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A new procedure is presented for calculating the complex, 
discrete Fourier transform of real-valued time series. This 
procedure is described for an example where the number of 
points in the series is an integral power of two. This algorithm 
preserves the order and symmetry of the Cooley-Tukey fast 
Fourier transform algorithm while effecting the two-to-one 
reduction in computation and storage which can be achieved 
when the series is real. Also discussed are hardware and 
software implementations of the algorithm which perform 
only (N/4) log2 (N/2) complex multiply and add operations, 
and which require only N real storage locations in analyzing 
each N-point record. 
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[10-14]; and improving the computational efficiency 
when the input series consists solely of real numbers 
[14, 15]. 

There have been two basic approaches to the evaluation 
of real-valued time series. The first approach makes use 
of the conventional complex FFT algorithm and de- 
pends upon forming an artificial N/2-term complex record 
from each N-term real record [15]. A more direct ap- 
proach has recently been proposed by Edson [16] in which 
he suggests specializing the complex FFT algorithm by 
eliminating those computations which lead to redundant 
results. The algorithm discussed in this paper extends 
this latter approach not only to decrease the required 
computation but also to preserve the order and symmetry 
which made the original complex Cooley-Tukey algorithm 
so convenient to implement in both hardware and soft- 
ware. 

Redundancy in the Cooley-Tukey Algorithm 

An interpretation of the A~ values of the Cooley-Tukey 
algorithm for i = 0, 1, 2 , - . . ,  m, where N = 2 m, has 
been noted by Cooley [17] and described in detail by Shiv- 
ely [7] and others [18]. This interpretation describes the 
A i values at each stage as being sets of unnormalized 
Fourier coefficients formed from interleaved sets of sam- 
ples. Although this concept can be conveniently gener- 
alized to apply when N = rlr2.. ,  r,~, an example ~vill 
be carried through for N = 2% In this case the original 
samples (i.e. the A0 values) can be thought of as N 
distinct one-term Fourier series representations of the 
dc (direct current) value of the time function. In Figure 1 

Introduction 

Recent papers regarding the fast Fourier transform 
(FFT) have largely dealt with applications and refine- 
ments of the algorithms originally reported by Cooley 
and Tukey [1]. The %chnique has been applied to vocoding 
[2, 3], digital filtering [4], analysis of underwater sound 
recordings [5], analysis of electroencephalographic data 
[6], and many other areas. Because of this wide range of 
application, several groups have proposed hardware im- 
plementations of the algorithm [7-9]. Refinements of the 
algorithm include: rearranging the calculations or ex- 
ploiting the symmetries of the complex exponential 
weights to obtain efficient software implementations 
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the N-term sequence of A0s has been denoted by the top 
rectangle. As these may be interpreted as N separate esti- 
mates of dc, they have been labeled X(0). 

The A 1 values are estimates of the dc term and the first 
harmonic (i.e. the X(0) and X(1) Fourier coefficients) 
as evaluated from N/2 separate 2-term Fourier series. 
As shown in Figure 1, the first half of the Als represents 
X(0) coefficients and the second half represents X(1) 
coefficients. 

In like manner the Ass represent X(0), X(1), X(2), 
and X(3) Fourier coefficients as evaluated from N/4 
separate 4-term Fourier series, and the A3s represent the 
Fourier coefficients evaluated from N/8 separate 8-term 
Fourier series. 

In each case a stage in the recursive algorithm represents 
Combining unnormalized Fourier coefficients formed 
from two interleaved sets of samples to form twice as 
many Fourier coefficients (because the effective sampling 
rate is doubled) from the combined set. 

V~ hen the original time series consists of only real num- 
bers, this interpretation can be profitably carried one step 
further. In Figure 2 a set of graphs shows the A0s, A~s, 
etc., as Fourier coefficients displayed as a function of 

are complex conjugates. Thus only the N/4 values of the 
first harmonic are truly independent. This means that to 
store the independent A2 values we only need storage for 
N/2 real numbers and N/4 complex numbers, i.e. N stor- 
age locations. 

Analogously, the A3 values representing the 5th, 6th, 
and 7th harmonics are complex conjugates of the 3rd, 2nd, 
and 1st harmonics, respectively. Since the X(0) and X(4) 
terms are real and only the X(1), X(2), and X(3) com- 
plex terms must be saved, we still require only N storage 
locations. 

This process continues until in .the last stage the 
N/2 -- 1 independent complex Fourier coefficients and the 
2 independent real Fourier coefficients are formed by 
combining all N of the original real samples. Thus it is 
apparent that for a real-valued time series of N samples 
we have only N independent numbers at the beginning 
and N independent numbers at the end (i.e. N/2 - 1 
complex numbers and 2 real numbers), and no additional 
storage is required in the intervening steps. Since the dis- 
carded intermediate results at any stage can be formed by 
simply conjugating the appropriate saved value, this 
process proves to be quite convenient to implement. 
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FIG. 2. Intermediate results of Cooley-Tukey algorithm plotted 
as a function of the frequencies they represent 

frequency. Note that the set of A0 and Ai values are both 
composed of only real numbers; however, the set of A2- 
values consists of N/2 real numbers (the X(0) and X(2) 
terms), N/4 complex X( 1 ) terms, and N/4 complex X(.3) 
terms. From Figure 2 it is apparent that the third har- 
monic terms are above one-half the effective sampling 
frequency, and as they were formed from real-valued time 
samples, the set of X(3) terms and the set of X(1) terms 

D e v e l o p i n g  t h e  A l g o r i t h m  

An algorithm is developed for computing only the 
N/2 + 1 independent Fourier coefficients while preserv- 
ing the order and symmetry, which makes the complex 
Cooley-Tukey algorithm so attractive. Since the input 
series consists of only N real numbers and the resulting 
Fourier coefficients consist of only N/2 -- 1 complex num- 
bers and 2 real numbers, it is convenient to perform all 
of the iterations using an array of only N real storage loca- 
tions. This compares with the N complex storage loca- 
tions required in implementing the complex Cooley- 
Tukey algorithm. 

It  is also desirable to keep the indexing of intermediate 
results regular and the number of different mathematical 
operations required to a minimum. By deviating from the 
Cooley-Tukey order of computation, one can achieve both 
a regular indexing pattern and a standard set of mathe- 
matical operations. 

The Cooley-Tukey algorithm for complex time series 
is shown diagrammatically in Figure 3 for the example of 
N = 16. The basic set of mathematical operations is 
represented by the block entitled "Complex Calculation." 
This block denotes that: (1) the second complex input is 
multiplied by the appropriate power of W (where W = 
exp (2w-i/N)); (2) the resulting product is added to the 
first complex input to form the first output term; (3) this 
product is subtracted from the first input term to form the 
second output term. Note that in Figure 3 the "G" de- 
notes temporary storage of the first input and does not 
denote au arithmetic operation. 

Although this set of "complex calculations" is actually 
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Fio. 3. The Cooley-Tukey complex fast Fourier transform algorithm shown diagrammatically for the example of N = 16 

performed N/2 times during each iteration, Figure 3 shows 
only the accessing and storage patterns for the first set 
in each group. Each pattern shown is applied sequen- 
tially to all of the operands in its group. In the first itera- 
tion, for example, the set of "complex calculations" is 
shown applied to the A0(0) and A0(8) terms. It  is next 
applied to the A0(1) and A0(9) terms, the Ao(2) and 
A0(10) terms, and so on. By showing only the first opera- 
Lion of each sequence, the diagram can be kept quite 
simple while still denoting all of the necessary informa- 
tion. 

From the representation of the Cooley-Tukey algorithm 
shown in Figure 3, it is convenient to describe the real- 
valued input algorithm in terms of its deviation from the 
Cooley-Tukey procedure. The real-valued input algorithm 
computes intermediate results in a different order from the 
Cooley-Tukey algorithm, but the Cooley-Tukey labeling 
of the intermediate results can be carried through to 
verify that all of the required operations are being per- 
formed. As discussed in the previous section, the essential 
differences will be that the redundant intermediate results 
of the Cooley-Tukey algorithm will not be computed, and 
real storage locations will be assumed instead of N com- 
plex storage locations. (Note that the redundant Cooley- 
Tukey intermediate results have a double line under them 
in Figure 3. ) 

The computation of the independent Cooley-Tukey 

intermediate results via the real-valued input algorithm 
is shown diagrammatically in Figure 4. Note that the set 
of "complex calculations" still consists of operating oa 
two complex inputs and forming two complex outputs, 
but the real and imaginary parts of these terms are stored 
in different locations. Note also that the terms which are 
to be subtracted are conjugated. (Or as an alternative, 
the result of the subtraction could be conjugated. ) 

In Figure 4 the nonredundant results of each iteration 
of the Cooley-Tukey algorithm are shown on separate lines 
with the imaginary part of each term being labeled with 
the prefix i. Note that the imaginary parts of the saved 
terms are stored in the locations vacated by the discarded 
terms. By deviating from the computational order of the 
Cooley-Tukey algorithm, an orderly indexing pattern is 
obtained, and the real and imaginary parts of each Fourier 
coefficient are formed in adjacent locations. 

A common set of arithmetic operations can be carried 
through the entire algorithm as denoted by the CC (com- 
plex calculation) box in Figure 4. This calculation differs 
from that performed in the Cooley-Tukey algorithm only 
in that one of the results must be conjugated before being 
stored back iu memory. 

The objective of maintaining an orderly and easily 
implemented indexing pattern is met by making one small 
change to the diagram of Figure 4. Note that the opera- 
tion of multiplying by W(N/4) (i.e. - i )  is performed in 
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Figure 4 by a negation and a relabeling. The relabeling 
occurs in the "No Operations Necessary" space. I f  the 
operations below these expressions are all performed one 
iteration earlier, the accessing of the new "regrouped" 
iteration will have the regularity being sought. This 
procedure has the added effect of eliminating the ruth 
iteration of the algorithm except for one addition and one 
subtraction. 

Based on the observations made above, one can define a 
new fast Fourier t ransform algorithm for real-valued in- 
puts. I f  the original series is designated Bo(k) for /~ = 
0, 1, . . .  , N -- 1, the operations shown in Figure 5 will 
compute the Fourier coefficients provided that  one of the 
following conditions is met:  

1. The Fourier coefficients corresponding to DC and 
one-half the sampling frequency must  be zero; or 

Ao(O) AO(I) AO(2 )  AO(3) 

Ai(O) "t" Ai(I ) Ai(2) At(3) 
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FIG. 4. The nonredundant  in termediate  results  of the C3oley-Tukey alg3ri thm as they are f3rm~:l by  the real-valued inpu t  a lgor i thm 
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2. B3(0) ~nd B3(1) must be replaced by their sum and 
difference, respectively. 

The properties of this algorithm can be summarized 
as follows: 

1. The redundant Fourier coefficients in each iteration 
above one half the effective sampling frequency are neither 
computed nor stored. 

2. The intermediate results are accessed and stored in a 
regular and easily implemented pattern. 

3. The real and imaginary parts of the final Fourier 
coefficients are formed in adjacent storage locations• 

4. Only N real storage locations are required throughout 
the computation. These store the original data points, 
the intermediate results, and the final results. 

5. The same set of complex arithmetic operations is per- 
formed during the entire algorithm. Only the accessing 
order has to be changed when the operands are actually 
real. 

6. The powers of W are called in the same order during 
each iteration. 

7. Only 3 ( m - 1  when N = 2 m) complete iterations 
are required. 

F o u r i e r  A n a l y s i s  R e c u r s i v e  E q u a t i o n s  

The real-valued input algorithm is best described for 
the case of N = 2 m by the recursive equations which are 
developed below. 

Consider the problem of evaluating a complex Fourier 
series of the form 

N--1 

X ( j )  = ~ B o ( k ) W  -jk (1) 
k=0 

where W = e 2*i/N, Bo(k)  is real, j = 0, 1 , . . . ,  N / 2 ,  
and N = 2 m. 

If k is expressed in the form 

k = kin_l"2 ~-I + " '"  "b k1"21 + /CO, (2) 

the original N storage locations into which the Bo(k) 
values are stored can be labeled as B(k~_l ,  . . .  , k l ,  ko) 
where k~-i . . . . .  k~ = ko = 0, 1. Since two locations 
are required to specify each complex number, it is con- 
venient to define the following notation: 

( ital'a°~ ) 
B/L k i n - l ,  " ' "  , ~ m - L + l ,  ~k b l  , bo / , k i n - L - - e ,  " ' "  , ko 

= B L ( k m - 1  . " ' '  , k m - L + l ,  a l ,  a 0 ,  k i n - L - 2 ,  " ' '  , ko)  (3) 

+ iBL(km-1, "" , km-L+l, bl, bo, k~-L~, ""  , ko). 

The L subscript denotes that  these values are the results 
of the Lth  iteration of the algorithm as outlined in Fig- 
ure 5. 

As shown in Figure 5 the operands of the first group in 
each iteration are accessed in an order different from the 
operands of the other groups. For  N = 2 m, the recursive 

equations for the first group can be written in the form 

( ) hn k.°-,, - . . ,  k,o-~+,, \ 0 ,1 / ,  k.,-~-~, . . . ,  k0 

( ) = ~L- ,  k i n - , , . . .  , k ~ - - L + ~ , k 0 , 1 / , k ~ - - L - - 2 , - - ' , k O  ( 4 )  

( /1,0~ ) 
+ t}~-i kin-,, . - - ,  k~-~÷,, \ 1 ,1 ] ,  k~-~-~, . . . ,  ko 

• W ( k m - 1 ,  " . .  , k , , - L + l )  

and 

( /1,0~ ) 
BL k.,-,, "." , k.~-L+,, \1,1) ' k,,-L-2, "'" , ko 

. (  fo0  ) 
= BL-, kin-,,... ,k~-z+,,k0,1},k~_z_~, . . . ,  k0 . (5) 

^. ( /1,0~ ) 
- -  B L - I  k ~ - l ,  "'" , k ~ - L + 1 ,  \ 1 , 1 ]  ' k.~-L-:, "'" , k, 

• W*(km-1, "'" , km-L+i) 

where k~_i . . . . .  kin-t+1 = 0, the asterisk denotes a 
complex conjugate, and L = 1, 2 , . . . ,  m -  1. Since 
W(0)  is actually equal to 1 ~ i0, the multiplication could 
be dropped from these equations• The product is included 
above, however, to show the tie between the operations of 
the first group and succeeding groups• 

For  all groups where W(0)  is not the multiplier, the 
following equations hold• 

( (oo  ) 
BL k,~-,, ... , k~-n+,,\0,1/ , ]C~--L--2, "'" , ko 

( ) = h L - ,  k i n - , , . . . ,  k , ~ - n + , ,  \ 1 , 0 / '  k~-L-~,  . . .  , ko ( 6 )  

( /0,1~ ) 
T hL-I k m - l , ' " , k ~ - L + l , \ i , i ) , k ~ - L - 2 , ' . . , k o  

• W ( k m - I  , ' ' '  , k m - L + l )  

and 

( r,o  ) hn kin-l, . . . ,  kin-L÷,, \ i , U ,  kin-h-,, . . . ,  a 

.. ( r0,0  ) 
= BL_I k s - , , ' ' ' , k~ -n+ , , \ l ,O / , k ,~ -L -2 ,  ' '-,/c0 (7) 

. . (  ) -- BL-1 kin-I, "'" , km-L+l, ~1,1/ ' k,~-L-2, "'" , k0 

• W*(k, , -1 ,  "'" , k,,-L+l). 

These equations hold for L = 1, 2 , . . . ,  m - -  1. The 
Fourier transformation is completed by replacing Bin_t(0) 
and Bin-l(1) with their sum and difference, respectively. 
When the highest frequency computed is known to be 
zero, an equivalent operation would be to double Bin_l(0) 
and set B~-i(1 ) = 0. However, for a one-sided transform 
even the doubling could be eliminated, resulting in a com- 
mon normalizing factor of N / 2  for all of the Fourier coef- 
ficients. 

V o l u m e  11 / N u m b e r  10 / O c t o b e r ,  1968 C o m m u n i c a t i o n s  o f  t h e  A C M  7 0 7  



With the exception of B,~_I(0) and B~_1(1), the 

B,~-l(km-z, . . . ,  k2, kz, ( ~ ) )  terms represent the complex 

Fourier coefficients of the original B0 series. The Bin_l(0) 
term is a real number representing the dc term and the 
B~_z(1) term represents the N/2-th harmonic. As in the 
case of the Cooley-Tukey results, these coefficients are not 
in order of ascending frequency, so reordering is required. 
Methods of performing this reordering are discussed later. 

Note that the argument of each W term refers to a mem- 
ber of a sequence of stored or computed powers of W and 
it does not represent an exponent. For example, the ex- 
pressions V(0), W(1), W(2), and W(3) refer to W °, 
W -N/s, W -~¢n6, and W -3~n6 respectively. As this pro- 
gression is continued, the equations call upon N/4 com- 
plex exponential weights. With one additional observation, 
it is possible to reduce this table to N/8 complex exponen- 
tial weights plus the term 1 + i0. Note that the last two 
values of W called in Figure 5 were W -z and W -3. Since, 
for N = 16 we have W -8 = -- i(w-l*),  one could simply 
negate and interchange the real and imaginary paris of 
the W "-1 to obtain W --3. This property generalizes con- 
veniently such that powers of V of greater magnitude 
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Fro. 6. A method of generating the sequence of W exponents 

than N/8 can always be obtained by simply negating aud 
interchanging the real and imaginary parts of the preced- 
ing W. This operation can be performed quite conveniently 
in either software or hardware realizations of the all 
gorithm. Thus it is convenient to perform the Fourier 
transform using only N/8 powers of W. 

When an algorithm using positive powers of W is used, 
the use of N/8 complex weights is made even simpler. 
In this case, starting with the fourth group in any itera- 
tion, the powers of 7V required for the even numbered 
groups can be formed by simply interchanging the real 
and imaginary parts of the W used in the preceding group. 
The only disadvantage of the algorithm using the positive 
powers of W is that the same "Complex Calculation" 
cannot be used for all of the arithmetic operations without 
a special modification for the first group. Note that when 
the negative powers of W were used in Figure 5, the same 
arithmetic unit was used without modification in all of the 
m -- 1 iterations. 

C o m p l e x  E x p o n e n t i a l  W e i g h t  Table  

The Fourier analysis recursive equations presuppose a 
table of complex exponential weights which can be ac- 
cessed sequentially in performing each iteration of the 
algorithm, or they presuppose a method of sequentially 
computing these weights. One way of generating the num- 
ber sequence required for forming a W table is shown 
schematically in Figure 6. For a given value of N, the se- 
quence can be progressively doubled until the N/4 or 
N/8 exponents required have been generated. 

The algorithm for doubling the length of each number 
sequence is: ( 1 ) multiply the second entry of the sequence 
by two and make this product the second entry of the 
new sequence; (2) subtract each nonzero entry of the 
sequence from twice the product formed in step 1 (these 
differences form the rest of the even entries of the new 
sequence); (3) take the odd entries of the new sequence 
as the numbers of the original sequence. 

Once the required sequence of W exponents is found, the 
corresponding W terms can be found and stored in this 
"scrambled" order. This table, computed for N = 2 m, 
is called sequentially during each iteration and can be 
used without change when N = 2 q where q ~ m. 

An alternative approach consisis of simply generating 
the sequence of W terms directly, without the intervening 
step of generating the sequence of exponents. Since only 
additions and subtractions are required in generating the 
exponents, the ;V terms can be generated directly as a 
sequence of products. In fact the entire N/4 term W 
table can be generated by using the log2 (N) term se- 
quence W °, Vi, W 2, W4, . . .  , W~¢/4 and the expression 
W~Wq= W ~+q. 

Reorder ing  

In a hardware implementation of the algorithm, the 
output of a binary counter can be suitably modified to read 
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the resulting Fourier coefficients out of the N real locations 
in order of ascending frequency. Although in-place reor- 
dering can be performed, it has not proved to be very 
efficient for the form of the algorithm discussed here. 

In a hardware indexing unit, the address sequence for 
reordering requires performing bitwise tests on the 
"flipped" binary equivalent of each harmonic number, 
from the least significant bit to, but  not including, the 
leftmost "one." As this is being done, each bit tested is 
replaced by a "one"  if the state sought matches the state 
found, and by a "zero" otherwise. The state sought con- 
tinues to alternate between "one"  and "zero." I t  starts 
~s a "one" and changes after each match is found. 

Although the same number sequence can be generated 

scribed by Singleton [11] may be sufficiently accurate for 
a software implementatiom 

One can "unwrap" the operations of the real-vMued 
Fourier analysis algorithm to obtMn a Fourier synthesis 
algorithm which has the same properties. I t  is convenieut 
to start with the Fourier coefficients in the order in which 
the Fourier analysis algorithm would have computed 
them. Thus by starting with N / 2  -- 1 complex and 2 real 
numbers in a scrambled form, the N real term series can 
be computed in the correct order. The form of the Fourier 
synthesis algorithm, for the example of N = 16, is shown 
in Figure 7. Note that  the "Complex Calculation" consists 
of the operations shown in Figure 5 done in reversed order. 
This algorithm is related to the Fourier analysis algorithm 

X(O) X(8) XR(4) X i ( 4 )  Xs(2) X i (2)  Xs(6) XZ(6) XR(I) X i ( I )  XR(7) Xi(T) XR(3) X i (3)  XR(5) XI (5)  

Bo(O) Bo(I)  BO(2) Bo(3) BO(4) BO(5) BO(6) BO(7) 

i F~..a'XL.-.~. , COMPLEX / 
I [+) ~--) I.I~-~CALCULATION (C.C.) I Cp I 

w o '  ' / 
Bi(O) B , ( I }  B i (2 )  B i (3)  Bi(4)  B,(5) Bi(6) Bi(7) 

BO(8) BO(9) Bo( IO)  BO(II) BO(12) Bo(13L BO(14) BO (15) 

I C.C. ~ W  3 I C.C. ~__W m I I 

Bi(8) B,(9) B, (10) 31([I) B i (12) Bi (13) B i (14) B i (15) 

LI C.C. ~ . w O  

s~(7) 

I C.C. I I I.--W z 

B2(8) B2(91 B2 (IO) B2(II) B2(12) B2(13) -B  2 
........ ~ f . - ~ - - J  

I C.C. L_wO 

B3(o) '4"- B3(i) B3(2) B3(3) B3(4) B3(5) B3(6) B3(7) B3(8) 

(14) B 2 05) 

B3(9) B 3(10) S3(ll) b'B 3(12) B3(13) B 3(T4) B3 (15) 

FIG. 7. The real-valued input fast Fourier synthesis algorithm for N = 16 

with software, thus far it has been more efficient to store 
part  of the number sequence of Figure 6 in a table and 
read the scrambled Fourier coefficients into a second array 
reordered. 

E x t e n s i o n s  

Several variations of the real-valued input algorithm 
have been considered and are described briefly below. 

By reordering the original real-valued series before per- 
forming the Fourier analysis, an algorithm should result 
in which the powers of W are required in ascending order 
and therefore can be conveniently computed recursively. 
One of the recursive forms of DeMoivre's formula de- 

in much the same way that  the Sande-Tukey algorithm 
[19] is related to the Cooley-Tukey algorithm. 

A variation of the reM-vMued input algorithm has been 
developed which alters the regular structure of the index- 
ing, but  rmukes reordering more convenient and allows 
more convenient exteusions to radix-4, radix-8, and 
arbitrary-radix algorithms. 

In forming an arbitrary-radix, real-valued algorithm, 
the recursive equations when N is the product of an arbi- 
t rary set of integers [20] are also interpreted as forming 
sets of unnormMized Fourier coefficients. If N is repre- 
sented as the product r l r 2  . . .  r , ,  the first iteration con- 
sists of computing r2r3 • " r~  sets of rl term Fourier series. 
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The second iteration consists of computing r3r4 . . .  ru sets 
of rlr2 term Fourier series. Thus the Lth iteration consists 
of computing r L + l r L + 2 . . . r n  sets of r l r 2 . . . r L  term 
Fourier series. 

When the original time series is real, the symmetry 
about the folding frequency will still always exist and 
complex numbers will always appear in conjugate pairs. 
The only departure from the diagram will be for cases 
where the product fir2 . . .  rL is an odd number. In this 
case the folding frequency is not one of the coefficients 
which is computed, so each set will consist of only one real 
number (the dc term) together with (rlr2 . . .  r L ) / 2  

complex conjugate pairs. 
As in the radix-2 algorithm discussed in this paper, it is 

again convenient to compute and store only those coeffi- 
cients at or below the folding frequency. The storing pro- 
cedure, however, is changed so that the imaginary part of 
each saved intermediate result is stored in the relative lo- 
cation which would ordinarily have held its redundant 
complex conjugate. This results in an orderly procedure 
which extends conveniently to radix-4, radix-8, and 
arbitrary-radix algorithms. It  also makes inplace re- 
ordering more manageable. 

R e s u l t s  

The Fourier analysis algorithm discussed in this paper 
requires essentially one half the arithmetic operations of 
the original complex Cooley-Tukey radix-2 algorithm. For 
N = 2 m the number of operations required by the Cooley- 
Tukey radix-2 algorithm and the Fourier-transform-real- 
valued-input (FTRVI) algorithm are given in Table I. 

TABLE I. ARITHMETIC OPERATIONS REQUIRED FOR N = 2 ~ 

Algorithm Real multiplications Real additions 

FTRVI (m -- 3.5)N d- 6 (1.Lm -- 2.5)N d- 4 
Radix 2 (2m -- 7)N + 12 (3m -- 3)N -4- 4 

The expressiofis in Table I assume that rereferencing 
factors (or twiddle factors) of exp (i0), exp (~i~-/2) and 
±exp(±i~r/4) are treated as special cases. Also, in the 
FTRVI algorithm, the normalizing factor for everything 
but the dc term and the folding frequency is N / 2  instead 
of N. If these Fourier coefficients were doubled, this would 
change the number of real additions in FTRVI to (1.Lm- 
1.5)N :- 2 which is exactly half of the corresponding 
number for the complex radix-2 algorithm. Since this 
doubling is usually not necessary, the number of additions 
is shown as slightly less than half. 

The savings effected by radix-4 and radix-8 complex 
input algorithms [10, 13] can also be made in the real- 
valued input algorithm. Thus a further computational re- 
duction of approximately 30 percent is anticipated. 

In terms of hardware implementations, the execution 
times and memory requirements of the fast Fourier trans- 
form processor described by Shively [7] can be cut in half. 
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