
Letters to the Editor--Cont'd from page 297

A C o m m e n t

Dear Editor:
I wish to comment on the significant number of contributions

to Pracniques, Letters to the Editor and other departments of
Communications that are concerned solely with methods of
circumventing unpleasant characteristics of IBM 7090 series
machines or of some specific operating system for those machines.
There can be no question that this information is of great im-
portance to a large segment of the profession. Since such material
seldom provides the slightest contribution to the state of the art,
however, and since a mechanism, the S H A R E Secretary Distribu-
tion, exists for exactly this purpose, I question its suitability in a
professional publication.

Although the SSD does not offer its contributors the prestige
of formal publication, it does offer two overwhehning advantages:
speed of distribution and distribution to exactly the intended
audience. Thus, those who distribute such material through the
SSD clearly consider service to the profession to be the more
important consideration.

Rejection of such material by the Communications would,
furthermore, avoid cluttering up a professional publication with
unprofessional filler, and would repudiate what could well
become a precedent for absurdity. (Has anyone yet proposed
an ACM SIG for IBSYS users?)

CONRAD ~I. WEISERT
Applied Physics Laboratory
The Johns Hopkins University
8621 Georgia Avenue
Silver Spring, Maryland

ED. COMMENT. Contributions of temporary interest to par-
ticular users groups should certainly not be published in the
Communications. Yet technical points about widely used lan-
guages and machines are appropriate in a Techniques Depart-
ment. When does a technical point become too specialized?--
C.C.G.

On the Recursive P r o g r a m m i n g T e c h n i q u e s

Dear Editor:
J. A. Ayers' "Recursive Programming in FORTRAN I I "

[Comm. A C M 6 (Nov. 1963), 667] is a clever and potentially
useful device. I t is, however, subject to pitfalls if the object
code produced by the compiler is not carefully considered.

Consider the example below of a recursive routine
to calculate binominal coefficients from the formula C(m, n) =
C(m, n - 1) (m - n + 1)/n:

1 SUBROUTINE BCOEFN (M, N, KOEFN, DUMMY)
2 IF (N) 3, 4,6
3 CALL EXIT
4 KOEFN = 1
5 GO TO 10
6 CALL STORE (N)
7 CALL DUMMY (M, N-l, KOEFN, DUMMY)
8 CALL RSTOR (N)
9 KOEFN = KOEFN * (M - N + I) / N

10 RETURN

When statement 7 is executed and the routine is reentered,
the original initialization of N is overwritten by an assignment
to a temporary cell within the routine BCOEFN. When statement

9 is executed, the expressions (M - N + i) and N are assigned
to the same location, giving incorrect value to KOEFN.

I t is, of course, easy to code around this particular difficulty
by replacing statement 7 by two statements:

N = N - 1
CALL DUMMY (M, N, KOEFN, DUMMY)

Mr. Ayers used this device even though his example did not
require it. The present example illustrates the requirement that
the argument list in the CALL DUMMY statements should be
identical with the one in the SUBROUTINE statement.

If the recursive routine contains variable subscripts, DO
loops, or computed GO TO statements, index registers 1 and
2 will not be properly restored. This will ordinarily give trouble
in the program calling on the recursive procedure. Variable
subscripts may be avoided by referring to arrays through
separate subprograms such as FETCH and STORER, given below:

SUBROUTINE FETCH (A, I, B)
DIMENSION A (1)
I = I
B = A(I)
RETURN
SUBROUTINE STORER (A, I, B)
DIMENSION A (1)
I = I
A ([) = B
RETURN

O. C. JUELICH
Solid Mechanics Research
North American Aviation, Inc.
4300 E. Fifth Ave.
Columbus 16, Ohio

Dear Editor:
Mr. Juelieh has discovered two important limitations of the

recursive programming technique [Comm. A C M 6 (Nov. 1963),
667]: the necessary identicality of the argument lists of the
SUBROUTINE statement and the CALL DUMMY statement, and the
destruction of the index register 1 and 2 information.

I see no remedy for the first difficulty, but the second may be
avoided by dimensioning the LD variable and saving LD(1),
LD(2), LD(3) in the STORE subroutine and restoring LD(3),
LD(2), and LD(1) in the RSTOR subroutine.

JAMES A. AYERS
Mathematics Dept.
Research Laboratories
General Motors Corp.
12 Mile and Mound Rds.
Warren, Michigan

More on " S i m p l e I / O " S t a t e m e n t s

Dear Editor:
As the author of the program in question, I should like to

reply briefly to Prof. Galler's remarks concerning the "compli-
cated" state of affairs with the CNV format-free input sub-
routine, in his letter in the January 1964 issue of the Com-
munications.

As he states in his letter, the key to the implementation of
simple free format I /O is in the use of a symbol table obtained
at compile-time indicating mode, dimension and storage al-
location.

314 C o m m u n i c a t i o n s of the ACM Volume 7 / Number 5 / May, 1964

http://crossmark.crossref.org/dialog/?doi=10.1145%2F364099.364327&domain=pdf&date_stamp=1964-05-01

Unfortunately, we at M.I.T. were not in the happy position of
writing our own compiler. Our aim was to alleviate the input
format situation in the already existing IBM FOnTRAN II
compiler without becoming involved in tinkering with it (and
possibly also the loader). Therefore, we had no access to any
such symbol table.

Herein lies the reason for the majority of the complications
apparent in the October 1963 article by Barnett, Futrelle and
myself, since we are thus forced to ask the user to transmit the
necessary symbol table type information to the CNV subroutine
through CALL's to its LIST, LISTiD, LIST2D and LIST3D
entry-points, when he proposes to have order-independent or
array input.

If he is prepared to pay such a price, then, the user of the
regular IBM FORTRAN may now also have format-free input as
well as his MAD counterpart. (He may have order-dependent
input without setting up his symbol table.) Moreover, I think
that on input he will have as much power and flexibility.

To make a direct comparison, take for example the data-card
cited in Prof. Galler's letter:

A = 3.2, C = AB, M(3) = 8.12, 9.34, 1.2.

To achieve the same effect the CNV subroutine user would
punch his data-card:

A = 3.2, C = 2HAB, M(I) (I = 3, 5) ARE 8.12, 9.34,
1.2

Instead of "READ DATA" he would write "CALL CINCV
(NTAPE, ISEOF)" where NTAPE and ISEOF are tape and
end-of-file condition specifications, respectively. In addition,
the following two statements would be required at the head of
the program for the symbol table, but are only necessary once,
however many subsequent inputs to A, C and M occur.

CALL LIST (1HA, A, 1HC, C)
CALL LIST1D (1HM, M, N)

where N is the dimension of M.
Finally, I must say that it is heartening to discover that at

least one writer of compilers appreciates the need for format-
free input (and output!) in many situations. Also, when in-
corporated into a language such a feature should, I agree, be
kept simple, even though this may not be possible otherwise.

MICHAEL J. BAILEY

IBM Data Systems Division
545 Technology Square
Cambridge 39, Mass.

On Polyphase Sort

Dear Editor:
We have recently (November, 1963) implemented a polyphase

sort on KDF9, using backwards-reading of the magnetic tapes
(any number from 3 to 9). This may be of interest to your
readers since as far as we know no backwards-read polyphase
sort has previously been implemented, although the possibility
was discussed by Gilstad [2].

The logic was worked out independently during 1962: the
string distribution is done as in Malcohn's paper [1], except that
we have used "horizontal" dummy distribution, so that whenever
possible dummies are merged with dummies; but the method of
adjusting string directions is not that of Gilstad [2].

We started with a slightly more general requirement than is
referred to in [2], namely, the output could be written to any
chosen tape, possibly even the input (allowing optional change of
reels). The first string on each tape is written in the opposite
order to that of the final output file. The state of the tapes at the
end of the internal sort phase, using Malcolm's notation, is that
either all the t's are odd (output for any tape, or chosen to be on
the input tape) or that one t is odd and the remainder are even
(which can occur whatever destination is wanted). In the former
case merging can start at once, but in the latter, adjustments
must be made to the tape with odd t.

Consider first the case where the output is not chosen to be on
the input tape. Normally we assume that the dummies on each
tape are at the back end of the real strings so that the dummies
are read back first. The adjustment that is now done is to transfer
one of these to the front end of the data, reversing its (notional)
direction, so that the real strings get "shifted back" one string,
making the direction of the first real or dummy string to be read
back the same as on the other tapes. (So, it is essential that the
dummies are notional and not represented physically on tape.)
Of course this process works only when there is at least one
dummy on the deck with odd t. This we guarantied by never
allowing the sum of d's to reduce to zero during the presort
when the output is specified for a tape other than the input, and
by ensuring that the last tape to have its d not zero is the deck
with odd t. (For writing the next string we made the rule: choose
the deck with greatest d, giving priority to one with even t.)

In the case where the output is to be for the input tape and
only one t is odd at the end of the presort, then the strings on the
tape with odd t must be passed to the (former) input tape. We
considered that this pass of a fraction of the data is more efficient
than building up to the next "all t's odd" pattern during the
presort.

REFERENCES :

1. MALCOLM, W. D., JR. String distribution for the polyphase sort.
Comm. ACM 6, 5 (May 1963), 217-220.

2. GILSTAD, R. L. Read-backward polyphase sorting. Comm.
ACM 6, 5 (May 1963), 220-223.

D. T. GOODWIN AND J. L. VENN
English Electro-Leo Computers, Ltd.
Kidsgrove
Stoke-on-Trent, Staff ordshire
England

More on SLIP

Dear Editor:
Mr. L. D. Yarbrough raised some questions about SLIP

in his letter in the January 1964 issue of Communications.
We have also obtained a deck of SLIP and compiled it on both
our 1604 and 3600 computers. The only change we had to make
to the source deck was to declare START in line 634 to be
TYPE INTEGER. The other errors which Mr. Yarbrough
detected are allowable statements to our compiler. The re-
spective compile times were 3 minutes 20 seconds on the 1604,
and 59 seconds on the 3600. In addition, we have correctly
executed several test problems for SLIP on the 1604.

SANFORD ELKIN
Control Data Corporation
3330 Hillview Ave.
Palo Alto, California

Volume 7 / Number 5 / May, 1964 Communica t ions of the ACM 315

