
Safeguarding Controller Variables from SEUs using Static
Analysis

Ganesha
IIIT-Bangalore

Samsung R&D - Bangalore
India

ganesha@iiitb.ac.in

Sujit Kumar Chakrabarti
IIIT-Bangalore

India
sujitkc@iiitb.ac.in

ABSTRACT
Control systems deployed in safety-critical applications face the risk
of Single Event Upsets (SEUs), wherein rare, random phenomena
can induce errors, potentially leading to catastrophic consequences.
This paper proposes a novel approach to enhance the reliability of
control algorithms by identifying conditionally relevant variables
(CRVs) through a combination of static analysis and formal verifi-
cation techniques. Once the CRV has been located, the compiler is
instructed to produce the code that lives in the silicon chip’s harden-
ing region, remaining Non-Critical part is moved to non-hardened
part. Hardening causes the cost of the chip to go up; hence, it is in
our interest to harden only a portion of the chip that balances the
risk of SEUs with the rise in manufacturing costs of the chip. We
know that discovering the actual set of CRVs is undecidable. Slicing
gives us a sound but loose upper bound of CRVs. Program analysis
and verification is used to detect irrelevant variables that are missed
by static slicing leading to sound and more precise estimates.

KEYWORDS
Program Analysis, CRV, SEU, Hardening, Model Checking, Formal
Verification
ACM Reference Format:
Ganesha and Sujit Kumar Chakrabarti. 2024. Safeguarding Controller Vari-
ables from SEUs using Static Analysis. In 17th Innovations in Software Engi-
neering Conference (ISEC 2024), February 22–24, 2024, Bangalore, India. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3641399.3641471

1 INTRODUCTION
The de-facto way of deploying control systems is through com-
puting chips. The control algorithm is implemented as a software
running on a micro-controller or (System on a chip) SoC device.
Often, such embedded controllers function in harsh environmental
conditions. In such cases, the computing components get exposed
to a rare random phenomenon called single event upsets (SEU).
When SEU happens, a bit in the chip would flip its value. This could
lead the on-going computation to fall off track leading to errors –
often with catastrophic results in safety critical applications, e.g.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISEC 2024, February 22–24, 2024, Bangalore, India
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1767-3/24/02
https://doi.org/10.1145/3641399.3641471

All variables

Identified CRVs
Improved results

Actual CRVs

Figure 1: Bounds

automotive, industrial automation, aerospace, oil and gas, mining
and healthcare etc.

A common technique used in the industry to safeguard electronic
components from SEUs is called hardening [5]. The hardened part
of the silicon can withstand the causes of SEUs, and bit-flips are
avoided. The process of hardening the chip results in an increase in
its cost. Therefore, it is advantageous for us to selectively harden a
specific section of the chip that effectively manages the trade-off be-
tween the risk of Single Event Upsets (SEUs) and the corresponding
rise in manufacturing expense.

In this paper, we outline an approach for dividing the source
code of the control algorithm into two parts: one that should be
placed in the hardened part of the silicon, and the other that can
be left unguarded by being placed in the unhardened part. For
this, we define the idea of conditional relevance of a variable. We
use a combination of static analysis (program slicing) and formal
verification (software model checking) to solve this problem. Note
that discovering the actual set of conditionally relevant variables
(CRVs) is undecidable. Slicing gives us a sound but loose upper
bound of CRVs. Formal verification helps us tighten this bound
without compromising soundness. This is shown schematically in
Figure 1.

2 MOTIVATING EXAMPLE
In Figure 2, we show a fragment of code. The program computes
the value of the output variable ’output’. Suppose that there is
correctness condition imposed on the system that says that output
should be less than or equal to 10. We can see that it is possible
to violate this condition in the given code. The program iterates
through the outer while loop exactly 7 times. If the branch condition
(x > 10) is false, output would be incremented by 1 in each iteration.
In 7 iteration, its value would be 11, which would violate the safety
condition. But, an interesting aspect of this situation is that the
above computation never uses the value of y. This is not to say
that output is not dependent on y; in fact, it is dependent on y.
A traditional static slicing would reveal this to us. But what this
technique would fail to discover is that output doesn’t depend on y’s

https://doi.org/10.1145/3641399.3641471
https://doi.org/10.1145/3641399.3641471
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3641399.3641471&domain=pdf&date_stamp=2024-02-22

ISEC 2024, February 22–24, 2024, Bangalore, India Ganesha and Sujit Kumar Chakrabarti

1 in t f (in t x , in t y) {
2 in t ou tpu t = 4 ;
3 boo l a larm = f a l s e ;
4 in t count = 0 ;
5 while (count < 7) {
6 i f (x > 1 0) {
7 i f (y == 1) {
8 ou tpu t = 2 ;
9 }
10 e l se {
11 ou tpu t = 1 ;
12 }
13 }
14 e l se {
15 ou tpu t = ou tpu t + 1 ;
16 a larm = true ;
17 }
18 count ++ ;
19 }
20 p r i n t f ("%b" , a larm) ;
21 return ou tpu t ;
22 }

Figure 2: Motivating Example

value when it violates the safety condition. This is to say that y is not
relevant as far as the safety condition output <= 10 is concerned.
We resort to formal verification to identify such cases. The key
takeaway from the example is the identification of conditionally
relevant variables (CRVs) concerning a given safety property. In
this instance, even though y is used in the computation of output,
its value does not influence the violation of the safety condition.
Therefore, y can be considered as not critical for the safety of the
program, and this understanding guides our approach to selective
hardening.

3 STATE OF THE ART
Single event upset (SEU) refers to a change in state of a semicon-
ductor memory or processor caused by a high-energy particle, such
as a cosmic ray. These particles can cause a bit flip, which means
a binary 0 is changed to a binary 1 or vice versa [8], [7]. To miti-
gate the risk of SEUs, designers can implement techniques such as
error-correcting codes (ECC) or redundancy. ECC adds extra bits to
each data word that allow the detection and correction of single-bit
errors. Redundancy involves duplicating critical components or
systems so that if one fails due to an SEU, a backup can take over
the function. The selective radio hardening is used with circuit com-
ponents corresponding to bits identified as susceptible to errors,
such as transient errors [9], [4]. All of the proposed strategies to
minimize SEUs are hardware-based. Our method is distinct since
the proposed solution is at the controller algorithm, which is a
software component.

While the general technique may have been explored in pre-
vious research [1] [3] [6], our work introduces several novel as-
pects specific to the domain of control algorithms. Domain-Specific
Challenges: Control algorithms, especially those deployed in safety-
critical systems, present unique challenges that may not be fully
addressed by generic techniques. Our paper delves into the details
of control algorithms, highlighting specific challenges related to
conditionally relevant variables (CRVs) and their impact on system
safety. The exploration of these challenges is a key differentiator
from existing literature.

4 PROPOSED SOLUTION
4.1 Backgroud
In a given program, when one part, say A, affects the computation
happening at some other part, say B, we say that there is a depen-
dency between A and B, or B is dependent on A. We speak of two
types of dependencies: data dependency and control dependency.
When the computation at A gets used as an input for the compu-
tation at B, we say B is data dependent on A. When whether the
code at B gets executed or not is determined by the computation at
A, B is said to be control dependent on A. In order to perform an
analysis of the CRVs, it is necessary for us to have knowledge of the
data flow throughout the program as well as their dependencies.
The combination of the data dependency, the control dependence,
and the changing dependencies is what constitutes these depen-
dencies. The variable and location pair say, (v, l) is dependent on (x,
lx) and (x, lx) is dependent on (y, ly) then (v, l) is dependent on (y,
ly). Dependencies between data and control, data and data, control
and data, and control and control are all possible. Note that we are
not explicit about the type of dependency.

A program slice (or slice for short) in a program is the part of
the program which is related in some causal way to the program
location of interest. For example, a backward slice gives us those
parts of the program which may, in some or the other run of the
program, have an influence on the value of a variable of interest at
a program point of interest. This pair of variable (v) of interest and
program point of interest (l) for the pair (v, l) and are known as the
slicing criterion.

Program slicing refers to a broad class of techniques in pro-
gram analysis with the primary intent to discover slices. Program
slicing can be static or dynamic, backward or forward, among a
host of other variants. Slicing has been successfully and widely
used to solve many software engineering problems. Program de-
pendence graph (PDG) is the data structure that is used as the first
step towards computing a slice. In fact, once the PDG is available,
computing slice is almost trivial. A PDG explicates is formed by
super-imposing the dependency information on top of the control
flow graph of a program. We begin by applying program slicing to
the program of interest; as a result, we will receive a list of CRVs
that contains some false positives. As a result, this is the very first
stage in our strategy. In the following stage, we will tighten the
bound on CRVs by making use of formal verification techniques.

4.2 Observations
Static slicing yields sound results, i.e. it will not miss identifying any
CRV. However, it will often yield imprecise results. For example, in
the given example, it will not be able to detect the fact that y is not
a CRV for output >= 10 at the return statement. In this work, we use
program slicing and formal verification to identify the conditionally
relevant parts of the program which should be safeguarded. As a
result, compiler can be guided to place conditionally relevant parts
in the hardened parts of silicon. These bounds will be tighter than
the ones obtainable through traditional static analysis. This will
make it possible to harden a smaller part of the silicon without
compromises on safety, leading to cost saving without loss of safety
guarantee.

Safeguarding Controller Variables from SEUs using Static Analysis ISEC 2024, February 22–24, 2024, Bangalore, India

1 in t f (in t x , in t y) {
2 in t ou tpu t = 4 ;
3 boo l a larm = f a l s e ;
4 in t count = 0 ; ⇐
5 boo l f l a g = f a l s e ;
6 while (count < 7) {
7 i f (x > 1 0) {
8 i f (y == 1) {
9 ou tpu t = 2 ;
10 f l a g = true ; ⇐
11 }
12 e l se {
13 ou tpu t = 1 ;
14 f l a g = true ; ⇐
15 }
16 }
17 e l se {
18 ou tpu t = ou tpu t + 1 ;
19 a larm = true ;
20 f l a g = f a l s e ; ⇐
21 }
22 count ++ ;
23 }
24 p r i n t f ("%b" , a larm) ;
25 i f (ou tpu t > 10 && f l a g == true) { ⇐
26 a s s e r t (f a l s e) ; ⇐
27 } ⇐
28 return ou tpu t ;
29 }

Figure 3: Instrumented Code

4.3 Program Instrumentation
A variety of formal verification techniques can be employed to
detect the relevant variables. For this, we first need to instrument
the given code. This allows us to reduce the problem of arbitrary
property checking to that of reachability. In Figure 2, we are in-
terested in detecting if y is a conditionally relevant variable w.r.t.
the ‘return output’ statement (the answer is ‘No’) using formal
verification. For this, we insert instrumentation code at strategic
points in the original program (In Figure 2) to give us the instru-
mented code as shown in Figure 3. On this instrumented code, the
simplified verification question now becomes “Is the ‘error’ state-
ment reachable?” Although, this kind of reachability questions are
undecidable in general, this has been addressed earlier in literature
using software model checking. ‘How to automatically instrument
the code to simplify an arbitrary property checking question to a
reachability problem?’ is one of the central questions we intend to
address through this work. The instrumentation in Figure 3 specif-
ically targets the variable ’y’ because the focus of the analysis is
on determining whether ’y’ is conditionally relevant with respect
to the safety property. Based on manual analysis of the code ’y’ is
instrumented. In general all variables need to be investigated.

The algorithm primarily focuses on individual variables to assess
their conditional relevance based on safety conditions. However,
if there are dependencies between input variables, the algorithm
should take these dependencies into account during the static anal-
ysis and formal verification steps. Algorithm need to be designed to
scalable and efficient, even when dealing with predicates involving
multiple variables. The static analysis and formal verification steps
need to be optimized to handle complex conditions without causing
a significant increase in the number of instrumentation passes.

Figure 4: Flow Diagram

4.4 Program Verification
As mentioned earlier, unfortunately, computing precise static slices
is undecidable; so is identifying conditionally (ir)relevant variables.
Using formal verification on top of static slicing to identify condi-
tionally (ir)relevant variables. We Instrument the code and solve
reachability problem using appropriate formal verification tech-
nique(s).

5 EXPERIMENTAL RESULTS
5.1 Experimental Setup
The test-bed configuration for our proposed solution is elucidated
by a flow diagram seen in Figure 4. In the conducted experiment,
the C programming snippet depicted in Figure 2 was taken into
consideration. The C code sample is sliced using the framework
provided by Frama-C. Frama-C facilitates [2] the integration of
new plug-ins into its platform, hence assisting developers in this
process. The software framework described herein facilitates the
creation of static analysis tools for C programs. This platform also
offers support for program slicing. Frama-C provides support for
generating Abstract Syntax Trees (ASTs), Program Dependence
Graphs (PDGs), and traversal functions for the purpose of code
instrumentation.

The output variable is used as a slicing criterion, and the C code
is sliced based on that value. When output was greater than 10,
this failed to determine that y is not a CRV. The following phase
involves instrumenting the sliced code at various strategic points.
For a simple understanding these strategic points are flag variable
that are set to true or false based on manual investigation of the
code. The flag is set to true when y is CRV based on safety prop-
erty. Additionally, a safety property check has been incorporated,
accompanied by an assert statement that is suitable for the CBMC
model checker to verify the aforementioned property. The CBMC
tool accepts a Boolean condition as input, and subsequently use the
model checker to ascertain the truth value of the condition for every
possible execution of the program. CBMC considers both control
and data dependencies when determining the relevance of variables
with respect to the slicing criteria. Now the simple question to the
model checker is ’output > 10 && flag == true’ condition is true for
any runs of the program execution, the answer is "No". This proves
that y is not a CRV when program violate the safety condition.

5.2 Design of the Algorithm
The main goal of the code instrumentation algorithm is to decide,
when the program reaches faulty state, what are the program state-
ments need to be included or removed. The code instrumentation

ISEC 2024, February 22–24, 2024, Bangalore, India Ganesha and Sujit Kumar Chakrabarti

in this paper is described based on adding program statements at
strategic points. This is done manually. Final goal is to write an
algorithm which preforms instrumentation automatically. Some of
the steps which are taken into consideration while adding flags are
described below.

Here, ’y’ is the investigating variable and ’output’ is a property
variable. In this context, the term ’investigating variable’ refers to
the variable ’y,’ which is currently under examination to determine
its conditional relevance in the given iteration of the algorithm. The
investigation aims to ascertain whether ’y’ is conditionally relevant
or not based on safety property considerations. The algorithm
iteratively analyzes each input variable individually to determine
its conditional relevance. For each variable, the algorithm adds
instrumentation in the code at strategic points, such as introducing
flag variables, to mark conditions that contribute to the conditional
relevance assessment. This process is performed systematically for
each input variable, allowing the algorithm to identify conditionally
relevant parts of the program accurately.

Instrumentation involves the strategic placement of flags within
the program code to mark the points where a variable, relevant
to the safety criterion, undergoes modification. Specifically, we
introduce a ’flag’ variable that is set to ’true’ or ’false’ based on the
conditional relevance of the investigated variable. This instrumen-
tation enables us to identify and track the influence of variables on
safety conditions during program execution. To address the ques-
tion of automation, our algorithm need to systematically analyzes
the control and data dependencies in the program, to identify the set
of conditionally relevant variables (CRVs). Subsequently, the algo-
rithm automatically places flags at points where these CRVs affect
the program’s execution paths. The goal is to streamline the process
of instrumentation, reducing the need for manual intervention.

The term "modification" in the algorithm refers specifically to
instances where the value of a variable is changed in a manner that
may impact the safety property of interest. We acknowledge that
every definition in the program involves some form of modification,
but the algorithm focuses on identifying modifications that are con-
ditionally relevant concerning the safety property. The algorithm
considers modifications that alter the value of a variable based on
conditional dependencies. In the examples provided (output=2 at
Line 8 and output=1 at Line 11 in Fig. 2), these modifications are
conditionally relevant because they occur within branches where
the safety property may be violated.

The purpose of the algorithm evaluation plan is to showcase
the efficacy of the technique in various control algorithms and
safety scenarios. The evaluation will measure the extent to which
CBMC reduces the occurrence of false positives in compared to
standard static analysis. Although there may not be standardised
benchmark suites specifically tailored for this particular environ-
ment, we will make efforts to select representative program’s. The
review approach we have developed is aimed to be comprehensive,

covering a wide range of scenarios. We will incorporate a variety
of control algorithms, safety criteria, and benchmarks to ensure the
technique’s robustness and efficiency under different situations.

6 CONCLUSION
Some variables are important w.r.t. some criterion; these need to be
safeguarded against SEUs. Static slicing is sound, but too conserva-
tive. Program analysis and verification to detect irrelevant variables
that are missed by static slicing leading to sound but more precise
estimates. Algorithm has been designed and tried on a motivating
example. A prototype has been implemented using LLVM frame-
work and has been used to detect conditionally relevant variables.

7 FUTURE PLAN
Our future road-map consists of the following important milestones.

• Identification of larger case studies.
• Implementation of a non-trivial proof-of-concept prototype.
• Experimental evaluation.

We believe that issues that can be detected using an experimental
fault injection simulation can also be detected using our static
analysis based approach. Further, while we have restricted our
attention to variables in terms of their conditional relevance, the
idea can be extended to the verification of conditional relevance
of program locations too. We would like to clarify that, as of the
current version, we have presented an outline of the correctness
argument and the key aspects that need to be addressed in the proof.
Our next steps include providing a more formal and detailed proof
of correctness, explicitly addressing the verification challenges and
establishing the soundness of our technique. We will incorporate
mathematical formulations and additional explanatory content to
substantiate the correctness of our proposed approach.

REFERENCES
[1] B. Chimdyalwar, P. Darke, A. Chavda, S. Vaghani, and A. Chauhan. 2015. Elimi-

nating static analysis false positives using loop abstraction and bounded model
checking. , 573-576 pages.

[2] Frama-C 2023. Frama-C Plugin Development Guide. Frama-C. https://frama-
c.com/html/documentation.html.

[3] A. Kaiser H. Post, C. Sinz and T. Gorges. 2008. Reducing False Positives by
Combining Abstract Interpretation and Bounded Model Checking. 23rd IEEE/ACM
International Conference on Automated Software Engineering 15 (April 2008), 2–5.

[4] David John. 2014. Method and Apparatus for Soft Error Mitigation in Com-
puters. https://patents.google.com/patent/US20150234693A1/en Patent
No.US20150234693A1, Filed Feb 25th., 2001, Issued January. 12th., 206.

[5] Y. Monne. 2005. Hardening techniques against transient faults for asynchronous
circuits.

[6] T. Muske, M. Datar, A.and Khanzode, and K. Madhukar. 2013. Efficient elimination
of false positives using bounded model checking. ISSRE 15 (April 2013), 2–5.

[7] E. Normand. 1996. Single-event effects in avionics. IEEE Transactions on Nuclear
Science. 43 (April 1996), 461 – 474.

[8] E. Normand. 1996. Single event upset at ground level. IEEE Transactions on Nuclear
Science. 43 (Dec. 1996), 2742 – 2750.

[9] Sujan Pandey. 2015. Data error susceptible bit identification. https://patents.
google.com/patent/US20150074631A1/en Patent No. US20150074631A1, Filed
November 25th., 2013, Issued December. 15th., 2015.

https://frama-c.com/html/documentation.html
https://frama-c.com/html/documentation.html
https://patents.google.com/patent/US20150234693A1/en
https://patents.google.com/patent/US20150074631A1/en
https://patents.google.com/patent/US20150074631A1/en

	Abstract
	1 Introduction
	2 MOTIVATING EXAMPLE
	3 State of the Art
	4 Proposed Solution
	4.1 Backgroud
	4.2 Observations
	4.3 Program Instrumentation
	4.4 Program Verification

	5 Experimental Results
	5.1 Experimental Setup
	5.2 Design of the Algorithm

	6 CONCLUSION
	7 Future Plan
	References

