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ABSTRACT

We present MultiGain 2.0, a major extension to the controller
synthesis tool MultiGain, built on top of the probabilistic model
checker PRISM. This new version extends MultiGain’s multi-
objective capabilities, by allowing for the formal verification
and synthesis of controllers for probabilistic systems with multi-
dimensional long-run average reward structures, steady-state con-
straints, and linear temporal logic properties. Additionally, Multi-
Gain 2.0 can modify the underlying linear program to prevent
unbounded-memory and other unintuitive solutions and visualizes
Pareto curves, in the two- and three-dimensional cases, to facilitate
trade-off analysis in multi-objective scenarios.
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• linear temporal logic (LTL)

G( =⇒ X(¬ U ))
• steady-state constraints (SS)

≥ 0.6

• long-run average reward (LRA)
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Figure 1: An MDP and its heterogeneous specification

1 INTRODUCTION

Markov decision processes (MDP), e.g., [14], are the basic model
for decision making in uncertain environments. The policy synthe-
sis problem is the problem of resolving the choices so that a given
specification is satisfied. In verification, there are many types of
properties considered; in this work, we focus on infinite-horizon
properties. Firstly, Linear Temporal Logic (LTL) [13] is mainstream
in verification [5]. It can express complex temporal relationships,
abstracting from the concrete quantitative timing, e.g., after ev-
ery request, there is a grant (not saying when exactly). Secondly,
Steady-State Policy Synthesis (SS) [3] constrains the frequency with
which states are visited, providing a more quantitative perspective.
Recently, it has started receiving more attention also in AI plan-
ning [4, 11, 16]. Thirdly, rewards provide a classic framework for
quantitative properties. In the setting of infinite horizon, a key role
is played by the long-run average reward (LRA, a.k.a. mean payoff),
e.g., [14], which constrains the reward gained on average per step.

ar
X

iv
:2

30
5.

16
75

2v
2 

 [
cs

.A
I]

  2
 M

ay
 2

02
4

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3641513.3650135
https://doi.org/10.1145/3641513.3650135
https://doi.org/10.1145/3641513.3650135


HSCC ’24, May 14–16, 2024, Hong Kong, Hong Kong Severin Bals, Alexandros Evangelidis �, Jan Křetínský, and Jakob Waibel

Example 1.1. An example of an MDP with these specifications is
shown in Fig. 1. There is a non-trivial choice at the beginning, decid-
ing, intuitively, in which set of states we shall be circulating forever.
Such a set is called a maximal end component (MEC). Further, there
is another choice in the middle MEC and a probabilistic transition
in the right one. The LTL formula in the example specifies that
whenever a red state occurs, it is followed by non-red ones until
a green one occurs. This can be satisfied in all the MECs of this
example; hence they are called accepting MECs. The steady-state
constraint determines that we stay in green states at least 60% of
the time. Finally, the rewards are decorating the edges and then the
average reward will be maximized on the “red” self-loop in the mid-
dle MEC. If all specifications are considered together, the reward is
maximized in the right MEC only, because of the SS constraint. △

We consider MDP with the LTL+SS+LRA specifications com-
bining all these three types, as introduced and theoretically solved
in [11]. We build upon MultiGain [6], a tool extending PRISM
[10] with multi-dimensional long-run average reward. Our tool
synthesizes a policy maximizing the LRA reward among all policies,
ensuring the LTL specification (with the given probability) and
adhering to the steady-state constraints.

Our contribution can be summarized as follows:
• We extend MultiGain to analyze an MDP with a heteroge-
neous LTL+SS+LRA specification for maximizing the long-
run average reward under the LTL and steady-state con-
straints, as described in [11]. Additionally, we extend the
specification and the algorithm to cater for further con-
straints. For example, satisfaction by policies that are deter-
ministic (as in [17]), unichain policies remaining in a single
MEC, or policies with a bound on the size of their memory.

• We extend the syntax of the PRISM language slightly to
accommodate the richer queries. Further, we produce Pareto
frontiers and display the two- and three-dimensional ones,
to visualize the trade-offs.

• We conduct a series of experiments to demonstrate the scal-
ability of the tool.

Related tools. To the best of our knowledge, there are no tools
that can simultaneously handle multi-dimensional LRA reward
computation, LTL, and steady-state specifications. There are, how-
ever, two tools that handle multi-dimensional LRA objectives: (i)
the previous version of MultiGain implements this functionality
through linear programming which is also compatible with the
solution offered in [11] and implemented here; and (ii) STORM
[15], which implements the same functionality more efficiently
through value iteration. Additionally, the Partial Exploration Tool
(PET) [12] includes an implementation for LRA reward analysis, by
focusing on partial exploration of the state space. However, it does
not account for additional objectives such as LTL or steady-state
specifications. Furthermore, the work of [17] presents a solution
concept for finding deterministic unichain policies under LTL and
steady-state constraints, however, it does not include any reward
structures.

2 FUNCTIONALITY

The main functionality of our tool is to answer multi-objective
LRA queries constrained by LTL and steady-state specifications

for MDPs and to synthesize a policy, if possible. We begin with an
overview of the tool’s functionality, followed by a description of the
various types of queries that are currently supported, including their
syntax and semantics. Finally, we discuss additional functionalities
that can be accessed via the command-line interface, and highlight
key attributes of our tool. The tool and supporting files for the
results in the next section are available from [2].

2.1 Workflow

Our tool functions according to the workflow depicted in Fig. 2. The
input consists of an MDP defined in the standard PRISM language1,
and an infinite-horizon property. This property is specified using
an extension of PRISM’s property specification language2 that we
developed. PRISM starts by constructing the MDP from the input
file and translates the specified LTL property into a Deterministic
Rabin Automaton (DRA). Then, it forms the product between the
MDP and the DRA, also known as the product MDP, which is then
passed as an input to the novel component of our tool. Here, an
LP is constructed, following the methodology described in [11],
and fed to an LP solver. Finally, after the LP is solved, MultiGain
2.0 extracts the solution from the solver and, if required, synthesizes
a policy.

2.2 Example

Grid world models have been used extensively for the performance
evaluation of various MDP algorithms and tools in fields such as
reinforcement learning [9], motion planning [7] and formal verifica-
tion [17]. Here, we use two-dimensional grids of size 𝑁 ×𝑁 , where
an agent can traverse between the cells (or states) using one of the
four actions, left, down, up, right, available in all states. Note that
there are no actions to stay in a state i.e., no self loop actions. We
show the grid world for 𝑁 = 3 in Fig. 3a. Additionally, two cells are
labeled danger and one cell is labeled water_can to indicate that
they are on fire and the presence of a watering can, respectively.
The initial state, labeled home is the cell at the top left corner. Also,
we define a reward structure, denoted as "extinguish", to assign a
reward of 1 to the two fire states, intuitively encouraging the agent
to repeatedly extinguish resurging flames.

An example query for our 3 × 3 grid world with all three types
of properties is shown below.

mul t i ( R { " e x t i n g u i s h " } max=? [ S ] , P>=1 [ ( ! " danger " ) U
↩→ " water_can " ] , S >=0 . 25 [ " home " ] )

Intuitively, it asks: “What is the maximum expected long-run average
value of reward structure "extinguish" (LRA), such that: (i) the agent
does not visit any fire states before collecting the watering can first
(LTL) and (ii) at least 25% of the time in the long run it stays "home"
(SS)? ”.

To compute a result for the query, as discussed in Section 2.1 and
shown in Fig. 3b, the product MDP model is constructed, and the
maximized LRA reward of 0.5 is returned. Intuitively, the product
model consists of three copies of the grid, with a non-accepting
MEC (gray grid on the left), which is reached when traversing to

1https://www.prismmodelchecker.org/manual/ThePRISMLanguage/Introduction
2https://www.prismmodelchecker.org/manual/PropertySpecification/Introduction

https://www.prismmodelchecker.org/manual/ThePRISMLanguage/Introduction
https://www.prismmodelchecker.org/manual/PropertySpecification/Introduction
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mdp

module grid
       state : [0..16] init 0;

rewards “default”

model specification 𝒢

multi(R{“default”}max=? [S], 
P>=𝜃 [F G …], S>=u[...])

property specification ℒℜ 

PRISM MULTIGAIN 2.0

translate to DRA Product MDP

max cTxR

s.t. : 

Linear Program
subject to ℒℜ and 𝒢

LP SOLVER

Policy 𝜎

constructed MDP

Figure 2: The workflow of MultiGain 2.0 from input specifications to output policy.

(a) An example instance of the adjusted grid world

model.

(b) The computed product model and policy. The transient part of

the policy is described with green arrows, the recurrent part with

blue arrows. The blue framed state have positive switch probability

from transient to recurrent behavior.

Figure 3: Example application of MultiGain 2.0 to an ad-

justed grid world model (a) and the corresponding solution

(b).

a fire cell before visiting the watering can, and the unique accept-
ing MEC (right), reached when visiting the watering can cell first.
The transient, recurrent and switching behavior of the policy is
indicated by arrows in the product model in Fig. 3b. After the tran-
sient part directly guides around the fires to the watering can, it
continues to traverse to any state with positive frequency in the

long-run. At each such state the policy has a probability to switch to
recurrent behavior, which suggests to loop both on the fire and the
home cells. It may be noticed that while the four blue states have
all positive occupation measure and are all reached by the policy,
the recurrent behavior consists of two disconnected cycles here.
Such unintuitive results can be avoided using further functionality
of the tool.

2.3 Infinite-horizon properties

As described before, a multi-objective query for MultiGain 2.0 con-
sists of the following specifications:

(1) Long-run average: Two types of LRA properties can be
specified: (i) a numerical property, which seeks to determine
the maximum LRA achievable, or (ii) a Boolean property that
determines whether the LRA surpasses a certain threshold or
not. In PRISM’s syntax, a numerical or a Boolean LRA prop-
erty could be represented as R{"rewardStruct"}max=?[S]
or R{"rewardStruct"} >=0.5[S] respectively.

(2) LTL: The tool only supports a single Boolean query for LTL
specifications, since multiple LTL formulae can be conjoined
to form one formula. An example could look like P>=0.75 [G
F "stateLabel"], which expresses that with probability ≥
0.75, states with the label stateLabel are reached infinitely
often.

(3) Steady-state: An SS property of type
S<=0.1["stateLabel"] requires that the steady-state
probability distribution of the states with label stateLabel
is bounded from above by 0.1.

2.4 Syntax and semantics

As described in [11], there are several types of queries one can
formulate by combining the properties discussed above. Moreover,
as previously discussed, we extended PRISM’s syntax to allow for
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𝑎, 1

𝑏, 1

𝑐, 1

• linear temporal logic (LTL)
GF

• steady-state constraint (SS)
≥ 1

Figure 4: An example MDP with LTL and steady-state con-

straints. Only policies visiting the accepting state less and less

frequently satisfy both specifications, requiring unbounded

memory for the information on a current run’s history.

new types of queries using the following notation:

keyword ( [𝑁, ]𝑝𝑟𝑜𝑝1, 𝑝𝑟𝑜𝑝2, · · · , 𝑝𝑟𝑜𝑝𝑘)
where the keyword can be one among multi, mlessmulti,
detmulti, or unichain and each 𝑝𝑟𝑜𝑝𝑖 is an LRA, LTL, or SS prop-
erty. Note that there can be only one LTL property in the syntax
of a query. We now explain the semantics of the four different
keywords.

2.4.1 multi. The semantics of the multi keyword is similar to its
meaning in PRISM and MultiGain, i.e., computing a policy that
satisfies the conjunction of all the individual properties. Here, the
type of result obtained depends on the number of numerical LRA
properties. If there are no numerical properties, the query only
consists of Boolean LRA, LTL, and SS properties and the result
is either true or false, depending on whether all of them can be
satisfied or not. In the case of a single numerical LRA property,
the tool returns the maximum (or minimum) achievable value for
that LRA reward while satisfying all of the other properties. When
more than one numerical property is given, the tool approximates
the corresponding Pareto curve while satisfying all of the other
properties. An example of a multi query is shown below:

mul t i ( R { " reward1 " } max=? [ S ] , R { " reward2 " } max=? [ S ] ,
↩→ R { " reward3 " } >=0 . 5 [ S ] , P >=0 . 7 5 [G F
↩→ " s t a t e L a b e l 1 " ] , S >=0 . 5 [ " s t a t e L a b e l 2 " ] ,
↩→ S <=0 . 5 [ " s t a t e L a b e l 2 " ] )

2.4.2 mlessmulti. The mlessmulti keyword, used in the previous
version of our tool, solves a different problem in its current imple-
mentation. In general, a policy computed by the LP (i.e., a multi
query) might visit the accepting states less and less often to satisfy
the remaining constraints, thus requiring unbounded memory as
seen in Fig. 4. Relaxing the LRA and SS specifications by an arbitrary
factor 𝛿 > 0 lifts this restriction [11], such that a finite-memory
policy exists for the model.

The implementation of a mlessmulti query addresses this prob-
lem from a different angle. It allows the user to specify an addi-
tional integer 𝑁 , signifying the maximum number of steps on (the
long-run) average before an accepting state is revisited. The tool
subsequently computes and outputs the resulting minimal factor
𝛿 to uniformly relax all steady-state specifications and long-run

average rewards, with regards to this fixed accepting frequency.
Hence, exporting the strategy yields a finite-memory policy, more
specifically a 2-memory policy [11] consisting of a memoryless
transient policy, which switches to a memoryless recurrent policy.
Note that due to the modified objective function it is not possible
to define numerical LRA properties in a mlessmulti query.

An example of a mlessmulti query is shown below:

mle s smu l t i ( 1 0 0 0 , R>=0 . 5 [ " s L a b e l " ] , P>=1[G F
↩→ " t L a b e l " ] , S>=1 [ " s L a b e l " ] )

2.4.3 detmulti. Depending on the underlying model and prop-
erty specification, the policy computed by the multi keyword may
exhibit two significant characteristics. Firstly, it is typically ran-
domizing, and secondly, the policy may require an infinite amount
of memory to remember the current history. To address both of
these issues, the detmulti keyword implements the approach by
[17], which is based on a mixed-integer linear program. The result-
ing policy, which is defined over the original MDP rather than the
product, is both deterministic and finite-memory. The detmulti
queries may contain a single LTL property and arbitrarily many
steady-state specifications. The result, other than an exportable pol-
icy, is either the optimal LRA reward or a boolean value indicating
whether a solution was found or not. An example of a detmulti
query is shown below:

d e tmu l t i ( P >=0 . 75 [ ( ! " s t a t e L a b e l 1 " ) U " s t a t e L a b e l 2 " ] ,
↩→ S >=0 . 75 [ " s t a t e L a b e l 3 " ] )

2.4.4 unichain. We introduce the keyword unichain, which com-
putes a unichain solution for the multi query, i.e., the recurrent
behavior of the policy resides only in a single MEC and thus can
be turned into a “single” behavior happening with probability 1.
Formally, a policy is called unichain if the induced Markov chain
has only one recurrent class and all the other states are transient.
This is computed by exploring each MEC (or accepting MEC if an
LTL specification is present) individually. The implementation con-
cept follows the idea presented in [11, Section 6]. If no numerical
LRA properties are specified, the tool explores the MECs until a
unichain solution is found and outputs the corresponding boolean
value. For a single numerical LRA property, our tool searches for the
unichain solution maximizing (or minimizing) the reward structure
and outputs the corresponding reward. Multiple numerical rewards
are not allowed for this keyword, as this would result in comparing
multiple Pareto curves. An example of a unichain query is shown
below:

un i cha in ( ( R { " reward1 " } max=? [ S ] , R { " reward2 " } >=0 . 5
↩→ [ S ] , P >=0 . 7 5 [G F " s t a t e L a b e l 1 " ] , S >=0 . 5
↩→ [ " s t a t e L a b e l 2 " ] , S <=0 . 5 [ " s t a t e L a b e l 2 " ] )

2.5 Interface

The tool is used via a command line interface, which requires the
user to specify two files as input arguments, containing the model
and the queries. The approximated Pareto curve can be exported
to a file by using the flag --exportpareto. Furthermore, the tool
includes a Python script that enables the visualization of Pareto
frontiers with two or three dimensions. In Fig. 5, we show example
plots of two- and three-dimensional Pareto frontiers produced by
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(a) Approximated Pareto curve with 2 rewards. (b) Approximated Pareto curve with 3 rewards.

Figure 5: Example plots of approximated Pareto curves with 2 and 3 dimensions.

the tool. Moreover, for all queries except Pareto approximation, we
provide the option to export the computed policy, which may have
an unbounded memory, to a file in various formats.

2.6 Implementation characteristics

In this section, we report on the quality of MultiGain 2.0 by
highlighting some of its key characteristics.

Extensibility. The underlying LP solver implements a general
interface and can thus be easily switched for every run. This imple-
mentation allows the simple extension and addition of further LP
solvers. Currently, the tool supports the use of lp_solve [1] and
Gurobi [8]. After solving the LP, the tool extracts the solution from
the solver and, if required, synthesizes a policy.

For approximating Pareto curves a new generic class has been im-
plemented which takes as input a weight function, mappingweights
to reward structures. This class lifts the Pareto curve approximation
fromMultiGain 2.0 so that other PRISM-based tools could utilize it.
Furthermore, Pareto curves of any dimension can be approximated,
contrary to the two-dimensional limit of the previous version of
the tool. Since the tool is implemented in the unifying approach of
the PRISM pipeline, it can be extended at a variety of entry points,
as seen in Fig. 2. For example, new deterministic automata could
be implemented alongside the translation of the LTL and building
the product model, without changing the tool’s core functionality.

3 EXPERIMENTAL EVALUATION

In this section, we assess the performance of our tool in terms of
its ability to solve the types of queries described in Section 2.4. We
conducted multiple experiments to evaluate the performance of
our tool. We first discuss the experimental setup, followed by the
technical details regarding our experiments, and then we give a
detailed overview of our experimental results in Section 3.1.

Experimental setup. Our evaluation consists of three parts: (i)
the evaluation of the full property suite (LRA, SS, and LTL proper-
ties) using a grid world model; (ii) a scalability analysis of the tool

Table 1: Average running time (in seconds) over 20 randomly

grid world labeled instances.

LRA Average running time for each grid
LTL Rrew_cmax=? [ S ] 4 × 4 16 × 16 32 × 32 64 × 64 128 × 128

G(¬𝑏 ) ∧ (GF𝑎) × 0.121 0.231 0.466 1.296 26.104
(GF𝑎) ∨ (FG𝑏 ) × 0.029 0.091 0.210 0.581 2.498
(F𝑎)U𝑏 × 0.020 0.074 0.238 0.852 4.042
(F𝑎) ∧ (F𝑏 ) ∧ (F𝑐 ) × 0.042 0.147 0.499 2.396 21.678
G(¬𝑏 ) ∧ (GF𝑎) ✓ 0.025 0.092 0.623 10.12 128.197
(GF𝑎) ∨ (FG𝑏 ) ✓ 0.021 0.081 0.555 5.245 106.772
(F𝑎)U𝑏 ✓ 0.013 0.105 0.668 11.053 158.448
(F𝑎) ∧ (F𝑏 ) ∧ (F𝑐 ) ✓ 0.017 0.298 3.232 81.389 883.446

regarding its performance with an increasing number of steady-
state constraints; and (iii) an evaluation of how different LP solvers
impact the tool’s efficiency, including both runtime performance
and memory usage, in the context of handling queries.
Technical details. All experiments were performed on a desk-
top computer with 16 GB of RAM and an Intel i7-8550U CPU @
1.80GHz, running Ubuntu 22.04.3 LTS.

For the grid world model, the average running time over 20
runs was recorded, as a countermeasure to the high variance of
individual running times. All results are rounded to three decimal
places.

3.1 Results

LRA+LTL+SS queries. In Table 1, we present the results for various
multi queries that involve the combination of all three types of
properties. These queries are categorized into two groups: those
containing an LRA property, denoted by a ✓symbol, and those
that do not, represented by a × symbol. Following the experiments
in [17], the states were randomly divided into four equally-sized
subsets, and each subset was labeled with an atomic proposition
from the set𝐴𝑃 = 𝑎, 𝑏, 𝑐, 𝑑 before a run of the tool. Additionally, we
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Figure 6: LP solver running times of multi queries on 64 ×
64 grid world models with the LTL formulae 𝜑1, 𝜑2 and 𝜑3
from above, based on the number of steady-state constraints

specified.

created a reward structure, 𝑟𝑒𝑤_𝑐 , that assigns a reward of 1 to each
state labeled with 𝑐 . In each run, we required the LTL formula to
be fulfilled with a probability threshold of 𝜃 = 0.5 and steady-state
constraints of 𝑆 ≥ 0.01["𝑑"], 𝑆 ≤ 0.5["𝑑"].

The upper half of Table 1 highlights the efficient performance of
our tool when no LRA property is specified. Even for the largest
grid world MDP model, the longest running time is still only a
few seconds. Also, when an LRA property is specified (lower half
of Table 1), for the majority of the cases in the 64 × 64 grid, it
remains quite efficient (< 11 seconds); however, scalability issues
start emerging for the 128 × 128 grid. The LRA property used here
maximizes the average reward of 𝑟𝑒𝑤_𝑐 , denoted as Rrew_cmax=? [ S ].
For larger grid sizes, such as the 128 × 128 case, the runtimes are
reasonable except for the last LTL property (F𝑎) ∧ (F𝑏) ∧ (F𝑐). This
trend aligns with the findings in [17] and can be attributed to the
random generation procedure of the grid world instances, which
may have a bias toward certain types of models.
Scaling the number of steady-state constraints. In the next
set of experiments, we systematically assess the computational
overhead as a function of the number of steady-state constraints
introduced per specification. We consider the following three dif-
ferent LTL formulae: 𝜑1 = (GF𝑎) ∨ (FG𝑏), 𝜑2 = (F𝑎)U𝑏, and
𝜑3 = F𝑎 ∧ F𝑏 ∧ F𝑐 , and we employ instances of a 64× 64 grid world
for our experimental setup. To instantiate non-trivial steady-state
constraints, for each experimental iteration, we stochastically select
a subset of states, denoted S, that are labeled with 𝑑 . Every state
𝑠 ∈ S is then attributed a distinct label, denoted 𝑙𝑠 . Formally, for a
given label 𝑙𝑠 , its corresponding constraint is such that:𝑈 (𝑙𝑠 ) = 0.5,
and

∑
𝑠∈S 𝐿(𝑙𝑠 ) ≤ 0.25, where𝑈 and 𝐿 denote an upper and lower

bound, respectively. For each of these designated labels 𝑙𝑠 , we ap-
pend a steady-state constraint to the property specification, ensur-
ing that the cumulative lower bounds do not exceed a threshold,

Table 2: Average LP solver runtimes (in seconds) over 20 runs

of respective grid world instances, recorded using Gurobi and
lp_solve. The faster runtime of each problem is marked in

green.

Rrew_cmax=? [ S ] (LRA)
Average running time per grid size

LTL Solver 4 × 4 16×16 32×32 64 × 64

×

𝜑1
Gurobi 0.002 0.029 0.062 0.264
lp_solve 0.001 0.072 0.33 1.165

𝜑2
Gurobi 0.007 0.018 0.09 0.405
lp_solve 0.001 0.069 1.502 1.617

𝜑3
Gurobi 0.002 0.027 0.233 2.006
lp_solve 0.001 0.097 1.369 15.224

✓

𝜑1
Gurobi 0.006 0.038 0.342 4.566
lp_solve 0.002 0.059 0.206 1.856

𝜑2
Gurobi 0.005 0.097 0.284 10.022
lp_solve 0.002 0.071 0.412 3.842

𝜑3
Gurobi 0.003 0.014 2.311 79.566
lp_solve 0.001 0.595 3.043 160.526

thereby reducing the likelihood of encountering infeasible scenar-
ios.

Our experiments span configurations with 10, 50, 200, and 500
steady-state constraints, evaluated against the three distinct LTL
formulae. To account for the variance in individual running times,
as discussed in previous experiments, the recorded running times
were averaged over 20 runs.We note that for𝜑1, the solver’s average
runtime increases as more steady-state constraints are appended.
Specifically, starting from an average runtime of ≈ 1 second with
10 constraints, it rose to 2.34 seconds with 500 constraints. On
the other hand, 𝜑2 presented an interesting pattern as the average
runtime of ≈ 9 seconds for 10 and 50 constraints, were fairly similar.
However, a significant increase was observed as we introduced
200 constraints, reaching ≈ 14 seconds, and this growth seemed
to stabilize by the time we integrated 500 constraints. Finally, 𝜑3
seemed to be the most computationally demanding, starting at
≈ 6 seconds with 10 constraints and reaching ≈ 27 seconds at 500
constraints.

This experiment demonstrates that adding steady-state con-
straints does not have a significant impact on overall runtime, and
is therefore not a restriction on the user.
LP solver comparison. In this set of experiments, we evaluate
how the performance of the queries is affected by the choice of
the underlying LP solver. We consider the three LTL formulae
used in the previous experiments. As stated in Section 2.6, Multi-
Gain 2.0 supports the publicly available solver lp_solve as well
as the well-known commercial state-of-the-art solver Gurobi. In
Table 2 we present the average runtime over 20 runs of Gurobi and
lp_solve on various grid world instances, with and without LRA
maximization, marked by the ✓ and × symbols, respectively. The
fastest runtime for each problem is marked in green.

Our results show a trend where the Gurobi significantly out-
performs lp_solve as the size of the grid increases, especially on
the 64 × 64 grid. However, even in this case, there are instances
in which lp_solve performs reasonably well. For example, with
the LTL formula 𝜑1, when LRA reward maximization is consid-
ered, lp_solve’s average runtime of 1.856 seconds outperforms
Gurobi’s of ≈ 4.5 seconds. Moreover, for the 𝜑3 formula under
the same grid configuration and with LRA maximization included,
Gurobi is ≈ 50% faster compared to lp_solve, whereas in the case
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Figure 7: Average memory usage (in megabytes) over 20 runs

of respective grid world instances, recorded using Gurobi and
lp_solve.

without LRA maximization, Gurobi demonstrates ≈ 87% reduction
in runtime over lp_solve.

On the other hand, in smaller grid sizes, lp_solve becomes more
competitive and in some cases it even outperforms Gurobi. For in-
stance, when evaluating the 𝜑1 formula without LRA maximization
on a 4 × 4 grid, lp_solve achieves a runtime of 0.001 seconds com-
pared to Gurobi’s 0.002 seconds, denoting a 50% more efficiency in
handling smaller grid sizes.

Apart from the runtime performance of both solvers, we also
compared the quality of the solution on selected experiments. Both
solvers exhibited no noticeable issues in terms of finding a solution
and solution quality.

In Fig. 7 we report on the average memory usage of our tool
when using the Gurobi and lp_solve solvers, across different grid
sizes. As expected, there is an increasing trend in terms of the
tool’s memory usage as the grid size increases, indicating greater
memory requirements for solving larger problems. We note, that
for the majority of the cases, the tool consumes more memory
when using lp_solve compared to Gurobi, something which can
be observed in smaller grid sizes. However, across every grid size
the difference in memory usage between the two solvers is not
significant, indicating that both solvers are viable alternatives from
a memory consumption perspective.

4 CONCLUSION

We presented MultiGain 2.0, an MDP controller synthesis tool for
multiple long-run average reward structures subject to LTL and
steady-state constraints. Apart from the normal combination of
these different objectives, it is also able to solve the 𝛿-satisfaction
problem, which relaxes the objectives by a small factor 𝛿 . We also
implemented a new method sketched in [11] providing unichain
solutions, and a method described in [17] for deterministic solutions.
Our tool can export the Pareto curve and the policy, and it can also
visualize two and three-dimensional Pareto curves.

This tool can be further extended to work for omega-regular
objectives. Another useful direction for future work would be to
explore combinations with other types of properties, such as non-
linear, finite-horizon or discounted, rewards.
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