FUNCTION PRUN(N,PROB) UNION 1
DIMENSION PROB(50), PSUM(50), TERM(50) UNION 2
c PROGRAM TO DETERMINE THE PROBABILITY OF THE
UNION OF UNION 3
c N(MAXIMUM 50) INDEPENDENT, BUT NOT MUTUALLY
EXCLUSIVE EVENTS UNION &
c UNION 5
c PRUN=PROBABILITY OF THE UNION UNION 6
[+ N=NUMBER OF EVENTS INCLUDED UNION 7
[4 PROB(I)=PROBABILITY OF THE I-TH EVENT UNION 8
c TERM(R)=R-TH TERM IN THE N-TERM EXPRESSION
FOR PRUN UNION 9
c PSUM(I)=T~TH OF (N~R41) PARTIAL SUMS IN TERM(R) UNION 10
[¢ UNION 11
c INITIALIZATION OF VARIABLES UNION 12
DO1J=1,N UNION 13
PSUM(J)=040 UNION 14
1 TERM(J)=0.0 UNION 15
TERM(N)=1,0 UNION 16
PRUN=0.0 UNION 17
[+ UNION 18
[4 EVALUATION OF PARTIAL SUMS AND TERMS OF PRUN UNION 19
DO2J=1,N UNION 20
TERM(1)=TERM(1)+PROB(J) UNION 21
TERM(N)=TERM(N) *PROB(J) UNION 22
2 PSUM(J)=PROB(J) UNION 23
IF(N=2)7,746 UNION 24
c EVALUATION OF MIDDLE (N~2) TERMS OF PRUN UNION 25
6 I2=N=1 UNION 26
J2=N UNION 27
DO4I=2,I2 UNION 28
J2=J2w1 UNION 29
K2=J2+1 UNION 30
DOL4JI=1,J2 UNION 31
PSUM(J)=0.0 UNION 32
K1=J+1 UNION 33
DO3K=K1,K2 ONION 34
3 PSUM(J)=PSUM(J)+PROB(J)*PSUM(K) UNION 33
4 TERM(I)=TERM(I)+PSUM(J) UNION 36
[+ UNION 37
[4 SUMMATION OF N TERMS OF PRUN UNION 38
7 SIGN==1.0 UNION 39
DO5J=1,N UNION 40
SIGN==-SIGN UNION 41
5 PRUN=PRUN+SIGN*TERM(J) UNION 42
RETURN UNION 43
END UNION Ly
Fia. 1
be determined; i.e.
n n
P(U1 Ea> = Z Pz'
a= i=1
(7)
n n—r+l n—ril
r—1
+ 2 (=D X 2 PiSea,-
re=2 i=1 j=itl

The number of arithmetic operations is reduced in (7) to
N=2n—-1)

+i{["glzm_wl)ﬂ]ﬂn_n\ (8)

r=2 f ;
ie.

N=2n—1)+ 2l —r+1 + @=L (9

For n as small as 10 the savings in time and storage
space are considerable. For the minimum storage con-
dition 6898 arithmetic operations are required at n = 10.
By using the algorithm presented here, this can be re-
duced to 339 operations. At the same time the required
storage space is reduced from 252 locations under the
minimum time condition to 30 here.

Figure 1 shows a listing of the algorithm coded as a
FortrRAN FUNCTION SUBPROGRAM.

REecEIvED NOVEMBER, 1967; REVISED MARCH, 1968

REFERENCE

1. WiLks, 8. 8. Mathematical Statistics. Wiley, New York, 1962,
p. 12.

Volume 11 / Number 9 / September, 1968

ALGORITHM 336

NETFLOW [H]

T. A. Bray anp C. WritzGaLyL
(Reed. 2 Oct. 1967 and 20 May 1968)

Boeing Scientific Research Laboratories, Seattle, WA
98124

KEY WORDS AND PHRASES: capacitated network, linear pro-
gramming, minimum-cost flow, network flow, out-of-kilter
CR CATEGORIES: 5.32, 541

procedure NETFLOW (nodes, arcs, I, J, cost, ki, lo, flow, pt,
INFEAS);
value nodes, arcs; integer nodes, arcs;
integer array I, J, cost, hi, lo, flow, pi; label INFEAS;
comment This procedure determines the least-cost flow over an
upper and lower bound capacitated flow network.

Each directed network arc a is defined by nodes I[a] and Ja],
has upper and lower flow bounds kz[a] and lo[a], and cost per unit
of flow cost[a]. Costs and flow bounds may be any positive or
negative integers. An upper flow bound must be greater than or
equal to its corresponding lower flow bound for a feasible solu-
tion to exist. There may be any number of parallel arcs connect-
ing any two nodes.

The procedure returns vectors flow and pi. flowla] is the com-
puted optimal flow over network arc a. pi[n] is a number—the
dual variable—which represents the relative value of injecting
one unit of flow into the network of node n. NETFLOW may be
entered with any values in vectors flow and p?¢ (such as those
from a previous or a guessed solution) feasible or not. If the
initial contents of flow do not conserve flow at any node, the
solution values will also not conserve flow at that node, by the
same amount.

This procedure is a revision (see remark by T. A. Bray and C.
Witzgall [1]) of Algorithm 248 [2]. Like the original, it follows
the out-of-kilter algorithm described by D. R. Fulkerson [3]
and elsewhere. It follows the RAND code by R. J. Clasen (For-
TRAN) in three instances, using a single set of labels na, which
correspond to the nb of Algorithm 248, avoiding superfluous
tests in the part following BACK (for instance, ¢ > 0 A flow[a] <
lola] is equivalent to ¢ > 0 at this point of the program), and
taking advantage of the fact that arcs remain in kilter and need
not be rechecked again. In addition, the convention inf = —1
is adopted in order to permit costs and bounds of value around
99999999 without their interfering with the initiation of mini-
mum search.

REFERENCES:

1. Bray, T. A., anD Witzearr, C. Remark on Algorithm 248,
NETFLOW. Comm. ACM 11 (Sept. 1968), 633.

2. Brices, Wirniam A, Algorithm 248, NETFLOW. Comm.
ACM 8 (Feb. 1965), 103.

3. FuLkerson, D, R. An out-of-kilte method for minimal-cost
flow problems. J. Soc. Ind. Appl. Math. 9 (Mar. 1961),
18-27;

vCommunications of the ACM 631

http://crossmark.crossref.org/dialog/?doi=10.1145%2F364063.364085&domain=pdf&date_stamp=1968-09-01

begin
integer a, aok, c, cok, del, eps, inf, lab, m, n, src, snk;
integer array na[l: nodes];
integer procedure minp(z,y); value z,y; integer z,y;

begin
ifz <y Az 2 0then minp := z else minp := y
end minp;
comment check feasibility of formulation;
for a := 1 step 1 until arcs do
if lo[a] > hi[a] then go to INFEAS;
inf 1= —1;
comment find out-of-kilter arc;
for aok := 1 step 1 until arcs do
begin

cok := costlaok] + pi[Ilaok]] — pi[Jlaok]];

TEST: if flowlaok] < lolaok] V (cok <O flowlaok] <hilaok]) then

begin
src 1= Jlaokl; snk := Ilaok]; nalsrc] := + aok;
go to LABL

end;

if flow[aok] > hifaok] V (cok>O0A flowlaok]>1lolaok]) then
begin

src 1= Ifaok]; snk := Jaok]; mnalsre] := —aok;
go to LABL

end;

comment arc aok is in kilter;

go to NEXT;

comment arc aok is out-of -kilter, clear all labels but source
label, start new labeling;

LABL: forn := 1 step 1 until sr¢c — 1, sr¢ + 1 step 1 until
nodes do naln] := 0;
LOOP: lab := 0;

XA

XB:

XC:

XD:

632

comment switch set for determining whether a pass thru
the list of arcs yields a new label;
for g := 1 step 1 until arcs do
begin
if (na[Ila]l=0AnalJ[a]]=0) V (na[I[a)]>0AnalJ[a]]%0) then
go to XC;
¢ := costfa] + pillla]]l — pilJlall;
if na[Ila]] = 0 then go to X A4;
if flowla] = hi[a] V (flow[a]=lo[a]Ac>0) then
go to XC;
nal/[a]] := +a; go to XB;
: if flowla] £ lola) V (flow[a] <hila]A\c<0) then
go to XC;
nallla]] := —a;
lab := 1;
comment node labeled, test for breakthru;
if na(snk] £ 0 then go to INCR;
end no breakthru;
if lab # 0 then go to LOOP;
comment nonbreakthru, determine change to p¢ vector;
del = inf;
for a := 1 step 1 until arcs do
begin
if (nalIla]]=0AnalJ{al]=0) V (na[I[a]] =0AnalJ[a]]>0) then
go to XD;
¢ = costla] + pillla]] — pilJ(al)l;
if nal/[a]] = 0 A\ flow[a] < hi[a] then
del := minp(del,c);
if nalJa]] = 0 A flowla] > lola] then
del := minp(del,—c);
end;
if del = inf then
begin
if flowlaok] = hilaok] V flow[aok] = lo[aok] then
del := abs(cok)
else go to INFEAS

Communications of the ACM

end exit, no feasible flow;
comment change p7 vector by computed del;
for n := 1 step 1 until nodes do
if na[n] = 0 then pi[n) := piln] + del;
comment test whether aok is now in kilter;
if del = abs(cok) N\ flowlaok] > lolaok] N flowlaok]
< hi[aok] then
go to NEXT;
cok := costiaok] + pi[llack]] — pilS[aok]];
go to LOOP;
comment breakthru, compute incremental flow;

INCR: eps := inf; n := src;
BACK: a := na[n];

if ¢ > 0 then
begin
m = Ilal;
if costla] + pi[m] — piln] > 0 then
eps = mainp(eps, lola]—fAow|al)
else eps := minp(eps, hila]—flowla])
end
else
begin
m = J[—al;

if cost[—a]l + pi [n] — pi [m] < 0 then
eps = minp(eps,flow[—a]—hi[—al)
else eps := minp(eps,flow[—al—lo[—al)
end;
n = m; if n = src then go to BACK;
comment change flow by eps;

BACK2: a := na[n];

if a > 0 then
begin

m = Ila]; flowla] := flowla] + eps
end
else
begin

m = J[—a]; flow[—a] := flow]—a] — eps
end;
n = m; if n 7 src then go to BACK2;
comment test whether aok is now in kilter;
go to TEST;

NEXT:
end find next out-of-kilter are
end NETFLOW with a feasible, optimal flow

COLLECTED ALGORITHMS FROM CACM
19611967
An ACM Looseleaf Service
Subscriptions: ACM Memberst $15; Nonmembers, $25

Prepaid orders to: Order Department, ACM, 211 East
43 Street, New York, NY 10017

Volume 11 / Number 9 / September, 1968

ALGORITHM 337

CALCULATION OF A POLYNOMIAL AND ITS
DERIVATIVE VALUES BY HORNER SCHEME [C1]
W. Paxkiewicz (Recd. 28 Mar. 1968 and 16 May 1968)
Warszawa - 1, AL 3-go Maja 2/68, Poland

KEY WORDS AND PHRASES: function evaluation, polynom-
ial evaluation, Algol procedure, Horner’s scheme
CR CATEGORIES: 5.12, 4.22

procedure horner (n,a,k,r,z0,b); value n,k,z0,b;
integer n,k; real z0; Boolean b; array a,r;

comment If b is true the procedure calculates and stores in r[z]
the value of

di (2} alflXz 1 j)/dat
=

and z = 20 for ¢ = 0,1, --- , k. If b is false it ealculates and
stores in the array r the values of the first k+1 coefficients of
the expansion of the polynomial in a power series in the neigh-
borhood of 20, i.e.

j;oaLj] Xzlj= gorm X (z—20) 1 i.

Here n is the degree of the polynomial whose coefficients are
given by a[0:n]. It is assumed that 0< k< n. If k = 0 only
the value of the polynomial is calculated. If b is false the choice
k = n would be most useful.

This algorithm is essentially equivalent to Algorithm 29
[Comm. ACM 38 (Nov. 1960), 604] in terms of quantities com-
puted, but the application of Horner’s scheme significantly
reduces the number of operations.

Example 1. For the polynomial of degree n = 5: w(z) =
z2T54+2X214—-3Xz134+8X%x 12-7X2z+11,
k=220 = 2andb = true, the following was obtained: r[0] =
69, r[l] = 133, r[2] = 236, i.e. w(2) = 69, w'(2) = 133 and
w”(2) = 236.

Ezample 2. For the polynomial of degree n = 7: w(z) =
xT7—7XxT5+6XzT4+4XzT3—xT2—
2Xz—9, k=17 20=2andb =false the following vector »
was obtained: 15, 122, 279, 332, 216, 77, 14, 1, i.e., the given
polynomial can be expressed in the form: w(z) = 15 + 122 X
(F=2) + 279X (2—2) 1 2+ 332X (—2) T 3+ 216 X (+—2)
T4+7TX @-2) 1 5+14X (z—2) 1 6+ (-2 T

begin
integer 7, j, I; real rr;

rr 1= al0];

for ¢ := 0 step 1 until & do
rig) := rr;

for j := 1 step 1 until » do

begin

7[0] := r[0] X 20 + a[j];
l:=ifn — j> kthen k else n — j;

for i := 1 step 1 until ! do
rli] 1= r[¢] X 20 + r[i—1]
end;
if b then
begin
l:=1;
for ¢ := 2 step 1 until k do,
begin
l:=1X71;
r[i] = r[{] X 1
end
end

end horner

Volume 11 / Number 9 / September, 1968

REMARK ON ALGORITHM 248 [H]

NETFLOW [William A. Briggs, Comm. ACM 8 (Feb.
1965), 103]

J. H. Hexperson, R. M. Knapp, ANp M. E. VoLBERDING
(Reed. 7 Apr. 1966)

Northern Natural Gas Company, Omaha, Neb.

KEY WORDS AND PHRASES: capacitated network, linear
Programming, minimum-cost flow, network flow, out-of-kilter
CR CATEGORIES: 5.32, 5.41

Algorithm 248 was transeribed into Burroughs Extended ALcoL
for the Burroughs B5500. After modification it has been used suc-
cessfully. Before modification it was found to give erroneous
values of p? for transportation problems and nonoptimal solutions
for networks representing multitime level trans-shipment prob-
lems. This was caused by the method utilized within the procedure
for exiting with the best solution. The difficulty was circumvented
by inserting a statement just before label SKIP reading:

if nb [src] = arcs then go to FINI;

This statement enables the user to exit the procedure without a
pass through the p7 incrementation block and a final pass through
the out-of-kilter arc-finding block, saving a significant amount of
time on sizeable problems. With the arcs arranged so that the arc
directed from the “super sink’’ to the ‘“‘super source’’ is the last
one in the arc array, it must be the last arc remaining out-of-
kilter. Therefore, by the time the search block discovers it as an
out-of-kilter are, an optimal solution has already been found.

[Algorithm 336 [Comm. ACM 11 (Sept. 1968), 631-632] is an
improved version of Algorithm 248, which by its very construction
bypasses this error.—J.G.H.]

REMARK ON ALGORITHM 248 [H]

NETFLOW [William A. Briggs, Comm. ACM 8 (Feb.
1965), 103]

T. A. Bray anp C. WITZGALL
(Reed. 2 Oct. 1967 and 20 May 1968)

Boeing Scientific Research Laboratories, Seattle, WA
98124

KEY WORDS AND PHRASES: capacitated network, linear
programming, minimum-cost flow, network flow, out-of-kilter

CE CATEGORIES: 5.32, 541

We found that
1. in the statement
¢ = costla] — abs(pi[ni]—pilnjl) X sign(nbnil);
on page 103, column 2, line 3 from below,
the “‘abs’’ should be deleted.
2. in the statement
LABL: if a = aok N nalsrc] = 0 then go to SKIP;
on page 103, column 2, line 13 from above,
the value of nalsr¢] may be undefined.

The algorithm worked satisfactorily after the corresponding
changes had been made. We acknowledge a correspondence with
R. M. Van Slyke and R. D. Sanderson of the University of Cali-
fornia, Berkeley, on the subject.

Algorithm 336 [Comm. ACM 11 (Sept. 1968), 631-632} is an im-
proved version of Algorithm 248 incorporating these changes.

Communications of the ACM 633

