
B. R A N D E L L ,  Edi tor  

Implementation of the 
SHARER2 Time-Sharing System 

M. C. HARRISON 
New York University,* New York 

A simple mechanism is described for the execution of part 
of a program with its own memory protection. This allows 
such a program to act as a suboperating system. An improved 
version of the SHARER time-sharing system using this feature 
is described. 

KEY WORDS AND PHRASES: operating system, memory protection, time- 
sharlng~ multiprogrommlng, monitor, submonitor, suboperotlng system 

CR CATEGORIES: 4.30, 4.31, 4.32 

In  a recent paper  " S H A R E R ,  a Time Sharing System 
for the CDC 6600" by  M. C. Harrison and J. T. Schwartz 
[1], the implementat ion of a time-sharing system as a sub- 
system of a standard nonconversational operating system 
(SCOPE) was described. Somewhat before the article 
appeared in print, a substantial  improvement  was made in 
the implementat ion which greatly simplified the design 
and reduced by  an order of magnitude the difficulty of 
debugging such a subsystem. 

In  the original subsystem, the executive responsibility 
was shared between two programs executing in parallel on 
two processors. This gave rise to a number  of programming 
problems concerned with simultaneous reference to tables 
in memory  accessible to the two programs. Worse than  this, 
one of the processors was not memory-protected and could 
(and sometimes did) destroy the background system when 
a bug was encountered in either program. Extensive check- 
ing of the potentially dangerous program would have been 
required to make the system secure. 

To  solve both  these problems, the subsystem was modi- 
fied to use a single executive program in the fast central 
processor, which is memory-protected and therefore cannot  
destroy the rest of the system. Those functions which this 
program could not do were built in to the standard SCOPE 
monitor  with rigorous error-checking. One of these func- 
tions, which we refer to as X J D ,  has been found to be of 
use in a number  of other situations, and is worth describing. 

A program in a SCOPE job, which we will refer to 
as a "control"  program, can issue the request X J D  (p,t) 

This work was supported by the US Atomic Energy Commision 
under contract number AT(30-1)1480. 
* Courant Institute of Mathematical Sciences. 

Volume 11 / Number 12 / December,  1968 

where p is a pointer to a 16-word block of memory  specify- 
ing a "controlled" program whose memory  is wholly with- 
in the memory  of the control program. On receiving such a 
request, the SCOPE monitor  checks the parameters ,  and 
if they are legal, switches the central processor to the con- 
trolled program. I t  allows the controlled program to exe- 
cute for up to t milliseconds, or until it makes an error or a 
request, when it s imply switches the central processor 
back to the control program giving an indication of the 
cause of the controlled program's  termination.  I f  the con- 
trolled program made a request or an error, the control 
program can service it or pass it on to SCOPE if necessary. 

The use of the X J D  request is not limited to a particular 
job. All jobs running in the system can use it with no danger 
to each other or to the system. Note  tha t  if the control 
program is prepared to recognize and service an X J D  re- 
quest from one of its controlled programs, it is possible for 
the controlled program to act  also as a control program, 
thus providing a hierarchy of programs or subsystems of 
effectively arbi t rary  depth. 

The S H A R E R  time-sharing system was rewritten in the 
summer of 1967 as a control program which uses X J D  to 
execute user programs. This eliminated the need for the 
special peripheral program, except the teletype communi- 
cation routine. The  lat ter  is implemented as a s tandard pe- 
ripheral driver callable by  a request in the normal  way. 

The resulting subsystem, SHARER2,  is not dis- 
tinguished from any other job in any  way, and can be run 
undebugged during development with no danger to any  
other job running in the system. In  fact, it is possible to 
run two or more such time-sharing subsystems simul- 
taneously (communicating with different sets of terminals, 
of course). 

The idea of a program being able to execute a par t  of 
itself is of course not new. I t  is available in the systems for 
the GE 645 and the SDS 940, which have  much more 
elaborate addressing facilities than  the CDC 6600. On the 
6600 the at tract ion is the extreme simplicity of implemen- 
tation. 

REFERENCES 

1. HARRISON, M. C., AND SCHWARTZ, J. T. SHARER, a time 
sharing system for the CDC 6600. Comm ACM 10, 10 (Oct. 
1967), 659-665. 

2. Papers on Multics. Proc. AFIPS 1965 Fall Joint Comput. 
Conf., Vol. 27, Pt. 1, Spartan Books, New York. 

3. LAMPSON, B. W., LICHTENBERGER, W. W., AND PIRTLE, M. W. 
A user machine in a time-sharing system. Proc. IEEE 54, 
12 (Dec. 1966), 1766-1774. 

Communicat ions  of  the  ACM 845 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F364175.364210&domain=pdf&date_stamp=1968-12-01

