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ABSTRACT
Programmable Logic Controller (PLC) programmers frequently
need to employ formal techniques, such as model checking, to ver-
ify the logic of PLC programs. Structured Text (ST) is a high-level
programming language for PLCs, and the current practice involves
translating an ST program into an equivalent input language (e.g.,
C or Symbolic Model Verifier (SMV) code) for testing with a model
checker. However, this translation process is labour-intensive and
often error-prone. It is a new technique to evaluate the coverage of
an ST program, and there is also no commonly accepted structural
test coverage criteria for ST programs. In this paper, we present
the development of an effective atomic condition coverage crite-
rion for testing high-level Structured Text programs. The proposed
testing method establishes a grammar, transforms ST programs into
Python, and then assesses whether all conditions in an ST program
are attainable. We annotate the ST code with artificial runtime er-
rors within the conditional scope. Subsequently, we employ the
ANTLR tool to generate the parser and lexical analyzer from the
grammar, and a Python code iterates through the ST code line by
line, converting it into Python code. We perform a runtime analysis
of the Python code and trace it back to the original ST code.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.
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Table 1: Some of the nuclear power plant cyber-attacks[5, 13]

Incident Details and Causal factors

Browns Ferry NPP[26]

In 2006, the Browns Ferry NPP experienced an emergency manual shutdown
due to the breakdown of two water re-circulation pumps. A failing PLC led
to an increase in network data traffic, which led to the breakdown. The attack
pattern resembled a denial-of-service cyber-attack.

Hatch NPP[2, 14]

The Hatch NPP’s Unit 2 was shut down automatically due to a software
upgrade to a computer connected to the NPP’s network. The synchronization
program reset the control network data while rebooting the machine and
gathering diagnostic information from the process control network. This data
reset was mistakenly perceived as an abrupt decrease in the reactor’s water
reservoirs, which led to an automated shutdown. In this instance, a
cyber-attack was started because the dependencies between network
devices were not understood.

Natanz NPP[22]
The SIEMEN’s Step 7 PLC (used to configure the PLC) was the target
of the Stuxnet worm attack, which replaced one of the dynamic link
libraries used by the Step 7 configuration software.

1 INTRODUCTION
Industrial control systems (ICS) are increasingly prevalent across a
wide range of application domains, including manufacturing, elec-
tricity production, chemical manufacturing, oil refineries, and water
and wastewater treatment. ICS comprises various control system
types, along with related components such as devices, networks,
systems, and controllers that automate industrial operations.

An ICS includes control systems like programmable logic con-
trollers (PLCs), distributed control systems, and supervisory control
and data acquisition systems (SCADA). PLCs are controllers that
receive commands, process data from sensors, and execute pro-
cesses based on program logic. PLCs find applications in diverse
areas such as nuclear power plants, large machinery operations,
system monitoring, logistics, energy research, and rail automation.
Ensuring the safety and accuracy of these systems is of paramount
importance.

The transformation of ICS systems from physical to cyber-
physical systems over time introduces potential security vulner-
abilities. Notably, nuclear power plants (NPPs) have been targets
of cyber-attacks. Events such as the emergency shutdown of the
Browns Ferry NPP [26] in 2006, the Hatch NPP[2, 14] incident in
2008, and the Stuxnet worm attack on the Natanz nuclear [22] com-
plex in 2010 were all caused by cyber-attacks. Table 1 provides
an overview of these cyber-attacks on PLC systems that aimed to
exploit their weaknesses and cause system failures.

An investigation by Bernard, et al. [15], demonstrated a cyber-
attack on a nuclear power plant’s Tricon PLC system. The study
revealed strategies for exploiting the Triple-Modular Redundant
(TMR) architecture of Tricon PLC, allowing changes to the control
logic using latent failure attacks and sudden failure assaults, leading
to common-mode failure. To safeguard against future cyber-attacks
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Figure 1: PLC Block Diagram

on PLC systems, there is a growing need to develop methodologies
for verifying and evaluating their functional safety.

Condition coverage testing, a form of white-box testing, exam-
ines every conditional expression in a program for every possible
scenario[8–12].

The use of a Function Block Diagram (FBD), depicted in Fig. 1,
is prevalent in various contemporary nuclear instrumentation and
control (I&C) systems. FBD is a PLC programming language that
employs a graphical data-flow paradigm. In contrast, high-level pro-
gramming languages like Structured Text (ST) lack widely accepted
software test coverage standards. To address this gap, Jee et al. [25]
introduced three structural test coverage criteria tailored for FBD
programs. Notably, Complex Condition Coverage (CCC) has proven
to be particularly effective when applied to FBD programs in the nu-
clear domain. According to Jee’s assessment, the existing FBD cov-
erage criteria exhibit limited capability in identifying specific types
of faults, such as replaced logical or relational blocks. To rectify
this limitation, the development of a test coverage criterion for ST
programs with a high level of fault detection efficacy is warranted.

This paper aims to directly analyze PLC Structured Text for con-
dition coverage and develop an efficient and optimized approach
for this task. We propose a method for testing programs by trans-
lating ST programs directly into Python, line by line, for testing
purposes. This approach provides information about errors and the
corresponding lines in the code that cause those errors.

2 BACKGROUND
Programmable Logic Controllers (PLCs). In various sectors, en-

compassing nuclear energy, chemical, and transportation, pro-
grammable microprocessor-based devices, commonly referred to as
Programmable Logic Controllers (PLCs) [16], are employed to au-
tomate electromechanical operations. PLCs optimized for real-time
applications are conventionally programmed using IEC 61131-3
[1] programming languages. These languages include Instruction
List (IL), Structured Text (ST), Ladder Diagram (LD), Sequential
Function Chart (SFC), and Function Block Diagram (FBD). Notably,
among these options, FBD presently stands as one of the most
widely utilized graphical languages.

ANTLR Tool. ANTLR, which stands for ANother Tool for Lan-
guage Recognition [24], serves as a highly efficient parser generator
utilized for tasks such as reading, processing, executing, or inter-
preting binary or structured text files. It holds a prevalent role in
the development of frameworks, tools, and languages. ANTLR’s
functionality includes the generation of language parsers based on
formal language descriptions known as grammars. These parsers
can automatically construct parse trees, which are data structures
demonstrating how a given grammar corresponds to the provided
input. Moreover, ANTLR also automatically generates tree walkers,
enabling the traversal of these parse trees and the execution of
application-specific code.

Test Coverage Criteria for Control-Flow Programs. In the domain
of testing, two primary categories prevail: white-box (structural)
testing and black-box (functional) testing [3, 6, 19]. This study, how-
ever, is predominantly focused on structural testing. Test coverage
quantifies the proportion of program execution achieved within
a given test suite. The pursuit of adequate testing is guided by
test coverage standards, which are classified into those tailored
for control-flow programs and those oriented toward data-flow
architectures.

Control-flow programs are subject to an array of test coverage
criteria, encompassing statement coverage, condition coverage, de-
cision coverage, condition/decision coverage, multiple-condition
coverage, and modified condition/decision coverage. Additionally,
control-flow programs engage with data-flow structures via vari-
ous methodologies, including All-DU-paths, All-Uses, and All-Defs
[18, 20], each of which is elaborated upon in the following section.

The DC criterion stipulates that each statement must be executed
at least once, while each decision must encompass both "true" and
"false" outcomes at least once. On the other hand, a more rigorous
standard, known as CC, mandates that every statement is executed
at least once, and every condition within a decision accounts for
both "true" and "false" values at least once. These requirements
are consolidated in the C/DC criterion. The most robust criterion
among them, MCC, necessitates that each statement is executed
at least once, every decision considers both possible outcomes,
and each condition within a decision accounts for both potential
outcomes at least once.

3 RELATEDWORK
While there has been extensive prior research on condition cov-
erage analysis for PLC programs, the majority of it has primarily
focused on either translating Structured Text (ST) PLC programs
into other high-level languages, such as C or SMV or assessing
coverage for data-flow languages, like model-level Function Block
Diagram (FBD) programs [17].

Research focusing on structural test coverage for data-flow pro-
grams has been notably scarce. An examination of the existing body
of literature highlights a paucity of approaches designed for assess-
ing data-flow programs. The only discernible methods available
for the evaluation of data-flow programs are those put forth by
Papailiopoulou et al. [21] for Lustre programs and the extension
introduced by Jee for Function Block Diagram (FBD) programs.
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Furthermore, several tools have been utilized in the past to trans-
late ST programs into various high-level languages and then per-
form the analysis process on them [7]. For fault checking and con-
dition coverage testing, tools like NuSMV require the translation
of the ST program into the SMV language. Another tool, ESBMC1,
exclusively checks C programs, necessitating the translation of
the program into C. CPAChecker2 is another tool that utilizes C
programs as input. A promising area of research is the direct as-
sessment of ST programs.

Tools such as PLCverif [27], Arcade.PLC [4], and PLCStudio
[23] have been proposed for testing and formally verifying PLC
programs. However, there has been relatively limited work con-
ducted on the direct analysis of condition coverage in ST programs
in recent years.

4 PROPOSED IDEA
Programmable logic controllers (PLCs) [16], which are tiny comput-
ers, include inputs for data and outputs for sending and receiving
commands. Using the internal logic that has been coded into a
PLC, a system’s functions are mostly controlled by it. Businesses
all across the world utilise PLCs to automate their most crucial
procedures.

The PLC is becoming more common in safety-critical industries
for the automation and control of computer systems. PLCs are
extensively employed in civil applications such as lift control, traffic
lights, and washing machines. They are employed across a wide
range of businesses to manage and keep an eye on building systems
and production procedures.

Condition coverage, also known as expression coverage, is a
testing method used for examining and assessing the variables or
sub-expressions in a conditional statement. Checking individual
outcomes for each logical condition is the aim of condition cover-
age. Compared to decision coverage, condition coverage is more
sensitive to the control flow. Expressions with logical operands are
the only ones taken into account in this coverage. The Eq. 1 shows
the formula to calculate Condition Coverage3.

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠
× 100

(1)
Such systems are intricate and frequently safety-critical, which

means that malfunctions or failures could result in the loss of human
life, serious environmental harm, or at the very least, monetary
losses. Even a minor error in the code can have disastrous results
if the PLC programs are not carefully checked. Small mistakes
can result in significant system faults that can be dangerous. It
is crucial to make sure that every condition specified in the PLC
programs’ source code can be reached and is correctly carried
out. Code coverage is useful to measure how effectively tests are
executed, it provides a quantitative assessment, and it describes the
level of testing done on the source code.

We employed a method to test the condition coverage of the PLC
Structured Text (ST) program by performing several steps. Initially,
1http://www.esbmc.org/
2https://cpachecker.sosy-lab.org/
3https://nvlpubs.nist.gov/nistpubs/ir/2012/NIST.IR.7878.pdf
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Figure 2: Control flow for the proposed idea

we counted the number of conditional statements and introduced
assert statements. Additionally, we intentionally inserted division
by zero errors within conditional statements in the source code.
Subsequently, we proceeded to construct test cases. Furthermore,
we developed a grammar specifically for PLC ST to meticulously
analyze the lexical structure of the code. Utilizing the ANTLR tool,
we generated lexer, parser, and visitor files for the ST language based
on this grammar. With these files at our disposal, we meticulously
traversed the ST code line by line, concurrently constructing the
code’s Abstract Syntax Tree (AST). Simultaneously, we translated
each statement or code block into Python code.

Following this, we subjected the freshly converted Python code
to runtime analysis to determine whether the divide-by-zero issue
was detected for each condition. If the error went unnoticed, it
signifies that the condition was not covered by the source code, in-
dicating that the source code cannot reach that particular condition.
Conversely, if the error was identified, it implies that the source
code can reach that state. The examination of the Python code
suffices for conducting condition coverage checks, as it is a direct
transformation carried out line by line from the ST code. Figure 2
illustrates the control flow diagram for the proposed approach.

The Algorithm 1 shows the computation of condition coverage
of Structured Text (ST) programs. It starts by taking ST source
code as an input containing conditional statements. Then it counts
the total number of conditional statements in the provided code.
Next, it inserts assert statements before each condition, effectively
generating a set of test cases. These test cases are generated and
executed for an assessment of howmany assertions are successfully
detected. Then it counts the number of detected assertions and
ultimately calculates the condition coverage using Equation 1. It
assesses the condition coverage of ST programs to ensure their
robustness and reliability.
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Algorithm 1 Finding Condition Coverage of ST programs
Require: An ST source code with conditional statements
1: Count the number of conditional statements
2: Insert an assert statement before each condition to generate

test cases
3: Generate all the test cases
4: Execute the code
5: Check how many assertions are recognized
6: Count the number of recognized assertions
7: Find the coverage using the Equation 1

Figure 3: A snapshot of the PLC Structured Text Grammar.

PROGRAM test
VAR

a : INT;
b : INT;
c : INT;

END_VAR;
BEGIN

a:=0;
b:=5;
c:=10;

IF c > 5 THEN
c := c - 1;

END_IF;
END_PROGRAM

Listing 1: Sample PLC structured text code

5 EXPERIMENTAL RESULTS
We have developed a tool to identify conditions in an ST program.
The total number of conditions can be evaluated statically. Then,
we inject divide-by-zero statements in the conditional statements
to analyze the reachability of these conditions.

{
"program": {

"name": "test",
"declarations": [

{
"name": "a",
"type": "INT"

},
{

"name": "b",
"type": "INT"

},
{

"name": "c",
"type": "INT"

}
],
"statements": [

{
"type": "if",
"conditions": [

"c>5"
],
"blocks": [

{
"type": "assignment",
"variable": "c",
"expression": "c"-1

}
]

},
{

"type": "assignment",
"variable": "a",
"expression": 0

}
{

"type": "assignment",
"variable": "b",
"expression": 5

},
{

"type": "assignment",
"variable": "c",
"expression": 10

},
]

}
}

Listing 2: Abstract Syntax Tree (AST) for the code.

Next, we defined a grammar for the PLC Structured Text programming
language using the ANTLR4 tool to generate the parser, lexer, and visitor
files for the grammar with the command “antlr4 -Dlanguage=Python3
PLCSTG.g4 -visitor". Here, PLCSTG.g4 is the grammar definition, a snap-
shot of which is shown in Figure 3.

We consider an example of a PLC ST program as shown in Listing 1.
Our tool uses all the classes generated by the ANTLR grammar to visit each
line of the ST Program, parse it, and generate the corresponding Abstract
Syntax Tree (AST) for the program as shown in Listing 2. Next, our tool
converts the AST into a python program Listing 3.

Now, we perform a run-time analysis of the converted Python code to
evaluate the total number of conditional statements reached. We used "cov-
erage" module available in Python5 to analyze the Python code coverage
and generate a report accordingly. Sample template is shown in Listing 4.
This process will start coverage analysis when the program starts running
stop coverage analysis at the end of the execution and generate a coverage
report as shown in Listing 5.

4https://www.antlr.org/
5https://coverage.readthedocs.io/en/7.4.1/
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def test():
a=0
b=5
c=10
if c>5:
c=c-1

test()

Listing 3: Converted Python Code

import coverage
cov = coverage.Coverage ()
cov.start()
....
*********PLC -Python CODE *****
....
cov.stop()
cov.save()
cov.report ()

Listing 4: Template of the PLC-Python Code

Name Stmts Miss Cover
-------------------------------------------------------
cov.py 19 10 47%
-------------------------------------------------------
TOTAL 19 10 47%

Listing 5: A report generated by coverage module

6 CONCLUSION
We have conducted an in-depth study of various tools used for testing and
verifying PLC programs, such as PLCverif and Arcade.PLC, to understand
their testing processes and how they execute high-level Structured Text
(ST) PLC programs. Testing the execution of high-level Structured Text PLC
programs is a complex task. We have explored tools that assess condition
coverage in ST programs after converting them into code written in different
languages, such as NuSMV and ESBMC. However, a notable challenge with
these tools is that they provide error results and corresponding line numbers
for the converted code but not for the original ST program.

To address this challenge, we have undertaken the task of converting the
Structured Text code into Python and subsequently analyzing the Python
code for runtime errors. This approach was chosen because executing or
dynamically analyzing Structured Text directly is a highly complex and
distinct task. Looking ahead, we envision the potential for direct testing
of the Structured Text code, which we believe could yield more accurate
and valuable results in this domain. In the future, we aim to include the
remaining conditional statements, loops, and repeat-until statements in our
analysis, further enhancing the comprehensiveness of our approach.
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