in IR can be roughly divided into
two categories: (i) using GANs as ranking functions [61, 70] and
(ii) searching through GAN space [32, 58]. We are only aware of two
studies focusing on interactive image retrieval from GANs. Ukko-
nen et al. proposed an interactive image retrieval system based on
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Figure 1: System overview: At each iteration, the system ran-
domly samples images from StyleGAN2, nudges and filters
those images, and ranks them using Thompson sampling.
Searchers can provide positive and negative relevance feed-
back to guide the search process. Searchers can bookmark
the current best image seen during the search session.

Rocchio’s algorithm to generate images according to users’ informa-
tion needs [58]. This was the first method to use relevance feedback
to interactively search a GAN’s latent space, but provided no sup-
port for exploratory search and only evaluated system performance
based on target image descriptions. Kropotov et al. investigated the
use of Gaussian Process (GP) bandits for exploratory search over a
GAN’s image space [32]. While GP bandits outperformed Ukkonen
et al. in simulation, it was shown to be too computationally inten-
sive to be used interactively and was, therefore, not evaluated with
users. In this article, we demonstrate that it is possible to support
exploratory search of GANs, while maintaining interactivity and
satisfying users.

3 APPROACH
We implemented the Sample, Nudge and Rank approach in a practi-
cal exploratory search system [36]. The system has two components:
(1) an interface that contains standard features for exploratory
search including faceted search, relevance feedback and bookmark-
ing, and (2) a backend that uses a GAN to generate images and then
ranks those images using Thompson sampling. In our implementa-
tion, we used StyleGAN2 [26] to generate images.

3.1 System Overview
Figure 1 shows an overview of the system. Each search session
spans multiple iterations. At each iteration, searchers are shown 20
images of human faces generated by StyleGAN2. The initial set of
images shown to users in the first iteration is randomly sampled,
but in subsequent iterations images are ranked on the basis of user
feedback. Searchers can provide feedback using two interaction
mechanisms: faceted search and relevance feedback. Faceted search
is used to quickly filter out images that do not have specific facial
features, whereas relevance feedback allows searchers to indicate
which images are positive and negative examples of their search
goals. Searchers proceed to the next iteration by clicking the “Next”
button, which sends the currently selected facets and images that
received relevance feedback to the search engine backend.

The backend generates images for the next iteration using the
following procedure: (i) sample random images from StyleGAN2,
(ii) “nudge” the random images towards the facial attributes associ-
ated with the selected facets (we explain what it means to nudge
an image in Section 3.4.2), (iii) filter out images using the classi-
fiers associated with the selected facets, (iv) update the posterior
distribution from the Thompson sampling model using relevance
feedback, (v) sample model weights from the posterior distribution
and rank the remaining images on the basis of the estimated proba-
bility of relevance and, (vi) return the top-20 images to the search
interface. The search session ends when the user clicks the “End”
button. Each of these steps is described in detail below.

3.2 Interface
The search interface is shown in Figure 2. Searchers interact with
facets, relevance feedback and are able to bookmark the best image
that currently satisfies their information needs.

3.2.1 Faceted Search. Facets are used to filter search results to
include only images with specific facial features (Figure 2, part A).
We currently support the following categories of facet: sex (male,
female), hair color (blonde, brown and black), hair style (bangs,
wavy and straight) and a miscellaneous category (glasses, chil-
dren). Facets are mutually exclusive in each category. We provide
these particular facets as each one is implemented using a classi-
fier and we are limited by the available training data (described in
Section 3.4.1).

3.2.2 Relevance Feedback. Searchers can provide positive rele-
vance feedback to images that satisfy their information needs and
negative feedback to images that do not (Figure 2, part B). The in-
terface is toggled between positive and negative relevance feedback
modes by clicking the “Good” and “Bad” buttons, respectively (Fig-
ure 2, part C). Images that receive positive feedback are highlighted
with a green border, whereas images receiving negative feedback
are bordered in red. Searchers can click on images that received
relevance feedback during the current search iteration to put them
back into a neutral state of having received neither positive nor
negative relevance feedback. Both positive and negative relevance
feedback is explicit: when searchers click the “Next” button, only
the images that received feedback are passed on to the backend to
generate images for the next iteration.

3.2.3 Bookmarks. Searchers can bookmark the best image cur-
rently seen during their search session. Bookmarked images are
highlighted with a yellow border in the right margin of the inter-
face (Figure 2, part D). Our current implementation of the interface
only supports a single bookmark to force study participants to be
explicit about their search progress during experiments. In a non-
experimental version of our search system, users would be allowed
to bookmark any number of images.

3.3 Sampling StyleGAN2
We used StyleGAN2 [26]1 to generate images of faces using a pre-
trained model2 based on the Flickr-Faces-HQ (FFHQ) data set [25].

1https://github.com/NVlabs/stylegan2-ada-pytorch
2https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada/pretrained/ffhq.pkl
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Figure 2: Search engine interface. Part A: search facets are shown in the left margin; Part B: 20 images are shown at each
iteration (image is cropped). Images with green/red boxes have received positive/negative relevance feedback; Part C: “Good”
and “Bad” buttons toggle between positive and negative relevance feedbackmodes. “Next” button submits feedback and initiates
the next iteration. “End” button ends the current search session; Part D: the bookmarked image is shown in the right margin.

3.3.1 Image Generation. StyleGAN2 consists of a mapping net-
work between 𝒵-space and𝒲-space, and a synthesis network that
generates synthetic images on the basis of vectors from𝒲-space.
To generate an image, we sample a latent vector 𝒛 from a standard
multivariate normal distribution (i.e. with zero mean and identity
covariance), map 𝒛 to an intermediate latent vector 𝒘 using the
mapping network and feed 𝒘 into the synthesis network to pro-
duce an image. StyleGAN2 uses the truncation trick (constraining
𝒘 via𝒘′ = �̄� +𝜓 (𝒘 − �̄�)) to improve image quality [5]. We set the
truncation parameter to𝜓 = 0.5 as it provides high quality images
without loosing significant variation.

3.3.2 PCA Transformation. In addition to 𝒲-space, we created
an auxiliary latent space based on PCA (from this point referred
to as PCA-space), following the method introduced by Härkönen
et al. [15]. In brief, we sampled 750,000 random latent vectors in
𝒵-space, used StyleGAN2’s mapping network to generate𝒲-space
vectors and trained a PCA model with 512 dimensions. This ap-
proach produces unsupervised semantic features that, being based
on PCA, are guaranteed to be orthogonal and, therefore, indepen-
dent of one another. These features allow us to use linear models to
implement search facets and ranking, which are computationally
cheap and allow us to maintain interactivity.

3.3.3 Sampling. In the first iteration of a search session, we ran-
domly sample 20 vectors from 𝒵-space and generate images using
StyleGAN2. In all subsequent iterations, we randomly sample 20,000

vectors from𝒵-space, transform them into𝒲-space and then trans-
form the 𝒲-space vectors into PCA-space. The PCA vectors are
passed on to the faceted search module.

3.4 Nudging with Faceted Search
Despite randomly sampling 20,000 vectors at each search iteration,
the particular combination of user-selected facets may only be
present in a small proportion of generated images. We, therefore,
used supervised GAN controls [53] to implement search facets
that we use to “nudge” vectors towards regions of the latent space
more likely to contain the selected facial features. Each facet was
implemented using a linear classifier in PCA-space. We use a similar
multi-label classifier to filter out the resulting nudged images that
do not contain those attributes.

3.4.1 Facet Classifier Training. We created a classifier for each
search facet using the following procedure:

• We fine-tuned a ResNet50 classifier [17] using the CelebA
data set [37]. CelebA contains 202,599 face images associated
with 40 binary attributes, e.g. female, glasses, etc.3

• We randomly generated 270,000 images using StyleGAN2
and labelled them with facial attributes using the ResNet50
classifier.

• We created linear classifiers for a subset of attributes from
the CelebA data set. We used logistic regression with L1
regularization to predict whether a given binary attribute

3https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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(a) Nudging examples

(b) Decoupling example

Figure 3: (a) Nudging a randomly sampled image to “male”,
“black hair”, “brown hair” and “blonde hair”, respectively. (b)
Nudging a randomly sampled image to “glasses”: (1) without
decoupling, “glasses” is entangled with “old”; (2) eliminating
the effect of “old” with decoupling.

is present in an image based on its associated PCA-space
vector.

We perform as much processing in PCA-space as possible to avoid
the computational cost of generating images and predicting at-
tributes for them. From the 40 attributes in the CelebA data set,
we selected 9 that could be reliably used as facets. We created an
additional attribute, “Children”, as we found it could be reliably
classified with only a small amount of manually annotated data.
Each classifier was trained with a balanced data set and achieved
over 90% accuracy on their test sets with the exception of “wavy
hair” and “straight hair”, which obtained accuracies of 87% and 80%,
respectively. The unused CelebA facial attributes were either less
reliable in terms of accuracy or did not make good GAN controls
as they failed to isolate a single facial attribute (determined by
manual inspection). We speculate that these failures were due to
biases in the CelebA data set (resulting in entangled attributes) or
in StyleGAN2 (either due to its own training data or because of the
truncation trick).

3.4.2 Nudging. Given a binary facial attribute, e.g. glasses vs. no
glasses, there exists a separation hyperplane with a normal vector
𝒉 in PCA-space. We transform or “nudge” a PCA vector, 𝒗, towards
images with this attribute via: 𝒗′ = 𝒗 + 𝛼𝒉, where 𝒉 is the vector
of coefficients from a facet’s logistic regression model and 𝛼 is a
control parameter from 1-5 that was set via manual inspection to
ensure it worked on a variety of generated faces [53]. Figure 3a
shows a female face that was nudged towards the attributes “male”,
“black hair”, “brown hair” and “blonde hair”, using this procedure.

Unfortunately, some facial attributes are entangled, e.g. adding
glasses to a face may inadvertently age it as well (because older
people are more likely to wear glasses than younger people). We
decouple the normal vectors for the two attributes, 𝒉1 and 𝒉2, by
forcing them to be orthogonal: 𝒉′1 = 𝒉1 − cos(𝒉1,𝒉2) · 𝒉2 [53]. In
our system, decoupling is applied to weaken the influence of age
on both gender and glasses wearing. Figure 3b shows the impact of
decoupling on nudging a male face towards the “glasses” attribute.

3.4.3 Filtering. As a final check to ensure the images passed on
for ranking contain all facial attributes selected by the searcher,
we use a multi-label classifier for the 10 attributes used in the
interface to filter PCA vectors. This step is necessary as nudging
does not always succeed in adding all attributes to each sampled
image. While we could have filtered images using the single-label
classifiers that were used to obtain normal vectors for nudging, we
used a single classifier to improve efficiency.

3.5 Ranking with Thompson Sampling
After sampling and nudging, we obtain a large set of candidate im-
ages from which we need to select the images most likely to be con-
sidered relevant by the user. Searchers provide relevance feedback
at each search iteration with the goal of retrieving similar images
(exploitation), but also want to explore the wider search space of
images (exploration). We use Thompson sampling, a Bayesian ap-
proach to the contextual bandit problem [7], to balance exploration
and exploitation.

3.5.1 Problem Setting. We have a matrix 𝑽 , where each row 𝒗𝒊 is
the PCA vector representation of images for which the searcher has
provided relevance feedback. Let 𝒓 = (𝑟1, 𝑟2, . . . 𝑟𝑡 )⊤ be the column
vector of relevance scores up to time 𝑡 , where 𝑟𝑖 = 1 for positive
relevance feedback and 0 otherwise. Following [7], we assume the
probability of 𝒗𝒊 being relevant is:

𝑃 (𝑟𝑖 = 1|𝒗𝒊, 𝜽 ) = (1 + 𝑒𝑥𝑝 (−𝒗⊤𝒊 𝜽 ))
−1, (1)

where 𝜽 is a weight vector to be learnt.

3.5.2 Thompson Sampling. While 𝜽 in Equation 1 could be esti-
mated with, for example, logistic regression, the resulting weight
vector can be problematic as users have only explored a small
proportion of the image space. Instead, we assume 𝜽 follows a
probability distribution and select the top-𝑘 images that maximize:∫

I(𝐸 [𝑟 |𝒗, 𝜽 ] = max
𝒗′

𝐸 [𝑟 |𝒗′, 𝜽 ])𝑃 (𝜽 |𝑉 )𝑑𝜽 , (2)

where I(·) is the indicator function and 𝑃 (𝜽 |𝑉 ) is the posterior
distribution of 𝜃 , where:

𝑃 (𝜽 |𝑉 ) ∝ 𝑃 (𝜽 )
∏
𝒗∈𝑉𝑃

𝑃 (𝑟 = 1|𝒗, 𝜽 )
∏

𝒗′∈𝑉𝑁

[1 − 𝑃 (𝑟 ′ = 1|𝒗′, 𝜽 )], (3)

where 𝑃 (𝜽 ) is the prior distribution of 𝜽 , and𝑉𝑃 and𝑉𝑁 are sets of
PCA vectors that received positive and negative relevance feedback,
respectively.

In Thompson sampling, maximizing Equation 2 is achieved by
sampling from the posterior distribution, i.e. we sample the pa-
rameters 𝜽 ∗ from 𝑃 (𝜽 |𝑉 ), and then calculate the probability, 𝑃 (𝑟 =
1|𝒗, 𝜽∗), for each image. This weight sampling procedure addresses
the exploration-exploitation trade-off as 𝜽 is drawn according to
its probability of being optimal.

Sampling directly from the posterior distribution is challenging,
however, so we approximate the posterior using a multivariate
normal distribution with a diagonal covariance matrix, 𝑃 (𝜽 |𝑉 ) ∼
𝒩 (𝜽 , Σ), where Σ = 𝛼𝝈−1 ⊙ 𝐼 (𝐼 is the identity matrix, 𝛼 is the
exploration parameter set to 1.0 and 𝝈 is the inverse diagonal vec-
tor of Σ). In the prior distribution, 𝜽 = 0 and 𝚺 = 𝜆𝐼 , where 𝜆 is a
regularization parameter set to 0.5. At each iteration, we estimate
the mean 𝜽 by the posterior mode (𝜽 = argmax𝜽 𝑃 (𝜽 |𝑉 )) and the
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Figure 4: Randomly generated images from StyleGAN2 with
the first 30 principal components held fixed produces almost
identical faces. The main differences between images appear
to be the background and minor differences in the orienta-
tion of the subject’s head and hair.

covariance Σ with the inverse of the negative Hessian of the loga-
rithm posterior at the mode (Σ−1 = −▽2 log[𝑃 (𝜽 |𝑉 )]), according
to Laplace approximation [50].

3.5.3 Ranking. To limit the amount of computation needed to be
performed interactively, we truncate each PCA vector, 𝒗𝒊 , perform-
ing Thompson sampling on only the first 30 principal components.
This reduces the explained variance to 0.718 , but we found that
randomly generated faces with these components kept fixed were
almost indistinguishable from one another, with only minor differ-
ences in the background and orientation of the subject’s head and
hair (see Figure 4).

After ranking all images by probability, the top-20 PCA vectors
are converted back to𝒲-space by inverse PCA, transformed into
images using StyleGAN2’s synthesis network and returned to the
interface to be shown to the user for the next search iteration.

3.6 Evaluation Methodology
Evaluating an exploratory search system is challenging due to the
interactive nature of search systems and the subjectivity of task
success. Evaluation, therefore, should involve users performing
an appropriate simulated work task [4, 63] to investigate the sys-
tem’s impact on search behavior, task performance and perceived
usability [27]. However, running user experiments to understand
the usefulness of each component of a given system would be
impractical as it would require a prohibitively large number of
study participants. Hence, we present both a simulation study and
a user study to evaluate different aspects of our approach. More
specifically, we performed a simulation study to verify whether the
core system components, i.e. nudging and ranking, achieved the
expected functionality and to understand the broad characteristics
of the system. Subsequently, we conducted a user study that situ-
ates participants in an open-ended search task designed to elicit
exploratory search behavior to assess system performance with
real users. In both simulation and in the user study, our system was
compared with a baseline method for interactive GAN search.

3.6.1 Baseline. We adopted the Rocchio algorithm-based approach
proposed by Ukkonen et al. [58] as the baseline. Unlike our ap-
proach that operates in PCA-space, the baseline uses latent vectors
in𝒵-space [58]. In general, the Rocchio algorithm models user pref-
erences with a centroid latent vector 𝒄 and at each iteration samples

𝑚 vectors close to it (from a multivariate normal distribution with
𝒄 as the mean and a covariance matrix parameterized by 𝜎). We use
𝑚 = 20 to match our approach setting. The centroid is iteratively
updated with 𝒄 𝒊 = (1 − 𝛼)𝒄 𝒊−1 + 𝛼𝒗𝒑𝒐𝒔 , where 𝒗𝒑𝒐𝒔 is the mean
latent vector of images that received positive relevance feedback.
Following [58], 𝜎 is set to 0.2 and 𝛼 is set to 0.7. The initial centroid
is obtained by averaging the latent vectors of a set of seed images
selected by the user.

4 SIMULATION STUDY
We conducted a series of simulations to examine the performance
of the main system components: nudging and ranking. Our goal is
to answer the following three questions:

(1) Does nudging ensure the presence of selected facial features?
(2) Does ranking negatively impact the effectiveness of nudg-

ing?
(3) Does Thompson sampling converge rapidly to accurately

reflect users’ preferences?

4.1 Nudging Evaluation
We investigated the effectiveness of nudging, in isolation and in
combination with ranking.

4.1.1 Nudging Effectiveness. We assessed the effectiveness of nudg-
ing by examining whether randomly sampled images gained the
selected facial attributes associated with each search facet. We ran-
domly generated 100,000 images using StyleGAN2. As the generated
images are not labeled with attributes, we employed the fine-tuned
ResNet50 classifier (see Section 3.4.1) to assign attributes to the
images. We analyzed all attributes used to create search facets, with
the exception of “Children” as the ResNet50 classifier is unable to
predict this label (see Section 3.4.1). We calculated the proportion
of images that featured each facial attribute, considering the case
of nudging with and without filtering (see details in Section 3.4.3).

The results depicted in Figure 5 indicate that randomly sampled
images (i.e. without nudging) are biased against certain attributes,
such as “blonde hair” (∼2%), “bangs” (∼8%) and “glasses” (∼10%).
After nudging, however, the percentage of images containing each
attribute is significantly improved, with improvements ranging
from 55% (for “female”) to 3750% (for “blonde hair”). The incorpora-
tion of filtering yields further improvements, with four out of nine
attributes (“black hair”, “male”, “female”, “glasses”) reaching at least
97%. The lowest percentage obtained is approximately 62%, which
is higher than the highest percentage achieved without nudging
(∼60%).

4.1.2 Nudging Effectiveness after Ranking. Although we can manip-
ulate the attributes that a generated image features to a large extent,
it is unclear how well nudging performs when integrated into the
system. One concern is that iterative re-ranking could degrade the
performance of nudging. For example, a user who has selected the
search facet “blonde hair” may reasonably give positive relevance
feedback to images of people with brown hair if they feature other
attributes that the user considers relevant to their search goals.
As nudging fails for 18% of images in the case of blonde hair (see
Figure 5), in the worst-case scenario this inconsistent combination
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Figure 5: Percentage of images featuring each facial attribute over 100,000 generated images. Both nudging and filtering increase
the percentage of images with each attribute.

of search facets and relevance feedback could result in the system
not displaying any images to the user with blonde hair.

We conducted a simulation where we generated random rele-
vance feedback to examine the effectiveness of nudging during
iterative search. As in the previous experiment, we examined the
same 9 out of 10 facial attributes. For each attribute, we simulated
100 search sessions with the target attribute’s search facet selected.
Each search session spanned 30 iterations. At each iteration, we
randomly selected one positive and one negative example to update
the ranking function (for real users, we assume that relevance feed-
back is more likely to reinforce the target attribute if that attribute
is important to their search goals). We compared the number of
images featuring the target attribute in the first and last iterations,
i.e. before and after 30 iterations of re-ranking.

Figure 6 illustrates no significant difference in the distribution
of the number of images featuring each attribute in the first and
the last iterations (𝑃 > 0.05 for all attributes, Mann-Whitney U
test). This suggests that ranking does not affect the performance
of nudging despite receiving potentially inconsistent feedback and
irrespective of the attributes’ baseline nudging effectiveness.

4.2 Ranking Evaluation
We validated the use of Thompson sampling in our system fol-
lowing a similar simulation approach to Chapelle and Li [7]. For
each simulation run, we simulated user feedback using an arbitrary
weight vector 𝒘∗. Hence, the probability of an image being con-
sidered relevant can be determined by 𝑝 = (1 + 𝑒𝑥𝑝 (−𝒗𝑇𝒊 𝒘

∗))−1,
where 𝒗𝒊 is the PCA vector representation of the image. We then
generated relevance feedback for the image by sampling from a
Bernoulli distribution with the probability 𝑝 . At each iteration, we
synthesized relevance feedback for all 20 images. In order to make
the simulation more realistic, we set a parameter 𝑛, which limits the
number of positive and negative examples provided per iteration.
More precisely, we randomly sample𝑛 positive and𝑛 negative exam-
ples without replacement, which is then used to update the ranking
model as described in Section 3.5.2. We tested 𝑛 ∈ {3, 5, 10, 20},
where 𝑛 = 20 represents giving relevance feedback every image.
The simulation results indicate a consistent pattern across all values

of 𝑛, so we have chosen to present the results for 𝑛 = 3, because
it most closely aligns with a real-world scenario, as demonstrated
in our user study (see Section 6.5). We compared our system with
the baseline approach described in Section 3.6.1. We simulated 100
search sessions, where each session spanned 1000 iterations using
both approaches. We examine the simulation results from three
perspectives: convergence, effectiveness, and diversity, as shown in
Figure 7 (only the results for the first 500 iterations are presented
for clarity).

We note that these simulations are not intended to represent
actual search conditions or user search behaviour: the use of search
facets dramatically reduces the search space and users’ subjective
assessment of task outcomes will likely end the search session much
sooner.

4.2.1 Convergence. We analyzed the convergence of Thompson
sampling by observing the trend of regret across iterations. Similar
to [7], the regret at iteration 𝑡 is defined as the difference between
the highest attainable reward and the actual reward obtained. More
precisely, the regret is 𝑅𝑡 (𝑎) = max𝑎 𝑋𝑡 (𝑎) −𝑋𝑡 (𝑎), where 𝑋𝑡 (𝑎) is
the reward of selecting a list of images 𝑎 to display and is defined
as the proportion of images considered relevant by the simulated
user model. Following Chapelle and Li [7], however, we instead
used the expectation of the proportion of images to avoid unnec-
essary variance. The Rocchio algorithm was not included in this
assessment because it is not a learning algorithm.

The regret as a function of iteration (𝑡 ) for Thompson sampling
is plotted in Figure 7a. As shown, the regret declines dramatically
within the first 10 iterations, and eventually converges to ∼0.2 after
50 iterations. This implies that Thompson sampling can quickly
adapt to users’ preferences, and, therefore, is appropriate for an
interactive search system.

4.2.2 Effectiveness. To make a comparison between our approach
and the baseline in terms of effectiveness, we show the average
number of images that would obtain positive relevance feedback
at each iteration in Figure 7b. Both approaches converge rapidly
after ∼10 iterations. However, the baseline achieves near-optimal
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Figure 6: Distribution of the number of images featuring each attribute at the 1st iteration (green) and the 30th iteration
(orange) of 100 simulated search sessions.

performance (i.e. almost all 20 images displayed are relevant im-
ages), whereas Thompson sampling converges to the slightly lower
number of ∼16.5 relevant images.

4.2.3 Diversity. As our goal is to facilitate exploratory search, an
essential aspect to consider is the diversity of images displayed
across iterations. We define the diversity at each iteration as the
average pairwise face distance. The face distance is calculated using
the Python Face Recognition library [9] that uses an approach
similar to FaceNet [52]. To put the face distance into context, we
randomly sampled 10,000 𝒵-space vectors and used StyleGAN2 to
generate the corresponding images twice. As StyleGAN2 injects
some noise with each image generation, the images are not identical,
but highly similar (data not shown). The face distance between these
pairs of almost identical images ranged from 0.043 to 0.279.

As shown in Figure 7c, Thompson sampling maintains a consis-
tently high level of image diversity throughout, whereas diversity
drops drastically with the Rocchio algorithm and converges to a
value lower than 0.25. Moreover, the average pairwise face distance
drops below the threshold after ∼225 iterations for the baseline (see
the dashed line in Figure 7c). This reveals how the near-optimal
performance of the Rocchio algorithm demonstrated above (Section
4.2.2) is actually achieved by sacrificing the diversity of displayed
images. More precisely, despite all 20 images displayed being con-
sidered relevant after reaching the convergence point (see Figure
7b), most of them are highly similar or even almost identical. This
observation is in line with the feedback from real users in our user
study (see details in Section 6.6).

5 USER STUDY METHODOLOGY
We conducted a user study to evaluate the proposed approach. The
aim of the study was threefold. First, we wanted to understand how
well the system supported users performing exploratory search
tasks. Second, we wanted to know how our system compared to
an existing system in terms of usability and user satisfaction. Fi-
nally, we were interested in understanding how users perceived
the system and what could be changed to improve user experience.

We used a within-subject study design, where each participant
used both our system and a baseline system to complete two dif-
ferent exploratory search tasks. Each experiment was conducted
through Zoom: the system was run on the experimenter’s local
computer and we gave participants the ability to interact with each
system remotely. Each participant was compensated with a book
voucher after completing the study.

5.1 Baseline System
As in the simulation study, we compared our system with the
Rocchio-based approach proposed by Ukkonen et al. [58] (see Sec-
tion 3.6.1 for details). We made the interface for the baseline as
similar to our system as possible, but without the search facets
in the left margin nor the ability to switch between positive and
negative relevance feedback (see Figure 8). We perform warm start
in the baseline system by asking users to select at least one seed im-
age from 100 randomly generated images before the search process
starts (as in the “near task” in the original study [58]).

5.2 Participants
We recruited 30 study participants (16 female, 13 male, 1 rather
not say) aged 23-53 (mean age 28.6). The participants ranged from
Master’s students to postdoctoral researchers and had backgrounds
in various disciplines, including game design, forestry, cell biology,
computer science and business analytics. According to the back-
ground questionnaire, almost all participants stated that they had
used image search engines at least once (frequently (7), sometimes
(8), rarely (11), never (4)), while about 70% of participants had expe-
rience of using image search engines without textual search queries
(sometimes (8), rarely (14), never (8)).

5.3 Task
In the search tasks, participants were situated in the role of a casting
director and asked to identify the faces of actors who they felt
looked suitable to play the roles of Harry Potter and Hermione
Granger in an upcoming Harry Potter movie. They were given a
brief summary of the movie’s plot:
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Figure 7: Simulation results of Thompson sampling and the Rocchio Algorithm based on three performance measures:
convergence, effectiveness, and diversity. Convergence only shows Thompson sampling. Diversity additionally shows the
maximum face distance obtained from 10,000 images pairs derived from the same 𝒵-space vector.

Figure 8: Search engine interface of the baseline system. Im-
ages with green boxes have received positive relevance feed-
back. The bookmarked image is shown in the right margin.

“The movie takes place when Harry Potter and Hermione
Granger are around 30 years old. Harry was framed
for a crime he did not commit and was imprisoned
in Azkaban (a prison for wizards). At the start of the
movie, Harry escapes from Azkaban. His time in prison
has been tough. Harry is angry and wants revenge.
Hermione is now a teacher of the dark arts at Hog-
warts, but is unhappy and disillusioned with the world
of magic.”

The tasks were designed to elicit exploratory search behavior:
they are open-ended, and do not include any visual criteria de-
scribing success outcomes. Instead, searchers needed to combine
their understanding of the characters with the circumstances of the
movie [63]. We ensured that all participants had watched at least
one Harry Potter movie in order to perform the search tasks.

5.4 Procedure
Prior to the study, we provided participants with a 5-minute in-
structional video to teach them how to use both systems. During
the experiment, we asked each participant to perform two image
retrieval tasks - one with each system. The tasks were the same

for all participants, i.e. to find the face of a person who they feel
could play the role of Harry Potter or Hermione Granger, given
the description of the movie provided. We counter-balanced the
sequence of systems and tasks to avoid order effects. We limited
each task to 10 minutes to avoid possible biases caused by exces-
sively long search sessions. After each task, we asked participants
to (i) rate how satisfied they are with their bookmarked image on
a 5 point Likert scale (from “very dissatisfied” to “very satisfied”),
(ii) complete the standard System Usability Scale (SUS) question-
naire with 10 questions [22], and (iii) complete a modified ResQue
questionnaire with 11 questions [46]. While the SUS questionnaire
can help us evaluate system usability, the ResQue questionnaire
was chosen to measure users’ satisfaction with the system.

While participants performed search tasks, we logged all their
interactions with each system including images displayed, facets
selected, relevance feedback, and which images were bookmarked.
After participants completed both tasks, we asked them to answer
a post-experiment questionnaire and conducted a semi-structured
interview to better understand their perceptions of system function-
ality and the differences between systems. This procedure lasted
approximately 30-40 minutes.

6 RESULTS
We present a quantitative analysis of task performance, system
usability, and user satisfaction, preferences and search behavior,
and summarize the outcomes of the semi-structured interviews
with study participants.

6.1 Task Performance
We assessed task performance using the ratings study participants
gave to their final bookmarked images. There was no significant
difference in ratings for images found using our system (mean
rating = 4.33) versus the baseline (4.2) (𝑃 = 0.317, Wilcoxon signed-
rank test). Furthermore, in both systems, 27/30 participants stated
they were either satisfied or very satisfied with their bookmarked
images. Anecdotally, 3 more study participants were “very satisfied”
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(a) Task I: Harry Potter

(b) Task II: Hermione Granger

Figure 9: Final bookmarked images found by 30 study participants for two exploratory search tasks. For each task, top row:
search results obtained with the Rocchio system; Bottom row: search results obtained with our system.

with the final image obtained from our system than the baseline
(13 vs 10), while the only instance (out of 60 search tasks) of a study
participant being “dissatisfied” was from the baseline system. The
final bookmarked images for two search tasks are shown in Figure
9, which shows a high diversity of user preferences.

6.2 System Usability
Our system obtained a SUS score of 68.4, indicating an above-
average level of usability [33], whereas the baseline obtained a
score of 73.9. While there was no statistically significant differ-
ence between SUS scores (𝑃 = 0.056, Wilcoxon signed-rank test), it
seems likely that the difference would have been significant given
a slightly larger sample size.

Table 1 breaks down the results of each question in the SUS
questionnaire, highlighting statistically significant differences in
the responses to questions 2, 4, and 10. These questions were all
related to system complexity, which is understandable as our sys-
tem contained more user interface elements (i.e. search facets and
negative relevance feedback) and aimed to show more diverse im-
ages to users to encourage exploration. We note, however, that
despite these differences being significant, the average responses
for our system were between 2.2 and 2.4, which is between the
“disagree” (2) and “neutral” (3) responses. These scores suggest that
our system was not considered complex in an absolute sense, just
slightly more complex than the baseline.

6.3 User Satisfaction
In our modified ResQue questionnaire, we found no significant
differences in responses between our system and the baseline (see
Table 2). For both systems, users stated that theywere recommended
good images (Q1, Q4, and Q10), that the system was easy to start
using and they felt confident providing relevance feedback (Q5 and
Q7), and they were generally satisfied (Q11).

6.4 User Preferences
While ResQue was administered after each search task, our post-
experiment questionnaire contained similar questions, but asked
users to explicitly compare the two systems (see Table 3). Our
system showed users more diverse images than the baseline (Q2,
𝑃 = 0.016, binomial test), which, as a result, included more images
that were irrelevant to the search task (Q4, 𝑃 = 0.043, binomial test).
Furthermore, despite the potential complexity issues highlighted
by the SUS results, our interface was preferred to the baseline by
22/30 study participants (Q5, 𝑃 = 0.016, binomial test). Finally, for
performing the exploratory search task of casting roles in a new
Harry Potter movie, 23/30 study participants preferred our system
over the baseline (Q1, 𝑃 = 0.005, binomial test).

The post-experiment questionnaire also contained questions re-
lated to our interface’s system components (Table 3, Q6-9). Study
participants were divided between whether it was easier to stick
with only giving positive relevance feedback (Q6) and whether it
was easy to give negative feedback (Q7). However, 90% of partici-
pants agreed that it was easy to use search facets (Q8, 𝑃 = 8.4×10−6,
binomial test) and that the meanings of the facet labels were clear
(Q9, 𝑃 = 8.4 × 10−6, binomial test).

6.5 User Behavior
On average, users spent 62.9 seconds longer completing the search
task with our system compared to the baseline (407.5 vs 344.6
seconds, 𝑃 = 0.046, Wilcoxon signed-rank test). There was no sig-
nificant difference in the number of search iterations before finding
the most satisfying search result, i.e. the final bookmarked image
(3.6 iterations for our system compared to 4.3 with the baseline,
𝑃 = 0.115, Wilcoxon signed-rank test). However, due to the baseline
system’s dependence on warm-start, users of our system examined
significantly fewer images in total than with the baseline system
(106.7 vs 188.7, 𝑃 = 2.50 × 10−5, Wilcoxon signed-rank test).

When using our system, users provided more relevance feedback
compared to the baseline (28.3 vs 15.7, 𝑃 = 0.014, Wilcoxon signed-
rank test). Furthermore, we found that users tended to give more
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Table 1: Average SUS responses for our system (Ours) and the baseline (Base.), P-values from Wilcoxon signed-rank test. Better
scores are bolded. Statistically significant differences (𝑃 < 0.05) are highlighted with ∗.

Base. Ours P-value Question

3.7 3.6 0.518 1. I think that I would like to use this system frequently.
1.9 2.3 0.041∗ 2. I found the system unnecessarily complex.
4.0 3.8 0.261 3. I thought the system was easy to use.
2.0 2.4 0.018∗ 4. I think that I would need the support of a technical person to be able to use this system.
3.7 3.7 0.953 5. I found the various functions in this system were well integrated.
1.9 2.1 0.153 6. I thought there was too much inconsistency in this system.
4.1 4.0 0.592 7. I would imagine that most people would learn to use this system very quickly.
2.0 2.2 0.216 8. I found the system very cumbersome to use.
3.7 3.5 0.152 9. I felt very confident using the system.
1.8 2.2 0.032∗ 10. I needed to learn a lot of things before I could get going with this system.

Table 2: Average ResQue scores obtained by our system (Ours) and the baseline (Base.), P-value fromWilcoxon signed-rank test.
Better scores are bolded. No differences were statistically significant.

Base. Ours P-value Question

3.8 3.8 0.930 1. The images recommended to me matched what I was searching for.
3.7 3.5 0.182 2. The system helped me discover new images.
3.1 3.2 0.639 3. The images recommended to me are diverse.
3.8 3.9 0.439 4. The system helped me find the ideal images.
4.3 4.1 0.251 5. I became familiar with the system very quickly.
3.6 3.3 0.084 6. I found it easy to notice if the search results were not correct anymore.
3.9 3.8 0.593 7. I felt confident to give feedback.
3.7 3.6 0.429 8. Using the system to find what I like is easy.
3.1 3.0 0.565 9. I found it easy to re-find images I had been recommended before.
4.0 4.0 1.000 10. The system gave me good suggestions.
3.9 4.0 0.480 11. Overall, I am satisfied with the system.

negative than positive relevance feedback in our system (3.79 nega-
tive vs 2.56 positive per iteration, 𝑃 = 0.049, Wilcoxon signed-rank
test), whereas there was no significant difference in the amount
of positive relevance feedback given between our system and the
baseline (2.56 vs 3.24, 𝑃 = 0.116, Wilcoxon signed-rank test).

Finally, we investigated how participants used search facets in
our system. A majority of users (24/30, 𝑃 = 0.0014, binomial test)
only selected facets during the first iteration (i.e. before provid-
ing relevance feedback) and did not adjust them in subsequent
iterations. We observed that these users took significantly fewer
iterations (5.2 vs 8.2, 𝑃 = 0.038, Wilcoxon rank-sum test) compared
to users who did not use facets (4/30) or who adjusted facets after
the first search iteration (2/30).

6.6 Qualitative Feedback
The comments made by study participants during semi-structured
interviews helped us further understand why a majority of users
preferred our system over the baseline for exploratory search tasks.
The most often mentioned reasons included (i) facets helped to
narrow down the search space and made image selection easier (12
users), (ii) our system showed more diverse images (9), (iii) nega-
tive relevance feedback was perceived to increase the efficiency of
searching (8), and (iv) our system provided better recommendations

and/or helped to find more satisfying images (8). While on the other
hand, several users complained that (i) not enough search facets
were provided (3), (ii) negative relevance feedback was unnecessary
(4), and (iii) our system returned many irrelevant images (4).

For the baseline, although some users appreciated its simplicity
(8) and better convergency (8), many users complained that the
system returned very similar faces that were difficult to distinguish
(14), e.g.: "I kind of felt to have face blindness" [Participant 26], "the
[baseline] converges too fast and faces look very similar to each other"
[P29], "at the last several iterations, all images looked like images of
the same person" [P9].

While there was no significant difference in task performance
according to users’ ratings (see Section 6.1), five users stated that
our system helped them find more satisfying results, though only
three of these participants gave different ratings. Furthermore, five
different users stated that the baseline may not have helped them
find what they were looking for: "the [baseline] lost the images I
was looking for. The more I use it, the more I feel that the results
deviate from my goal" [P2], "the [baseline] only captured features
of the image I selected during initialization, but that was a bad one"
[P23].
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Table 3: Post-experiment questions with proportions (Prop.) and corresponding P-values from a binomial test (the null
hypothesis being a proportion of 0.5 for random responses). Questions 1-5 were binary responses and questions 6-9 were rated
on a 5-point Likert scale. Prop. was the proportion of users that selected our system over the baseline in question 1-5 and
agreeing or strongly agreeing with the statement in questions 6-9. Statistically significant results (𝑃 < 0.05) are marked with ∗.

Prop. P-value Question

0.767∗ 0.005 1. Which system did you prefer to use for finding an actor if you are a casting director?
0.733∗ 0.016 2. Which system in your opinion provided more diverse images?
0.500 1.000 3. Which system in your opinion provided more ideal images?.
0.700∗ 0.043 4. Which system in your opinion provided more irrelevant images?
0.733∗ 0.016 5. Which interface did you prefer?
0.500 1.000 6. I found it easier to give only positive feedback.
0.667 0.099 7. I found it easy to give negative feedback.
0.900∗ 8.4e-6 8. I found it easy to perform the search with facets.
0.900∗ 8.4e-6 9. The facet labels are clear.

7 DISCUSSION AND CONCLUSIONS
In this paper, we presented a novel approach for exploratory search
using interpretable GAN controls. Unlike traditional interactive
image retrieval systems that operate over a collection of discrete
images, our approach seeks to capture users’ information needs
using the GAN’s latent space to generate images, which can be
summarized as sample, nudge, and rank. We used interpretable
GAN controls to implement faceted search, to help users quickly
narrow down the search space, and relevance feedback, that used
Thompson sampling to help users explore the search space by
balancing exploration and exploitation.

7.1 Summary of Results
We conducted a series of simulation studies to validate the effi-
cacy of nudging and ranking. Our results showed that nudging
significantly increased the occurrence of selected attributes, with
improvements from 55% to 3750% (Figure 5), highlighting the effec-
tiveness of nudging in limiting the search space. Additionally, the
number of images featuring selected attributes was relatively con-
sistent throughout a search session and remained unaffected by the
iterative re-ranking process, even with inconsistent relevance feed-
back (Figure 6). In simulated, Thompson sampling-based ranking
accommodated user preferences quickly without sacrificing image
diversity, whereas the baseline converged rapidly, but produced
results with very limited diversity (Figure 7).

Our user study showed that a majority of participants (23/30)
preferred our system to a state-of-the-art baseline [58] for perform-
ing exploratory search tasks using GANs (Table 3, Q1). While our
analysis of SUS responses highlighted our system’s higher per-
ceived complexity than the baseline (Table 1, Q2, Q4 and Q10), the
additional interface components (search facets, negative relevance
feedback) were praised in participant interviews for improving
the perceived efficiency of searching (Section 6.6 and Table 3, Q8).
Indeed, participants that used facets to initialize their search took
significantly fewer iterations to complete the tasks (Section 6.5). Our
results are also in line with previous studies claiming that negative
relevance feedback improves search performance and user satis-
faction [43, 45] (Section 6.6 and Table 3, Q6). Despite several users
preferring the convergence properties of the baseline (i.e. lower

image diversity), it was highlighted as a pain point for many users
(Section 6.6).

7.2 Implications
This article focused on exploring a new category of search task:
exploratory search in a continuous latent image space. In image
search, the explosive growth of visual data on the internet has
raised concerns within the community due to the amount of effort
required to annotate, organize, and represent such tremendous num-
bers of images [10]. However, such challenges can be ameliorated
by instead training a large generative model and searching with
interpretable controls as in our approach. Furthermore, despite our
work focusing on GANs, we argue that the essence of our approach
is helping searchers’ to navigate a continuous latent space, which
is not limited to GANs. Indeed, recent studies have demonstrated
that the latent space of diffusion models (a type of image generative
model) also exhibit continuity similar to GANs and can be manipu-
lated via text prompts [28, 49, 51]. This seems to suggest that our
approach can also be applied to diffusion models. Moreover, the
high diversity image generation capabilities of diffusion models
have the potential to extend our approach beyond searching within
a single domain.

Our work also sheds light on the role of user modeling in navigat-
ing complex latent spaces. Many recent studies have been devoted
to building applications that can generate images based on textual
descriptions given by the user (similar to the case of searching for
images given a search query in traditional image retrieval). More
recent studies have suggested employing prompt engineering as
an interactive text-based retrieval mechanism, facilitating users in
identifying desirable prompts (i.e. textual descriptions) to better de-
scribe their information needs [8, 44]. However, these systems can
fail in situations where users have hard-to-describe or subjective
information needs [35]. In contrast, our approach can overcome
this limitation by modeling user preferences with faceted search
and relevance judgments.

There are several narrower implications related to how we im-
plemented faceted search and relevance feedback that could impact
our ability to expand the capabilities of our current system. While
our search facets performed well (see Figure 3) and were useful to
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searchers, expanding the range of facets to cover even just the facial
attributes in the CelebA data set would be exceptionally challeng-
ing as the majority of features in real images are highly entangled,
making it difficult to produce supervised controls that change only
a single isolated attribute. One possible solution would be to use
StyleGAN itself to create synthetic training data, but this would re-
quire considerable manual annotation. For GANs other than faces,
it seems likely that manual (and potentially expert) annotation
would be the only way to develop faceted search. Furthermore, it
is unclear how entangled features impact the efficacy of relevance
feedback. Our implementation of relevance feedback uses unsuper-
vised GAN controls to generate orthogonal features, but many of
these features are composed of complex combinations of attributes
and it is unclear how this affects search effectiveness. Finally, while
we used interpretable controls to hide the underlying GAN from the
user, this could be supplemented by interaction mechanisms that
exploit the properties of the GANmore effectively. For example, the
ability to interpolate between images could be used to foreshadow
the impact of feedback on future search results. Similar ideas were
investigated in the FutureView system [18], but in the context of
traditional interactive image retrieval.

7.3 Limitations
The study we conducted has several limitations. First, we only
presented results from a single domain: human faces, that could
have biased our results because humans are highly adept at facial
recognition (to the extent that we see faces in everyday objects,
a phenomena known as pareidolia), but are less capable in other
domains. This implies that participants searching a GAN of, for
example, cat or car images may be less able to discern the differ-
ences between similar images and, therefore, need a higher level
of exploration to search effectively. Domain could also introduce
experimental confounders, such as domain knowledge, as highly
unlikely images could impact user experience, e.g. images of cats
with a male facial structure and a tri-color coat.

Second, our study was limited to a single GAN architecture,
StyleGAN2, which could have biased our system towards particular
design decisions or parameter settings. As StyleGAN2 is designed
to disentangle features, some aspects of our system, such as search
facet decoupling (see Figure 3b) and ranking, may not work as
well with other models. However, as both supervised and unsuper-
vised interpretable GAN controls have been developed for other
GANs (e.g. [15]), we believe that our broad approach is generally
applicable.

7.4 Practical and Social Impact
The approach proposed in this article is intended to be deployed in
any scenario where there is a need for images of faces that fit highly
subjective criteria. These scenarios are generally in the creative
industries, such as casting actors for a movie role or as an ideation
tool for characters when writing a novel. For example, our system
could be used to perform exploratory search in co-creation activities
to identify images with the right aesthetic for a given movie role.
The process of casting could then focus on finding a similar looking
actor, instead of being influenced by the limited diversity of the
pool of applicants. Of course, biases in the GAN training data could

make some searches difficult or even impossible. We know, for
example, that the CelebA data set contains relatively few images of
children and is limited in terms of ethnic diversity. Furthermore, as
interactive information retrieval studies generally focus on search
tasks that can succeed [27], we did not investigate how performance
degrades in sparser areas of the latent space. Practical applications
would necessitate the creation of more diverse underlying models
that have been thoroughly tested in their application domain to
avoid perpetuating existing biases.

7.5 Future Work
In future work, we want to investigate more scalable approaches
for implementing faceted search for GANs. Our current method for
creating facets relies on supervised learning and, therefore, requires
labelled data for a range of attributes. Instead, we plan to use pre-
trained multi-modal models, such as CLIP [47], to associate latent
vectors from a GAN with textual information directly. By doing
this, we can not only expand the categories of facets in the system,
but could also use this textual information to further facilitate
exploratory search.
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