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Numerical Solution of a Thin 
Plate Heat Transfer Problem 
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The numerical solution of a system of linear equations resulting 
from a discrete approximation to a thin plate heat transfer 
problem is considered. The slow convergence of point iterative 
methods is analyzed and shown to be caused by one of the 
boundary conditions. The difficulty may be removed by a 
standard line iterative technique. 

KEY WORDS AND PHRASES: heat transfer problem, Poisson equation, 
boundary value problem, thin domain, successive overrelaxatlon (SOR), 
block SOR 

CR CATEGORIES: 3.20,5.17 

1. Introduct ion  

We consider a two-dimensional heat transfer problem 
in a long, thin rectangular plate which is itself generating 
heat. Three of the boundaries of the plate are insulated 
while heat is being transferred across the fourth boundary 
by forced convection. 

The problem is to establish the steady state tempera- 
ture distribution throughout the plate. An at tempt  to 
solve the system of difference equations corresponding to 
this problem (Section 3) by point successive overrelaxation 
(SOR) resulted in exceedingly slow convergence. In Sec- 
tion 4 an informal analysis is given to show that  the slow 
convergence is caused by the convective boundary condi- 
tions. In Section 5 we describe how the problem was finally 
solved using a line iterative technique which treats simul- 
taneously all finite difference equations and boundary 
conditions associated with a vertical line of the mesh. 

2. S t a t e m e n t  of  the  Problem 

The problem is mathematically formulated as the fol- 
lowing system, where Q is the heat generation rate in the 
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plate, /c is the thermal conductivity of the plate, Ta  and 
T~2 are constant "sink" temperatures, h~ and h2 are the 
film coefficients, l~ and ly are the length and width of the 
plate, and OT/On is the outward normal derivative of T 
along the appropriate boundary. 
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In the numerical example considered, the orders of 
magnitude of the constants appearing in eqs. (1) to (3) 
a r e Q N 1 0 6  ' k ~ 1 0 ,  l ~ 1 0  -1 , l u ~ 1 0  -4 , h , ~  10, 
and Ts~ ~ 102 • 

3. The Finite  Difference Equat ions  

The difference equations are obtained by subdividing 
the plate into rectangular regions and approximating the 
derivatives in eqs. (1) to (3) by differences of tempera- 
tures. The nodal temperatures are labeled Ti, ~ (i = 
1, 2, . . . ,  m; j = 1, 2, - . .  , n). The spacings between 
points are hx = l~/(n -- 1) and hy = lu/(m - 1) along the 
x and y axes. 

With standard approximations, the difference equations 
for eqs. (1) to (3) can be written in the form: 

2(h2 + hv2)T~,i = h~2(T~_~,i + T~+~,i ) 

+ hy2(T~.s_l + Ti,i+l) + ~ h~2h~ 2, (4) 

i = 2 ,  . . .  , m - - l ;  j = 2 , . . .  , n - -  1, 

T~,i = Ti,2, i = 2 , . . . , m - -  1, 

Ti, ,  = Ti . ,_ l ,  i = 2 , . - . , m - -  1, (5) 

Ti.j = T~,j, j =  2 , . . . , n - -  1, 

T~,~ = X~T~_~,j + (1 -- X,)T,~, 
(6) 

j = 2, . . . , n - - l ;  v = 1,2, 

where 

X, = (1 -t- hahn~k) -1. 
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As the referee has noted, eqs. (5) and (6) can be re- 
formulated so that  the truncation error is reduced [1, 2]. 
This reformulation does not affect the main result of this 
paper, although it does complicate the analysis somewhat. 

Standard methods [3] establish the convergence of the 
Gauss-Seidel and SOR iteration schemes for eqs. (4) to 
(6). In practice, however, the convergence of these itera- 
tion methods was very slow, whatever overrelaxation 
factor was used. An analysis of the entire problem was 
performed which showed why this slow convergence could 
be expected. Rather  than present the complete analysis, 
we shall instead analyze a modified form of the original 
problem which shares its salient features. 

4. A O n e - d i m e n s i o n a l  A n a l o g u e  

The modified problem is a one-dimensional analogue of 
the original problem along a vertical line. I t  is motivated 
by the fact that  the vertical temperature profiles all have 
about the same shape. 

The problem is 

d~T Q 
dy 2 k ' 

dT ~=o = O, 

I ts  solution is 

O < y < l ~ ,  

d T  = h( T~ -- T ) .  k c~y ~=zy 

(7) 

Q 
T ( y )  - 2k (y~ -- 1~2) + ~ ly + T , .  

The difference equations for (7) then become 

2T~ = T~_~-4- T ,+ l+h~2Q/k ,  i =  2 , . - - , m - -  1, (8) 

T~ = T~, T~ = XT~_~ + (1 --  X)T , ,  

where 

= (1 A- hvh /k ) -L  

Note that  when h~h/k is small, as will happen when the 
plate is sufficiently thin, X is near unity. 

System (8) can be written as a matrix equation 

A T  = b, (9) 
where 

A = 

and 

; 
- - - -  1 

0 

- 1  0 

-i [o 

-½ 1 -½ 

--X 1_ 
hY2Q 2(1 X)T,' T 

' k ~ 
2b= 

T (T1 , T  r ~ " ' °  ~ )  • 

The point Jacobi matrix for eq. (9) is 

I 
0 1 0  

½ o  ½ o 
B ~ . . -  . 

o ½ o 

Let p(B) be the spectral radius of B. Then [3] 

x < p(B) < 1. 

The optimum overrelaxation factor, ~b, and the asymp- 
totic convergence rate, R~,  for the SOR iteration method 
are given by 

2 
and R~ = --ln(oob -- 1). 

O~b = i + %/i -- p2(B) 

In the limit the number of iterations to reduce the error in 
the solution by  a factor of e will be about 1 / R ~ .  For 
example, with m = 11, we have h ~ .99999, wb >= 1.991, 
R~ =< .009 and 1 /R~  ~ 110. Therefore, we would expect 
slow convergence of the SOR method. 

The main point to note is tha t  the rate of convergence 
depends on the parameter X which airses from the con- 
vective boundary condition. If  h is near unity, as it must 
be when the plate is thin or the mesh is fine, then the con- 
vergence must be slow. All this suggests that  if some way 
could be found to remove h from the original problem, 
then the convergence would be faster. In the next section 
we do this by resorting to a line iterative method. 

5. M e t h o d  o f  S o l u t i o n  

The slow convergence was due to the presence of the 
convective boundary condition. We can satisfactorily 
overcome this difficulty by using a line iterative technique 
which simultaneously treats all finite difference equations 
and boundary conditions for each vertical line of the 
mesh. This is done as follows. 

Let  
T T~. = ( T 1 d , ' " ,  ,,d). 

Then eqs. (4) to (6) can be written in the block matrix 
form [?P D~ --P 

--P D~ 
--p 

where 

and 

~ 1  IT2 C2 

D, LT,~-~J LC~-d 

r h~ ~ - h~ 2 0 1 
| -  h~ q - h~ 

D, l [ ' l - h~2 q - h ~  

0 -- h~ 2 h~2/X,J 
q = 2(hJ + by2), 

0 0] 
h~2 1 

P =  ~ • 
h~? 

0 0 
Observe that  the boundary conditions on the left-hand 
and right-hand sides of the plate have not been in- 
cluded. 
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This block matrix equation generates a natural block 
Gauss-Seidel iteration scheme as follows. 

D ~r(k+l) pT~k) ~ 2  = + C~ 

D~T~ k+l) = PT~ ~+l) + PT~ k) + C3 

D re(k+1) r~m(k+I) p T ( ~ l  
, ~ . - ~  = ~-1,,-3 + + C.-2 

D m(k+l) D rD(k-I-1) 
r.l- n--1 ~ .E . I  n- -2  "-~ C n - 1  • 

The missing boundary conditions may be adjusted after 
each application of these equations. 

The proposed iterative scheme requires that  the system 
of equations involving the D~ be solved. Since the D~ are 
positive definite [3], the solution of each of the above equa- 
tions by Gaussian elimination without pivoting is stable 
[4]. Since the D~ are tri-diagonal, the number of operations 
involved in their solution will be within the range of 
practicability. A further savings of computations can be 
effected by taking advantage of the fact that  the D, are 
identical except for their last diagonal element. 
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Hutchinson states that the "new" (prime modulo) multiplicative 
cong ruential pseudorandom generator, attributed to D. H. Lehmer, 
has passed the usual statistical tests for random number gen- 
erators. It is here empirically shown that generators of this 
type can produce sequences whose autocorrelation functions up 
to lag 50 exhibit evidence of nonrandomness for many multi- 
plicative constants. An alternative generator proposed by 
Tauswor'the, which uses irreducible polynomials over the field 
of characteristic two, is shown to be free from this defect. 

The applicability of these two generators to the IBM 360 
is then discussed. Since computer word size can affect a gen- 
erator's statistical behavior, the older mixed and simple con- 
gruential generators, although extensively tested on computers 
having 36 or more bits per word, may not be optimum genera- 
tors for the IBM 360. 
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The procedure outlined above was tried on the problem 
with m = 11. The starting values used were those pre- 
dicted by the one-dimensional model. After approxi- 
mately 250 iterations the procedure became stationary. 
This fast convergence was expected, since we incorporated 
the convective boundary conditions into the equations 
involving the D , ,  which were solved directly. No a t tempt  
was made to overrelax the method. The problem was also 
solved analytically using Fourier series. The values of this 
solution agreed very well with the values of our numerical 
solution. 
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~1, C.om~)ations f r o m  t h e  L e h m e r  G e n e r a t o r  

Hutchinson [1], and earlier, Holz and Clark [2, 3], 
Greenberger [4], and D. H. Lehmer [5], have suggested a 
method, attributed to Lehmer, for obtaining uniform 
pseudorandom numbers by means of the generators: 

Yi+l = A Y ,  mod (p), (1) 

where p is the largest prime less than some 2". 
In this note we investigate certain empirical and theo- 

retical properties of autocorrelation functions or "eorrelo- 
grams" calculated from sequences of numbers generated 
by several different pseudorandom generators. 

The autocorrelation function is a measure widely used 
in studying stochastic processes, especially in applied 
fields such as brain research, geophysics, and oceanography 
[6]. If  we let X~, i = 1, 2, • • • be a sequence from a zero 
mean stochastic process, then we may define the auto- 
correlation function of a sample of length N, from this 
sequence, as 

1 
Xi  X~+t . (2) R( t )  = ~ ~=1 

(Such a sequence can be generated by letting X~ = Y~ -- 
(p + 1)/2.) What  we in fact employ in this note is the 
normalized autocorrelation function, defined by  

R~=(t) = R(t)/R(O), (3) 

where the symbol R~=(t) is used to distinguish the auto- 
correlation function from the cross-correlation function 
R=(t). 
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