
Ambiguity in Limited Entry
Decision Tables
P. J. H. KING
University College of Wales, Aberystwyth, United Kingdom

The use of decision tables as a tool in systems analysis and for
program specification is now becoming accepted. Rules on
redundancy, contradiction, and completeness for limited entry
tables were published in 1963. These are usually used for check-
ing, preceded if necessary by a conversion from extended to
limited entry form. Processors which automatically translate
tables to more conventional program usually base their diag-
nostic facilities on these rules. In this paper it is suggested that
these rules are unsatisfactory and that the important aspect of
checking is to eliminate ambiguity from tables. Ambiguity is
defined and discussed, and a procedure for producing checked-
out decision tables is proposed. The theoretical basis of the
algorithm used is established. The importance of well-de-
signed diagnostic facilities in decision table processors is
emphasized.

KEY WORDS AND PHRASES: decision tables, DETAB-65, systems analysis
CR CATEGORIES: 3.50,~4.19, 4.49

l . I n t r o d u c t i o n

I n this paper ambigui ty in limited entry decision

tables is discussed and diagnostic facilities and checking

procedures for dealing with it are suggested. I t is as-

sumed tha t the reader is familiar with the conventions
and notat ion involved. For a general review of the subject
including a bibliography, see [5]; a bibliography is also
given in [3].

I t is basic to decision table notation tha t only one of the
action sets specified in a table is carried out for each piece
of data. The function of the condition section, therefore,
is to decide which of the distinct action sets of the table is
to be carried out for a given piece of data. In a well-con-
structed table this will be done unambiguously. I f a
table is not well constructed in this sense, it will fail to
determine, for some particular piece of logically permis-
sible data, a unique action set. I n this case we say the
table is ambiguous. A formal definition of ambigui ty can
thus be given:

A decision table is said to be ambiguous if, ignoring the else
rule, there is a logically permissible piece of data which
satisfies the condition entries of two rules having different
action sets.

Consider the example shown in Figure 1. This is not a
complete decision table as there is no action section. Also,
the exact nature of the conditions is unspecified.

Whatever the conditions, it is clear tha t in any particular
case R~ and R~ cannot both be satisfied. This is bec.ause
Ri requires a No outcome for Ca whereas R2 requires a
Yes outcome. Similarly none of the rule pairs, {R,, R3},
{R~, R4}, {R2, R3}, and {R~, R4}, can be satisfied simul-
taneously, for in each case one rule requires a Yes o u t -

come to a condition test for which the other requires a No.
However, Ra and R4 are both satisfied if there is a No
outcome for all three condition tests. On the basis of
the information in Figure 1 there may be ambiguity
between R3 and R4. This indicated ambigui ty may be
real or may be only apparent . I f real, it indicates an error
requiring correction as the table cannot be well formed in
the sense discussed. I f only apparent , no action is re-
quired. This lat ter will be the case if a simultaneous No
outcome for all three conditions is logically impossible,
or if the actions for the two rules are identical.

R, R2 R, R4 E

C1 Y Y - - N
Ca Y - - N --
Ca N Y N - -

F I G . I

Ri R2

Age < 18 Y - -
Age >65 - - Y

GO TO 1 2

FiG. 2

Ra

N
N

The first type of apparent ambigui ty is illustrated in
Figure 2. Here a Yes outcome for both conditions is clearly
impossible, and the table is unambiguous. I t satisfactorily
determines, in all circumstances, the required action. This
is because the conditions are not independent but related
in a particular way. A Yes outcome to the first implies
tha t a No would result if the second were tested. Note
tha t this does not affect the interpretation of the dash
entry for C2 in R, which is still tha t of basic decision table
format, namely tha t C2 is not relevant to deciding whether
R, holds and hence need not be tested, or if tested the re-
sult should be disregarded. Tha t is, the interpretation of
R1 is " i f C~ t h e n Ai." This implies nothing about the re-
sult if C2 is, in fact, tested when R1 holds. In the case of
Figure 2 this would be a No because of the relation be-
tween the conditions. For a similar table where the condi-
tions were independent or dependent in a Way not having
this implication, then testing C2 might give either a Yes
or a No.

The second type of apparent ambigui ty is i l lustrated
in Figure 3 which gives the rules for combining two
digits d~ and d~ which may have values 0 or 1. The result is
1 if either or both is 1, and 0 only if they are both 0.

I f both digits are 1 then the program derived from the
table may behave as though R~ were satisfied or as though

d l = 0
d2 = 0

result := 0 X
result := 1

FIG. 3

R, R2 R3

Y N - -
Y - - N

x x

Ra were satisfied depending upon the translation process
used. However, as the action is the same in both cases,
this is immater ia l , and there is no ambiguity.

We assume tha t it is not practical or desirable to con-
struct decision table processors which investigate the na-
ture of the conditions. F rom the point of view of the
processor, the information in the condition section of the

6 8 0 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 11 / N u m b e r 10 / October , 1968

http://crossmark.crossref.org/dialog/?doi=10.1145%2F364096.364113&domain=pdf&date_stamp=1968-10-01

table is of the type shown in Figure 1. While it would be
possible to deal with simply related conditions like those
of Figure 2, relations between the condi¢ions may be very
complicated and not amenable to programmed investiga-
tion. The approach suggested in Section 2 is that of a
dialog between the person analyzing the problem and
constructing the table and the processor.

A different approach has been suggested and is given
by Pollack in [7]. This assumes the entries in the condi-
tion stub are independent, and a definition of this is
given. I t appears, however, tha t this assumption is fre-
quently disregarded when Pollack's theory is applied, and
his rules for checking are taken to apply to decision tables
in general. Thus his ideas are reiterated in [3] and have
been used in the construction of the DETAB-65 preproc-
essor [2] without reference to the independence of con-
ditions. If Pollack's rules are applied when conditions are
not independent, the resulting program will still give the
correct results. However, these rules are not satisfactory
in these circumstances, since better checking procedures
are available leading to more general decision tables giving
better program.

In particular Pollack gives definitions of redundancy and
contradiction for limited entry tables as follows:

1. A redundancy exists in a decision table if two or more rules do
not have at least one Y,N pair in any of the rows and the actions
specified are identical.

2. A contradiction or logic error exists in a decision table if two or
more rules do not have at least one ¥,N pair in any of the rows
and the actions specified are not identical.

R1 R2

Age < 18 Y --
Age >65 N Y

GO TO 1 2
(a)

RI R 2

Age < 18 Y N
Age >65 -- Y

GO TO 1 2

(b)

Fro. 4

R~

N
N

R3

N
N

First we consider the second of these definitions, tha t for
"contradiction or logic error." Under this, the table of
Figure 2 would be deemed to be incorrect since R~ and
R2 break this rule. I t would require to be corrected by one
of the implied No's in R~ or R~ being explicitly stated.
Thus, to be an allowable table for DETAB-65, the table
should be rewritten in one of the two possible ways shown
in Figure 4. At the time of constructing the table the
decision as to which tables to take would be arbitrary.

A disadvantage of following this procedure and eliminat-
ing the apparent contradiction is tha t inefficient object
programs may result. Suppose R~ is the most frequent
outcome in the context in which the program is to be

used, then the flowchart of Figure 5 is the best implementa-
tion. This flowchart can be derived from Figure 2 but not
from the table in Figure 4 (a) . This latter implies tha t both
conditions m u s t be tested to establish that R1 holds. The
interrelationship between the conditions makes this un-
necessary, but this information is not available to the
processor. For this reason the definition of contradiction
given seems restrictive and unsatisfactory.

FiG. 5

We consider now the first of Pollaek's definitions: tha t
for redundancy. If we apply this to the table of Figure 3,
we find that R2 and R3 are deemed to contain a redundancy.
Pollack's procedure given in [7] requires this to be elimi-
nated by including a Yes either for the second condition
in R2 or for the first condition in R3. Then, when both dl
and d~ have the value 1, only one of the rules can be satis-
fied. This is unnecessary from the point of view of the
table giving unambiguously the correct result. There can be
disadvantage in eliminating this redundancy similar to tha t
described for Figure 2.

A practical effect of these rules, therefore, is tha t pro-
grams may be obtained having longer run time than is
strictly necessary. This conclusion has been illustrated by
assuming that the condition portion of the table is to be
converted into a branching network of tests. I t also applies
when the method of translating tables is by an interrupted
rule mask technique of the type described in [4]. When
tabular features are used in real-time programming this
might be particularly important. The foregoing has used
only very simple examples to illustrate the considerations
involved. The disadvantage indicated becomes more im-
portant with larger tables and more complex situations.

A second aspect of Pollack's rules is tha t they impose on
the systems analyst /programmer unnecessary, burden-
some, and what may seem to him, obscure procedures.
From his point of view the tables in Figures 2 and 3 are
quite clear and satisfactory in their procedure specifica-
tion. I t is the author's view, therefore, tha t decision table
facilities should allow these types of table.

We have argued that redundancy as defined by Pollack
should, in general, be permitted and that his definition of

V o l u m e 11 / N u m b e r 10 / O c t o b e r , 1968 C o m m u n i c a t i o n s o f t h e ACM 6 8 1

"contradict ion or logic error" is unsatisfactory. If these
views are accepted then some other form of checking pro-
cedure is required, and proposals for this are made in
Section 2. We suggest tha t it is sufficient to eliminate
ambiguity in the sense already defined. I t is clear tha t this
is not always possible without investigating the nature
of the conditions. I t has been suggested that processors
should not do this, and in some circumstances therefore
they cannot determine that a table is unambiguous. Iu
these cases it will be concluded that , for certain outcomes,
there is possible ambiguity. This will then have to be re-
solved by investigating relationships between the various
conditions. For the sake of clarity we give a formal defi-
nition of the term "possible ambiguity" as used here:

A decision table is said to have possible ambigui ty if i t cannot
be decided whether or not i t is ambiguous wi thout inves t igat -
ing the na ture of i ts condit ions and the re la t ionships between
these conditions.

2. A P r o c e d u r e for D e c i s i o n T a b l e C h e c k i n g

The procedure proposed here for producing checked-
out decision tables is that , when constructing the condi-
tion section, the analyst /programmer should aim at the
minimum number of entries necessary to define adequately
the action of the program. Thus, if a Yes entry to one con-
dition implies necessarily a No outcome to another con-
dition, he should not enter this, but indicate the outcome
as nonpertinent. This avoids specifying tests which would
be incorporated in the program but which are logically
unnecessary. This should produce better programs.

A decision table processor will naturally have various
diagnostic tests. I t is suggested that these should include

test of each table for ambiguity. If none is possible, then
a comment will be produced to this effect. If any possible
ambiguities are found, then a tabulation is produced
showing all outcomes for which these may occur. I t is then
the responsibility of the originator of the decision table to
check this tabulation. He must ensure that all outcomes
shown are logically impossible by virtue of relationships
between the various conditions. In this case the compila-
tion may proceed without any further action. If, however,
any of the listed outcomes are logically possible then this
indicates error in the table. The construction of a test for
possible ambiguity is relatively simple if the program is
based on the method outlined in Section 3.

Figure 6 shows the output from such a program for
the tables previously discussed, 6(a) being that for Figure
2 and 6(b) that for Figure 3. The action required from
the originator of the table in the first case is to check that
the Yes/Yes outcome is logically impossible and thus to
confirm that the table is satisfactory. No action at all
is required in the second case as the table is quite un-
ambiguous. More significant examples are in Section 4.

I t is worth noting that , when checked out, the tabula-
tion of possible ambiguities is the set of a priori excludable
combinations required for the extension of the algorithms
given by Reinwald and Soland in [8, 9].

3. Bas i s o f t h e P r o g r a m

The condition section of a limited entry decision table
can be represented by two binary matrices: the mask
matrix, M, and the decision matrix, D. This representation
was originally presented by Kirk [6] and is described and
discussed in detail by King [4] where the matrices for the
table of Figure 1 are given. If a table has m conditions and
n rules then these matrices have m rows and n columns.

Let m~, m2, • • • , m~ represent the successive columns of
M, and d~, d2, • • • , d~ the columns of D. Each of the m~
and dj is a binary vector of m elements. A column of the
mask matrix specifies a subset of the corLditions; thus m~
specifies the conditions pertinent to R2, a 1 indicating a
pertinent condition, a 0 a nonpertinent condition. A column
of the "decision matrix specifies in the positions relating to
pertinent eorMitions the required outcomes for the rule to
be satisfied. Thus d2 indicates the required outcomes for the
pert inent conditions specified by m2, a 1 indicating a Yes
outcome and a 0 a No outcome. In this way an ordered pair
of binary vectors {mi, di} specifies the condition test out-
comes necessary for R~ to be satisfied, m~ specifying the
conditions involved and d~ the outcomes for those con-
ditions. Note that positions of d~ relating to nonpert inent
conditions are zero. This is from the construction of the
matrix D and is necessary for some of the manipulation
below. I t is not necessary, however, for the interpretat ion
of an ordered vector pair as a set of outcomes, the positions
in the second vector corresponding to zeros in the first
being of no consequence in this interpretation.

In what follows the Boolean operators FI and 0 are used
in the conventional way to denote the combination of
binary vectors on an element-by-element basis as specified

(a) RULE 1 2 3

AGE LT 18 Y - N
AGE GT 65 - Y N

GO TO I 2 3

APPARENT AMBIGUITY FOR RULE 1
AND RULE 2

AGE LT 18 Y
AGE GT 65 Y

(~ RULE I 2 3

DI EQ ~ Y N -
D2 EQ ~ Y - N

RESULT = ~ X - -
RESULT ffi I X X

TABLE IS UNAMBIGUOUS

FiG. 6

in Table I. We denote by e a vector consisting of all l 's.
A1, A~, • • • , A~ denote the action sets corresponding to the
rules R 1 , R 2 , • • • , R ~ .

We show that there is possible ambiguity (in the sense
previously defined) between R~ and Rk if and only if

m j n d k = mkNd~ (1)
and

As # Ak. (2)

The second of these two conditions is clear; possible am-
biguity cannot arise between two rules if the corresponding

682 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 11 / N u m b e r 10 / O c t o b e r , 1968

T A B L E I

Eleraents in Operands Result wiIh f) Result with O

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

action sets are identical. In this case, even if a given set of
data satisfies the condition entries of both rules, the action
taken by the program will be unique. In the discussion of
the first condition we therefore assume the second to hold.

The condition test outcomes for Rs to be satisfied are
{ms, ds}, and the outcomes for Rk to be satisfied are
{mk, &}. The set of conditions pertinent to either Rs or Rk
or to both is ms U mk. This set of conditions divides into
three disjoint groups : those pertinent to Rs but not to Rk ;
those pertinent to Rk but not to Ri ; and those pertinent
to both. These groups are specified by the vectors
ms n (e -- ink), mk rl (e -- ms), and on s n mk respectively.
Now for the first group, if Ri is to be satisfied, the outcomes
must be {ms n (e - ink), ds}, and these outcomes do not
prevent Rk from also being satisfied. Similarly for Rk to be
satisfied, the outcomes for the second group must be
{ink N (e - ms), dk} which do not prevent Rs from being
satisfied. However for the third group, those pertinent to
both Ri and Rk, we must have outcomes {ms N ink, ds} if
Rs is to be satisfied, and outcomes {ms N mk,&} if Rk is to
be satisfied. If there is to be the possibility of ambiguity
these must be identical, i.e. we must have

{ms N m~, ds} = {ms N ink, dk} (3)

or equivalently

m s n m k N d s = mslNmkNdk (4)

Now the positions in ds containing a 1 are a subset of the
positions in ms containing a 1 by the construction of the
vectors. Hence

and therefore

similarly

ms N ds = ds

m s N m k N ds = m ~ N ds (5)

m s 0 m k n & = msNdk (6)

and hence (4) is equivalent to (1). Thus (1) and (2) must
necessarily hold if there is to be possible ambiguity.

The argument used in the foregoing is reversible: i.e. if
(1) holds then, by virtue of (5) and (6), (4) and hence
(3) must also hold; i.e. the outcomes required for con-
ditions common to Rs and R~ are identical. Then if the
actions are different, ambiguity is possible; i.e. if (1) and
(2) hold, ambiguity is possible.

Given the possibility of ambiguity, this will be en-
countered for a set of data having condition test outcomes

{ms U ink, ds U dk} (7)

In the above discussion it was shown that for Rj and Rk

V o l u m e 11 / N u m b e r 10 / O c t o b e r , 1968

both to be satisfied the conditions relevant to either or
both, mj [J ink, can be divided into three disjoint sub-
sets and that the required outcomes for these are
{ms N (e - ink), ds}, {mk N (e -- ms), elk}, and {ms N mk, di}.
These three subset outcomes combine to give the outcomes
specified in (7).

The program operates by comparing every pair of rules
for possible ambiguity using the conditions (1) and (2).
Thus the loop structure is of the form

f o r j := 1 s t e p 1 u n t i l n -- 1 d o
f o r k := j + 1 s t e p 1 u n t i l n d o .. •

If, for a pair of values o f j and k, (1) and (2) are found to
hold, then the values o f j and k together with the outcomes
giving rise to ambiguity specified by (7) are recorded for
inclusion in the tabulation of apparent ambiguities.

4. S o m e I l lustrat ive Resu l t s

Examples of output from a decision table processor of
the type described have been given in Figure 6. Although
useful as illustrations, they are trivial from a practical
viewpoint. In this section are two more meaningful ex-
amples.

In many business data processing situations the condi-
tions are highly related. For example, installment buying
where payments are made in cash on a weekly basis, the
action taken when an account goes into arrears is a crucial
aspect of the operation. This is an area where decision
tables have been used with considerable success.

The table of Figure 7 illustrates a simplified arrears pro-
cedure. I t is seen that the first three conditions are di-
rectly related. Thus a No outcome for the third condition
implies No outcomes to the first two conditions. The last
two conditions are also directly related. I t is worth noting
that there is also a probabilistic relationship between some
of the conditions. Consider the third and fourth conditions :
a customer who has made no payments for the last three
weeks is probably (but not necessarily) more than three
weeks in arrears. (This type of relationship is, however,
outside the scope of this paper which is concerned ogly
with logical relationships.)

Figure 7 is the processor output for this table, the table
itself being given initially, followed by a tabulation of ap-
parent ambiguities with the condition stub repeated for
convenience. We see that the first possible ambiguity listed
is between R~ and Rs, and the outcome giving rise to it is
Yes to the first condition and No to the third and fifth con-
ditions, the second and fourth conditions being nonperti-
nent for both R~ and R~. We check that this outcome is
logically impossible since if there has been no cash payment
made for the last three weeks then this week's payment
(which is therefore zero) cannot be greater than the stand-
ard weekly rate of payment. Similarly the outcome listed
for R1 and Rs is logically impossible because this week's
cash cannot be greater than the weekly rate unless it is
greater than zero. The analyst must check each of the ap-
parent ambiguities listed. If he finds one that is not logically
impossible then there is an error in the table which has been
pinpointed, and correction and reprocessing are required.

C o m m u n i c a t i o n s o f t h e A C M 683

D E C I S I O N T A B L E A M B I G U I T Y A N A L Y S I S

T A B L E H A S 5 C O N D I T I O N S , 9 R U L E S , 6 A C T I O N S .

R U L E

T H I S WEEKS C A S H G R E A T E R W E E K L Y R A T E
T H I S WEEKS C A S H G R E A T E R ZERO
A N Y C A S H D U R I N G L A S T T H R E E WEEKS
ARREARS GREATER 3 X WEEKLY RATE
ARREARS GREATER 6 X WEEKLY RATE

SEND ARREARS LETTER A
SEND ARREARS LETTER B
SEND ARREARS LETTER C
SEND ARREARS LETTER D
NOTE ACCOUNT
TAKE SPECIAL ARREARS ACTION

1 2 3 4 5 6 7 8 9

Y Y N N
- - Y Y - - N N N

y ~ N N ~ Y Y
. . . . y

N Y N - N Y - N Y

- X
X

. . . . X - - -

. . . . X

X - - X - - X - -
. X - - X

APPARENT AMBIGUITY FOR RULE
AND RULE

THIS WEEKS CASH GREATER WEEKLY RATE
THIS WEEKS CASH GREATER ZERO
ANY CASH DURING LAST THREE WEEKS
ARREARS GREATER 3 X WEEKLY RATE
ARREARS GREATER 6 X WEEKLY RATE

FIG. 7

1 1 2 2 2 3 4 4 . 7
5 8 6 7 9 5 5 6 ?

Y Y Y Y Y N N N
N N N Y Y Y N

N Y N Y Y N N N Y
- Y - N Y N N N
N N Y Y Y N N Y Y

D E C I S I O N T A B L E A M B I G U I T Y A N A L Y S I S

6 C O N D I T I O N S , 1~ R U L E S , 11 A C T I O N S .

RULE I 2 3 4 5 6 7 8 . 9 I~

LRN EQ 3 Y Y Y
L R N EQ 2 - - - Y Y
N N 8 EQ ¢ N
KN EQ ~ N - - -
L N EQ ~ N Y Y N - -
N S T R T EQ NM - Y N Y N - - - Y N

I S W l f f i 8 - - - X - - -

J f N S T R T X - - X X X - -
GO TO 2 ~ 6 X
I S W I = K N X - - -

K K = K N + t - - - X
GO TO 2 2 6 X - - -
I S W I = L N X X - -

K K = L N + I X X - -
GO TO 2 3 6 X X - -
E R F L A G ~ 2 . g - - X - X - - X
R E T U R N - X X X X - - - X X

A P P A R E N T A M B I G U I T Y FOR R U L E ~ ! 1 I 1 1 2 2 3 3 4 4 h
AND RULE 4 5 6 7 9 1¢ 6 7 6 7 6 7 8

L R N EQ ,3 Y Y Y Y Y Y Y Y Y Y - - -
LRN EQ 2 Y Y Y Y Y
N N 8 EQ • - - N - - - N - N - N - -
K N E Q ~ - - - N - - - N - N - N -

L N EQ ~ N N N N N N Y ' Y Y Y - - N
N S T R T EQ NM Y N - - Y N Y Y N N Y Y Y

ample, that between rules 1 and 4 is clearly only apparent
since LRN cannot be equal to both 2 and 3. The table does
not, however, contain sufficient information to decide the
logical impossibility of, say, rules 7 and 10. Greater knowl-
edge of the problem than the table provides is required to
decide whether it is possible for KN not to be zero at the
same time as NSTRT is not equal to NM.

5. C o n c l u s i o n

As already indicated, it is the author's view that the pre-
sent position with regard to ambiguity in limited entry ta-
bles is unsatisfactory. On the one hand, we have the philos-
ophy of DETAB-65 which is essentially that of assuming
the conditions to be unrelated and hence that all combina-
tions of Y's and N's occur in practice. This is unrealistic,
since it is in situations with relationships between condi-
tions that decision tables have been used most successfully
and where their potential is probably the greatest. The
practical consequence is to impose on the analyst checking
procedures dictated by computer processing convenience,
which, in terms of the logic of the situation, may seem
obscure and unnecessary. The alternative approach of
FORTAB, where from the point of view of the processor
"anything goes," is equally unsatisfactory. Here the user
must decide and must invent his own checking procedures
to locate errors in tables. The considerable value of error
diagnostic comments in developing programs is thus
ignored. These are likely to be very valuable in checking
out large decision tables. The method outlined in this
paper has proved useful, and it is suggested that this
represents an advance.

Acknowledgment. I am grateful to Messrs. W. Clark and
F. J. J. Johnston of General Information and Control Sys-
tems Ltd. for access to information on which Figure 7 is
based.
RECEIVED SEPTEMBER, 1967; REVISED APRIL, 1968

A P P A R E N T A M B I G U I T Y FOR R U L E 5 5 5 6 6 6 6 77 7 7 8 8
AND RULE 6 7 8 7 8 9 1¢ 8 9]¢ 9 1¢

L R N EQ 3
LRN EQ 2 Y Y Y
N N 8 EQ ¢ N - - N N N N
KN EQ ~ - N - N - - - N N N - -
LN EQ ~1 - - N - N N N N
N S T R T EQ N S N N N Y N - Y N Y N

FIG. 8

The second example is from the field of numerical analy-
sis. In [1] an integration subroutine is given in an appendix.
For comparison this is written in FORTRAN and in FORTAB.
The latter version contains the table in Figure 8.

The rules regarding contradiction and redundancy for
DETAB-65 tables do not apply in the case of FORTAB.
Here the philosophy is that "anything goes," and if there
is ambiguity then the rules will be decided on a "left-to-
right" basis or in an order which the user can specify. From
the point of view of the user, of course, it is still necessary
to check the tables for error, and therefore any ambiguity
in the final table must be only apparent. From Figure 8 we
see that the table contains a large number of apparent
ambiguities. Many of these are straightforward; for ex-

REFERENCES

1. ARMERDING, G.W. FORTAB: A decision table language for
scientific computing applications. Memo RM-3306-PR, Rand
Corp., Santa Monica, Calif., Sept. 1962.

2. CALLAHAN, M. D., AND CHAPMAN, A . E . Description of basic
algorithm in DETAB/65 preprocessor. Comm. A C M 10, 7
(July 1967), 441-446.

3. CHAPMAN, A. E. DETAB-65 preprocessor. SHARE program
library package, SDA 3396, 1966.

4. KING, P. J. H. Conversion of decision tables to computer
programs by rule mask techniques. Comm. A C M 9, 11 (Nov.
1966), 796-801.

5. - - . Decision tables. Comput. J . 10 (Aug. 1967), 135--142.
6. KIRK, H.W. Use of decision tables in computer programming.

Comm. A C M 8, 1 (Jan. 1965), 41-43.
7. POLLACK, S .L . Analysis of decision rules in decision tables.

Memo RM-3669-PR, Rand Corp., Santa Monica, CMif., 1963.
8. REINWALD, L. W., AND SOLAND, R . M . Conversion of limited-

entry decision tab les to optimal computer programs I:
minimum average processing time. J. A C M 13, 3 (July 1966),
339-358.

9. - - . Conversion of limited-entry decision tables to optimal
computer prografias I I : minimum storage requirement. J .
A C M 14, 4 (Oct. 1967), 742-756.

6 8 4 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 11 / N u m b e r 10 / O c t o b e r , 1968

