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The use of decision tables as a tool in systems analysis and for 
program specification is now becoming accepted. Rules on 
redundancy, contradiction, and completeness for limited entry 
tables were published in 1963. These are usually used for check- 
ing, preceded if necessary by a conversion from extended to 
limited entry form. Processors which automatically translate 
tables to more conventional program usually base their diag- 
nostic facilities on these rules. In this paper it is suggested that 
these rules are unsatisfactory and that the important aspect of 
checking is to eliminate ambiguity from tables. Ambiguity is 
defined and discussed, and a procedure for producing checked- 
out decision tables is proposed. The theoretical basis of the 
algorithm used is established. The importance of well-de- 
signed diagnostic facilities in decision table processors is 
emphasized. 
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l .  I n t r o d u c t i o n  

I n  this paper  ambigui ty  in limited entry decision 

tables is discussed and diagnostic facilities and checking 

procedures for dealing with it are suggested. I t  is as- 

sumed tha t  the reader is familiar with the conventions 
and notat ion involved. For a general review of the subject 
including a bibliography, see [5]; a bibliography is also 
given in [3]. 

I t  is basic to decision table notation tha t  only one of the 
action sets specified in a table is carried out for each piece 
of data.  The function of the condition section, therefore, 
is to decide which of the distinct action sets of the table is 
to be carried out for a given piece of data.  In  a well-con- 
structed table this will be done unambiguously.  I f  a 
table is not well constructed in this sense, it will fail to 
determine, for some particular piece of logically permis- 
sible data, a unique action set. I n  this case we say the 
table is ambiguous. A formal definition of ambigui ty  can 
thus be given: 

A decision table is said to be ambiguous if, ignoring the else 
rule, there is a logically permissible piece of data which 
satisfies the condition entries of two rules having different 
action sets. 

Consider the example shown in Figure 1. This is not a 
complete decision table as there is no action section. Also, 
the exact nature  of the conditions is unspecified. 

Whatever  the conditions, it is clear tha t  in any particular 
case R~ and R~ cannot both  be satisfied. This is bec.ause 
Ri requires a No outcome for Ca whereas R2 requires a 
Yes outcome. Similarly none of the rule pairs, {R,, R3}, 
{R~, R4}, {R2, R3}, and {R~, R4}, can be satisfied simul- 
taneously, for in each case one rule requires a Yes o u t -  

come to a condition test  for which the other requires a No. 
However,  Ra and R4 are both satisfied if there is a No 
outcome for all three condition tests. On the basis of 
the information in Figure 1 there may  be ambiguity 
between R3 and R4. This indicated ambigui ty  may  be 
real or may  be only apparent .  I f  real, it indicates an error 
requiring correction as the table cannot be well formed in 
the sense discussed. I f  only apparent ,  no action is re- 
quired. This lat ter  will be the case if a simultaneous No 
outcome for all three conditions is logically impossible, 
or if the actions for the two rules are identical. 

R, R2 R, R4 E 

C1 Y Y - -  N 
Ca Y - -  N --  
Ca N Y N - -  

F I G .  I 

Ri R2 

Age < 18 Y - -  
Age >65 - -  Y 

GO TO 1 2 

FiG. 2 

Ra 

N 
N 

The first type  of apparent  ambigui ty  is illustrated in 
Figure 2. Here  a Yes outcome for both conditions is clearly 
impossible, and the table is unambiguous. I t  satisfactorily 
determines, in all circumstances, the required action. This 
is because the conditions are not independent but  related 
in a particular way. A Yes outcome to the first implies 
tha t  a No would result if the second were tested. Note  
tha t  this does not affect the interpretation of the dash 
entry for C2 in R, which is still tha t  of basic decision table 
format,  namely tha t  C2 is not relevant to deciding whether 
R, holds and hence need not be tested, or if tested the re- 
sult should be disregarded. Tha t  is, the interpretation of 
R1 is " i f  C~ t h e n  Ai." This implies nothing about  the re- 
sult if C2 is, in fact, tested when R1 holds. In  the case of 
Figure 2 this would be a No because of the relation be- 
tween the conditions. For  a similar table where the condi- 
tions were independent or dependent in a Way not having 
this implication, then testing C2 might give either a Yes 
or a No. 

The second type  of apparent  ambigui ty  is i l lustrated 
in Figure 3 which gives the rules for combining two 
digits d~ and d~ which may  have values 0 or 1. The result is 
1 if either or both  is 1, and 0 only if they are both  0. 

I f  both  digits are 1 then the program derived from the 
table may  behave as though R~ were satisfied or as though 

d l = 0  
d2 = 0 

result := 0 X 
result := 1 

FIG. 3 

R, R2 R3 

Y N - -  
Y - -  N 

x x 

Ra were satisfied depending upon the translation process 
used. However,  as the action is the same in  both cases, 
this is immater ia l ,  and there is no ambiguity.  

We assume tha t  it is not practical or desirable to con- 
struct  decision table processors which investigate the na- 
ture of the conditions. F rom the point  of view of the 
processor, the information in the condition section of the 
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table is of the type shown in Figure 1. While it would be 
possible to deal with simply related conditions like those 
of Figure 2, relations between the condi¢ions may be very 
complicated and not amenable to programmed investiga- 
tion. The approach suggested in Section 2 is that  of a 
dialog between the person analyzing the problem and 
constructing the table and the processor. 

A different approach has been suggested and is given 
by Pollack in [7]. This assumes the entries in the condi- 
tion stub are independent, and a definition of this is 
given. I t  appears, however, tha t  this assumption is fre- 
quently disregarded when Pollack's theory is applied, and 
his rules for checking are taken to apply to decision tables 
in general. Thus his ideas are reiterated in [3] and have 
been used in the construction of the DETAB-65 preproc- 
essor [2] without reference to the independence of con- 
ditions. If Pollack's rules are applied when conditions are 
not independent, the resulting program will still give the 
correct results. However, these rules are not satisfactory 
in these circumstances, since better  checking procedures 
are available leading to more general decision tables giving 
better program. 

In particular Pollack gives definitions of redundancy and 
contradiction for limited entry tables as follows: 

1. A redundancy exists in a decision table if two or more rules do 
not have at least one Y,N pair in any of the rows and the actions 
specified are identical. 

2. A contradiction or logic error exists in a decision table if two or 
more rules do not have at least one ¥,N pair in any of the rows 
and the actions specified are not identical. 

R1 R2 

Age < 18 Y -- 
Age >65 N Y 

GO TO 1 2 
(a) 

RI R 2 

Age < 18 Y N 
Age >65 --  Y 

GO TO 1 2 

(b) 

Fro. 4 

R~ 

N 
N 

R3 

N 
N 

First we consider the second of these definitions, tha t  for 
"contradiction or logic error." Under this, the table of 
Figure 2 would be deemed to be incorrect since R~ and 
R2 break this rule. I t  would require to be corrected by one 
of the implied No's in R~ or R~ being explicitly stated. 
Thus, to be an allowable table for DETAB-65, the table 
should be rewritten in one of the two possible ways shown 
in Figure 4. At the time of constructing the table the 
decision as to which tables to take would be arbitrary. 

A disadvantage of following this procedure and eliminat- 
ing the apparent contradiction is tha t  inefficient object 
programs may result. Suppose R~ is the most frequent 
outcome in the context in which the program is to be 

used, then the flowchart of Figure 5 is the best implementa- 
tion. This flowchart can be derived from Figure 2 but  not 
from the table in Figure 4 (a) .  This latter implies tha t  both 
conditions m u s t  be tested to establish that  R1 holds. The 
interrelationship between the conditions makes this un- 
necessary, but  this information is not available to the 
processor. For this reason the definition of contradiction 
given seems restrictive and unsatisfactory. 

FiG. 5 

We consider now the first of Pollaek's definitions: tha t  
for redundancy. If  we apply this to the table of Figure 3, 
we find that  R2 and R3 are deemed to contain a redundancy. 
Pollack's procedure given in [7] requires this to be elimi- 
nated by including a Yes either for the second condition 
in R2 or for the first condition in R3. Then, when both dl 
and d~ have the value 1, only one of the rules can be satis- 
fied. This is unnecessary from the point of view of the 
table giving unambiguously the correct result. There can be 
disadvantage in eliminating this redundancy similar to tha t  
described for Figure 2. 

A practical effect of these rules, therefore, is tha t  pro- 
grams may be obtained having longer run time than is 
strictly necessary. This conclusion has been illustrated by 
assuming that  the condition portion of the table is to be 
converted into a branching network of tests. I t  also applies 
when the method of translating tables is by an interrupted 
rule mask technique of the type described in [4]. When 
tabular features are used in real-time programming this 
might be particularly important.  The  foregoing has used 
only very simple examples to illustrate the considerations 
involved. The disadvantage indicated becomes more im- 
portant  with larger tables and more complex situations. 

A second aspect of Pollack's rules is tha t  they impose on 
the systems analyst /programmer unnecessary, burden- 
some, and what may seem to him, obscure procedures. 
From his point of view the tables in Figures 2 and 3 are 
quite clear and satisfactory in their procedure specifica- 
tion. I t  is the author's view, therefore, tha t  decision table 
facilities should allow these types of table. 

We have argued that  redundancy as defined by Pollack 
should, in general, be permitted and that  his definition of 
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"contradict ion or logic error" is unsatisfactory. If  these 
views are accepted then some other form of checking pro- 
cedure is required, and proposals for this are made in 
Section 2. We suggest tha t  it is sufficient to eliminate 
ambiguity in the sense already defined. I t  is clear tha t  this 
is not always possible without investigating the nature 
of the conditions. I t  has been suggested that  processors 
should not do this, and in some circumstances therefore 
they cannot determine that  a table is unambiguous. Iu  
these cases it will be concluded that ,  for certain outcomes, 
there is possible ambiguity. This will then have to be re- 
solved by investigating relationships between the various 
conditions. For the sake of clarity we give a formal defi- 
nition of the term "possible ambiguity" as used here: 

A decision table  is said to have possible ambigui ty  if i t  cannot  
be decided whether  or not  i t  is ambiguous wi thout  inves t igat -  
ing the  na ture  of i ts  condit ions and the  re la t ionships  between 
these conditions.  

2. A P r o c e d u r e  for  D e c i s i o n  T a b l e  C h e c k i n g  

The procedure proposed here for producing checked- 
out decision tables is that ,  when constructing the condi- 
tion section, the analyst /programmer should aim at the 
minimum number of entries necessary to define adequately 
the action of the program. Thus, if a Yes entry to one con- 
dition implies necessarily a No outcome to another con- 
dition, he should not enter this, but  indicate the outcome 
as nonpertinent.  This avoids specifying tests which would 
be incorporated in the program but  which are logically 
unnecessary. This should produce better  programs. 

A decision table processor will naturally have various 
diagnostic tests. I t  is suggested that  these should include 

test of each table for ambiguity. If  none is possible, then 
a comment will be produced to this effect. If  any possible 
ambiguities are found, then a tabulation is produced 
showing all outcomes for which these may occur. I t  is then 
the responsibility of the originator of the decision table to 
check this tabulation. He must ensure that  all outcomes 
shown are logically impossible by virtue of relationships 
between the various conditions. In  this case the compila- 
tion may proceed without any further action. If, however, 
any of the listed outcomes are logically possible then this 
indicates error in the table. The construction of a test for 
possible ambiguity is relatively simple if the program is 
based on the method outlined in Section 3. 

Figure 6 shows the output  from such a program for 
the tables previously discussed, 6(a) being that  for Figure 
2 and 6(b) that  for Figure 3. The action required from 
the originator of the table in the first case is to check that  
the Yes/Yes outcome is logically impossible and thus to 
confirm that  the table is satisfactory. No action at all 
is required in the second case as the table is quite un- 
ambiguous. More significant examples are in Section 4. 

I t  is worth noting that ,  when checked out, the tabula- 
tion of possible ambiguities is the set of a priori excludable 
combinations required for the extension of the algorithms 
given by Reinwald and Soland in [8, 9]. 

3. Bas i s  o f  t h e  P r o g r a m  

The condition section of a limited entry decision table 
can be represented by two binary matrices: the mask 
matrix, M, and the decision matrix, D. This representation 
was originally presented by Kirk [6] and is described and 
discussed in detail by King [4] where the matrices for the 
table of Figure 1 are given. If  a table has m conditions and 
n rules then these matrices have m rows and n columns. 

Let  m~, m2, • • • , m~ represent the successive columns of 
M, and d~, d2, • • • , d~ the columns of D. Each of the m~ 
and dj is a binary vector of m elements. A column of the 
mask matrix specifies a subset of the corLditions; thus m~ 
specifies the conditions pertinent to R2, a 1 indicating a 
pertinent condition, a 0 a nonpertinent condition. A column 
of the "decision matrix specifies in the positions relating to 
pertinent eorMitions the required outcomes for the rule to 
be satisfied. Thus d2 indicates the required outcomes for the 
pert inent conditions specified by m2, a 1 indicating a Yes 
outcome and a 0 a No outcome. In this way an ordered pair  
of binary vectors {mi, di} specifies the condition test out- 
comes necessary for R~ to be satisfied, m~ specifying the 
conditions involved and d~ the outcomes for those con- 
ditions. Note that  positions of d~ relating to nonpert inent 
conditions are zero. This is from the construction of the 
matrix D and is necessary for some of the manipulation 
below. I t  is not necessary, however, for the interpretat ion 
of an ordered vector pair as a set of outcomes, the positions 
in the second vector corresponding to zeros in the first 
being of no consequence in this interpretation. 

In  what follows the Boolean operators FI and 0 are used 
in the conventional way to denote the combination of 
binary vectors on an element-by-element basis as specified 

(a) RULE 1 2 3 

AGE LT 18 Y - N 
AGE GT 65 - Y N 

GO TO I 2 3 

APPARENT AMBIGUITY FOR RULE 1 
AND RULE 2 

AGE LT 18 Y 
AGE GT 65 Y 

( ~  RULE I 2 3 

DI EQ ~ Y N - 
D2 EQ ~ Y - N 

RESULT = ~ X - - 
RESULT ffi I X X 

TABLE IS UNAMBIGUOUS 

FiG. 6 

in Table I. We denote by  e a vector consisting of all l 's.  
A1, A~, • • • , A~ denote the action sets corresponding to the 
rules R 1 ,  R 2  , • • • , R ~  . 

We show that  there is possible ambiguity (in the sense 
previously defined) between R~ and Rk if and only if 

m j n d k  = mkNd~ (1) 
and 

As # Ak. (2) 

The second of these two conditions is clear; possible am- 
biguity cannot arise between two rules if the corresponding 
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T A B L E  I 

Eleraents in Operands Result wiIh f) Result with O 

0 0 0 0 
0 1 0 1 
1 0 0 1 
1 1 1 1 

action sets are identical. In this case, even if a given set of 
data satisfies the condition entries of both rules, the action 
taken by the program will be unique. In the discussion of 
the first condition we therefore assume the second to hold. 

The condition test outcomes for Rs to be satisfied are 
{ms, ds}, and the outcomes for Rk to be satisfied are 
{mk, &}. The set of conditions pertinent to either Rs or Rk 
or to both is ms U mk. This set of conditions divides into 
three disjoint groups : those pertinent to Rs but  not to Rk ; 
those pertinent to Rk but  not to Ri ; and those pertinent 
to both. These groups are specified by the vectors 
ms n (e -- ink), mk rl (e -- ms), and on s n mk respectively. 
Now for the first group, if Ri is to be satisfied, the outcomes 
must be {ms n (e - ink), ds}, and these outcomes do not 
prevent Rk from also being satisfied. Similarly for Rk to be 
satisfied, the outcomes for the second group must be 
{ink N (e - ms), dk} which do not prevent Rs from being 
satisfied. However for the third group, those pertinent to 
both Ri and Rk, we must have outcomes {ms N ink, ds} if 
Rs is to be satisfied, and outcomes {ms N mk,&} if Rk is to 
be satisfied. If  there is to be the possibility of ambiguity 
these must be identical, i.e. we must have 

{ms N m~, ds} = {ms N ink, dk} (3) 

or equivalently 

m s n m k N d s  = mslNmkNdk (4) 

Now the positions in ds containing a 1 are a subset of the 
positions in ms containing a 1 by the construction of the 
vectors. Hence 

and therefore 

similarly 

ms N ds = ds 

m s  N m k  N ds = m ~  N ds (5) 

m s 0 m k n &  = msNdk (6) 

and hence (4) is equivalent to (1). Thus (1) and (2) must 
necessarily hold if there is to be possible ambiguity. 

The argument used in the foregoing is reversible: i.e. if 
(1) holds then, by virtue of (5) and (6), (4) and hence 
(3) must also hold; i.e. the outcomes required for con- 
ditions common to Rs and R~ are identical. Then if the 
actions are different, ambiguity is possible; i.e. if (1) and 
(2) hold, ambiguity is possible. 

Given the possibility of ambiguity, this will be en- 
countered for a set of data having condition test outcomes 

{ms U ink, ds U dk} (7) 

In  the above discussion it was shown that  for Rj and Rk 
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both to be satisfied the conditions relevant to either or 
both, mj [J ink, can be divided into three disjoint sub- 
sets and that  the required outcomes for these are 
{ms N (e - ink), ds}, {mk N (e -- ms), elk}, and {ms N mk, di}. 
These three subset outcomes combine to give the outcomes 
specified in (7). 

The program operates by comparing every pair of rules 
for possible ambiguity using the conditions (1) and (2). 
Thus the loop structure is of the form 

f o r  j :=  1 s t e p  1 u n t i l  n -- 1 d o  
f o r  k :=  j + 1 s t e p  1 u n t i l  n d o  .. • 

If, for a pair of values o f j  and k, (1) and (2) are found to 
hold, then the values o f j  and k together with the outcomes 
giving rise to ambiguity specified by (7) are recorded for 
inclusion in the tabulation of apparent ambiguities. 

4. S o m e  I l lustrat ive  Resu l t s  

Examples of output  from a decision table processor of 
the type described have been given in Figure 6. Although 
useful as illustrations, they are trivial from a practical 
viewpoint. In this section are two more meaningful ex- 
amples. 

In  many business data  processing situations the condi- 
tions are highly related. For example, installment buying 
where payments  are made in cash on a weekly basis, the 
action taken when an account goes into arrears is a crucial 
aspect of the operation. This is an area where decision 
tables have been used with considerable success. 

The table of Figure 7 illustrates a simplified arrears pro- 
cedure. I t  is seen that  the first three conditions are di- 
rectly related. Thus a No outcome for the third condition 
implies No outcomes to the first two conditions. The last 
two conditions are also directly related. I t  is worth noting 
that  there is also a probabilistic relationship between some 
of the conditions. Consider the third and fourth conditions : 
a customer who has made no payments for the last three 
weeks is probably (but not necessarily) more than three 
weeks in arrears. (This type of relationship is, however, 
outside the scope of this paper which is concerned ogly 
with logical relationships.) 

Figure 7 is the processor output  for this table, the table 
itself being given initially, followed by a tabulation of ap- 
parent ambiguities with the condition stub repeated for 
convenience. We see that  the first possible ambiguity listed 
is between R~ and Rs, and the outcome giving rise to it is 
Yes to the first condition and No to the third and fifth con- 
ditions, the second and fourth conditions being nonperti- 
nent for both  R~ and R~. We check that  this outcome is 
logically impossible since if there has been no cash payment  
made for the last three weeks then this week's payment  
(which is therefore zero) cannot be greater than the stand- 
ard weekly rate of payment.  Similarly the outcome listed 
for R1 and Rs is logically impossible because this week's 
cash cannot  be greater than the weekly rate unless it is 
greater than  zero. The analyst must check each of the ap- 
parent  ambiguities listed. If he finds one that  is not logically 
impossible then there is an error in the table which has been 
pinpointed, and correction and reprocessing are required. 
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D E C I S I O N  T A B L E  A M B I G U I T Y  A N A L Y S I S  

T A B L E  H A S  5 C O N D I T I O N S ,  9 R U L E S ,  6 A C T I O N S .  

R U L E  

T H I S  WEEKS C A S H  G R E A T E R  W E E K L Y  R A T E  
T H I S  WEEKS C A S H  G R E A T E R  ZERO 
A N Y  C A S H  D U R I N G  L A S T  T H R E E  WEEKS 
ARREARS GREATER 3 X WEEKLY RATE 
ARREARS GREATER 6 X WEEKLY RATE 

SEND ARREARS LETTER A 
SEND ARREARS LETTER B 
SEND ARREARS LETTER C 
SEND ARREARS LETTER D 
NOTE ACCOUNT 
TAKE SPECIAL ARREARS ACTION 

1 2 3 4 5 6 7 8 9  

Y Y N N  . . . .  
- - Y Y - - N N N  

y ~ N N ~ Y Y  
. . . .  y 

N Y N - N Y - N Y  

- X . . . . . . .  
X . . . . .  

. . . .  X - - - 

. . . .  X 

X - - X - - X - - 
. . . . .  X - - X 

APPARENT AMBIGUITY FOR RULE 
AND RULE 

THIS WEEKS CASH GREATER WEEKLY RATE 
THIS WEEKS CASH GREATER ZERO 
ANY CASH DURING LAST THREE WEEKS 
ARREARS GREATER 3 X WEEKLY RATE 
ARREARS GREATER 6 X WEEKLY RATE 

FIG. 7 

1 1 2 2 2 3 4 4 . 7  
5 8 6 7 9 5 5 6 ?  

Y Y Y Y Y N N N  
N N N Y Y Y N  

N Y N Y Y N N N Y  
- Y - N  Y N N N  
N N Y Y Y N N Y Y  

D E C I S I O N  T A B L E  A M B I G U I T Y  A N A L Y S I S  

6 C O N D I T I O N S ,  1~ R U L E S ,  11 A C T I O N S .  

RULE I 2 3 4  5 6 7 8 .  9 I~ 

LRN EQ 3 Y Y Y . . . . . . .  
L R N  EQ 2 - - - Y Y . . . . .  
N N 8  EQ ¢ . . . . .  N . . . .  
KN EQ ~ . . . . . .  N - - - 
L N  EQ ~ N Y Y . . . .  N - - 
N S T R T  EQ NM - Y N Y N - - - Y N 

I S W l f f i 8  - - - X - - - 

J f N S T R T  X - - X X X - - 
GO TO 2 ~ 6  . . . . .  X . . . .  
I S W I = K N  . . . . . .  X - - - 

K K = K N + t  - - - X 
GO TO 2 2 6  . . . . . .  X - - - 
I S W I = L N  X . . . . . .  X - - 

K K = L N + I  X . . . . . .  X - - 
GO TO 2 3 6  X . . . . . .  X - - 
E R F L A G ~ 2 . g  - - X - X - - X 
R E T U R N  - X X X X - - - X X 

A P P A R E N T  A M B I G U I T Y  FOR R U L E  ~ ! 1 I 1 1 2 2 3 3 4 4 h 
AND RULE 4 5 6 7 9 1¢ 6 7 6 7 6 7 8 

L R N  EQ ,3 Y Y Y Y Y Y Y Y Y Y - - - 
LRN EQ 2 Y Y . . . . . . . .  Y Y Y 
N N 8  EQ • - - N - - - N - N - N - - 
K N  E Q  ~ - - - N - - - N - N - N - 

L N  EQ ~ N N N N N N Y '  Y Y Y - - N 
N S T R T  EQ NM Y N - - Y N Y Y N N Y Y Y 

ample, that between rules 1 and 4 is clearly only apparent 
since LRN cannot be equal to both 2 and 3. The table does 
not, however, contain sufficient information to decide the 
logical impossibility of, say, rules 7 and 10. Greater knowl- 
edge of the problem than the table provides is required to 
decide whether it is possible for KN not to be zero at the 
same time as NSTRT is not equal to NM. 

5. C o n c l u s i o n  

As already indicated, it is the author's view that the pre- 
sent position with regard to ambiguity in limited entry ta- 
bles is unsatisfactory. On the one hand, we have the philos- 
ophy of DETAB-65 which is essentially that of assuming 
the conditions to be unrelated and hence that all combina- 
tions of Y's and N's occur in practice. This is unrealistic, 
since it is in situations with relationships between condi- 
tions that decision tables have been used most successfully 
and where their potential is probably the greatest. The 
practical consequence is to impose on the analyst checking 
procedures dictated by computer processing convenience, 
which, in terms of the logic of the situation, may seem 
obscure and unnecessary. The alternative approach of 
FORTAB, where from the point of view of the processor 
"anything goes," is equally unsatisfactory. Here the user 
must decide and must invent his own checking procedures 
to locate errors in tables. The considerable value of error 
diagnostic comments in developing programs is thus 
ignored. These are likely to be very valuable in checking 
out large decision tables. The method outlined in this 
paper has proved useful, and it is suggested that this 
represents an advance. 
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A P P A R E N T  A M B I G U I T Y  FOR R U L E  5 5 5 6 6 6 6  77 7 7 8 8 
AND RULE 6 7 8 7 8 9 1¢ 8 9 ]¢ 9 1¢ 

L R N  EQ 3 . . . . . . . . . . . .  
LRN EQ 2 Y Y Y . . . . . . . . .  
N N 8  EQ ¢ N - - N N N N . . . .  
KN  EQ ~ - N - N - - - N N N - - 
LN  EQ ~1 - - N - N N N N 
N S T R T  EQ N S  N N N Y N - Y N Y N 

FIG. 8 

The second example is from the field of numerical analy- 
sis. In [1] an integration subroutine is given in an appendix. 
For comparison this is written in FORTRAN and in FORTAB. 
The latter version contains the table in Figure 8. 

The rules regarding contradiction and redundancy for 
DETAB-65  tables do not apply in the case of FORTAB. 
Here the philosophy is that  "anything goes," and if there 
is ambiguity then the rules will be decided on a "left-to- 
right" basis or in an order which the user can specify. From 
the point of view of the user, of course, it is still necessary 
to check the tables for error, and therefore any ambiguity 
in the final table must be only apparent. From Figure 8 we 
see that the table contains a large number of apparent 
ambiguities. Many  of these are straightforward; for ex- 
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