
Ill
J. F. T R A U B , E d i t o r

A Fast Fourier Transform
Algorithm for
Real-Valued Series

GLENN D. BERGLAND

Bell Telephone Laboratories, Whippany, New Jersey

A new procedure is presented for calculating the complex,
discrete Fourier transform of real-valued time series. This
procedure is described for an example where the number of
points in the series is an integral power of two. This algorithm
preserves the order and symmetry of the Cooley-Tukey fast
Fourier transform algorithm while effecting the two-to-one
reduction in computation and storage which can be achieved
when the series is real. Also discussed are hardware and
software implementations of the algorithm which perform
only (N/4) log2 (N/2) complex multiply and add operations,
and which require only N real storage locations in analyzing
each N-point record.

KEY WORDS AND PHRASES: fast Fourier transform, time series analysis,
digital filtering, spectral analysis, real-tlme spectrum analyzers, Fourier
analysis, discrete Fourier transform, digital spectrum analysis, Fourier analy-
sis algorithm, Fourier synthesis algorithm

CR CATEGORIES: 3.80, 3.81, 4.9, 5.49, 6.22

[10-14]; and improving the computational efficiency
when the input series consists solely of real numbers
[14, 15].

There have been two basic approaches to the evaluation
of real-valued time series. The first approach makes use
of the conventional complex FFT algorithm and de-
pends upon forming an artificial N/2-term complex record
from each N-term real record [15]. A more direct ap-
proach has recently been proposed by Edson [16] in which
he suggests specializing the complex FFT algorithm by
eliminating those computations which lead to redundant
results. The algorithm discussed in this paper extends
this latter approach not only to decrease the required
computation but also to preserve the order and symmetry
which made the original complex Cooley-Tukey algorithm
so convenient to implement in both hardware and soft-
ware.

Redundancy in the Cooley-Tukey Algorithm

An interpretation of the A~ values of the Cooley-Tukey
algorithm for i = 0, 1, 2 , - . . , m, where N = 2 m, has
been noted by Cooley [17] and described in detail by Shiv-
ely [7] and others [18]. This interpretation describes the
A i values at each stage as being sets of unnormalized
Fourier coefficients formed from interleaved sets of sam-
ples. Although this concept can be conveniently gener-
alized to apply when N = rlr2.. , r,~, an example ~vill
be carried through for N = 2% In this case the original
samples (i.e. the A0 values) can be thought of as N
distinct one-term Fourier series representations of the
dc (direct current) value of the time function. In Figure 1

Introduction

Recent papers regarding the fast Fourier transform
(FFT) have largely dealt with applications and refine-
ments of the algorithms originally reported by Cooley
and Tukey [1]. The %chnique has been applied to vocoding
[2, 3], digital filtering [4], analysis of underwater sound
recordings [5], analysis of electroencephalographic data
[6], and many other areas. Because of this wide range of
application, several groups have proposed hardware im-
plementations of the algorithm [7-9]. Refinements of the
algorithm include: rearranging the calculations or ex-
ploiting the symmetries of the complex exponential
weights to obtain efficient software implementations

V o l u m e 11 / N u m b e r 10 / O c t o b e r , 1968

x (o) A o

I

x(o) I x I) A I

xco) [xc21 I xc,) xc31 A~

FiG. 1. In te rmedia te results of the Cooley-
Tukey a lgor i thm in terpre ted as Fourier eo-
efiffieients of inter leaved sets of samples

C o m m u n i c a t i o n s of t h e ACM 703

http://crossmark.crossref.org/dialog/?doi=10.1145%2F364096.364118&domain=pdf&date_stamp=1968-10-01

the N-term sequence of A0s has been denoted by the top
rectangle. As these may be interpreted as N separate esti-
mates of dc, they have been labeled X(0).

The A 1 values are estimates of the dc term and the first
harmonic (i.e. the X(0) and X(1) Fourier coefficients)
as evaluated from N/2 separate 2-term Fourier series.
As shown in Figure 1, the first half of the Als represents
X(0) coefficients and the second half represents X(1)
coefficients.

In like manner the Ass represent X(0), X(1), X(2),
and X(3) Fourier coefficients as evaluated from N/4
separate 4-term Fourier series, and the A3s represent the
Fourier coefficients evaluated from N/8 separate 8-term
Fourier series.

In each case a stage in the recursive algorithm represents
Combining unnormalized Fourier coefficients formed
from two interleaved sets of samples to form twice as
many Fourier coefficients (because the effective sampling
rate is doubled) from the combined set.

V~ hen the original time series consists of only real num-
bers, this interpretation can be profitably carried one step
further. In Figure 2 a set of graphs shows the A0s, A~s,
etc., as Fourier coefficients displayed as a function of

are complex conjugates. Thus only the N/4 values of the
first harmonic are truly independent. This means that to
store the independent A2 values we only need storage for
N/2 real numbers and N/4 complex numbers, i.e. N stor-
age locations.

Analogously, the A3 values representing the 5th, 6th,
and 7th harmonics are complex conjugates of the 3rd, 2nd,
and 1st harmonics, respectively. Since the X(0) and X(4)
terms are real and only the X(1), X(2), and X(3) com-
plex terms must be saved, we still require only N storage
locations.

This process continues until in .the last stage the
N/2 -- 1 independent complex Fourier coefficients and the
2 independent real Fourier coefficients are formed by
combining all N of the original real samples. Thus it is
apparent that for a real-valued time series of N samples
we have only N independent numbers at the beginning
and N independent numbers at the end (i.e. N/2 - 1
complex numbers and 2 real numbers), and no additional
storage is required in the intervening steps. Since the dis-
carded intermediate results at any stage can be formed by
simply conjugating the appropriate saved value, this
process proves to be quite convenient to implement.

¢
x(o)

EFFECTIVE SAMPLING RATE= I SAMPLE/T SECONDS

/
liST/ f A o TERMS

EFFECTIVE SAMPLING RATE

I f A I TERMS
X(O) X(I) 2 /T

EFFECTIVE SAMPLING RATE

/
+ ~ ~ I f A 2 TERMS

X(O) X(I) X(2) X(5) 4 / T
i I

EFFECTIVE SAMPLING RATE

¢ ¢ + ¢ ¢ ¢ ¢ ? \
X{O) X(1) X(2) X(3) X(4) X(5) X(6) X(7) 8yT f l A..3

TERMS

[I
L I

I I

FIG. 2. Intermediate results of Cooley-Tukey algorithm plotted
as a function of the frequencies they represent

frequency. Note that the set of A0 and Ai values are both
composed of only real numbers; however, the set of A2-
values consists of N/2 real numbers (the X(0) and X(2)
terms), N/4 complex X(1) terms, and N/4 complex X(.3)
terms. From Figure 2 it is apparent that the third har-
monic terms are above one-half the effective sampling
frequency, and as they were formed from real-valued time
samples, the set of X(3) terms and the set of X(1) terms

D e v e l o p i n g t h e A l g o r i t h m

An algorithm is developed for computing only the
N/2 + 1 independent Fourier coefficients while preserv-
ing the order and symmetry, which makes the complex
Cooley-Tukey algorithm so attractive. Since the input
series consists of only N real numbers and the resulting
Fourier coefficients consist of only N/2 -- 1 complex num-
bers and 2 real numbers, it is convenient to perform all
of the iterations using an array of only N real storage loca-
tions. This compares with the N complex storage loca-
tions required in implementing the complex Cooley-
Tukey algorithm.

It is also desirable to keep the indexing of intermediate
results regular and the number of different mathematical
operations required to a minimum. By deviating from the
Cooley-Tukey order of computation, one can achieve both
a regular indexing pattern and a standard set of mathe-
matical operations.

The Cooley-Tukey algorithm for complex time series
is shown diagrammatically in Figure 3 for the example of
N = 16. The basic set of mathematical operations is
represented by the block entitled "Complex Calculation."
This block denotes that: (1) the second complex input is
multiplied by the appropriate power of W (where W =
exp (2w-i/N)); (2) the resulting product is added to the
first complex input to form the first output term; (3) this
product is subtracted from the first input term to form the
second output term. Note that in Figure 3 the "G" de-
notes temporary storage of the first input and does not
denote au arithmetic operation.

Although this set of "complex calculations" is actually

704 Communicat ions of the ACM Volume 11 / Number 10 / October, 1968

Ao(O) A o (I) AO(2) AO(3) AO(4) AO(5) AO(6) AO(7) AO(8) AO(9) Ao(IO) AO(II } AO(12) AO (13) AO(14) A0(15)
L ..._.J

COMPLEX CALCULATION (C.C.)

A i (O) A i (I ~) A i (2) A i (3) A I (4) A i (5) A i (6) A l ~ (7) Ai (8) A I (9) A I (IO) A I (11) A I (12) Ai (13) A I (14) Ai 05)

I i_W o i i_W_4 I C.C. I C.C.
I I I t

A2(O) 2 2 2 ,~ , A2 (4) A2 (5) A2(6} A2(7) A2(8) A2(12)

' l -w ° ' l -w-" ', l-w-~ i C.C. I I C.C. C.C.
I I 1 I I

A3(O) A 3 (I) A3(2) A3(3) A3(4) A3(5) A3(6) A3(7) A5(8) A3(9) A3(IO) A3(I I)

, ,w ' - i c.c. c.c., ,'c.c

A4(O) A4(I) A4(2) A4(3) A4(4) A4(5) A4(6) A4(7) A4(8) A4(9) A4(IO) A4(II)

A2(13) A2(14) AS (15)

I C.C. I I~w '6
I I

A3(12) A3 (13) A3 (14) A3(15)

~w-~ hw-' II C.C. I C.C.
I I I t

A4(12) A4 (13) A4(14) A4(15)

x(o) x(s) x(4) ×(2) x(6) x(i) x(5) x(3) x(7)

Fio. 3. The Cooley-Tukey complex fast Fourier transform algorithm shown diagrammatically for the example of N = 16

performed N/2 times during each iteration, Figure 3 shows
only the accessing and storage patterns for the first set
in each group. Each pattern shown is applied sequen-
tially to all of the operands in its group. In the first itera-
tion, for example, the set of "complex calculations" is
shown applied to the A0(0) and A0(8) terms. It is next
applied to the A0(1) and A0(9) terms, the Ao(2) and
A0(10) terms, and so on. By showing only the first opera-
Lion of each sequence, the diagram can be kept quite
simple while still denoting all of the necessary informa-
tion.

From the representation of the Cooley-Tukey algorithm
shown in Figure 3, it is convenient to describe the real-
valued input algorithm in terms of its deviation from the
Cooley-Tukey procedure. The real-valued input algorithm
computes intermediate results in a different order from the
Cooley-Tukey algorithm, but the Cooley-Tukey labeling
of the intermediate results can be carried through to
verify that all of the required operations are being per-
formed. As discussed in the previous section, the essential
differences will be that the redundant intermediate results
of the Cooley-Tukey algorithm will not be computed, and
real storage locations will be assumed instead of N com-
plex storage locations. (Note that the redundant Cooley-
Tukey intermediate results have a double line under them
in Figure 3.)

The computation of the independent Cooley-Tukey

intermediate results via the real-valued input algorithm
is shown diagrammatically in Figure 4. Note that the set
of "complex calculations" still consists of operating oa
two complex inputs and forming two complex outputs,
but the real and imaginary parts of these terms are stored
in different locations. Note also that the terms which are
to be subtracted are conjugated. (Or as an alternative,
the result of the subtraction could be conjugated.)

In Figure 4 the nonredundant results of each iteration
of the Cooley-Tukey algorithm are shown on separate lines
with the imaginary part of each term being labeled with
the prefix i. Note that the imaginary parts of the saved
terms are stored in the locations vacated by the discarded
terms. By deviating from the computational order of the
Cooley-Tukey algorithm, an orderly indexing pattern is
obtained, and the real and imaginary parts of each Fourier
coefficient are formed in adjacent locations.

A common set of arithmetic operations can be carried
through the entire algorithm as denoted by the CC (com-
plex calculation) box in Figure 4. This calculation differs
from that performed in the Cooley-Tukey algorithm only
in that one of the results must be conjugated before being
stored back iu memory.

The objective of maintaining an orderly and easily
implemented indexing pattern is met by making one small
change to the diagram of Figure 4. Note that the opera-
tion of multiplying by W(N/4) (i.e. - i) is performed in

Volume 11 / Number 10 / October, 1968 Communica t ions o f the ACM 705

Figure 4 by a negation and a relabeling. The relabeling
occurs in the "No Operations Necessary" space. I f the
operations below these expressions are all performed one
iteration earlier, the accessing of the new "regrouped"
iteration will have the regularity being sought. This
procedure has the added effect of eliminating the ruth
iteration of the algorithm except for one addition and one
subtraction.

Based on the observations made above, one can define a
new fast Fourier t ransform algorithm for real-valued in-
puts. I f the original series is designated Bo(k) for /~ =
0, 1, . . . , N -- 1, the operations shown in Figure 5 will
compute the Fourier coefficients provided that one of the
following conditions is met:

1. The Fourier coefficients corresponding to DC and
one-half the sampling frequency must be zero; or

Ao(O) AO(I) AO(2) AO(3)

Ai(O) "t" Ai(I) Ai(2) At(3)

Ao(4] AO(5) AO(6) Ao(7) AO(8) Ao(9) Ao(lO)

* ~ W 0
I I ~ ~ ,,~ ~ COMPLEX CALCULATION (C.C.)

A Ai(9) Ai (10)

NO OPERATIONS
NECESSARY

A2(7)

A3(4) A3(5) iA3(4) iA3(5)

I CC i ~ w -
I I

A4(4) iA4(4) A4(6) iA4(6)

I i L W 0 i C.C.
I I

I C.C. ~ - - W °
I L

As(O) A3(I) A3(2) A3(3)

_ Hog__

A4(O) A4(I) A4(2) IA4(2)

AO(II) AO(12) AO(13) AO(14) AO(15)

An (11) 'i'A i (12) Ai (13) Ai (14) Ai (15)

NO OPERATIONS NECESSARY

A2(8) A2(9) A2(IO) A2(II) iA2(8) iA2[9) iA2(i 0) iA2(ll)

I L--W -2
I C.C. I

' l - w - ' r-'W-~ I C .C. I C .C.
I I I I

A4(8) iA4(8) A4(14) iA4(14) A4(12) iA4(12) A4(IO) iA4(lO)

X(O) X(8) XR(4) Xi(4} XR(2) Xi(2) XR(6) XI(6) XR(I) XI (I) XR(7) XI(7) XR(3) Xz(3) XR(5) X i (5)

FIG. 4. The nonredundant in termediate results of the C3oley-Tukey alg3ri thm as they are f3rm~:l by the real-valued inpu t a lgor i thm

Bo(O) BO(I) Bo(2) 80(3) BO(4) BO(5) BO(6) BO(7) BO(8) BO(9) BO (10) BO(II) Bo(12) Bo(13) Bo (14) Bo (15)

ei(o) "~' B i (I) Bi(2)

I
I
I

I c.c. FwO
I I

B3(O) B3(I) B3(2) B3(3}

- - " - ~ t ~ ~MPLEX CALCULATION (C.C.)

Bi(3) Bi (4)-- Bl(5) Bi(6) Bi(7) BI(8) Bl(9) B i (10) B i (l i m b i (12) B i (13) B i (14) B i (15)

C.C. I LwO , C.C. I ~w-2
I I I

I c.c. I - w-2 I c.c. ~-w-'
I I I I

B3(4) B3(5) B3(6) B3(7) B3(8) B3(9) B 3(10) Bs(il)

C C r--W"
i I

j r - -
B 3(12) B 3(13} B 3(14) B3 (15)

X(O) X(B) X R (4) Xi(4) XR(2) XI(2) XR(6) Xi(6) XR(I) X i (I) XR(7 } Xi(7) XR(3) Xi(3) XR(5) Xi(5)

706

FIG. 5. The real-valued input fas t Fourier t ransform algor i thm for N = 16

C o m m u n i c a t i o n s of t h e ACM V o l u m e 11 / N u m b e r 10 / O c t o b e r , 1968

2. B3(0) ~nd B3(1) must be replaced by their sum and
difference, respectively.

The properties of this algorithm can be summarized
as follows:

1. The redundant Fourier coefficients in each iteration
above one half the effective sampling frequency are neither
computed nor stored.

2. The intermediate results are accessed and stored in a
regular and easily implemented pattern.

3. The real and imaginary parts of the final Fourier
coefficients are formed in adjacent storage locations•

4. Only N real storage locations are required throughout
the computation. These store the original data points,
the intermediate results, and the final results.

5. The same set of complex arithmetic operations is per-
formed during the entire algorithm. Only the accessing
order has to be changed when the operands are actually
real.

6. The powers of W are called in the same order during
each iteration.

7. Only 3 (m - 1 when N = 2 m) complete iterations
are required.

F o u r i e r A n a l y s i s R e c u r s i v e E q u a t i o n s

The real-valued input algorithm is best described for
the case of N = 2 m by the recursive equations which are
developed below.

Consider the problem of evaluating a complex Fourier
series of the form

N--1

X (j) = ~ B o (k) W -jk (1)
k=0

where W = e 2*i/N, Bo(k) is real, j = 0, 1 , . . . , N / 2 ,
and N = 2 m.

If k is expressed in the form

k = kin_l"2 ~-I + " '" "b k1"21 + /CO, (2)

the original N storage locations into which the Bo(k)
values are stored can be labeled as B(k~_l , . . . , k l , ko)
where k~-i k~ = ko = 0, 1. Since two locations
are required to specify each complex number, it is con-
venient to define the following notation:

(ital'a°~)
B/L k i n - l , " ' " , ~ m - L + l , ~k b l , bo / , k i n - L - - e , " ' " , ko

= B L (k m - 1 . " ' ' , k m - L + l , a l , a 0 , k i n - L - 2 , " ' ' , ko) (3)

+ iBL(km-1, "" , km-L+l, bl, bo, k~-L~, "" , ko).

The L subscript denotes that these values are the results
of the Lth iteration of the algorithm as outlined in Fig-
ure 5.

As shown in Figure 5 the operands of the first group in
each iteration are accessed in an order different from the
operands of the other groups. For N = 2 m, the recursive

equations for the first group can be written in the form

() hn k.°-,, - . . , k,o-~+,, \ 0 ,1 / , k.,-~-~, . . . , k0

() = ~L- , k i n - , , . . . , k ~ - - L + ~ , k 0 , 1 / , k ~ - - L - - 2 , - - ' , k O (4)

(/1,0~)
+ t}~-i kin-,, . - - , k~-~÷,, \ 1 ,1] , k~-~-~, . . . , ko

• W (k m - 1 , " . . , k , , - L + l)

and

(/1,0~)
BL k.,-,, "." , k.~-L+,, \1,1) ' k,,-L-2, "'" , ko

. (fo0)
= BL-, kin-,,... ,k~-z+,,k0,1},k~_z_~, . . . , k0 . (5)

^. (/1,0~)
- - B L - I k ~ - l , "'" , k ~ - L + 1 , \ 1 , 1] ' k.~-L-:, "'" , k,

• W*(km-1, "'" , km-L+i)

where k~_i kin-t+1 = 0, the asterisk denotes a
complex conjugate, and L = 1, 2 , . . . , m - 1. Since
W(0) is actually equal to 1 ~ i0, the multiplication could
be dropped from these equations• The product is included
above, however, to show the tie between the operations of
the first group and succeeding groups•

For all groups where W(0) is not the multiplier, the
following equations hold•

((oo)
BL k,~-,, ... , k~-n+,,\0,1/ ,]C~--L--2, "'" , ko

() = h L - , k i n - , , . . . , k , ~ - n + , , \ 1 , 0 / ' k~-L-~, . . . , ko (6)

(/0,1~)
T hL-I k m - l , ' " , k ~ - L + l , \ i , i) , k ~ - L - 2 , ' . . , k o

• W (k m - I , ' ' ' , k m - L + l)

and

(r,o) hn kin-l, . . . , kin-L÷,, \ i , U , kin-h-,, . . . , a

.. (r0,0)
= BL_I k s - , , ' ' ' , k~ -n+ , , \ l ,O / , k ,~ -L -2 , ' '-,/c0 (7)

. . () -- BL-1 kin-I, "'" , km-L+l, ~1,1/ ' k,~-L-2, "'" , k0

• W*(k, , -1 , "'" , k,,-L+l).

These equations hold for L = 1, 2 , . . . , m - - 1. The
Fourier transformation is completed by replacing Bin_t(0)
and Bin-l(1) with their sum and difference, respectively.
When the highest frequency computed is known to be
zero, an equivalent operation would be to double Bin_l(0)
and set B~-i(1) = 0. However, for a one-sided transform
even the doubling could be eliminated, resulting in a com-
mon normalizing factor of N / 2 for all of the Fourier coef-
ficients.

V o l u m e 11 / N u m b e r 10 / O c t o b e r , 1968 C o m m u n i c a t i o n s o f t h e A C M 7 0 7

With the exception of B,~_I(0) and B~_1(1), the

B,~-l(km-z, . . . , k2, kz, (~)) terms represent the complex

Fourier coefficients of the original B0 series. The Bin_l(0)
term is a real number representing the dc term and the
B~_z(1) term represents the N/2-th harmonic. As in the
case of the Cooley-Tukey results, these coefficients are not
in order of ascending frequency, so reordering is required.
Methods of performing this reordering are discussed later.

Note that the argument of each W term refers to a mem-
ber of a sequence of stored or computed powers of W and
it does not represent an exponent. For example, the ex-
pressions V(0), W(1), W(2), and W(3) refer to W °,
W -N/s, W -~¢n6, and W -3~n6 respectively. As this pro-
gression is continued, the equations call upon N/4 com-
plex exponential weights. With one additional observation,
it is possible to reduce this table to N/8 complex exponen-
tial weights plus the term 1 + i0. Note that the last two
values of W called in Figure 5 were W -z and W -3. Since,
for N = 16 we have W -8 = -- i(w-l*), one could simply
negate and interchange the real and imaginary paris of
the W "-1 to obtain W --3. This property generalizes con-
veniently such that powers of V of greater magnitude

SEQUENCE OF

2 TERMS 4 TERMS 8 TERMS 16 TERMS 32 TERMS

0 0

2

I I

3

o

s

4

12

2

14

6

I0

I

15

7

9

5

13

5

I I

0
16

8
24

4

28
12

20
2

30

14
18

6

26
I0

22
I

31

15

17.

7

25

9
23

3

29
13

19

5

27
[I

21

Fro. 6. A method of generating the sequence of W exponents

than N/8 can always be obtained by simply negating aud
interchanging the real and imaginary parts of the preced-
ing W. This operation can be performed quite conveniently
in either software or hardware realizations of the all
gorithm. Thus it is convenient to perform the Fourier
transform using only N/8 powers of W.

When an algorithm using positive powers of W is used,
the use of N/8 complex weights is made even simpler.
In this case, starting with the fourth group in any itera-
tion, the powers of 7V required for the even numbered
groups can be formed by simply interchanging the real
and imaginary parts of the W used in the preceding group.
The only disadvantage of the algorithm using the positive
powers of W is that the same "Complex Calculation"
cannot be used for all of the arithmetic operations without
a special modification for the first group. Note that when
the negative powers of W were used in Figure 5, the same
arithmetic unit was used without modification in all of the
m -- 1 iterations.

C o m p l e x E x p o n e n t i a l W e i g h t Table

The Fourier analysis recursive equations presuppose a
table of complex exponential weights which can be ac-
cessed sequentially in performing each iteration of the
algorithm, or they presuppose a method of sequentially
computing these weights. One way of generating the num-
ber sequence required for forming a W table is shown
schematically in Figure 6. For a given value of N, the se-
quence can be progressively doubled until the N/4 or
N/8 exponents required have been generated.

The algorithm for doubling the length of each number
sequence is: (1) multiply the second entry of the sequence
by two and make this product the second entry of the
new sequence; (2) subtract each nonzero entry of the
sequence from twice the product formed in step 1 (these
differences form the rest of the even entries of the new
sequence); (3) take the odd entries of the new sequence
as the numbers of the original sequence.

Once the required sequence of W exponents is found, the
corresponding W terms can be found and stored in this
"scrambled" order. This table, computed for N = 2 m,
is called sequentially during each iteration and can be
used without change when N = 2 q where q ~ m.

An alternative approach consisis of simply generating
the sequence of W terms directly, without the intervening
step of generating the sequence of exponents. Since only
additions and subtractions are required in generating the
exponents, the ;V terms can be generated directly as a
sequence of products. In fact the entire N/4 term W
table can be generated by using the log2 (N) term se-
quence W °, Vi, W 2, W4, . . . , W~¢/4 and the expression
W~Wq= W ~+q.

Reorder ing

In a hardware implementation of the algorithm, the
output of a binary counter can be suitably modified to read

708 Communications of the ACM Volume 11 / Number 10 / October, 1968

the resulting Fourier coefficients out of the N real locations
in order of ascending frequency. Although in-place reor-
dering can be performed, it has not proved to be very
efficient for the form of the algorithm discussed here.

In a hardware indexing unit, the address sequence for
reordering requires performing bitwise tests on the
"flipped" binary equivalent of each harmonic number,
from the least significant bit to, but not including, the
leftmost "one." As this is being done, each bit tested is
replaced by a "one" if the state sought matches the state
found, and by a "zero" otherwise. The state sought con-
tinues to alternate between "one" and "zero." I t starts
~s a "one" and changes after each match is found.

Although the same number sequence can be generated

scribed by Singleton [11] may be sufficiently accurate for
a software implementatiom

One can "unwrap" the operations of the real-vMued
Fourier analysis algorithm to obtMn a Fourier synthesis
algorithm which has the same properties. I t is convenieut
to start with the Fourier coefficients in the order in which
the Fourier analysis algorithm would have computed
them. Thus by starting with N / 2 -- 1 complex and 2 real
numbers in a scrambled form, the N real term series can
be computed in the correct order. The form of the Fourier
synthesis algorithm, for the example of N = 16, is shown
in Figure 7. Note that the "Complex Calculation" consists
of the operations shown in Figure 5 done in reversed order.
This algorithm is related to the Fourier analysis algorithm

X(O) X(8) XR(4) X i (4) Xs(2) X i (2) Xs(6) XZ(6) XR(I) X i (I) XR(7) Xi(T) XR(3) X i (3) XR(5) XI (5)

Bo(O) Bo(I) BO(2) Bo(3) BO(4) BO(5) BO(6) BO(7)

i F~..a'XL.-.~. , COMPLEX /
I [+) ~--) I.I~-~CALCULATION (C.C.) I Cp I

w o ' ' /
Bi(O) B , (I } B i (2) B i (3) Bi(4) B,(5) Bi(6) Bi(7)

BO(8) BO(9) Bo(IO) BO(II) BO(12) Bo(13L BO(14) BO (15)

I C.C. ~ W 3 I C.C. ~__W m I I

Bi(8) B,(9) B, (10) 31([I) B i (12) Bi (13) B i (14) B i (15)

LI C.C. ~ . w O

s~(7)

I C.C. I I I.--W z

B2(8) B2(91 B2 (IO) B2(II) B2(12) B2(13) -B 2
........ ~ f . - ~ - - J

I C.C. L_wO

B3(o) '4"- B3(i) B3(2) B3(3) B3(4) B3(5) B3(6) B3(7) B3(8)

(14) B 2 05)

B3(9) B 3(10) S3(ll) b'B 3(12) B3(13) B 3(T4) B3 (15)

FIG. 7. The real-valued input fast Fourier synthesis algorithm for N = 16

with software, thus far it has been more efficient to store
part of the number sequence of Figure 6 in a table and
read the scrambled Fourier coefficients into a second array
reordered.

E x t e n s i o n s

Several variations of the real-valued input algorithm
have been considered and are described briefly below.

By reordering the original real-valued series before per-
forming the Fourier analysis, an algorithm should result
in which the powers of W are required in ascending order
and therefore can be conveniently computed recursively.
One of the recursive forms of DeMoivre's formula de-

in much the same way that the Sande-Tukey algorithm
[19] is related to the Cooley-Tukey algorithm.

A variation of the reM-vMued input algorithm has been
developed which alters the regular structure of the index-
ing, but rmukes reordering more convenient and allows
more convenient exteusions to radix-4, radix-8, and
arbitrary-radix algorithms.

In forming an arbitrary-radix, real-valued algorithm,
the recursive equations when N is the product of an arbi-
t rary set of integers [20] are also interpreted as forming
sets of unnormMized Fourier coefficients. If N is repre-
sented as the product r l r 2 . . . r , , the first iteration con-
sists of computing r2r3 • " r~ sets of rl term Fourier series.

V o l u m e 11 / N u m b e r 10 / Oc tober , 1968 C o m m u n i c a t i o n s o f t h e ACM 7 0 9

The second iteration consists of computing r3r4 . . . ru sets
of rlr2 term Fourier series. Thus the Lth iteration consists
of computing r L + l r L + 2 . . . r n sets of r l r 2 . . . r L term
Fourier series.

When the original time series is real, the symmetry
about the folding frequency will still always exist and
complex numbers will always appear in conjugate pairs.
The only departure from the diagram will be for cases
where the product fir2 . . . rL is an odd number. In this
case the folding frequency is not one of the coefficients
which is computed, so each set will consist of only one real
number (the dc term) together with (rlr2 . . . r L) / 2

complex conjugate pairs.
As in the radix-2 algorithm discussed in this paper, it is

again convenient to compute and store only those coeffi-
cients at or below the folding frequency. The storing pro-
cedure, however, is changed so that the imaginary part of
each saved intermediate result is stored in the relative lo-
cation which would ordinarily have held its redundant
complex conjugate. This results in an orderly procedure
which extends conveniently to radix-4, radix-8, and
arbitrary-radix algorithms. It also makes inplace re-
ordering more manageable.

R e s u l t s

The Fourier analysis algorithm discussed in this paper
requires essentially one half the arithmetic operations of
the original complex Cooley-Tukey radix-2 algorithm. For
N = 2 m the number of operations required by the Cooley-
Tukey radix-2 algorithm and the Fourier-transform-real-
valued-input (FTRVI) algorithm are given in Table I.

TABLE I. ARITHMETIC OPERATIONS REQUIRED FOR N = 2 ~

Algorithm Real multiplications Real additions

FTRVI (m -- 3.5)N d- 6 (1.Lm -- 2.5)N d- 4
Radix 2 (2m -- 7)N + 12 (3m -- 3)N -4- 4

The expressiofis in Table I assume that rereferencing
factors (or twiddle factors) of exp (i0), exp (~i~-/2) and
±exp(±i~r/4) are treated as special cases. Also, in the
FTRVI algorithm, the normalizing factor for everything
but the dc term and the folding frequency is N / 2 instead
of N. If these Fourier coefficients were doubled, this would
change the number of real additions in FTRVI to (1.Lm-
1.5)N :- 2 which is exactly half of the corresponding
number for the complex radix-2 algorithm. Since this
doubling is usually not necessary, the number of additions
is shown as slightly less than half.

The savings effected by radix-4 and radix-8 complex
input algorithms [10, 13] can also be made in the real-
valued input algorithm. Thus a further computational re-
duction of approximately 30 percent is anticipated.

In terms of hardware implementations, the execution
times and memory requirements of the fast Fourier trans-
form processor described by Shively [7] can be cut in half.

RECEIVED APRIL, 1968; REVISED APRIL, 1968

REFERENCES

1. COOLEY, J. W., AND TUKEY, J .W. An algorithm for the ma-
chine calculation of complex Fourier series. Math. Comput.
19 (Apr. 1965), 297-301.

2. McKINNEY, T. H. A digital spectrum channel analyzer.
Conference on Speech Communication and Processing Pre-
prints, Nov. 1967, pp. 442-444.

3. FREUDBERG, R., DELELLIS, J., HO~VARD, C., AND SCHAFFER,
H. An all digital pitch excited vocoder technique using
the FFT algorithm. Conference on Speech Communication
and Processing Preprints, Nov. 1967, pp. 297-310.

4. HELMS, H . D . Fast Fourier transform method of computing
difference equations and simulating filters. I E E E Trans.
AU-15 (June 1967), 85-90.

5. SINGLETON, R. C., AND POULTER, T. C. Spectral analysis
of the call of the male killer whale. I E E E Trans. A U (June
1967), 104-113.

6. DUMERMUTt-I, G., AND FLUttLER, H. Some modern aspects in
numerical spectrum analysis of multichannel electroen-
cephalographie data. Med. and Biol. Eng. 5 (1967), 319-331.

7. SHIVELY, R . R . A digital processor to perform a fast Fourier
transform. Proc. First Ann. IEEE Comput. Conf., Sept.
1967, pp. 21-24.

8. BERGLAND, G. D., AND HALE, H. W. Digital real-time
spectral analysis. I E E E Trans. EC-16, (Apr. 1967), 180-185.

9. VAN BLERKOM, .R,. IBM Federal Systems Center. (Private
communication)

10. GENTLEMAN, W. M., AND SANDE, G. Fast Fourier transforms
--for fun and profit. Proc. AFIPS 1966 Fall Joint Comput.
Conf., Vol. 29. Spartan Books, New York, pp. 563-578.

11. SINGLETON, R.C. On computing the fast Fourier transform.
Comm. A C M 10 (Oct. 1967), 647-654.

12. COOLEY, J .W. Complex finite Fourier transform subroutine.
SHARE Doc. 3465, Sept. 8, 1966.

13. BERGLAND, C . D . A fast Fourier transform algorithm using
base 8 iterations. Math. Comput., 22 (Apr. 1968), 275-279.

14. BRENNER, N. iV[. Three Fortran programs that perform the
Cooley-Tukey Fourier transform. Tech. Note 1967-2, Lincoln
Lab., MIT, July 1967.

15. COOLEY, J. W., LEWIS, P. A. W., AND WELCH, P. D. The
fast Fourier transform algorithm and its applications.
IBM Res. Paper RC-1743, Feb. 1967.

16. EDSON, J . O . Bell Telephone Laboratories. (Private commu-
nication)

17. COOLEY, J. W. Applications of the fast Fourier transform
method. Proc. IBM Scientific Computing Symposium,
Thomas J. Watson Research Center, Yorktown Heights,
N.Y., June 1966.

18. G-AE Subcommittee on Measurement Concepts. What is the
fast Fourier transform? I E E E Trans. AU-15 (June 1967),
45-55.

19. BINGHAM, C., GODFREY, M. D., AND TUKEY, J . W . Modern
techniques of power spectrum estimation. I E E E Trans.

AU-15 (June 1967), 56-66.
20. BERGLAND, G. D. The fast Fourier transform recursive

equations for arbitrary length records. Math. Comput. 21

(Apr. 1967), 236-238.

710 C o m m u n i c a t i o n s o f the ACM Volume 11 / Number 10 / October, 1968

