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The following procedures are based on the Cooley-Tukey algo-
rithm [1] for computing the finite Fourier transform of a complex
data vector; the dimension of the data vector is assumed here to
be a power of two. Procedure COM PLEXTRANSFORM computes
either the complex Fourier transform or its inverse. Procedure
REALTRANSFORM computes either the Fourier coefficients of a
sequence of real data points or evaluates a Fourier series with
given cosine and sine coefficients. The number of arithmetic opera-
tions for either procedure is proportional to n logs n, where »n is
the number of data points. )

Procedures FFT2, REVFFT2, REORDER, and REALTRAN are
building blocks, and are used in the two complete procedures men-
tioned above. The fast transform can be computed in a number of
different ways, and these building block procedures were written
so as to make practical the computing of large transforms on a sys-
tem with virtual memory. Using a method proposed by Singleton
[2], data is accessed in sub-sequences of consecutive array ele-
ments, and as much computing as possible is done in one section
of the data before moving on to another. Procedure FFT2 com-
putes the Fourier transform of data in normal order, giving a re-
sult in reverse binary order. Procedure REVFFT?2 computes the
Fourier transform of data in reverse binary order and leaves the
result in normal binary order. Procedure REORDER permutes a
complex vector from binary to reverse binary order or from reverse
binary to binary order; this procedure also permutes real data in
preparation for efficient use of the complex Fourier transform.
Procedures FFT2, REVFFT2, and REORDER may also be used
to compute multivariate Fourier transforms. The procedure
REALTRAN is used to unscramble and combine the complex
transforms of the even and odd numbered elements of a sequence
of real data points. This procedure is not restricted to powers of
two and can be used whenever the number of data points is even.
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procedure COMPLEXTRANSFORM (A, B, m, inverse);
value m, inverse; integer m;
Boolean inverse; array A, B;
comment Computes the Fourier transform of 27 complex data
values. The arrays A[0: n—1] and B[0: n—1], where n = 27,
initially contain the real and imaginary components of the data,
and on exit contain the corresponding Fourier coefficient values.
If inverse is false, the Fourier transform
1 n—1
—= " (ar + 1bx) exp (12mjk/n)
7 k=0
is computed. The transform followed by the inverse transform
(or the inverse transform followed by the transform) gives an
identity transformation. Procedures FFT2 and REORDER are
used by this procedure and must also be declared;
begin integer n, j; real p, g;
n:i=21m; pi=q:=10/sqrtln);
if inverse then
begin
g:= —gq;
for j := n — 1 step —1 until 0 do B[j] := —B[j]
end; _
FFT2(A, B,n,m,n); REORDER(A, B, n, m, n, false);
for j := n — 1 step —1 until 0 do
begin A[j] := A{j] X p; B[jl := Blj] X g end
end COMPLEXTRANSFORM ;

procedure REALTRANSFORM (A, B, m, inverse);
value m, inverse; integer m;
Boolean inverse; array A, B;

comment Computes the finite Fourier transform of 2»+! > 4
real data points. If inverse is false, the arrays A[0: n] and
B[0: n], where n = 27, initially contain the first 2= real data
points 2o , &1, - - ,Za1 88 A[0], -+ , A[n—1] and the remaining
2m real data points&n ,Tny1, +++ ,Z2n_1as B[0], B[1], --- , B[n—1].
On completion of the transform the arrays A and B confain
respectively the Fourier cosine and sine coefficients a; and b; ,
computed according to the relations

1 2n~1
ar = - »_ x;cos (wjk/n) for k=0,1,---,n,
n 1=0
and
2n—1
br = - > xjsin (xjk/n) for k=01, ,n
N k=0

If inverse is true, the arrays A and B initially contain n 41
cosine coefficients @y , a1, -+, a, and n + 1 sine coefficients
bo,b1, - ,b,,whereby = b, = 0. The procedure evaluates the
corresponding time series 2o , 1, *+ - , T2n—1 , Where

n—1

2= 5 + X lax cos (mjk/n) + besin (njk/m)] + 5 cos (x)),
=

and leaves the first n values as A[0], A[1], --- , A[n—1] and the
remaining n values as B[0], B(l}], --- , B[n—1}]. The procedures
FFT2, REVFFT2, REORDER, and REALTRAN are used by
this procedure, and must also be declared;
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begin integer n, j; real p;
n:=27Tm;
if inverse then
begin
REALTRAN (A, B, n, true);

for j := n — 1 step —1 until 0 do B[j] := —Bl[j];
FFT2(A, B, n, m, n);
for j :=n — 1 step —1 until 0 do
begin A[j] := 0.5 X A[j]; BIljl := —0.5 X B[j] end;
REORDER(A, B, n, m, n, true)
end
else
begin

REORDER(A, B, n, m, n, true);
REVFFT2(A, B,n,m,1); p:=05/n;
for j ;= n — 1 step —1 until 0 do
begin A[j] := p X A[jl; Blj] := p X Blj] end;
REALTRAN(A, B, n, false)
end
end REALTRANSFORM,
procedure FFT2(A, B, n, m, ks); valuen, m, ks;
integer n, m, ks; array A, B;
comment Computes the fast Fourier transform for one variable
of dimension 2 in a multivariate transform. n is the number of
data points, i.e.,n = ny X ny X --- X npfor a p-variate trans-
form, and ks = ny X nga X -+ X np, where ny = 2" is the
dimension of the current variable. Arrays A[0 : n—1] and
B[0: n—1] originally contain the real and imaginary components
of the data in normal order. Multivariate data is stored accord-
ing to the usual convention, e.g., a;m is in A[jXnsXns+kXns+1]
for j=0,1, -+, mm—1, k=0,1, .-+ , o —1,and I =0,
1, .-+, ns — 1. On exit, the real and imaginary components of
the resulting Fourier coefficients for the current variable are in
reverse binary order. Continuing the above example, if the
“column’’ variable n. is the current one, column

k=kn a2V kn o224 o + 52+ ko
is permuted to position
ko2l 4 Ey2m2 A oo A k92 Ky

A separate procedure may be used to permute the results to
normal order between transform steps or all at once at the end.
If n = ks = 2=, the single-variate transform

n—1

(z; + ty;) = kZ (ax + ibs) exp (32mjk/n)
=0

forj =0, --- ,n — 1lis computed, where (@ + b) represent the
initial values and (x + 7y) represent the transformed values;
begin integer k0, k1, k2, k3, span, j, jj, k, kb, kn, mm, mk;
real rad, cl, ¢2, ¢3, sl, s2, s3, ck, sk, sq;
real AQ, A1, A2, A3, BO, Bl1, B2, B3;
integer array C[0: m];
sq := 0.707106781187;
sk := 0.382683432366;
ck = 0.92387953251;
Clm] := ks; mm := (m+2) X 2; kn:=0;
for k := m — 1 step —1 until 0 do Clk] := Clk+1] = 2;
rad = 6.28318530718/(C[0]Xks); mk := m — 5;
L: kb :=kn; kn :=kn + ks;
if mm > m then
begin
k2 := kn; kO := Clmm) + kb;
L2: k2 :=Fk2—1; k0 :=k0 —1;
AQ := A[k2]; BO := B[k2];
A[k2] := A[KO0] — AOQ; A[kO] := A[kO] + AO;
B{k2} := B[k0] — B0; B[k0] := B[kO] + BO;
if k0 > kb then go to L2

I
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end;

¢l :=1.0; sl :=0;

Jji=0; k:=mm—=2 j:=3;

if k = 0 then go to L4 else go to LG;

L3: if Cj] £ jj then

begin
=3 —-Clhl ji=i—-1
if C[j] £ jj then
begin
== Cll ji=3i—1 k:i=k+2
go to L3
end
end;
Ji=Cll+ji; 7:=3;

L4: span := Clk];

if jj # 0 then
begin
2 1= jj X span X rad; cl := cos(c2); sl := sin(c2);

L5: 2:=¢l T 2—s112; s2:=20XclXsl;

3 :=¢2X cl —s2X sl; s3:=c2Xsl4s2Xcl
end;
for kO := kb + span — 1 step —1 until kb do
begin
kl := k0 + span; k2 := k1 + span; k3 := k2 + span;
A0 := A[k0]; BO := Blk0];
if s1 = 0 then

begin
Al := A[kl}; Bl := B[kl];
A2 := A[k2]; B2 := B[k2];
A3 := A[k3]; B3 := Blk3]

end

else

begin
Al := A[k1] X ¢1 — B[k1] X s1;
Bl := A[kl] X sl 4+ B[kl] X cl;
A2 := Alk2] X ¢2 — Blk2] X s2;
B2 := A[k2] X s2 + B[k2] X €2;
A3 := A[k3] X ¢3 — B[k3] X s3;
B3 := A[k3] X s3 + B[k3] X ¢3

end;

A[k0] := A0+ A2+ Al + A3; B[k0] := BO+ B2+ Bl + B3;
A[kl] := A0+ A2 — A1l — A3; Blkl]:= BO+ B2— Bl — B3;
A[k2] := A0 — A2 — B1+ B3; Blk2] := B0O— B2+ Al — A3;
Alk3] := A0 — A2+ Bl — B3; B[k3):= B0 —B2— A1+ A3

end;

if k > 0 then begink := k — 2; go to L4 end;

kb := k3 4+ span;

if kb < kn then

begin
if j = 0 then begin k := 2; j:= mk; goto L3 end;
ji=7—1; ¢2:=cl;
if j = 1 then _

begin cl := ¢l X ¢k + s1 X sk; sl := sl X ck— c2 X skend

else begin ¢l := (c1—sl1) X sg; sl := (c2 + s1) X sq end;
go to L5

end;

L6: if kn < n then go to L
end FFT2;

procedure REVFFT2(A, B,n,m,ks); valuen,m, ks;

integer n, m, ks; array 4, B;

comment Computes the fast Fourier transform for one variable

of dimension 27 in a multivariate transform. n is the number of
data points, i.e.,n = n1 X n2 X --- X n, for a p-variate trans-
form, and ks = ngy X ngge X -- X np , where ny = 27 is the
dimension of the current variable. Arrays A[0 : n—1] and
B[0: n—1] originally contain the real and imaginary components
of the data with the indices of each variable in reverse binary
order, e.g., a;u is in A[j'Xn.Xns+k'Xns+1] for j = 0,1, ---,
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m—1L, k=01, --- ,n.—1,and I =0, ---, n; — 1, where if j < mk then go to L2; k :=0; nt:= 3;

J', k', and I’ are the bit-reversed values of j, k, and I. On comple- kb := kb + k4; if kb < kn then go to L2;
tion of the multivariate transform, the real and imaginary com- L5: k:= (m=+2) X 2;
ponents of the resulting Fourier coefficients are in 4 and B in if k % m then
normal order. If n = 27 and ks = 1, a single-variate transform begin
is computed; k2 :=kn; kO :=j:=kn — C[k];
begin Lo: k2 := k2 —1; kO :=%k0—1;
integer k0, k1, k2, k3, k4, span, nn, j, jj, k, kb, nt, kn, mk; A0 := Alk2]; B0 := B[k2]; :
real rad, c1, ¢2, ¢3, s1, s2, s3, ck, sk, sq; Alk2] := A[KO] — AO; A[KO] := A[K0] + AO;
real A0, A1, A2, A3, BO, Bl, B2, B3, re, im; B[k2] := B[k0] — BO; B[k0] := B[k0] + BO;
integer array C[0: m]; if k2 > j then go to L6
sq = 0.707106781187; end;
sk := 0.382683432366; if kn < n then go to L
ck 1= 0.92387953251 ; end REVFFT2;
Cl0] :=ks; kn :=0; kd:=4X ks; mk:=m— 4;
for & := 1 step 1 until m do Clk] := ks := ks + ks* procedure REORDER (A, B, n, m, ks, reel);
rad := 3.14159265359/(C[0]X ks); value n, m, ks, reel; integer n,m,ks;
L: kb :=kn+k4; kn :=kn + ks; Boolean reel; array A, B;
if m = 1 then go to L5; comment Permutes data from normal to reverse binary order
k:=7j:=0; j:=mk; nt:=3; or from reverse binary to normal order. If reel is false, data for
cl :=1.0; sl :=0; one variate of dimension 27 in a multivariate data set of size n
L2: span := Clkl; is permuted. In a p-variate transform with n = n; X n2 X
if jj # 0 then -+« X np , ks has the value ks = nx X ne41 X -+ X np, where
begin nir = 2™ is the dimension of the current variable. For a single-
¢2 := jj X span X rad; ¢l := cos(c2); sl := sin(c2); variate transform, n = ks = 2=, If reel is true, A[2Xj+1] and
L3: ¢2:=¢1172—-35112; s2:=20Xcl X sl; B[2Xj] are exchanged for j = 0,1, ---, (n—2)/2, then adjacent
3:i=c2X el —s2Xsl; s3:=¢2Xsl+s2Xel pairs of entries in A and B are permuted to reverse-binary order.
end else sl := 0; This option is used when transforming 2n real data values, with
k3 := kb — span; the first n stored in A and the second n in B. After permutation,
LA: k2 := k3 — span; kl := k2 — span; k0 := k1 — span; the even-numbered entries are in A and the odd-numberd entries
AQ := A[k0}; B0 := B[k0]; are in B, each in reverse-binary order.
Al := A[kl]; Bl := Blkl}; Calling REORDER twice with the same parameter values gives
A2 := A[k2]; B2 :.= Blk2]; an identity transformation;
A3 := Alk3); B3 := Blk3]; begin integer 1, j, jj, k, kk, kb, k2, ku, lim, p;
A[kQ] := A0+ A1 + A2+ A3; BI[k0] := B0 + Bl + B2 + B3; real (;
if s1 = 0 then integer array C, LST{0: m];
begin Clm] := ks;
Alkl] := A0 — A1 — B2+ B3; Blkl]:= B0O— Bl 4+ A2 — A43; for k := m step —1 until 1 do Clk — 1] := C[k] + 2:
Alk2] := A0+ A1 — A2 — A3; B[k2]:= B0+ Bl — B2 — B3; pi=j:=m—1; ¢:=kb:=0;
Alk3] := A0 — A1+ B2 — B3; Bik3] := B0— Bl — A2+ A3 if reel then
end begin
else ku :=n— 2;
begin for k := 0 step 2 until ku do
re := AQ — A1 — B2+ B3; wm := B0 — Bl + A2 — A3; begini := Ak + 1]; Ak + 1] := Blk]; B[k] := tend
Afkl] :=re X ¢l — im X sl; Bkl] := re X sl 4+ im X cl; end else m :=m — 1;
re := A0+ Al — A2 — A3; im := B0+ Bl — B2 — B3; lim := (m+2) + 2; if p £ 0then go to 14;
Alk2] := re X ¢2 — im X $2; Blk2] := re X 52 + im X ¢2; L: ku:=k2:= C[j] + kb; jj:= Clm — jl; kk := kb 4+ jj;
re := A0 — A1 4+ B2 — B3; wm := B0 — Bl — A2 4 A43; L2: k= kk + jj;
AfkB] :=re X €3 — tm X s3; B[k3] := re X s3 + im X ¢3 L3: t:= Alkk}; A[kk] := A[k2]; Ak2] :=;
end; t := Blkk]; Blkk] := Blk2]; BIlk2] := ¢;
k3 := k3 + 1; if k3 < kb then go to L4; kk :=kk +1; k2:=k2+1;
nt ;= nt — 1; if kk < k then go to L3;
if nt = 0 then kk = kk + jj; k2 := k2 + jj;
begin if kk < ku then go to L2;
2 :=cl; if j > ltm then
if nt = 1 then begin
begincl := ¢l X ck 4581 X sk; sl :=3s1 X ¢k — ¢2X skend ji=j—1; i:=¢t+1;
else begin cl := (c1—s1) X sg; sl := (c2+sl) X sq end; L8T[t] :=j; gotolL
kb := kb + k4; if kb £ kn then go to L3 else go to L5 end;
end; kb 1= k2;
if nt = —1 then begin k := 2; go to L2 end; if 2 > 0 then
if C[j] £ jj then begin j := LST[Z]; % :=1¢—1; go to L end;
begin if kb < n then begin j := p; go to L end;
=4 -Ch; j=7—-1 L4:
if C[j] = jj then end REORDER;
begin jj := jj — Cljl; j:i=7—1; k:=k+ 2end
else begin jj := C[j] + jj; j:= mk end procedure REALTRAN (A, B, n, evaluale);
end value n, evaluate; integer n;
else begin jj := C[j] + jj; j := mk end; Boolean evaluate; array A, B;
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comment If evaluale is false, this procedure unscrambles the
single-variate complex transform of the n even-numbered and
n-odd-numbered elements of a real sequence of length 2n, where
the even-numbered elements were originally in A and the odd-
numbered elements in B. Then it combines the two real trans-
forms to give the Fourier cosine coefficients A[0], A[1], --- , A[n]
and sine coefficients B[0], B[l], --- , Bln] for the full sequence
of 2n elements. If evaluate is true, the process is reversed, and a
set of Fourier cosine and sine coefficients is made ready for
evaluation of the corresponding Fourier series by means of
the inverse complex transform. Going in either direction,
REALTRAN scales by a factor of two, which should be taken
into account in determining the appropriate overall scaling;

begin integer k, nk, nh;
real aa, ab, ba, bb, re, im, ck, sk, dc, ds, r;
nh:=mn + 2; r:= 3.14159265359/n;

ds 1= sin(r); r = —(2Xsin(0.5Xr)) T 2;
de := —0.5 X r; ck:=10; sk:=0;
if evaluale then

begin ¢k := —1.0; dc := —dc end

else begin A[n] := A[0]; Bn] := B[0] end;
for k := 0 step 1 until nh do

begin
nk :=n — k;
aa 1= Alk] + Alnkl; ab := Alk] — Ank];
ba := B[k] 4+ Blnk]; bb := Blk] — Blnkl;

re := ck X ba + sk X ab; im := sk X ba — ck X ab;
Bink] := ¢m — bb; B[k] := im + bb;
Alnk] := aa — re; Afk] := aa + re;
de :=r X ¢k 4 dec; ck = ck + dc;
ds :=r X sk+ds; sk:=sk+ds
end

end REALTRAN
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procedure FFT (A, B, n, nv, ks); value n, no, ks;
integer n, nv, ks; array A, B;

comment This procedure computes the finite Fourier transform
for one variate of dimension nv within a multivariate transform
of n complex data values. The real and imaginary components

* This research was supported by Stanford Research Institute out of Research
and Development funds.
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of the data are stored in arrays A[0: n—1] and B{0: n—1], follow-
ing the usual arrangement for indexing multivariate data in
a single-dimensional array, e.g., a;u is stored in location
A[jXnsXns+kXns+1} forj=0,1, -+ ,nu—1, k=0,1,---,
ny—1,and I =0,1, --- , ns — 1. The value of ks for the kth
variate of a p-variate transform is

ks = ne X g1 X oo- X np

where no = np and n = n1 X n2: X -+« X np . On completion of
the transform, the real and imaginary components of the result-
ing Fourier coefficients are in A and B respectively. For a single
variable, n = nv = ks, and the transform

n—1
Z (ar + tbe) exp (12njk/n)
k=0

is computed for j = 0,1, --- ,n — 1.

For a single-variate transform of 2n real-valued points, the
amount of computing can be reduced by approximately one-half
by using procedure REALTRAN [3] together with FFT. The
even-numbered data points are stored initially in array 4, the
odd-numbered data points in array B, the transform is computed
with

FFT(A, B, n,n,n),
and the result is unscrambled with
REALTRAN(A, B, n, false)

and then scaled by 1/2n to give the cosine coefficients as A[0],
A1}, +--, Aln] and the sine coefficients as B[l], B[2], ---,
Bin—1], with B[0] = B[n] = 0. The inverse operation, evaluat-
ing the Fourier series with cosine coeflicients A and sine coeffi-
cients B, is computed by

REALTRAN(A, B, n, true)
followed by
FFT(A, B, n, n, n),

then scaling by 1/2, yielding the even-numbered time domain
values in array A and the odd-numbered values in array B.
Note that the upper bounds of array A and B must be increased
to n when procedure REALTRAN is used.

The method is based on an algorithm due to Cooley and
Tukey [1], with modifications proposed by Singleton [2], to
allow computing of large transforms on a system with virtual
memory. The dimension nv is first decomposed into its prime
factors noy , nvs, -+ , nv, , and then no/ny; transforms of di-
mension nv; are computed for 7 = 1, 2, --- , m. The resulting
transformed values are then permuted to normal order in a final
step. Computing times, to a first approximation, should be
proportional to n(nvi+nvs+- - + nv,). The dimension of array
FACTOR must be increased if nv has more than 20 factors.

In factoring nv at the beginning of the procedure, factors that
are squares of primes are first removed, then the square-free
portion is factored. The two factors of each square are placed
symmetrically about the square-free factors. For example,
ny = 72 is factored as 2 X 3 X 2 X 3 X 2. This arrangement is
used to simplify the final reordering in place. One symmetric
permutation step is done for each square factor, and the reorder-
ing is completed by following the permutation cycles of the
square-free portion. :

In the transform phase of the procedure, special coding for
factors of 2 and 3 is included for efficiency. Adjacent factors of
2 are also paired, and the results stored as for factors of 2 rather
than 4. The remaining factors are handled by an odd-factor
routine, using trigonometric function symmetries and smaller
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real transforms to reduce the number of multiplications by one-
half as compared with a straightforward complex transform of
an odd factor. The approximate number of complex multiplica-
tions is n/2 for a factor of 2, 3n/4 for a factor of 4, and
(p—1) (p+3)n/4p for an odd factor p.

In both the transform and reordering phases, data is accessed
in subsequences of consecutive array elements, and as much
computing as possible is done in one section of the data before
moving on to another. This is done to reduce the number of
memory overlay operations in a system with virtual memory.
After the first transform or symmetric permutation step, the
remaining steps can be performed independently on each of
nw: spans of data. We complete all remaining steps on the first
span before beginning with the second. Similarly, after the
second step the first span is subdivided in nv, independent spans.
This subdivision process is continued through the remaining
steps.

A number of working storage arrays are declared within this
procedure. For large n, the total working storage is small in
comparison with the 2n locations for data arrays A and B, ex-
cept in a couple of cases. In the transform phase, approximately

6g working storage locations are used, where ¢ is the largest _

prime factor in the transform. This requirement is minor exeept
in a single-variate transform with » a prime number. During the
reordering phase, the worst case occurs when doing a single-
variate transform with n a product of two or more primes with
no square factors. In this case, approximately n working storage
locations are required.

This program was tested on the Burroughs B5500 computer
and compared with another program computing a single n-by-n
complex Fourier transform. Whenever # had twé or more prime
factors, procedure FFT was much faster. ’IJ{e B5500 ALGOL
system limits single-dimension arrays to 1023 words, but larger
transforms can be computed by declaring

array A, B[0: (n—1) + 512, 0: 511],

storing the data 512 entries per row, and using partial word

indexing A[J.[30:9], J.[39:9]] instead of A[J] wherever A and B

appear in procedure FFT.
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771-774;

begin integer array FACTOR[0: 20]; Boolean zero;
real A0, A1, A2, A3, B0, B1, B2, B3, cm, sm,
¢cl, ¢2, ¢3, sl, s2, 53, ¢30, rad;
integer k0, k1, k2, k3, jk, kf, kh, jf, mm,
i, J, 37, k, kb, m, span, kt, kn;

comment Determine the square factors of nv;

k:=mnv; m:=0; j:=2; jj:=4; jf :=0;

FACTOR [0] : =1,

L: fori :=Fk + jjwhile? X jj = k do
begin m :=m + 1; FACTOR[m] := j;

ifj = 2then j :=3elsej:=7+ 2;

ji=jXyj; ifjj < kthengotoL; ki:=m;

comment Determine the remaining factors of nv;
for j := 2, 3 step 2 until £ do

fori:=Fk + jwhilei X j =k do

begin m := m 4+ 1; FACTOR[m] := j; k := 17 end;
if FACTOR[k!] > FACTOR[m] then k := FACTOR[kt]
else k := FACTOR[m];

for j := kit step —1 until 1 do

begin m := m+1; FACTOR[m)

begin integer array C,D[0: m];

k := 7 end;

= FACTOR[j] end;

Volume 11 / Number 11 / November, 1968

L1:

L2:

L3:

begin array CK, SK, CF, SF[0:k—1];
array AP, BP, AM, BM[0:(k—1)=2];
array RD, CC, 8S[0:m];
Boolean array BB[0:m-+1];
rad := 6.28318530718; ¢30 := 0.866025403784,
for j := m step —1 until 2 do
begin
BB[j] := (FACTOR[j—1]+FACTOR[]) = 4;
if BB [j] then
begin j :=j — 1;
end;
BB[m+1] := BB[1] := false;
C[0] := ks + nv; kn := 0; D[0] := ks;
for j := 1 step 1 until m do
begin
k := FACTOR[j]; C[j] := Clj—1] X k;
D[j} := D[j—1] + k; RDI[j] := rad/C[j];
cl = rad/k;
if £ > 2 then
begin CC[j] := cos(cl);
end;
mm := if BB[m] then m~1 else m;
if mm > 1 then

BBlj] := false end

SS[j] := sin(cl) end

begin
sm := C[mm—2] X RD[m];
cm := cos(sm); sm := sin(sm)
end;
kb :=kn; kn :=kn + ks; jj:=0; ¢:=1;
¢l :=1.0; sl :=0; zero := true;
if BB[i+1] then
beginkf :=4; ¢:=1-+ 1end
else kf := FACTOR[:];
span := Dlz];
if — zero then
begin
sl := jj X RD[i]; cl := cos(sl); sl := sin(sl)
end;

comment Factors of 2, 3, and 4 are handled
separately to gain efficiency;
if kif = 4 then
begin
if — zero then
begin
2:=¢1 1 2—3s172
3 :=¢2 X ¢l — 82 X sl;

s2 := 20 X ¢l X sl;
83 :=¢2 X sl +s2Xcl

end;
for k0 := kb + span —1 step —1 until kb do
begin
k1l := kO + span; k2 := k1l 4 span; k3 := k2 + span;
A0 := A[kO]; BO := Blk0];
if zero then
begin
Al := A[kl]; Bl := Blkl];
A2 := A[k2]; B2 := Bl[k2];
A3 := Alk3]; B3 := B[k3]
end
else
begin

Al := A[kl] X ¢l — B[kl] X s1;
Bl := A[k1] X s1 + BJkl]} X cl;
A2 := A[k2] X ¢2 — Blk2] X s2;
B2 := A[k2] X s2 + B[k2] X ¢2;
A3 := A[kB] X ¢3 — B[k3] X $3;
B3 := A[k3] X s3 + Blk3] X ¢3

end;

Alk0] := A0 + A2 4+ Al 4 A3; B[k0] := B0 + B2 +
Bl + B3;

Alkl] := AQ + A2 — A1 — A3; Blkl] := B0 4 B2 —
Bl — B3;
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A[k2] := A0 — 42 — Bl + B3; B[k2] := BO — B2 +
Al — A3;
A[k3] := A0 — A2 + Bl — B3; B[k3] := B0 — B2 —
Al 4 A3
end
end
else if kf = 3 then
begin

if — zero then

beginc2 :=¢l 1 2—3s1 T2; s2:=2.0Xcl X slend;

for k0 := kb + span — 1 step —1 until kb do
begin
kl := k0 4 span; k2 := kl -+ span;
AQ := A[k0]; BO := Blk0];
if zero then
begin
Al = A[kl]; Bl := B[kl];
A2 := A[k2]; B2 := B[k2]
end
else
begin
Al := A[kl] X ¢1 — B[kl] X sl;
Bl := Af[kl] X s1 4+ B[kl] X cl;
A2 := A[k2] X ¢2 — Blk2] X s2;
B2 := A[k2] X s2 + B[k2] X ¢2

end;
A[kO] := A0 + Al + A2; BI|k0] := B0 4 Bl + B2;
A0 := — 0.5 X (A1+A42) + A0; Al := (41-A42) X
¢30;
B0 := — 0.5 X (B14+B2) + B0; Bl:= (B1-B2) X
¢30;
Alkll := A0 — B1; B[kl] := B0 + Al;
A[k2] := A0 + Bl; BI[k2] := B0 — Al
end
end
else if kf = 2 then
begin

kO := kb 4 span; k2 := kO 4+ span;
if zero then
begin
for k0 := k0 — 1 while k0 = kb do
begin
B2 := k2 — 1; A0 := A[k2]; BO := B[k2);
A[k2] := A[kO] — AO0; A[kO] := A[kO] + AO;
Blk2] := B[k0] — B0; B[kO] := B[k0] + BO

end

end
else
for k0 := k0 — 1 while k0 = kb do
begin
k2 := k2 — 1;

A0 := A[k2] X ¢l — B[k2] X sl;
B0 := A[k2] X sl 4+ Blk2] X ¢l;

Alk2] := A[K0] — A0; A[kO] := A[kO] 4+ AO;
B[k2] := B[k0] — B0; B{k0] := B[k0] + B0
end
end
else
begin

gk = kf —1; kh :=jk + 2; k3 := D [i—1];
kO := kb + span;
if — zero then
begin
k:=jk —1; CF[1] :=¢l; SF[1] := sl;
for j := 1 step 1 until k do
begin
CF[j+1] := CF[j] X ¢l — SF[j] X sl;
SF[j41] := CF[j] X s1 + SF[j] X c1
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end

end;
if kf # jf then
begin
CK[jk] := CKI1] := ¢2 := CC[z];
SK[1} := 82 := S8[z]; SKljk] := —s2;
for j := 1 step 1 until kh do
begin
k= jk — J;

CK[k] := CK[j+1] := CK[j] X ¢2 — S8K[j] X s2;
SK[j+1) := CK[j] X s2 + SK[j] X ¢2;
SK[k] := —S8SK[j+1]
end
end;
kl := k0 := kO — 1; k2 := k0 + k3;
A3 := A0 := Alk0]; B3 := BO := B[k0];
for j := 1 step 1 until kh do
begin
kl := k1 + span; k2 := k2 — span;
if zero then
begin
Al :
A2 :
end
else

Alkl]; Bl :
A[k2]; B2:

Blkl];
Blk2]

]
([}

begin
k =k —j;
Al := A[kl] X CF[j] — B[kl] X SF[j];

Bl := A[kl] X SF[j] + Bi{kl] X CFljl;

A2 := A[k2] X CF[k] — B[k2] X SFlk];

B2 .= A[k2] X SF[k] + B[k2] X CF[k]
end;

AP[j] := A1 + A2; AM[j] := Al — A2;
BP[j] := Bl + B2; BM]j] := Bl — B2;
A3 := AP[j] + A3; B3 := BP[j] + B3
end;
A[k0] := A3; B[Kk0] := B3;
kl := kO; k2 := kO 4 k3;
for j := 1 step 1 until ki do
begin
kl := k1 + span; k2 := k2 — span; jk := j;
Al := A0; Bl := B0; A2:= B2 :=0;
for k := 1 step 1 until kh do
begin
Al := AP[k] X CK[jk] + A1,
A2 := AM[k] X SK[jk] 4+ A2;
Bl := BP[k} X CK[jk] + B1;
B2 := BMk] X SK[jk] + B2;
jk = jk + j; if jk = kf then jk := jk — kf
end;
Alkl] := Al — B2; Alk2] := Al + B2;
Bikl] := Bl + A2; B[k2] := Bl — A2
end;
if k0 > kb then go to L4; jf := kf
end;
if 7 < mm then
begin 7 := 7 + 1; go to L2 end;
i := mm; zero := false;
kb := D[ — 1] + kb;
if kb < kn then
begin
for jj := Cii—2] + jj while jj = C[i—1] do
begini := 1 — 1; jj:= jj — C[i] end;
if 7 = mm then
begin
¢2:=c¢cl; ¢l :=cmXecl —smXsl;
sl := sm X ¢2 + cm X sl; go to L3
end;

I
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L5:

L7

L8:

if BB[{] then ? := 7 + 1; go to L2
end;
if kn < n then go to L1
end;
1= 1;
for j := kt — 1 step —1 until 1 do
begin

FACTOR[j] := FACTOR[j] — 1; i := FACTORlj] + ¢
end;
comment We now permute the result to normal order;
comment The following if statement does the complete re-
ordering if the square-free portion of » has at most one
prime factor. Otherwise it does a partial reordering, leaving
each entry in its correct section of length n + ¢[k¢],
where c[kt] T 2is the product of the square factors;
if k¢ > 0 then
begin integer array S[0:];

ji=1; ¢:=kb:=0;
k3 := k2 := D[j] + kb; jk := jj := C[j—1};
kO := kb + jj; span := C[j] — jj;
k= k0 + jj;
A0 := A[KO); A[KO] := A[k2); A[k2] := AO0;
BO := B[k0]; BI[k0] := B[k2]; B[k2] := BO;
kO := k0 4+ 1; k2 :=£k24+1;
if X0 < k then go to L7;
kO := kO + span; k2 := k2 + span;
if X0 < k3 then go to L6;
if k0 < (k3+span) then
begin k0 := k0 — D[j] + jj; &o to L6 end;
k3 := D[j] + k3;
if (k3—kb) < D[;—1] then
begin
K2 = k3 4 jk; Gk = jk + jf;
%0 := k3 — D[j] + jk; go to L6
end;
if j < ki then
begin
k:= FACTOR[j1 +1; j:=3j+1;
i:=14 4+ 1; 8[] :=j; if7 < k then go to LS§;
go to L5
end;
kb := k3;
if 7 > 0 then
begin j := S[i]; 7 :=17 —~1; go to L5 end;
if kb < n then begin j := 1; go to L5 end
end;
gk := Clkt]; span := D[kt]; m = m — ki;
kb = span + jk —2;

comment Thefollowing if statement completes the reorder-
ing if the square-free portion of » has two or more prime
factors;
if it < m — 1 then
begin integer array R[0:kb];
array TA, TB[0:jk—1];
for j := kit step 1 until m do D[j] := D[j] + jk;
Jj =0
for j := 1 step 1 until kb do
begin
k = ki;
for jj := D[k+1] + jj while jj = D[k] do
begin jj := jj — D[k); k :=k + 1 end;

if j7 = j then Rlj] := — j else R[j] := jj

end;

comment Determine the permutation cycles of length
22

for j := 1 step 1 until kb do if B[j] > 0 then
begin
k2 = j;
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for k2 := abs(R[k2]) while k2 = j do R[k2] := —R[k2]
end;
comment Reorder A and B following the permutation
cycles;
kn :=1:=3:=0;
LA: kb :=kn; kn := kn + ks;
LB: j:=j+1; if Ej] < 0 then go to LB;
k = R[jl; kO := jk X k + kb;

LC: TA[(] := A[kO+i]; TBIi] := B[k0+1];
i:=1+1; if{ < jk then go to LC; 7 := 0;

LD: k:= —R[k]; jj:=k0; kO := jk X k -+ kb;

LE: A[jj+i] := A[k0+i]; Bljj+i] := Blk0+1];
i:=1+1; ifi < jk then go to LE; 1 := 0;
if £ = j then go to LD;

LF: A[kO+i] := TA[i]; B[k0+1] := TBIli};
i:=141; ifi < jk then go to LF'; 7 :=0;
if j < k2 then go to LB; j :=0;
kb := kb + span; if kb < kn then go to LB;
if kn < n then go to LA

end
end
end FFT

ALGORITHM 340
ROOTS OF POLYNOMIALS BY A ROOT-SQUARING
AND RESULTANT ROUTINE [C2]
ALBERT NOLTEMEIER
(Reed. 2 Nov. 1967, 25 Jan. 1968 and 16 July 1968)

Technische

Universitat Hannover,  Rechenzentrum,

Hannover, Germany

KEY WORDS AND PHRASES: rootfinders,

roots of poly-

nomial equations, polynomial zeros, root-squaring operations,
Graeffe method, resultant procedure, subresultant procedure,
testing of roots, acceptance criteria

CR CATEGORIES:

5.15

procedure AG4(n, ¢, mm, delta, epsilon, range) Result: (re, im,
mu, rt, gc, m, ¢, 1) Exit: (fail);
value n, mm, delta, epsilon, range;

integer n, m, i, mm;

real delta, epstlon, range;

integer array mu;
array c, re, im, ri, gc, i
label fail;

comment AG4 finds simultaneously zeros of a polynomial of
degree n with real coefficients by a root-squaring and resultant
routine.

This procedure supersedes Algorithm 59 [2]. The following

changes were made:
(a) In the procedure heading, the meaning of the old formal

parameter alpha is shared by the three new parameters mm,
delta, and epsilon, and range, m, ¢, t, fail are added to the formal
parameter list.
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(b) In the beginning of the procedure body the polynomial is
tested for 0 as a zero (label ZROTEST). Although the modulus
p = 0 can be found by squaring operations, the procedure
usually will not find the root 0 without that test.

(e) In the program section labeled SQUARING OPERATION
the iteratively squared coefficient is tested whether it will re-
main in the allowed range of numbers (formal parameter
range) for a particular machine after another squaring opera-
tion.

(d) If there is a complex zero with a real part of 0, the resultant
R(p) is a polynomial of degree n with the coefficients rp_y =
r. = 0. Computing the moduli ot the zeros of this polynomial
in the program section labeled SQUARING OPERATION
and testing for pivotal coefficients, one would have to divide
by 0. This case has been excluded by testing the divisor.

(e) If the acceptance criteria epsilon and delta are chosen too
large, the sum of the multiplicities of the already found zeros
may be greater than the degree n of the polynomial. In the
program sections labeled IT and D, the test for the degree of
the residual polynomial, the number of zeros, and the sum of
the multiplicities of zeros in order to end the procedure has
been improved.

Tests: The procedure AG4 has been tested on the CDC
1604-A computer at the Rechenzentrum, Technische Universitat
Hannover. The following results were obtained in a few repre-
sentative cases. The parameters of acceptance ecriteria are
delta = 0.2, epsilon = 1077, and mm = 10.

() Pilz) = 28 — 302% + 2732* — 8202 +- 576

x1 = 4.000 000 (010 z, = —4.000 0600 0010
a3 = 2.999 999 9990 s = —2.999 999 9990
z; = 2.000 000 0000 =z = —2.000 000 0000

z7; = 1.000 000 0000 g = —1.000 000 0000
(i) P:(x) = o2 4+ Vot + 52® + 622 + 3x 4 2
xy = —06.3500936102
To, s = 1.350€884657 X 10~1 & 7 X 7.7014185283 X 10t
x4, 5 = —4.5957204142 X 107! & ¢ X 5.5126354891 X 10~
(i) Ps(x) = o8 — 225 + 22t + 2% + 622 — 6z + 8
Zy,0 = — 9.9999999974 X 107! X 7 X 1.0000000002
zas = 4.9999999999 X 107! & ¢ X 8.6602540377 X 107!
e = 1.4099999997 4 ¢ X 1.3228756548
(iv) Puz) = 2 — 4.01z + 4.02
The procedure fails to compute any zero in this case (parameter
m = 0). After changing the parameter epsilon to 1075, AG4
evaluates the zero z = 2.0049937655 with multiplicity 2 and re-
mainder term 2.5 X 1075
Parameters:
n degree of the polynomial
¢ real coefficients of the polynomial
¢[71(j=0,- - - ;n), where c[n] is the constant term
delta, epsilon parameters for acceptence criteria
practical input delta = 0.2, epsilon = 10 T (=7)
range upper bound of the range of real constants
(for the eDc 1604 -A range = 10 T 307)
mm number of root-squaring iterations
practical input mm = 10

re real part of each zero relj](j=1, ---, m)

im imaginary part of each zero im[j](j=1, -+ , m)
mu corresponding multiplicity mu(f](j=1, -+, m)
rt remainder term rt[j](j=1, ---, m)

gc coefficients of the polynomial generated from these zeros
gelil(G=0, - -+ n—1)

m number of distinct zeros found by the routine

1 degree of the residual polynomial

t coefficients of the residual polynomial
tH71(G=0, -+ ,2), where {[t] is the constant term

fail a zero with multiplicity greater than n found, change
parameters for acceptance criteria.
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begin

integer d,numzro;
Boolean zero;
numzro := 0; zero := false; d := n;

ZROTEST:

if ¢[d] = 0 then
begin
zero := true; d:=d —1; numzro := numzro + 1;
go to ZROTEST
end;
begin
integer cf, nu, nuc, beta, j, jc, k, p, em, l, mme, ll, me, sm;
Boolean root;
real z, y, gz, rp, k;
array a, ac(0: d, 0: mm], rr, rc[0: d], s[—1: d],
agl0: d+1, —1:d41], vk, g, g, f1: 2 X d};
switch ss := 81, §2;
switch it := T1, T2;
switch w := V1, V2;
integer procedure min(u, v); integer u, v;
min 1= if 4 £ v then u else v;
real procedure synd(ww, qq, 2, it);
integer i¢; real ww, gq; array il;

SYNTHETICDIV:

begin

s[—1] := 0; s[0] := {t[0];

for em := 1 step 1 until 77 do

slem] := tifem] — ww X s[em—1] — qq X slem—2];

if g¢ = 0 then synd := abs(s[iz])

else synd := abs(s[it—1] X sqri(abs(qq))) + abs(s[ti])
end synd;
ct := beta := 1;

SQUARING OPERATION :
me 1= mm;
begin
for m := 1 step 1 until mm do
begin
for j := 0 step 1 until d do
begin
h = 0;
for ll := 1 step 1 until min(d—j,j) do )
hi=h+ (=1 1 UXalj—U, m—1] X al[j+, m~1};
alj,m] := (=1) T j X (alj,m—1] T 24+2 X k)
end;
for I := 0 step 1 until d do
begin

if abs(all, m]) = sqri(range) then
begin me := m; go to W1 end
end
end

end;

Wi:

for j := 0 step 1 until d do

rr(j] :=if a[j, me] = 0 then 0 else
(=1 T j X alj, me—1] T 2/a[j, mel;

il :=0;
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for j := d step —1 until 0 do
begin
if a[j, me] = 0 then
begin i := Il + 1; rr{j] := 1l end
else go to W2
end;
w2:
ji=1; nu:=1;
RD: .
if (I—delta=Zrr[jl) A (rr[jl1=1+4delie) then
begin

rp = abs(alj, mel/alj—nu, me]) 1 (1/(2] mexXnuw));

go to ti[bela]
end;
M1:
nu 1= nu + 1;
M2:
j=ity

if j = d 4+ 1 then go to ss[beia] else go to RD;

M3:
nu :=1; go to M2;
T1:rhici] := rp; z := rp + epsilon X rp;
y =z + epstlon X rp;
for k := 0 step 1 until d do (k] := abs(c[k]);

flet] := synd(—y, 0.0, d, 1) — synd(~ux, 0.0, d, t);

glet] := synd(—rhlci], 0.0, d, ¢);
if abs(flet]) > glet] then

begin
root := true; qlct] :
cti=ct+1; flet] : f[ t—l]
end;
rhlel] 1= —rp;

glet] := synd(—rhlct], 0.0, d, c);
if abs(flct]) > glct] then

begin
root := true; qlct] 1=
cti=ct 4+ 1; flet] := f[ct 1]
end;

if nu = 1 then go to M2;
glet] :=rp T 2; nuc := nu; je := j;
mme = me;
for j := 0 step 1 until d do
begin
relg] := rr(jl; aclj, me] := alj, me]
end;
RESULTANT:
begin
array b[—1:d+1, —1:d+1], aal0:d],
r{0:d, 0:d), ¢b[—1:d+1];
eb[—1] := ¢b[d+ 1] :=
for j := 0 step 1 until d do
cbljl := clsl;
b0, 0] := 1;
for k := 0 step 1 until d do
begin
blk, —1] := 0; blk—1, k] := 0;
for j := 0 step 1 until £ do
blk+1, 5] := blk, j—1] ~ glet] X blk—1, j1;
bik+1, k+1] :=1; h := 0;
for j := d — k step —1 until 0 do
h :=h -+ (cb[j] X eblk+jl — eb[j—1]
X cblk+j+11) X glet] 1 (@d—k—7);
aalk] := (=1) T k X h;
for j := O step 1l untilkt — 1 do
rlk, 5] := rlk—1, j] + aalk] X bk, jl;
rlk, k] := aalk]
end;
bela := 2;
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T2

S2:

S1:

for j := 0 step 1 until d do
alj, 0] := rld, d—jl/r[d, d]
end;
go to SQUARING OPERATION;

if (rp/2) T 2 > qlct] then go to M3;
rhlct] := rp;
glet] := synd(—rhlet], qlct], d, c);
if abs(flct]) > glct] then
begin
ct :=ct +1; flet] := flet—1];
glet] := qlet—1]
end;
rhlct] := —rp;
glet]l 1= synd(—rhlet], qlctl, d, ¢);
if abs(fct]) > glct] then
begin
ct:=ct +1; flet] := flet—1]
glet] := q[ct—ll
end;
go to M3;

me := mmc;
for j := 0 step 1 until d do
begin
alj, me] := ac[j, mel; rrlj] := reljl
end;
j = je; beta :=1;
if root then go to M3 else nu := nuc;
go to M1;

for j := 0 step 1 until d do ag{j, 0] :=

for j := —1, 1 step 1 until d do
for m := 0 step 1 until d do
aglm, j] := 0;

k:=1;, i :=d; m:=1; U :=0

for j := 0 step 1 until d do ¢[j] := ¢[j];
MULT:

mu [ ] := 0

p = if g[k] = 0 then 1 else 2;
IT:

El:

V1.

V2:

E:

gr = synd(—rhlk], qlk], 7, t);
if abs(flk]) > gz then
begin
=1+ p;
for j := 1 step 1 until Il do

aglll, 71 := aglll—p, j] — rhik] X aglll—p, j—1] + ¢[k] X

aglil—p, j—2];
mulm] := mum] + p; 1 :=1 — p;
if 2 < 0 then go to fail;
if 1 = 0 then go to El;
for j := 0 step 1 until 7 de (4] := s{j];
go to IT
end
else if mu[m] # 0 then

begin
rifm] := glkl; go to wv[p];
end
else go to Dl;
re[m] := rhlk]; im[m] := 0; go to E;

re[m] := rhlk]/2;
im[m)] 1= sqri(qlk] — re[m] T 2);

m:=m -+ 1;
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Dl:
k:=k+41;
sm = 0;
if m # 1 then
for j := 1 step 1 until m — 1 do sm := sm + mulj];
ifk2ct Asm=dA7>0then goto MULT;

for j := 0 step 1 until d do gcljl := aglll, jl;

m:=m— 1;

if zero then

begin
for j := d + 1 step 1 until d 4 numzro do ge[j] :=
m:=m -+ 1;
re[m] := 0; im[m] := 0; mu[m] := numzro; ri[m] :=

end

end
end AG4

ALGORITHM 341
SOLUTION OF LINEAR PROGRAMS IN 0-1
VARIABLES BY IMPLICIT ENUMERATION [H]
J. L. Byrne anp L. G. ProLL
(Recd. 8 Nov. 1967 and 17 June 1968)
Department of Mathematics, University of Southampton,
Hampshire, England
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procedure IMPLEN (m, n, A, z, apt, nosoln, count, inf);
value m, n, inf; integer m, n, count; real inf;
Boolean api, nosoln; real array A; integer array z;
comment This procedure solves the integer linear program,

minimize 410, 1] X z[1] + -+ 4+ 4]0, n] X z[n]
subject to  A[Z, 1] X z[1l] + -+ + A[Z, n] X z[n]

4+ A[2,00 =0 (#=1,2,:--,m)
and z[jl=0o0rl (j=1,2, -+ ,n).

1t is assumed that A4[0,j]1 = 0 (j=1,2, -+, n). The algorithm
used is that of Geoffrion (STAM Rev. 9, No. 2). On entry, inf
is the largest positive real number available and ap? is set to
true if a priori information concerning the solution is supplied
in the form of a binary vector z[l: n] and its associated cost
A[0, 0]. On exit nosoln is true if no feasible solution to the con-
straints has been found, otherwise it is false and x contains the
optimal solution, A[0, 0] contains the optimal value of the ob-
jective function and A[¢, 0] contains the values of the slack
variables. In either case count contains the number of iterations
performed;
begin

integer 1, j, k, ta, ¢,d; real z, g, mazx, r;
integer array s, v[l: n};
comment s holds the current partial solution in order of as-

signment, v is a state vector associated with s;
if ap? then
begin

for j := 1 step 1 until » do

if z[j] = 0 then begin s[j] := —j;

else

begin

sljl == 45 oljl := 33
for 7 := 1 step 1 until m do
Alz, 0] := Alz, 0] + A7, j]

end;

e :=mn;
end;

Boolean null;

v[j] := 2 end

z := A[0, 0]; go to LO
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for 7 := 1 step 1 until n do s[j] := v[j] := 0;
z:=0.0; ¢:=0;
L0: nosoln := true; couni := 0; A[0, 0] := inf;

comment all relevant variables are now initialized;
START: count := count + 1;
for 7 := 1 step 1 until m do
if Az, 0] < 0.0 then go to FORMT;
comment best completion of s is feasible;
go to INCUMBENT,
FORMT: null := true;
comment form set T of free variables to which 1 may be profit-
ably assigned;
for j := 1 step 1 until n do
begin
if - ([j] = 0 A A[0,7] 4+ 2z < A0, 0]) then go to L1;
for k := i step 1 until m do
if Ak, 0] < 0.0 A Alk, j1 > 0.0 then
begin null := false; ¢[j] :=1; go to Ll end;
Ll: end;
if null then go to NEWS;
comment if 7 is empty then s is fathomed;
for k& := ¢ step 1 until m do
begin
if A[k, 0] = 0.0 then go to L2;
q:= Ak, 0];
for j := 1 step 1 until » do
if v[j] = 1 A Alk, j] > 0.0 then ¢ :=
if ¢ < 0.0 then go to NEWS;
comment if ¢ is negative s is fathomed;
L2: end;
mar = —inf;
for j := 1 step 1 until n do
begin
if 2[j] # 1 then go to L3; ¢ := 0.0;
for i := 1 step 1 until m do
begin
ri= Ali, 0] + AL, jl;
if r < 0.0 then g :=q+r
end;
if maxr < ¢ then
begin maz := g;
L3: end;
e:=e+1; slel:=d; v[d] :=3; da:=1;
comment Augment s by assigning 1 to z[d];
RESET: forj := 1stepluntiln do
if v[j] = 1 then v[j] := 0;
comment clear T';
for ¢ := 1 step 1 until m do
AlZ, 0] := Az, 0] + da X A[1, d];
z:=z + 1w X Al0, d];
comment Recalculate slacks and objective function;

q -+ Afk, jl;

d := j end;

go to START;

INCUMBENT: nosoln := false;
if z = A[0, 0] then go to NEWS;
Al0, 0] := 2;

if api then begin api := false; go to L4 end;

for j := 1 step 1 until n do
z[j] := if v[j] = 3 then 1 else 0;
NEWS: if e = 0 then go to RESULT;
14: d := sle];

if d > 0 then go to UNDERLINE;
—d]:=0; e:=e—1;
go to NEWS;
UNDERLINE: sle] := —d; v[d] :=
comment Assign 0 to z{d];
go to RESET;
RESULT:

end

comment backtrack;
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