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ABSTRACT
As organizations recognize the potential of Large Language Models
(LLMs), bespoke domain-specific solutions are emerging, which
inherently face challenges of knowledge gaps and contextual accu-
racy. Prompt engineering techniques such as chain-of-thoughts and
few-shot prompting have been proposed to enhance LLMs’ capabil-
ities by dynamically presenting relevant exemplars. Are LLMs able
to infer domain knowledge from code exemplars involving similar
domain concepts and analyze the data correctly? To investigate this,
we curated a synthetic dataset containing 45 tabular databases, each
has domain concepts and definitions, natural language data analysis
queries, and responses in the form of Python code, visualizations,
and insights. Using this dataset, we conducted a within-subjects
experiment to evaluate the effectiveness of domain-specific ex-
emplars versus randomly selected, generic exemplars. Our study
underscores the significance of tailored exemplars in enhancing
LLMs’ accuracy and contextual understanding in domain-specific
tasks, paving the way for more intuitive and effective data analysis
solutions.
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1 INTRODUCTION
In recent times, Large Language Models (LLMs) have demonstrated
various capabilities, ranging from writing, editing, and summariz-
ing text [11, 24], to generating and debugging code [18], generating
annotations [6], simulating user personas [15], and facilitating user
interactions with different UIs [19], among many more emerging ca-
pabilities. These capabilities are being increasingly leveraged across
diverse industries, including healthcare [4], customer service [16],
education, entertainment, and cybersecurity.

As organizations recognize the potential of LLMs, we are starting
to see specialized LLM-based solutions that enhance operational
efficiency and scalability. In sectors like healthcare, exploratory ef-
forts are being made to utilize LLMs for sorting patient feedback [4],
while in the realm of customer service, there is a growing interest
in employing these models to analyze and respond to customer in-
quiries [16]. However, the development of bespoke LLM-integrated
solutions is confronted with challenges, notably in bridging domain-
specific knowledge gaps and in overcoming potential contextual
misunderstandings arising from the absence of industry-specific
training data [10].

These challenges become particularly pronounced in the context
of data analysis — a pivotal task for enhancing decision-making
and boosting operational efficiency within organizations. Domain
knowledge relevant to analytics often lacks comprehensive docu-
mentation, making it challenging for individuals to learn and apply
effectively [9, 21]. Although LLM-driven solutions such as GitHub’s
CoPilot and ChatGPT’s code interpreter [12] have started to demon-
strate potential in assisting with data science tasks [3, 14], yet their
effectiveness in specialized domains remains to be rigorously as-
sessed.

One promising approach to addressing these challenges involves
utilization of prompt engineering techniques, especially few-shot
prompting [1], Chain-of-Thought (CoT) [20], and their variations [5,
7, 17, 25]. Few-shot prompting enables LLMs to "universally un-
dertake a multitude of tasks" without gradient updates [25]. When
questions pertain to specific domain-specific concepts, prompting
LLMs with a few exemplars of implementation code relevant to
the domain concepts can potentially generate better responses, as
opposed to scenarios where such exemplars are absent. Previous
studies have introduced techniques for dynamically choosing these
exemplars based on similarity [7, 17]. However, the effectiveness of
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these methods in the context of data analysis tasks remains largely
unexplored.

To envision LLM-based solutions tailored for domain-specific
data analysis, it is imperative to establish foundational hypotheses
that may influence the design and effectiveness of such systems. In
this paper, we specifically investigate two hypotheses:

(1) LLMs may underperform if they lack domain-specific knowl-
edge.

(2) When LLMs are provided with exemplars of data analysis that
incorporate specific domain concepts, they may be capable
of inferring and applying these concepts to conduct similar
analyses within the domain.

To validate these hypotheses, we curated a synthetic dataset
comprising 45 databases selected from Spider [23], a complex, cross-
domain semantic parsing, and text-to-SQL dataset. This curated
dataset was augmented with domain-specific concepts and defini-
tions. Additionally, we crafted exemplar analyses featuring ques-
tions, corresponding Python code, and insights. We then conducted a
within-subjects experiment, where we used GPT-4 to perform data
analysis on this dataset, comparing the effectiveness of domain-
specific data analysis exemplars against generic exemplars. This
experimental design aims to shed light on the potential of LLMs to
adapt to and operate within specialized data analysis contexts.

2 DATABASE FOR DOMAIN-SPECIFIC DATA
ANALYSIS

A common use case of LLMs in data analysis tasks is involves
prompting LLMs with natural language queries to generate data
retrieval or manipulation scripts in programming languages such
as Python and SQL, then subsequently execute the code. Existing
datasets that merge natural language with data analysis code [13]
are often not adequately tailored for nuanced, domain-specific tasks.
In response, we created DomainQuery, a custom-designed dataset
designed to facilitate the investigation of LLMs’ performance in
domain-specific data analysis.

Our dataset is derived from the Spider dataset, originally created
for text-to-SQL tasks. Spider has 200 databases across 138 domains,
where each database has multiple tables. From Spider’s extensive
collection, we initially selected 78 databases with a limitation of no
more than three tables each to ensure manageability and clarity,
which we ultimately refined to 45 databases.

Our process involved a detailed review of the tables within each
database to conceptualize domain-specific concepts and definitions.
These concepts varied from quantifiable measures like indices and
scores to more complex constructs such as matrices or charts. Al-
though most concepts we created are artificial and are not typically
used in real-world data analysis tasks, we strived to make these
concepts semantically intuitive, ensuring that their definitions are
straightforward and easy to understand. Two of the authors re-
viewed these tables and formulated analytical questions related
to each concept. For instance, the database "musical" has two ta-
bles: musical and actor. The two authors first reviewed the ta-
ble columns and defined a domain concept "Actor Performance
Index (API)", which is calculated by dividing the actor’s age by
the number of musicals they have performed in. This gives an idea

of the experience level of an actor relative to their age. Later, ques-
tions like "Who are the top 5 actors with the highest Actor Performance
Index (API)?" were crafted to guide the creation of exemplars.

Following the identification of domain concepts, we generated
corresponding Python code and insights, which served as exem-
plars. These exemplars were not merely illustrative of a method
but embedded with domain knowledge pertinent to the questions
posed. To ensure precision and relevance, all code was executed in
a Jupyter Notebook environment, validating the accuracy of the ex-
emplars. We used ChatGPT to polish domain names, define domain
concepts, and generate code and insights. This procedure involved
iterative interactions with the ChatGPT web application. Figure 1
shows an example of an item in the database 1.

By integrating domain-specific insights directly into the dataset,
we aim to evaluate whether LLMs exhibit improved performance
when domain knowledge is intricately woven into their prompts
in the format of code exemplars, as opposed to generic exemplars
that lack contextual depth.

3 EXPERIMENT: DOMAIN-SPECIFIC
EXEMPLARS V/S GENERIC EXEMPLARS

To investigate the efficacy of LLMs in domain-specific data anal-
ysis, we conducted a within-subjects experiment contrasting the
effectiveness of domain-specific exemplars with that of generic
exemplars.

3.1 LLM Chain Setup
We configured a ReAct-based LLM chain [22], which orients the
LLM to iterate through reasoning, action, and observation cycles.
Our prompts consisted of a preamble to establish the context, a de-
tailed data profile, and format instructions, followed by exemplars
that included a user question, Python code, and insights (see Fig-
ure 2). This approach primed LLMs to generate informed reasoning
paths and relevant actions in response to the data analysis queries
presented.

The LLM chain allows a maximum of four iterations. Upon each
execution failure, error messages are appended to the chat his-
tory, and a new generation is requested. If the maximum iterations
are reached without successful code execution, the output will be
empty.

3.2 Experiment Setup
We designed two experimental conditions, with the only distinction
being the exemplar employed in the initial prompt.

• Baseline Condition (Generic Exemplars): For the base-
line, we used generic exemplars, which we designed to act
as templates guiding the LLMs, akin to the established prac-
tice in few-shot prompting experiments. We crafted three
generic exemplars, unrelated to the 45 databases in our pri-
mary experiment, and randomly selected one to serve as a
prompt example.

• Experimental Condition (Domain-Specific Exemplars):
Under the experimental condition, exemplars were tailored
to address the same domain concept pertinent to the question

1https://github.com/boschresearch/DomainQuery
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Figure 1: A single database in the DomainQuery dataset. Each dataset item, or a database, includes a) tables, b) a custom domain
concept relevant to the tables, c) definition of the domain knowledge, d) a natural language analysis query that includes the
domain concept, e) code analyzing the query, and f) insights generated by ChatGPT after executing the code

Figure 2: Structure of the initial prompt in the conversation: preamble, data profile, instruction (ReAct framework [22]),
exemplar, and user question. The exemplar used in our within-subjects experiment was either a domain-specific one or a
randomly chosen generic one. Note that domain concept definition is not included in the exemplar as the goal of the experiment
is to examine whether LLMs can infer domain knowledge from code.
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Figure 3: Evaluation interface for human raters to analyze the results. One response was generated using a domain-specific
exemplar, while the other was generated using a randomly picked, generic exemplar. The order of these responses is randomized.

posed. For instance, if the analysis involved "Performance
Impact Score", the domain-specific exemplar provided
would include Python code and insights relevant to a similar
question within the scope of this concept.

Domain knowledge such as domain concept definition was inten-
tionally omitted from the prompts to assess whether LLMs could
infer the necessary information from the exemplar code rather
than from explicit domain descriptions. We chose to use code as
exemplars instead of prompting domain concept descriptions for
two reasons: (1) First, domain knowledge relevant to analytics of-
ten lacks comprehensive documentation in enterprises; (2) Second,
code as a specialized language has shown potential in reasoning
tasks [2, 8]. Converting natural language to code can result in the

loss of important information and may not be as stable as using
code as exemplars.

For each of the 45 databases in the DomainQuery dataset, the
experimental interface provided participants with:

• Tables present within the database
• A data analysis question related to the database incorporat-
ing a domain concept (from DomainQuery)

• The definition of the domain concept (visible only to the
participant, not the LLM)

• Two side-by-side responses to the question, each includ-
ing a Python code, a visualization, and insights, one gener-
ated from a domain-specific exemplar and the other from
a generic exemplar, presented in a randomized order (see
Figure 3).
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Figure 4: Comparison of Raters’ Scores for Data Analysis Responses: Generic vs. Domain-Specific Exemplars

• Six Likert-scale questions to rate each response on accu-
racy, conciseness, relevance, comprehensiveness, depth of
understanding, and overall quality

• A prompt for the participant to indicate their preferred an-
swer between the two options (A or B)

We recruited three Computer Science graduate students from a
leading research university as our preliminary raters. Each evalua-
tor was assigned to rate the responses for all 45 databases from the
DomainQuery dataset within 24 hours. The raters were briefed on
the evaluation criteria without disclosing the underlying mecha-
nism of response generation. Each participant was compensated
$100 for their time and effort.

3.3 Preliminary Findings
The three raters significantly favored the domain-specific LLM out-
put (113 out of 135) over the generic LLM output (22 out of 135);
a binomial test showed statistical significance (p<0.001). For all
metrics, the domain-specific LLM output received higher average
ratings compared to the generic LLM output (refer to Figure 4). The
t-statistics are positive for all metrics, indicating that the domain-
specific mean is consistently higher than the generic mean. All
p-values are well below the standard significance level of 0.05, indi-
cating that the differences in ratings between the domain-specific
and generic conditions are statistically significant for all metrics.

While it may not be surprising to observe the result, it is inter-
esting to examine how the LLM interpreted the domain concepts.
Taking "Actor Performance Index (API)" as an example, which
is defined as "dividing the actor’s age by the number of musicals
they have performed in", we observed its interpretation in different
conditions. In the Domain-specific condition, the LLM was pre-
sented with an example use case, "Who are the top 5 actors with the
highest Actor Performance Index (API)?", along with Python code to
visualize this question. The LLM successfully captured the code that
calculates this concept and applied it in a new question "Could you
visualize the distribution of Actor Performance Index (API) among
actors via a histogram? ". Conversely, in the Generic condition, the
LLM was presented with a use case of another concept. And it
interpreted "Actor Performance Index (API)" as "multiplying

the actor’s age by the number of musicals they have performed in",
which is close but incorrect.

In some Domain-specific cases, the LLM made mistakes by over-
looking the code exemplar but relying on its own interpretation
based on the domain concept name. We hypothesize that the perfor-
mance is linked to the semantic intuitiveness of the domain concept.
It could prove insightful to prompt LLMs and inquire about their
understanding of the domain concept given its name versus given
code exemplars.

Since GPT is designed to predict the next token in response to a
question, it is challenging to determine whether it "understands"
the domain concept, or it is just mimicking the code in the exemplar.
In DomainQuery, the questions we designed for the exemplar and
for the task are quite similar, as in the case we have discussed above.
The LLM can achieve correct results by simply copying the code
in the exemplar. In the real world, domain knowledge includes a
variety of content, from concept definition to data analysis tech-
niques. Future work should aim to evaluate LLMs’ performance in
scenarios where a thorough understanding of domain knowledge
and the ability to modify existing code to adapt to new questions
are needed.

4 CONCLUSION AND FUTUREWORK
Our findings empirically support the hypothesis by demonstrating
that GPT-4, when provided with domain-relevant exemplars, sig-
nificantly outperforms its generic counterpart in domain-specific
data analysis across all evaluated metrics. In the Domain-specific
condition, each data analysis question was prompted with one
exemplar containing the exact same domain concept. In the real
world, we recognize the need for a mechanism that enables LLMs
to autonomously identify and utilize exemplars pertinent to their
current domain of analysis. Such a mechanism is vital for scalability,
as it removes the bottleneck of manual exemplar selection, ensuring
that LLMs remain effective across diverse domains and large-scale
applications. In conclusion, this paper contributes to the evolving
field of domain-specific data analysis by empirically validating the
enhanced performance of LLMs with domain-specific exemplars
and by opening the doors to future advancements in automated,
context-aware data science workflows.
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